
J. Electr. Comput. Eng. Innovations, 6(1): 59-76, 2018

DOI: 10.22061/JECEI.2019.1076 59

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Software Quality Models: A Comprehensive Review and Analysis

M. Sadeghzadeh Hemayati1, H. Rashidi2, *
1
Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

2
Department of Mathematics and Computer Science, Allameh Tabataba'i University, Tehran, Iran.

Article Info Extended Abstract

Article History:
Received 17 March 2017
Revised 31 July 2017
Accepted 01 November 2017

 Background and Objectives: One of the major challenges in software
engineering is how to respond to the desolate state of high-quality software
development in a timely and cost-effective manner. Many studies have
been conducted in an attempt to formalize the quality of software.
However, according to the recent researches, the lack of comprehensive
quality model is rooted in neglecting all quality aspects.

Methods: In this study, we review nineteen quality models and classify
them from three different perspectives, including structural, behavioral,
and basic and derived aspects. The main aim is to specify and extract the
more comprehensive set of quality factors to evaluate software quality.

Results: This paper compares the different quality models and analyzes the
factors to draw the necessary aspects in comprehensive quality models.
Since the software quality involves several engineering tasks and several
players who deal with quality concepts during software life cycle according
to their various roles, in various phases and different artifacts,
comprehensive quality models must consider many factors.

Conclusion: These factors are in different aspects such as the measurement
time in different development phases, product as well as process-related
quality factors, a set of quality metrics measureable on the different type of
artifacts such as document, model and source code, and finally a specific
mechanism to apply dynamic weights to quality factors to determine their
impacts on final quality of a product based on its application domain.

Keywords:
Software
Quality
Software Engineering
Models

*
Corresponding Author’s Email

Address: hrashi@atu.ac.ir

Introduction

There are two kinds of requirements in software

engineering projects, namely, functional and non-

functional requirements. Functional requirements are

concerned with the technical functionality of a software,

whereas non-functional requirements define criteria that

software can be used to judge the functions of the

software in particular conditions, rather than specific

behaviors. Non-functional requirements generally are

specified by quality models that annotate (qualify)

functional requirements. Qualification might be how fast

the function must be performed, how resilient it must be

to erroneous input, how easy the function is to learn,

etc. With the increasing use of software system in

today's world, the quality of software and its evaluation

has garnered widespread attention. Software depends

upon its quality ‎[1], effectiveness, and completeness ‎[2].

Quality is the degree to which a system, component, or

process meets certain requirements. Although the

subjectivity of quality concept is an obstacle to providing

a precise definition for quality of software, there are two

acceptable explanations for it ‎[3]:

 Conforming with specification: the quality of a service

or product determines compliance of final product or

service specifications to the original specifications.

 Meeting consumer requirements: the quality is the

capability of a product/service to satisfy implicit and

explicit user needs.

Modeling can help with better understanding and

controlling of complex concepts. Therefore, the software

http://jecei.sru.ac.ir/

M. Sadeghzadeh Hemayati et al.

60

quality model is a tool for software quality description

and management ‎[3].

Since 1978, multiple quality models have been

developed for software quality assessment and

measurement.

Figure 1 shows possible building blocks of quality

models. Quality models are created based on some

building blocks including quality objectives, factors,

criteria, sub-criteria, and metrics. A quality model can

include all or a part of these building blocks. Quality

objectives should be identified according to the non-

functional requirements of a software product. After

specifying quality objectives, some quality factors

(attributes) should be identified based on management

point of view. Since the factors are very general, they

should be decomposed to a set of criteria and sub-

criteria, which are based on software point of view, in

order to decrease the abstraction of the related factor.

On the other hand, criteria cannot be measured for a

software product directly ‎[5]; therefore, each one should

be decomposed to some measurable quantitative

metrics ‎[6]. Criteria and sub-criteria are assessed by

measuring metrics. The quality factor satisfaction is

specified by composing and aggregating its related

criteria and consequently, the quality of the final product

or the achievement of quality objectives is estimated by

aggregating their associated factors.

According to the recent researches, the lack of

comprehensive quality model is rooted in neglecting all

quality aspects ‎[3]. Even standard quality models are not

comprehensive enough to be used for different

engineering tasks ‎[7]. McCall does not consider final

product functionalities. The portability does not affect

the quality of the final product in the FURPS. In some

models, such as Boehm and Dromey, there are no

measurement approaches for quality factors. Bertoa and

Vallecillo ‎[8] do not consider reusability. Alvaro et al. ‎[31]

did not provide any solution to cope with the subjectivity

of‎ quality‎ factors‎ and‎ their‎ dependence‎ upon‎ expert’s‎

knowledge and experience ‎[7] and different entities with

different levels of knowledge ‎[9]. Software quality is a

complex concept that is affected by different aspects of

the software development process. Software quality

involves some different engineering tasks such as quality

of the‎ product, process, design, code, and test and

application domain ‎[3]. Moreover, different players are

involved in quality concept based on their roles (e.g.,

analyzer, designer, architecture) at the different times

 (e.g., requirements, analysis, design phases) with

various artifacts such as models, documents, and code.

The representation, recognition, assessment, and

estimation of software quality require a comprehensive

model that covers all involved aspects. In this paper, we

analyze and compare multiple quality models, both basic

and derived models, to identify the important aspects,

which should be included in a comprehensive model.

Quality Models Review

Many types of researches have been done on the

software quality area and several models have been

developed. Since it is impractical to assess all quality

models, we use three common software quality model

classifications and evaluate the strengths and weakness

for each category by focusing on their potential to be a

comprehensive model. At the end of this section, we

show the state of each model from the classification's

point of view. As mentioned above, each model consists

of a set of building blocks including quality objective,

factors, criteria, sub-criteria, and metrics. Assessment of

how to organize building blocks and their interactions

lead to structural classification‎[32]. From this point of

view, the models are divided into three categories:

hierarchical, meta-model-based and statistical quality

models. The models of the software development

process differ in behavior and purpose. Some quality

models are used to define quality requirements; some

are used to assess product or process quality and some

are used to estimate final product quality. So, from a

behavioral perspective, the models can be divided into

three categories: definition, assessment and estimation

models ‎[32]. According to Miguel et al. ‎[25], some

quality models are independent of each other and

contain several building blocks. These models are known

as basic models. Examples are McCall, Boehm and ISO.

Other models are derived from the basic models. These

models extend the basic model to cover a specific

domain. In other words, the derived models cope with

the weaknesses of a basic model in the particular area by

extending and modifying it. For example, the quality

model of Bertoa and Vallecillo ‎[8] was developed on the

basis of ISO9126 for effective evaluation of COTS, Alvaro

et al. (2005) proposed a framework based on ISO9126

for certification of software components in CBD, and

Alrawashdeh et al. ‎[12] adapted the ISO9126 for ERP

quality assessment.

Fig. 1: A building block of quality models.

Software Quality Models: A Comprehensive Review and Analysis

61

A. Structural Classification

One of the traditional ways of classifying software

quality models is to categorize them in terms of their

method for organizing model of building blocks (Figure

1). From this perspective, the models can be classified

into three different categories, namely, hierarchical,

meta-model-based and statistical quality models ‎[32].

A.1. Hierarchical Quality Models

The first quality models are the hierarchical models

(McCall and Boehm) that model the quality of software

as a hierarchy of quality factors and criteria according to

Figure 2. The underlying concept to this category is the

decomposition of the quality concept to some quality

factor so that each factor covers a certain aspect of

product or process quality.

However, it decomposes quality factors to limited

metrics, so it cannot cover all quality aspects.

Furthermore, it is difficult to measure the metrics

because of their abstraction. The interpretation of the

result is too unclear because of ambiguity in

decomposition rules. In another word, if the result of

software quality assessment shows that the quality of

software is not high enough, it is not precisely specified

what can be done to improve quality.

Fig. 2: The scheme of hierarchical software quality model.

