A Numerical Optimization of an Efficient Double Junction InGaN/CIGS Solar Cell

Document Type: Research Paper

Authors

1 Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Department of Electrical Engineering, Eslamabad-E-Gharb Branch, Islamic Azad University, Eslamabad-E-Gharb, Kermanshah, Iran.

10.22061/jecei.2018.1053

Abstract

An efficient double junction InGaN/CIGS solar cell can be simulated using Silvaco ATLAS software. In this study, a thin CdS top cover layer is used as the anti-reflector layer. To reach the current matching condition, changing the thickness of this CdS layer, we can enhance the short-circuit currents of both the top and bottom cells. To gain a desired efficiency, different design parameters, such as the doping concentrations and the thicknesses of the various layers of the cell are optimized. This cell is designed to be used in a real environmental situation. Considering the proposed structure and the simulation results, an optimum efficiency of 41.87% is achieved and also the obtained fill factor is equal to 75.16%.

Keywords


[1] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510-519, 1961.

[2] F. Alharbi and S. Kais, “Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 1073–1089, 2015. 

[3] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and  M. Powalla “New world record efficiency for

Cu(In,Ga)Se2 thin-film solar cells beyond 20 percent,” Prog. Photovolt. Res. Appl., vol. 19, no. 7, pp. 894-897, 2011.

[4] O. Lundberg and M. Edoff, “The effect of Ga-grading in CIGS thin film solar cells,” Thin Solid Films, vol. 480-481, pp. 520-525, 2005.

[5] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multijunction iii–v solar cells: current status and future potential,” Solar Energy, vol. 79, no. 1, pp. 78–85, 2005.

[6] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies, vol. 2, no. 3, pp. 504-530, 2009.

[7] T. Sameshima, J. Takenezawa, Ma. Hasumi, T. Koida, T. Kaneko, M. Karasawa, and M. Kondo “Multi junction solar cells stacked with transparent and conductive adhesive,” Japanese Journal of Applied Physics, vol. 50, pp. 1-4, 2011.

[8] Ch. Zhou and H. Chung, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 301-308,  2016.

 [9]  J. P. Dutta and et al., “Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer,” Optik, vol. 127, no. 8, p. 4156–4161, 2016.

[10]  M. Naseri and B. Farhadi, “An efficient double junction CIGS solar cell using a 4H-SiC Nano Layer, Optik, vol. 127, no. 20, pp. 8646-8653, 2016. 

[11]  C. D. Bailie, M. G. Christoforo, and et al., “Semi-transparent perovskite solar cells for tandems with silicon and CIGS,” Energy Environ. Sci., no. 3, 2015.

 [12] M. Saadat, M. Moradi, and M. Zahedifarab, “CIGS absorber laye r with double grading Ga profile for highly efficient solar cells,” Superlattices Microstruct, vol. 92, pp. 303-307, 2016.

[13]  S. Nacer and A. Aissat, “Simulation and optimization of current matching multi-junction InGaN solar cells,” Opt. Quantum Electron. vol. 47, pp. 3863-3870, 2015.

[14] V. Armel, M. Forsyth, D.R. MacFarlane, and J. M. Pringle, “Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye- sensitized solarcells,” Energy Environ Sci, vol. 4, no. 6, pp. 2234–2239, 2011.

[15] H. Wang, X. Zhang, F. Gong, G. Zhou, and Z. S. Wang, “Novel esterfunctionalized solid-state electrolyte for highly efficient all-solidstate dye-sensitized solar cells,” Adv Mater., vol. 24, no. 1, pp. 121– 124, 2012. 

[16] I. J. Kramer and E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem Rev., vol. 114, no. 1, pp. 863–882, 2013.

[17] A. Luque and A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv Mater., vol. 22, no. 2, pp. 160–174, 2010. 

[18] A. Martí, E. Antolín, P.G. Linares, I. Ramiro, I. Artacho, E. López, and et al. “Six not-so- easy pieces in intermediate band solar cell research Journal of Photonics for Energy, vol. 3, no. 1, pp. 1-11, 2013.

[19] M. I. Hossain, A. Bousselham, and F. H. Alharbi, “Optical concentration effects on conversion efficiency of a split-spectrum solar cell system,” Journal of Physics D Applied Physics, vol. 47, no. 7, pp. 075101, 2014.

[20] L. Hsu and W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells, Journal of Applied Physics, vol. 104, pp. 1-7, 2008.

[21] S. W. Feng, and et al., “Numerical simulation of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells,” NanoscaleRes. Lett. vol. 9, pp.  652-661, 2014.

 [22] J. W. Leem, Y. T. Lee, and J. S. Yu, “Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes,” Optical and Quantum Electronics, vol.  41, no. 8, pp. 605-612, 2010.

 [23] K. Jolson Singh and S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modelling using optimized InAlGaP BSF layers,” Optical and Quantum Electronics, vol. 43, no. 15, pp. 1-21, 2012.

[24] S. M. Ahmadi and F. Parandin, “Design and simulation of a highly efficient InGaN/Si double-junction solar cell,” JECEI, vol. 5, no. 2, pp. 157-162, 2017.

[25] S. Nacer and A. Aissat, “Simulation and optimization of current matching double-junction InGaN/Si solar cells,” Applied Physics A, pp. 122-138, 2016.

[26] N. Naghavi and S. Spiering, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Progress in Photovoltaics: Research and Applications, vol. 11, no. 7, pp. 437-443, 2003.

 [27] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon,  and R. Noufi, “Progress toward 20 percent efficiency in Cu(In,Ga) Se2 polycrystalline thin film solar cells,” Progress in Photovoltaics, vol. 7. No. 4, pp. 311-316, 1999.

[28] V. Saji, S. Lee, and C. W. Lee, “CIGS thin film solar cells by electrodeposition,” Journal of the Korean Electrochemical Society, vol. 14, no. 9, pp. 61-70, 2011.

[29] A. Chirila, S. Buecheler, and et al. “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films,” Nature Materials, vol. 10, no. 11, pp. 857-861, 2011.

[30] I. Bouchama, K. Djessas, F. Djahli, and A. Bouloufa, “Simulation approach for studying the performances of original superstrate CIGS thin films solar cells,” Thin Solid Films, vol. 519, no. 21, pp. 72807283, 2011.

[31] B. Farhadi and M. Naseri, “An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation,” Superlattices and Microstructures, vol. 96, pp. 104-110, 2016.