For instance, they use functionality, maintainability,

and efficiency factors to cover consumer requirements,

ease of change after product delivery, and resource

consumption, respectively. When the quality factors are

more abstract, they are decomposed by the models to

be less abstract. For example, ISO25000 decomposed the

maintainability factor to the modularity, reusability,

analyzability, modifiability and testability. So, given the

inability to directly measure quality factors and sub-

factors, it is essential to firstly identify the

implementation metrics affecting each factor. As an

example, ISO25000 uses coupling of components and

cyclomatic complexity adequacy for modularity measure

assessment. Finally, aggregation of implementation

metrics measurements is used to identify the value of

quality factors, and final product quality is specified by

aggregating the measured values of quality factors.

McCall, ISO, Boehm, FURPS, and some other models

fall into this category. ISO/IEC 25000 ‎[50] is one of the

most popular one among these models.

A.2. Meta-Model Based Quality Model

The second quality models are based on meta-model

since the quality is a complex concept, and the quality

model requires a more coherent and structured

infrastructure than the hierarchal relationship between

quality factors and metrics ‎[38]. Meta-model, a model

for model description is a model that includes building

blocks and construction rules, which are required for

creating a software quality model. In this type of models,

the elements influencing the software quality, such as

quality factors, criteria, and metrics, are identified such

that they depend on modeling techniques. Then, the

relationship and interactions between elements and the

model interpretation are described more precisely than

hierarchy via, say, UML diagrams or statistical

equations. Figure 3 shows the hypothetical meta-model.

This scheme indicates that the model is created on the

basis of quality objective, factors, criteria, sub-criteria,

and metrics. Moreover, each quality objective

decomposes into several factors, and each factor can be

measured indirectly or directly by affecting quality

criteria or quality metrics, respectively.
The criteria are calculated by their mapping to one or

more measurable metrics. Furthermore, the criteria can

have an inheritance relationship with some sub-criteria.

Meta-model helps the decomposition and organization

of the quality model into quality involved elements. This

kind of models is named meta-model-based quality

model. Dromey ‎[5] and SQUID ‎[23] are two quality

models which can be categorized in this group.

According to Figure 4, SQUID considers the quality

characteristics, sub-characteristics, internal property,

and measurable property as quality model building

blocks.

According to this model, each quality characteristic

can be decomposed into a set of sub-characteristics. On

the other hand, internal software property can affect

characteristics and sub-characteristics. Finally,

characteristics, sub-characteristics, and internal software

property are mapped to measurable metrics to be used

for calculating the quality of the final product by

measuring metrics and considering their interactions.

Dromey model is an extension of ISO9126 to create a

tangible relationship between quality attributes and

programming structures. This model adds new building

blocks, called quality carrying properties, to the ISO9126.

Based on this model (Figure 5), it should be determined

which quality properties are essential for each

software component (structural forms including

M. Sadeghzadeh Hemayati et al.

62

programming language statements and components).

After that, it should be specified which quality carrying

properties affect high-level quality attributes. Finally, the

quality‎ ‎ ‎ factors underpinning high-level quality

attributes are specified in order to measure the quality

of a final product based on ISO9126, the quality factors

which are influenced by high-level quality attributes are

identified.

For instance, in structural forms of module definition,

the critical quality attributes include functionality

attribute, abstraction level, independence degree and

the ease of reusability.

Fig. 3: The scheme of hypothetical meta-model.

Fig. 4: The schema of hypothetical meta-model.

Fig. 5: Dromey meta-model.

Software Quality Models: A Comprehensive Review and Analysis

 63

The quality carrying properties related to these

attributes are completeness, progressive (recursive

modules), consistency, homogeneity, utilization, loosely-

couple, parameterization, generic, abstractness,

specifier, document and self- descriptiveness. In meta-

model, each quality factor must be taken into account

from several quality attributes. Each certain quality

attribute is affected by a set of quality carrying

properties. Several quality carrying properties can be

applied to each structural form. The quality of meta-

models might be compromised by the introduction of

smells that can be the result of inappropriate design

decisions. Each smell can be linked to the corresponding

quality attributes. Recently, a research ‎[14] presented an

approach to defining extensible catalogues of meta-

model smells. Such links are exploited to automatically

select only those smells that have to be necessarily

resolved for enhancing the quality factors that are of

interest for the modeler. The implementation of the

approach is based on the Edelta language, and it has

been validated on a corpus of meta-models retrieved

from a publicly available repository. To conclude the

several meta-model discussed, we can drive the

following corollary:

Corollary-1: A meta-model used in the quality model

should consider only the quality model building blocks

and the other quality related aspects, such as

participants who are responsible for quality, artifacts

which are used for measuring quality, the quality

measurement time and software application domains,

are not considered in the meta-model. Therefore, this

type of models does not have enough

comprehensiveness for creating a multi-purpose

software quality model.

A.3. Statistical Models

The third category of quality models is statistical

models.

factors underpinning high-level quality attributes are

specified in order to measure the quality of a final

product based on ISO9126, the quality factors which are

influenced by high-level quality attributes are identified.

These models capture properties of product, process,

and organization and estimate or predict these quality

factors by creating a statistical relationship between

different metrics which are measured. The reliability

growth models (See ‎[1], ‎[35], ‎[37], ‎[30]) fall into this

category. These models transfer the idea of hardware

reliability models to software. The main purpose of this

model is to monitor the failure behavior of software, for

example, during software testing, and to predict how

this behavior will change over time. Similar models are

the maintainability index (MI) ‎[3], a regression model

from code metrics or Vulture ‎[44], and a machine

learning model predicting vulnerable components based

on vulnerability databases and version archives. Bakota

et al. ‎[40] tries to aggregate expert's knowledge and

copes with quality attribute's subjectivity by providing a

statistical approach for measuring quality attributes.

This model utilizes the continuous function for

identifying goodness of software instead of using a single

value.

Comprehensiveness of the quality model, rather than

being tied to its structure and building blocks

organization, depends on covering different quality

aspects and engineering tasks in the model. Therefore,

regardless of the model structure, for having a

comprehensive quality model, it is essential to have a

variety of building blocks covering all engineering tasks

such as product, process, design, code, and test and

application domain. On the other hand, the role of

different participants (analyzer, designer, architecture,

tester etc.) which influence quality and different phases

(requirement, analysis, design, implementation, test,

and maintenance) that they participate in, and different

artifacts (documents, code, models) that they are

responsible to obtain should be considered in model

building blocks selection. Independent of the techniques

used for creating a quality model, it is essential to use

meta-model for the quality model ‎[3], because the meta-

model is used for precisely describing elements

composing quality model and their interactions. In other

words, using the meta-model, with respect to Corollary-

1, along the standard guide for decomposition of quality

factors into their related criteria and sub-criteria can

help in having a more structured quality model with

clearer boundaries to factors, criteria, sub-criteria, and

metrics.

B. Behavioral Classification

Since different quality models have different

approaches to software quality, this section classifies

different models in terms of their approach and assesses

the capability of each category according to its ability to

propose a comprehensive quality model for covering all

quality-related aspects.

Although all quality models assess the quality of

software, the comparison of models with each other is

impossible because of the diversity of their approach.

Some quality models are used for definition, some for

assessment, and some for prediction of software quality.

Therefore, there are three kinds of software quality

models based on their approach including definition,

assessment, and prediction of quality models ‎[38].

Although the definition, assessment, and prediction are

three different methods, the assessment without having

a precise definition of software quality is difficult.

Furthermore, software quality prediction is hard without

knowing how to assess quality. This classification is

called DAP according to Figure 6. Table 1 summarizes the

M. Sadeghzadeh Hemayati et al.

64

strengths, weaknesses, and highlights of different types

of quality models.

B.1. Definition Models

The definition models are used along with different

software-development process.

Fig. 6: DAP classification for software quality models.

In the requirement phase, all software requirements

as well as quality requirements and method agreed with

a customer about the concept of quality are

identified ‎[22]. In the design and implementation

phases, the quality model is used as a basis for the

identification of the designing and programming

standards ‎[5] to provide a product with high quality.

For example, FURPS model falls into this category.

Four factors (functionality, usability, reliability, and

performance)‎ of‎ this‎ model‎ are‎ based‎ on‎ consumer’s‎

perspective, and the last factor (supportability) relies on

developer’s‎perspective.‎

B.2. Assessment Models

Assessment models often extend quality definition

models to evaluate the qualities characterized in the

definition model. During requirement engineering,

assessment model can be used for objectively specifying

quality requirements ‎[22]. During implementation,

quality assessment model can be utilized as a basis for all

quality measurements, i.e., for measuring product,

activity, and environment (See ‎[5], ‎[29], ‎[32]). This

measurement can be done by manual reviews ‎[16] and

systematic development and use of static analysis tools

(See ‎[5], ‎[28]). Thereby, these models monitor and

control internal measures that might influence external

properties ‎[22]. EMISQ model is an assessment model

based on ISO 14598 for product assessment

(See ‎[28], ‎[27]). EMISQ defines an approach to internal

quality attribute evaluation such as maintainability. Due

to the difference between EMISQ and ISO9126, it can be

used as a reference model ‎[38]. In this model, each

quality attribute is decomposed into some sub-criteria

and these sub-criteria are mapped on the quality

metrics. Each sub-criterion is mapped on some metrics

and vice versa. The metrics which are used for this

model are measured by sharp tools such as PC-Lint and

PMD.

One of the most important properties of this model is

that its reference model includes about 1,500 different

metrics that are mapped on the respective quality

criteria. The approach also provides tools to create a

customized quality model.

B.3. Prediction Models

The prediction models, in the software quality

domain, are the models which are used as source code

metrics or past defect detection data for predicting the

number of defects of a system or specific modules, mean

times between failures, repair times, and maintenance

efforts. The reliability prediction is possible via Reliability

Growth Models (RGMs).

These models can predict prospective maintainability

of the system by the data of detected failure in test or

operation phases (See ‎[35], ‎[36]).

The idea behind these models is that if we measure

the failure times during system tests with an execution

similar to the future operation, we will be able to

interpolate them to the failure behavior on the field.

Figure 7 illustrates this example data. It shows the

calendar time on the x-axis and the cumulated number

of failures on the y-axis. Each occurred failure is shown

as a cross in the diagram. The curved line is, then, a

fitted statistical model to the failure data. This model

goes beyond the already occurred failures and is, hence,

able to predict the probable future occurrence of a

failure. This can, then, be expressed as reliability. There

are various difficulties in applying RGMs. First of all, we

need to decide on a suitable statistical model that

adequately represents the actual failure distribution.

Fig. 7: An example prediction of a reliability growth model.

Software Quality Models: A Comprehensive Review and Analysis

 65

Furthermore, time measurement is a problem

because the software does not fail just because clock

time passes, but it has to be used. Furthermore, a direct

relationship as a definition model is missing.

Hence, if the reliability of our system is predicted as

too low, it is not clear what we have to do to improve it.

B.4. Multi-Purpose Models

Multi-purpose models are the models which use the

same model for quality assessment and prediction with

the models which are used for defining quality

requirements. One of the rare examples of a multi-

purpose model is the COQUAMO ‎[23]. The COQUAMO,

which is inspired from COCOMO, links the product,

process, and organization-related metrics to the quality

metrics by statistical models. Figure 8 shows the three

primary measures used in COQUAMO: quality factors

metrics, measures of quality drivers, and quality

indicators. Each of this metrics has its own purpose. The

quality factors with their quality factor metrics define

quality and, together with target values, can be used to

specify quality requirements.

Fig. 8: Definition, assessment, and prediction in

COQUAMO ‎[38].

Table 1: The strengths, weaknesses, and highlights of different types of quality models

Highlights
Features

Weaknesses Strengths

D
e

fi
n

it
io

n
 M

o
d

e
l

It can extend to
assess and predict
quality during
development
phases [22]

 The available models do not have a clear rule for quality factor
decomposition to sub-factor and metrics
(See [43], [16], [21], [22], [23])

 Vague decomposition often leads to overlapping between the
different quality factors [3].

 The interaction of quality models with individuals participating in
the project is unclear and non-transparent [3].

By providing direct
suggestions for
implementation, help
in creating a high-
quality system
building blocks, which
are required to have a
high-quality
system [38].

A
ss

e
ss

m
e

n
t

M
o

d
e

l

The quality
factors are
defined by a level
of sub quality and
then are mapped
to metrics. So, it
is possible to map
a sub-factor on a
set of metrics and
vice versa.

 Its relation with quality definition is unknown. Quality attributes
are often too abstract, and it is hard to be automatically evaluated
by software (See [43], [3]).

 It is hard to use quality factors in measurements (See [39], [22]).
 Despite providing the definition for metrics, quality models cannot

describe the effect of metrics on software quality clearly [22].
 Due to lack of clear meaning for factors and metrics, it is hard to

aggregate those values in a hierarchical structure.
 Most existing methods do not pay any attention to fundamental

rules of measurement theory. So, they can provide suspicious
results [17].

During
implementation they
could be used as a
basis for all
qualitative measures
such as a product,
activity and
environment
(See [5], [29], [32])

P
re

d
ic

ti
o

n
 M

o
d

e
l

To predict the
number of errors
in a system or a
particular
component, the
mean time
between failures,
the mean time to
repair, or the
amount of effort
required for
maintenance is
measured.

 It is difficult to choose a proper statistical model that represents
the actual distribution of failure.

 These models often lack a definition for basic concepts on which
basis they are established.

 Most of them are based on regression analysis on a set of
software metrics. The result of regression is a result of
relationships that are difficult to interpret [18].

 They rely heavily on context, and this complicates the selection of
the software domain for their application.

 Another problem is the time measurement. Because the software
does not fail over time, it is essential to use the software.

 Another problem is the lack of direct relationship with the
definition model. For example, if system reliability is estimated to
be low according to the prediction, it is unclear what action is
appropriate to improve system reliability.

Using the data
collecting during
testing and other
phases, future system
reliability is predicted
(See [35], [36]).

M. Sadeghzadeh Hemayati et al.

66

The quality factor metrics measure quality factors

such as usability, testability, or maintainability, directly.

For example, the quality factor reliability could be

measured by the meantime to failure. The quality drivers

include product attributes, such as the quality

requirements; process attributes, such as the process

maturity; or attributes of the personnel, such as

experience. Similar to COCOMO, this model can estimate

quality drivers using measures of quality drivers for an

early prediction of the final quality of the software. The

quality indicators are used for assessing the quality of

the product during its development to monitor and

control quality. These quality indicators measure

attributes of the product directly, and through

established statistical relationships to quality factors,

they should give an indication of the current quality. For

example, a quality indicator can be the number of called

modules‎ in‎ a‎ module‎ or‎ McCabe’s‎ cyclomatic‎

complexity ‎[24].

One of the most important responsibilities of the

quality model is the early estimation of product quality

for identifying corrective actions to improve product

quality before the end of development. The quality

requirements are defined based on the particular quality

model, and related quality factors and measuring

metrics are also identified on the same basis. So, the

product quality is estimated and predicted by measuring

the factors and metrics which are specified in the quality

model.

Finally, if the assessment results show low quality,

some actions should be applied to improve it. The

identification of corrective actions based upon the

evaluation results has two requirements. The first one is

that elements influencing the product quality used for

assessment and prediction should be clearly defined and

their interaction should be identified precisely. The

second one is that specified quality requirements related

to measured quality factors and metrics should be

specified so as to be able to determine the right

corrective actions. To conclude the behavioral

classification of quality models discussed, we can drive

the following corollary:

Corollary-2: The integrations of quality definition,

assessment and prediction are required for assuring

consistency of quality evaluation results and corrective

actions, which are applied to improve it. According to

this Corollary, it is required to cover quality definition as

well as its assessment and prediction in order to have a

comprehensive quality model which includes all quality-

related aspects and engineering tasks.

C. Basic and Derived Classification

According to Miguel et al. ‎[25], quality models which

have been proposed since 1977 are classified into two

categories: basic and specific purpose models (Figure 9).

The basic models, which are usually based on a hierarchy

structure, can be applied to several kinds of software

products.

The McCall, Boehm, FUPRS, Dromey, and ISO fall in

this class. The specific-purpose quality models, which are

the extension of basic models by factors and sub-factors

modification, can be applied to a specific domain of

software applications. Based on organization,

requirements, and product specifications, the factors

considered in specifically derived models may be

different with basic models. The Berota, Georgiadou,

Alvaro, and Rawashdesh fall in this category. This section

evaluates the quality models based on this classification.

Table 2 summarizes the quality models from the basic

and derived points of view.

Although this model is a basic model, the considered

aspects are inspired from McCall and Boehm to cope

with their weaknesses ‎[3].

C.1. Basic Model

Basic quality models are stand-alone. In other words,

these models identify quality-related aspects based on

their own approach and accordingly, include a set of

quality factors, criteria, and metrics on the basis of the

identified aspects.

McCall, the first proposed quality model, considers

the operation, revision, and transmission aspects. So, it

utilized 11 factors for covering these three aspects.

Boehm, on the other hand, considers ease of use, ease

of maintenance and ease of change in the environment

and organizes a set of quality factors, criteria and sub-

criteria at three levels to evaluate the quality of product

based on these aspects. ISO9126 considers six quality

related aspects including functionality, reliability,

usability, efficiency, maintainability, and portability.

C.2. Derived Model

Derived quality models are created based on the

specific basic model with modifications in its approach,

aspects, factors or other kinds of building blocks to cover

more specific than product or development process.

Also, some of the derived quality models provide a

certain method for the assessment of specific quality

factor. The main characteristic is that they are specific to

a particular domain of application and the importance of

features may be variable in relation to a general

model ‎[25].

Dromey model extends ISO9126 and tries to make the

relationship between software product specifications

and software quality specifications by adding a layer

called quality carrying properties between software

structural forms and ISO quality criteria. This model

improves the final product quality by providing a

guideline to define the certification in this area is more

important than general definition of ISO9126.

Software Quality Models: A Comprehensive Review and Analysis

67

Bertoa model is proposed based on ISO9126 for

effective evaluation of COTS components by considering

their quality. This model refines some‎ of‎ ISO9126’s‎

quality criteria based on COTS components

requirements. For example, compliance criteria in the

COTS domain foc us on standardization and certification.

Learnability in ISO9126 is just about the effort required

to learn how to use the software application, but in the

COTS context, based on Bertoa model, it can be divided

to time to use, configure, admin and expertize.

Operability of software in the domain of COTS

components includes effort for operability, tailorability

and administration-ability, but in the general model,

these criteria cover just effort for operating. SQO-OSS,

based on ISO9126, is a hierarchical model that evaluates

the source code and the community process allowing

automatic calculation of metrics. Alvaro Alvaro model

adapts ISO9126 for being

 used in CBSD area by adding some criteria such as

replaceability, adaptability, reusability, etc. model

adapts ISO9126 for being used in CBSD area by adding

some criteria such as replaceability, adaptability,

reusability, etc.

Software Quality Models Analysis

In this section, we do an analysis on software quality

models, in general and individual, to extract corollaries.

In the first part, we analyze whole 19 investigated quality

models based on their considered quality related aspects

with respect to their quality factors which are included in

them. Then, different basic quality models are examined

individually to extract their weakness and opportunities

to being comprehensive quality model. Table 3 shows a

summary of the quality factors of investigated software

quality models.

 Table 2: The quality models from structural, behavioral, and basic and derived points of view

Model/Category [Reference]

Structural
Classification

Behavioral
Classification

Basic and Derived
Classification

H
ie

ra
rc

h
ic

al

M
et

a-
M

o
d

el

B
as

ed

St
at

is
ti

ca
l

D
ef

in
it

io
n

A
ss

e
ss

m
e

n
t

P
re

d
ic

ti
o

n

B
as

ic

D
er

iv
ed

B
as

ed
 o

n

McCall [6]   
Boehm[33]   
ISO9126 [49]   
ISO25000 [50]    
FURPS [34]   
Dromey [5]

   ISO9126

Bertoa [8]    ISO9126
Alvaro Error! Reference source not
found.

   ISO9126

Alrawashdeh [12]    ISO9126 – Dromey
Franch and Carvallo [19]    ISO9126
SQO-OSS [46]    ISO9126
Radulovic and Castro [45]    ISO9126
SQUID [23]   
Reliability Growth Models [37]   
MI [3]   
Vulture [44]   
Bakota [40]    ISO9126
EMISQ [27]    ISO 14598
COQUAMO [23]      COCOMO

Fig. 9: Basic and specific purpose quality models.

M. Sadeghzadeh Hemayati et al.

68

A. Software Quality Models: General Analysis

This section analyzes the models based on quality

factors considered in different quality models in general,

regardless of their classification. The models cover

different quality related aspects by quality factors - ease

of use and ease of maintenance are, for instance,

covered by usability and maintainability factors,

respectively. So, it is essential to extract popularity of

different quality factors in order to have a clearer view

on different quality related aspects that must be

considered in a comprehensive quality model.

According to Table 3, each model assesses different

aspects of product quality based on its own approach

and structure. For instance, some special-purpose

quality model such as RGM and MI assess reliability and

maintainability of software, respectively. On the other

hand, some general-purpose quality models such as

McCall and ISO try to assess the quality of software with

a closer consideration of quality-related aspects. Figure

10 shows the frequency of the consideration of each

quality factors in one or more quality models. According

to Figure 10, the following corollaries can be made:

 Corollary-3: From 31 factors which are taken into

account in 19 different models, 58.06%, 12.9%, and

9.68% are considered in one, two, and three models,

respectively.

 Corollary-4: Just 19.35% of factors are considered in

more than 8 models.

 Corollary-5: The most widely used factors are the six

factors of ISO9126 – reliability, maintainability,

efficiency, usability, portability, and functionality.

 Corollary-6: The popularity of these factors can be

related to the fact that the 55% of investigated

models are derived models and 90% of them are

based on ISO9126.

 Corollary-7: Quality factors are mostly measured

based on source code.

According to the Corollary-6, the fact that 90% of the

investigated models are based on ISO9126 implies the

popularity of this model. This popularity has other

causes. For example, a multiplicity of factors is

considered in ISO9126 as well as the non-overlapping in

the set of sub factors of each factor. Although this

popularity can be considered as strength of ISO, it can

also show a weakness of ISO because it can show the

inability of this model to cover different quality-related

aspects and the necessity of applying extension on that

to cover the different application domains.

Assuming that ISO25000 improves the ISO9126 and

covers its weakness, Figure 11 shows the compliance

rates of other investigated quality models with

ISO25000.

These rates are calculated according to some overlaps

with ISO25000. For example, the value in the first bar on

the left of the figure, there are only 5 factors out of 11

factors of McCall model have overlaps with 13 factors of

ISO 25000, so McCall’s‎compliance‎rate‎is‎38%‎(5‎*‎100‎/‎

13 = %38).

The other values are calculated in the similar manner.

The ISO9126, Dromey, Alvaro, Alrawashdeh and Franch

and Carvallo exhibit the highest compliance with

ISO25000, where ISO9126 is previous release of

ISO25000 and it is basis of ISO25000.

The Alrawashdeh model and Franch and Carvallo

model use exactly ISO9126 factors for ERP quality

assessment and software package selection,

respectively. Dromey added the reusability factor to

other ISO factors. Alvaro added a business aspect to

ISO9126 for the evaluation of COTS quality.

From the discussion above, we can drive the following

corollary:

 Corollary-8: Although ISO25000 includes the most

important quality factors, it does not take some

quality-related aspects such as cost of development,

process related quality factors and business into

account.

The fundamental of SQUID is that the software quality

assessment is impossible without considering the

software domain. So, this approach tries to create a

relationship between the quality requirement of a

specific product and the quality specification which is

defined with quality models such as ISO9126.

Also, SQUID customizes ISO9126 based on software

operational specification and its operational

environment and uses the customized model for the

assessment of certain software product.

MI models are called a set of quality models which

are used to assess the maintainability of the software

product. These models usually measure the ease of

maintaining the software product by source code

metrics such as Halstead. A vulture is a tool for analyzing

the vulnerability of software product.

A comprehensive software quality model should

cover all quality-related aspects in all kinds of software

such as system software, application software, COTS,

open source and so on. On the other hand, the

importance of quality factors may vary based on the kind

of software. For instance, the importance of reliability is

different in system and application software. Therefore,

not only should the model cover all quality-related

aspects by different quality factors, but it can also

support the specific weighting method to specify the

importance of factors in specific domain such as Olsina

et. al. ‎[26] for specifying websites quality and Bansiya

and Davis ‎[13] for object oriented design quality

assessment. Due to the lack of extension on some of the

basic models such as McCall, Boehm, and Dromey for a

variety of applications, these models cannot act as a

Software Quality Models: A Comprehensive Review and Analysis

 69

comprehensive model. On the other hand, according to

the developments imposed by ISO9126 to cover the

weaknesses of the model in evaluating the quality of

different products, it can be concluded that ISO9126

model alone is not enough to operate in different

domains. Also, in accordance of ISO25000 defects in

considering of development cost and business aspects of

quality in one hand, and the use of inappropriate

methods for measuring some aspects such as context

coverage, it is not suitable to use as a comprehensive

quality model. Recently, a research (Dallal and

Abdin ‎[15]) conducted a systematic literature review

including 76 primary studies investigating the impact of

refactoring on several internal and external quality

attributes, which were published before the end of 2015.

In many cases, JDeodorant was used to extract code

smell datasets from open-source projects.

 Fig. 11: Comparison of different model compliance with ISO25000.

Fig. 10: Comparison of the rate of quality factor consideration in different quality models.

M. Sadeghzadeh Hemayati et al.

70

 Table 3: The quality factors of investigated software quality models

Factors/Models
[Ref.]

M
cC

al
l [

2
4

]

B
o

eh
m

([
3

3
],

[4
2

])

IS
O

9
1

2
6[

4
9

]

IS
O

2
5

0
0

0[
5

0
]

FU
R

P
S+

 [
3

4
]

D
ro

m
ey

 [
5

]

B
er

to
a[

4
0

]

A
lv

ar
o

Er
ro

r!
 R

e
fe

re
n

ce

so
u

rc
e

 n
o

t
fo

u
n

d
.

A
lr

aw
as

h
d

eh
[1

2
]

Fr
an

ch
 a

n
d

 C
ar

va
llo

[1
9

]

SQ
O

-O
SS

 [
4

6
]

R
ad

u
lo

vi
c

an
d

 C
as

tr
o

SQ
U

ID
 [

2
3

]

R
G

M
 (

[3
5

],
[3

6
])

M
I[

3
]

V
u

lt
u

re
[4

4
]

B
ak

o
ta

[4
0

]

EM
IS

Q
 (

[2
7

],
 [

2
8

])

C
O

Q
U

A
M

O
 [

2
3

]

Functionality

       



Performance
Efficiency

         



 

Compatibility



Usability 

       





Reliability            



 

Security







Maintainability 

 

     



  

Portability    



  

 

Efficiency



Effectiveness



Satisfaction



Freedom from Risk



Context Coverage



Testability  



Reusability 





Correctness 



Integrity 



Interoperability 



Understandability





Flexibility 

Human Engineering



Modifiability



Supportability



Business



Implementation



Interface



Physicists



Community Quality



Expendability



Survivability



Vulnerabilities



Software Quality Models: A Comprehensive Review and Analysis

 71

B. Software Quality Models: Individual Analysis

The quality concept is complex and all software

development process activities affect the final product

quality. Therefore, it is important to identify the quality-

affected aspects in order to offer a comprehensive

quality model. For this reason, different quality models,

regardless of their classification, are compared to

identify the quality-related aspects they have

considered, as well as the aspects that are not

considered. This section evaluates the capability of

quality models to cover all quality-related aspects to

identify their comprehensiveness degree. The basic

models are examined separately. But all derived models

are examined in one section because of their diversity.

B.1. ISO9126

ISO9126 includes functionality, reliability, usability,

efficiency, maintainability, and portability quality

attributes. Conformance with requirements has two

different issues – static and dynamic aspects. Static

aspect is related to conformance with specified

requirements. On the other hand, the dynamic aspect is

involved with the future and non-specified

requirements. ISO9126 includes attributes related to

functionality (specified requirements).

As well, it considers ease of conformance with future

and changing requirements (maintainability). So, this

model pays attention to static aspects of quality

alongside dynamic aspects of quality.

The consumer satisfaction and the cost of

development are two important factors of final product

quality. Although ISO9126 pays attention to customer

satisfaction by considering suitability, compliance, and

usability attributes, it does not have any metrics to

measure customer satisfaction and development cost,

directly. Moreover, this model does not include

reusability which has a significant role in reducing

construction cost ‎[5].

ISO9126 does not consider different artifacts and

development phases. So, it is impossible to evaluate

various artifacts based on their conformance with the

initial specification, and therefore, all metrics should be

applied to all artifacts. Besides, because of lack of

development phase-specific quality metrics, all metrics

should be used in all phases.

Although improvement in development process leads

to produce a high-quality final product, ISO9126 does

not consider process quality-related metrics and all its

attributes and the metrics are about product and its

quality. Based‎ on‎ ISO’s‎ attributes‎ and‎ metrics,‎ all‎

participants in development process are responsible for

implementing quality-related tasks. On the other hand,

its attributes and metrics are not involved in application

domain and so it can be applied to all kinds of software

products (Behkamal et al. ‎[7]).

B.2. ISO25000

ISO25000 considers two aspects of quality, quality in

use and product quality. From quality in use point of

view, it takes into account five quality factors called

efficiency, effectiveness, satisfaction, freedom from risk

and context coverage. On the other hand, from product

quality perspective, it includes functionality,

performance efficiency, compatibility, usability,

reliability, security, maintainability and portability.

Model 25000 has improvements over the 9126

model.‎ The factors considered in the product quality

and quality in use aspects are extended to cover more

quality related factors. For example, the compatibility

and security factors are added to product quality model,

and on the other hand, the satisfactions, freedom from

risk and context coverage factors also were added to

product quality model.

Generally, ISO25000 improves the ISO9126 from

three points of view. First, it considers new factors, such

as context coverage, freedom from risk and satisfaction

and criteria, reusability for example, which is neglected

in ISO9126. Second, some of criteria was introduced in

the ISO9126, due to their importance, are presented as

independent factors in ISO25000. Security was one of

criteria subset of functionality factor, but in the

ISO25000 it is presented as an independent factor, for

instance. Finally, the third improvement has been done

on ISO9126 is about its reorganizing. For example, co-

existence criterion from subset of portability and

interoperability criterion from functionality factor were

moved to subset of compatibility factor in ISO25000.

Despite all the improvements, there are still following

flaws in this model:

 ISO25000 pays attention into static and dynamic

aspects of quality related factors with considering

functionality for measuring conformance with

origin requirements (static) and maintainability,

portability and compatibility for measuring

easiness adaptation of future and unforeseen

changes (dynamic).

 In this model, the consumer satisfaction was

considered as an independent factor of quality in

use, but the cost of development as an important

goal of quality was omitted.

 ISO25000 still does not consider different artifacts

and development phases.

 ISO25000 does not consider process quality-related

metrics and all its attributes and the metrics are

about product quality and quality in use.

 ISO25000 cope with different application domain

of product with considering context coverage in

M. Sadeghzadeh Hemayati et al.

72

quality in use. But, it does not pay attention to

variation‎ of‎ factor’s‎ importance based on product

application domain. In other word, measuring the

number of context with acceptable usability and

risk over total number of required distinct context

which is prescribed by ISO25022 (ISO/IEC

25022 ‎[51]) is not an effective way to consider

different scope of use. It is expected that the

quality model is affected by application domain

and model restructured based on the importance

of factors or at least, the contribution of each

factors in determining the final product quality be

different based on application domain of product.

B.3. McCall Model

The McCall model includes eleven quality metrics to

cover product revision, transmission, and operation

aspects (Cavano and McCall ‎[6]). The main idea of this

model is about the relationship between external quality

factors of product and its internal quality factors.

Because of the special position of maintainability,

test, and flexibility in product revision aspect, this model

specially considers the dynamic aspects of software

quality via measuring ease of changes over the time.

Although the completeness and traceability are parts of

correctness, there is no any other attribute directly

related to software functionality ‎[7]. So, this model does

not pay enough attention to static aspects of quality, and

conformance with original specifications. Quality is a

relative concept, and quantity is strongly related to

different user's opportunity. McCall tries to consider

user's opportunity via the ease of use (usability). But,

customer satisfaction has no effect on determining the

final quality of software in the model. Quality criteria

considered by the McCall model evaluate the quality of

the end product, and the internal measures are obtained

based on source code. However, different artifacts are

developed in different phases, each of which has an

effect on the quality of the final product.

B.4. Boehm Model

Another popular commonly used model is Boehm

software quality model (See ‎[33], ‎[42]). Boehm

proposed a hierarchy structure for software quality same

as McCall. This model consists of high-level, mid-level,

and primitive quality attributes. High-level quality

attributes indicate high-level quality requirements which

are the basis for quality level assessment. Mid-level

quality attributes include seven quality attributes for

representation of expected quality of software systems.

Primitive attributes are the foundation for quality

metrics definition.

Rather than focusing on software functionality and

compliance with specifications, this model focuses on

maintainability. So, this model emphasizes dynamic

aspect of software more than static aspect. Consumer

satisfaction is not considered as an important metric to

determine software quality. The only criterion for

determining the user satisfaction is completeness which

is indirectly reflected.

Boehm did not introduce separate quality attributes

for different development phases, and measured just

the quality of final product. Since most metrics are

measured through the source code, other types of

generated artifacts are not precisely measured.

Accordingly, one can conclude that the role of other

participants involved in the generating of software

artifacts such as designers and architectures is not

considered.

In this model, software application domain which

plays a significant role in determining the quality

objective is not taken into account.

B.5. Dromey Model

Dromey Model is an extension of ISO9126 with a set

of quality carrying properties ‎[5]. Quality carrying

properties enable this model to apply to statement

structural forms and programming components. These

quality carrying properties are associated with ISO9126

high-level attributes. This model supports building

quality into software, the definition of programming

language specific standard, a systematic classification of

qualitative errors, and development of code inspection

tools.

This model considers the static aspect of software as

well as dynamic aspect same as ISO. Besides, given that

the focus has been on the source code and

implementation and attempts have been made to

implement through standard manner with the fewest

qualitative shortcomings, coding standards enhance the

flexibility to change code according to user

requirements.

Also, according to the standard coding, attempts to

reduce qualitative shortcomings lead to reduce

duplications and development cost. In this model,

different activities are done in various phases and their

qualities are not taken into account. Moreover, the high-

level quality attributes and quality carrying properties

are related to the product, so the quality of

development process is ignored in this model. The focus

on source code in this model leads to ignoring the role of

other people participating in the development of the

final product. On the other hand, the quality carrying

properties which are considered in this model are

general and do not affect the application domain of

software.

Table 4 summarizes the aspects considered by

different basic quality models. In this table, each aspect

in each model can be in fully considered (FC), partially

considered (PC) or not considered (NC) status.

Software Quality Models: A Comprehensive Review and Analysis

 73

Table 4: A comparison of the considerations of different
quality-related aspects in different models (fully considered
(fc), partially considered (pc) or not considered (NC))

Quality related
aspects

ISO
9126
 ‎[49]

ISO
25000
‎[50]

McCall
 ‎[24]

Boehm
‎[33], ‎[42])

Dromey
 ‎[5]

Static aspect of
requirements

FC FC PC PC FC

Dynamic aspect of
requirements

FC FC FC FC FC

Cost Reduction NC NC NC NC PC
Increase Customer
Satisfaction

PC FC PC PC PC

Development
phases

NC NC NC NC NC

Process-related
aspects

NC NC NC NC NC

Product-related
aspects

FC FC FC FC FC

Different artifacts NC NC NC NC NC
Role of different
Participants

NC NC NC NC NC

Software
Application
Domain

NC PC NC NC NC

B.6. Derived Models

As regards, the derived models are proposed on the

basis of some specific basic models and add some quality

factors to them to cover different kinds of software

applications such as COTS, ERP and so on. Therefore, it is

essential to consider the quality-related aspects which

are taken into account in derived quality models in order

to have a comprehensive quality mode for the

assessment of the quality of different types of software

applications. In the COTS domain, the component

adaptation to standards and certifications is important in

component quality assessment. On the other hand, the

time of using, configuration, administration and

expertise of components are important.

Moreover, the effort of operability, tailorability and

administrability‎of‎components‎impact‎the‎component’s‎

quality. Finally, the business perspective is crucially

important in component quality evaluation. Examples

include development time and cost, the time it takes to

make the component available on the market, the

targeted market volume, and how affordable the

component is.

In the open source applications, it is important to

consider the community quality via available

documentations, update frequency, the rate of

developer intake, the rate of developer turnover, and

growth in active developers.

For the quality assessment of semantic web, it is

imperative to consider some other aspects such as

ontology, reasoning, discovery and so on. For example,

the degree to which the software product can

interchange ontologies, the accuracy of the reasoning

process, semantic search and discovery process, the

capability of the software product to provide

appropriate response and processing times when

working with ontologies, performing reasoning tasks,

and performing search tasks are the aspects which are

considered in quality evaluation of semantic web

applications.

From the discussion above, we can drive the following

corollary:

 Corollary-9: The investigated models do not

consider the development phases. However, each

phase has its own activities and the quality of

product should be early measured during different

phases. So, it is essential for a quality model to have

phase-based quality attributes.

Discussion
This section summarizes all aspects that should be

considered in a comprehensive model. The quality of

software products is affected by product quality,

development process quality, different development

phases, application domain, and different artifacts.

According to the Corollary-4 and Corollary-5, the most

common quality aspects are related to the quality of

product.

However, the quality of software is affected by

product as well as development process quality. Activity

carried out during development process and the

qualities of those activities are important in determining

the final product quality. It is possible that a

development process lacks appropriate quality

monitoring activities. So, the consideration of this aspect

can help in precisely and early assessment of the quality

of product.

For example, if a development process does not have

bug analyzing and tracking activities, the root of the

identified bug (in the design phase, for instance) cannot

be determined in prior phases. However, the

identification of source of bug helps in the discovery of

other potential bugs. Therefore, the quality model

should consider the process-related aspects.

Based on the Corollary-9, software development

process consists of different phases including

requirement, analysis, design, implementation, test,

delivery, and maintenance. Based on activities that

should be performed in each phase, it is essential to

measure certain quality attributes. For instance, in

requirement elicitation phase, the quality attributes

should measure the comprehensiveness and consistency

of requirements; in the design phase, the architectural

specifications such as reusability of modules or the

amount of avoiding fault propagation in communication

of designed modules should be considered in

determining final product quality; in the implementation

phase, source code-related quality attributes such as

M. Sadeghzadeh Hemayati et al.

74

source code readability, interface related quality

attributes (usability), and the compliance of source code

with design should be taken into account. This helps to

have early estimation of software quality and to take

corrective actions as soon as possible.

According to the Corollary-4, 19.35% of factors are

considered in more than 8 models. This result shows

that, although there are some general quality aspects

which are applicable to all kind of products such as

functionality, usability and so on, but according to the

Corollary-3, 58.06%, 12.9%, and 9.68% of the

investigated factors are considered in one, two, and

three models, respectively. This result shows that, there

are some domain-specific quality aspects such as

business which are applicable on certain domain of

products such as COTS. A comprehensive quality model

should consider a wide range of quality factors, general

and specific purpose, to be applicable on all products.

Also, the quality model should have a mechanism for

dynamic weighting for quality attributes to decide the

impact degree of a specific attribute on final quality of

the product.

According to the Corollary-7, various activities in

different phases are carried out on different artifacts.

For instance, the activities usually generate textual

documents such as requirement specifications, scenarios

and so on in the requirement and analysis phases,

different models are usually generated in the analysis

and design phases such as architectural design and so

on, and the source code is developed in the

implementation phases. So, the quality model should be

able to cover the variety of quality attributes and their

related metrics in a way that the measurement of each

attribute in each phase is done by different types of

artifacts such as documents, models, and code.

Finally, when the quality of a final product is

measured, some properties should be assessed and

others should be estimated depending on the time of

measurement. For instance, after determining the

software architecture, some attributes such as fault

tolerance are measurable, but some others such as

maintainability are predictable.

Conclusions

Nowadays, improvements in the quality of software

are getting increasing importance. Software quality

involves in several different engineering tasks and

several participants who deal with quality concepts into

the software life cycle according to their various roles, in

the various phases and via different artifacts. According

to the Corollary-2, a comprehensive quality model has to

cover definition, assessment and estimation of software

quality.

Our studies reveal that the existing quality models are

not comprehensive enough because they do not

consider all quality-related aspects. To identify all

quality-related aspects in the software development

process, we surveyed nineteen quality models and

analyzed their quality attributes.

Finally, we analyzed their potential to be a

comprehensive model.

We came to the conclusion that a comprehensive

quality model should consider different aspects. These

aspects include:

 Static and dynamic aspects of requirements,

 Development costs including both budget and time,

 Customer satisfaction,

 The role of different participants,

 The measurement time (different development

phases),

 Product as well as process-related quality factors,

 A set of quality metrics measureable on the different

type of artifacts such as document, model and source

code,

 A specific mechanism in order to apply dynamic

weights to quality factors to determine their impacts

on final quality of a product based on its application

domain.

In the future work, we are going to propose a

comprehensive quality model which can cover all

identified quality related aspects. This model will have

some factors to measure static aspects of quality

(conformance with origin requirements), as well as

dynamic aspects (flexibility for future changes).

Moreover, it will take some quality factors into account

for considering development cost in determining final

product quality. This model will pay attention to

different participants and their roles in different

development phases.

The proposed comprehensive model will measure the

different artifacts. The model should support a dynamic

weighting mechanism.

Author Contributions

M. Sadeghzadeh Hemayati did the study and

prepared the first draft of this manuscript. H. Rashidi

extended the draft and provided many helpful remarks.

Moreover, he did proofreading the final version of this

paper.

Acknowledgment

The authors gratefully acknowledge Z. Rashidi for

their work on the original version of this document and

prepared it in the requested format.

Conflict of Interest

The authors declare that there is no conflict of

interests regarding the publication of this manuscript. In

addition, the ethical issues, including plagiarism,

informed consent, misconduct, data fabrication and/or

Software Quality Models: A Comprehensive Review and Analysis

 75

falsification, double publication and/or submission, and

redundancy have been completely observed by the

authors.

Abbreviations

COQUAMO Constructive Quality Model
COTS Commercial/Consumer Off-The-

Shelf
ISO International Organization For

Standardization
IEC International Electro-Technical

Commission
UML Unified Modelling Language
SQUID Superconducting Quantum

Interference Device
MI Maintainability Index
EMISQ Method For Internal Software

Quality
FURPS Functional And Non-Functional

Requirements
RGMs Reliability Growth Models
PMD Programming Mistake Detector
 FC Fully Considered
PC Partially Considered
NC Not Considered
ERP Enterprise Resource Planning

References

[1] N. Gorla, S. C. Lin,‎ “Determinants‎ of‎ software‎ quality: A survey of
information‎ systems‎ project‎ managers,”‎ Information‎ and‎ Software‎
Technology, 52(6): 602-610, 2010.

[2] R. Nienaber, E. Cloete,‎“A‎software‎agent‎framework‎for‎the‎support‎of‎
software project‎management,”‎in‎Proc. Annual Research Conference of
the South African Institute of Computer Scientists and Information
Technologists on Enablement Through Technology: 16-23, 2003.

[3] R. W. Hoyer, B.‎Y.‎Hoyer,‎“What‎is‎quality?”‎Quality‎Progress,‎34(7): 52-
62, 2001.

[4] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner.,‎“Software‎
quality models: Purposes, usage‎scenarios‎and‎requirements,”‎in‎Proc.
International Conference on Software Engineering Software Quality: 9-
14, 2009.

[5] R. G. Dromey,‎“A‎model‎for‎software‎product‎quality,”‎IEEE‎Transactions
on Software Engineering, 21(2): 146-162, 1995.

[6] J. P. Cavano, J. A. McCall, “A‎ framework‎ for‎ the‎ measurement‎ of‎
software‎ quality,”‎ in‎ Proc. Software Quality Assurance Workshop on
Functional and Performance Issues: 133-139, 1978.

[7] B. Behkamal, M. Kahani, M. K. Akbari,‎ “Customizing‎ ISO9126‎ quality‎
model‎ for‎ evaluation‎ of‎ B2B‎ applications,”‎ Information‎ and‎ Software
Technology, 51(3): 599-609, 2009.

[8] M. F. Berto, A. Vallecillo, “Quality‎attributes‎for‎COTS‎components,”‎I+D‎
Computacion, 1(2): 128-144, 2002.

[9] Y. Fernández, C. Cruz, J. L. Verdegay,‎ “A‎ new‎ model‎ based‎ on‎ soft‎
computing‎for‎evaluation‎and‎selection‎of‎software‎products,” IEEE Latin
America Transactions, 16(4): 1186-1192, 2018.

[10] D. Coleman, B. Lowther, P. Oman,‎ “The‎ application‎ of‎ software‎
maintainability‎ models‎ in‎ industrial‎ software‎ systems,”‎ Journal‎ of‎
Systems and Software, 29(1): 3-16, 1995.

[11] M. A. Akbar, J. Sang, A. A. Khan, F. E. Amin, M. Shafig, S. Hussain, H. Hu,
M. Elahi, H. Xiang, “Improving‎ the‎ quality‎ of‎ software‎ development‎
process by introducing a new methodology—AZ-model,”‎IEEE‎Access,‎6:
4811-4823, 2017.

[12] T. A. Alrawashdeh, M. Muhairat, A. Althunibat,‎“Evaluating‎the‎quality‎of‎
software‎ in‎ ERP‎ systems‎ using‎ the‎ ISO9126‎ model,”‎ International‎
Journal of Ambient Systems and Applications (IJASA), 1(1): 1-9, 2013.

[13] J. Bansiya, C. G. Davis,‎“A‎hierarchical‎model‎for‎object-oriented design
quality‎assessment,”‎IEEE‎Transactions‎on‎Software‎Engineering,‎28(1):
4-17, 2002.

[14] L. Bettini, D. D. Ruscio, L. Iovino, , A. Pierantonio, “Quality-Driven
detection and resolution of metamodel smells,”‎IEEE‎Access,‎7: 16364-
16376, 2019.

[15] J. A. Dallal, A. Abdin,‎ “Empirical‎ evaluation‎ of‎ the‎ impact‎ of‎ object‎
oriented code refactoring on quality attributes: A systematic literature
review,”‎IEEE‎Transactions‎on‎Software‎Engineering,‎44(1): 44-69, 2018.

[16] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, J. F. Girard,‎ “An‎
activity-based‎ quality‎ model‎ for‎ maintainability,”‎ in Proc. IEEE
International Conference on Software Maintenance (ICSM)): 184-193,
2007.

[17] N. Fenton,‎“Software‎measurement:‎A‎necessary‎scientific‎basis,”‎ IEEE‎
Transactions on Software Engineering, 20(3): 199-206, 1994.

[18] N. E. Fenton, M.‎Neil,‎“A‎critique‎of‎software‎defect‎prediction‎models,”‎
IEEE Transactions on Software Engineering, 25(5): 675-689, 1999.

[19] X. Franch, J. P. Carvallo,‎ “Using‎ quality‎ models‎ in‎ software‎ package‎
selection,”‎IEEE‎software,‎20(1): 34-41, 2003.

[20] E. Georgiadou,‎ “GEQUAMO‎ - A generic, multilayered, customizable,
software‎quality‎model,”‎Software Quality Journal, 11(4): 313-323, 2003.

[21] B. Kitchenham, “Towards‎a‎constructive‎quality‎model‎- Part 1: Software
quality modelling, measurement‎and‎prediction,”‎Software‎Engineering‎
Journal, 2(4): 105-126, 1987.

[22] B. Kitchenham, S. L. Pfleeger,‎“Software‎quality:‎The‎elusive‎target,”‎IEEE‎
software, 13(1): 12-21, 1996.

[23] B. Kitchenham, S. Linkman, A. Pasquini, , V. Nanni,‎“The‎SQUID‎approach‎
to‎defining‎a‎quality‎model,”‎ Software‎Quality‎ Journal,‎ 6(3): 211-233,
1997.

[24] T. J. McCabe,‎“A‎complexity‎measure,”‎ IEEE‎Transactions‎on‎Software‎
Engineering, SE-2(4): 308-320, 1976.

[25] J. P. Miguel, D. Mauricio, G. Rodríguez‎ “A‎ review‎ of‎ software quality
models‎for‎the‎evaluation‎of‎software‎products,”‎ International‎Journal‎
of Software Engineering and Applications (IJSEA), 5(6): 31-54, 2014.

[26] L. Olsina, G. Lafuente, G.‎Rossi,‎ “Specifying‎ quality‎ characteristics‎and‎
attributes‎for‎websites,”‎Web‎Engineering): 266-278, 2001.

[27] R. Ploesch, H. Gruber, G. Pomberger, M. Saft, S. Schiffer,‎“Tool‎support
for expert-centred‎ code‎ assessments,”‎ in‎ Proc. The 1st International
Conference on Software Testing, Verification and Validation (ICST): 258-
267, 2008.

[28] R. Plösch, H. Gruber, A. Hentschel, C. Körner et al., “The‎EMISQ‎method‎
and its tool support-expert-based evaluation of internal software
quality,”‎ Innovations‎ in‎Systems‎and‎Software‎Engineering,‎4(1): 3-15,
2008.

[29] J. Tian,‎“Quality-evaluation‎models‎and‎measurements,”‎IEEE‎software,‎
21(3): 84-91, 2004.

[30] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, A. Blenk, W. Kellerer, C. M.
Machuca,‎ “Assessing‎ the‎ maturity‎ of‎ sdn‎ controllers‎ with‎ software‎
reliability‎ growth‎models,”‎ IEEE‎ Transactions‎ on‎Network‎ and‎ Service‎
Management, 15(3): 1090-1104, 2018.

[31] A. Alvaro, E.S. de Almeida, S.R. de Lemos Meira 2010. A Software
Component Quality Framework. ACM SIGSOFT SEN 35, 1(Nov. 2010), 1-
18, 2010.

[32] S. Wagner, Cost-Optimization of analytical software quality assurance:
models, data, case studies, VDM Verlag, 2008.

[33] B. W. Boehm, Characteristics of Software Quality, 1, North-Holland,
Amsterdam,:169, 1978.

[34] R. Grady, D. Caswell, Software metrics: establishing a company-wide
program, Prentice Hall, 1987.

[35] M. R. Lyu, Handbook of Software Reliability Engineering, 222, CA: IEEE
computer society press, 1996.

[36] J. D. Musa, Software Reliability Engineering: More Reliable Software,
Faster and Cheaper, Tata McGraw-Hill Education: 632, 2004.

[37] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, Inc., 1987.

[38] S. Wagner, Software Product Quality Control, Berlin: Springer: 1, 2013.

[39] C.‎Frye,‎“CMM‎founder:‎Focus‎on‎the‎product‎to‎improve‎quality,”‎2008.

https://www.sciencedirect.com/science/article/abs/pii/S0950584909002122
https://www.sciencedirect.com/science/article/abs/pii/S0950584909002122
https://www.sciencedirect.com/science/article/abs/pii/S0950584909002122
https://dl.acm.org/doi/abs/10.5555/954014.954017
https://dl.acm.org/doi/abs/10.5555/954014.954017
https://dl.acm.org/doi/abs/10.5555/954014.954017
https://dl.acm.org/doi/abs/10.5555/954014.954017
http://asq.org/data/subscriptions/qp/2001/0701/qp0701hoyer
http://asq.org/data/subscriptions/qp/2001/0701/qp0701hoyer
https://ieeexplore.ieee.org/abstract/document/5071551
https://ieeexplore.ieee.org/abstract/document/5071551
https://ieeexplore.ieee.org/abstract/document/5071551
https://ieeexplore.ieee.org/abstract/document/5071551
https://ieeexplore.ieee.org/abstract/document/345830
https://ieeexplore.ieee.org/abstract/document/345830
https://dl.acm.org/doi/abs/10.1145/800283.811113
https://dl.acm.org/doi/abs/10.1145/800283.811113
https://dl.acm.org/doi/abs/10.1145/800283.811113
https://www.sciencedirect.com/science/article/pii/S0950584908001109
https://www.sciencedirect.com/science/article/pii/S0950584908001109
https://www.sciencedirect.com/science/article/pii/S0950584908001109
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7555
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7555
https://ieeexplore.ieee.org/abstract/document/8362155
https://ieeexplore.ieee.org/abstract/document/8362155
https://ieeexplore.ieee.org/abstract/document/8362155
https://www.sciencedirect.com/science/article/pii/0164121294001257
https://www.sciencedirect.com/science/article/pii/0164121294001257
https://www.sciencedirect.com/science/article/pii/0164121294001257
https://ieeexplore.ieee.org/abstract/document/8241771
https://ieeexplore.ieee.org/abstract/document/8241771
https://ieeexplore.ieee.org/abstract/document/8241771
https://ieeexplore.ieee.org/abstract/document/8241771
http://airccse.org/journal/ijasa/papers/0313asa01
http://airccse.org/journal/ijasa/papers/0313asa01
http://airccse.org/journal/ijasa/papers/0313asa01
https://ieeexplore.ieee.org/abstract/document/979986
https://ieeexplore.ieee.org/abstract/document/979986
https://ieeexplore.ieee.org/abstract/document/979986
https://ieeexplore.ieee.org/abstract/document/8632659
https://ieeexplore.ieee.org/abstract/document/8632659
https://ieeexplore.ieee.org/abstract/document/8632659
https://ieeexplore.ieee.org/abstract/document/7833023
https://ieeexplore.ieee.org/abstract/document/7833023
https://ieeexplore.ieee.org/abstract/document/7833023
https://ieeexplore.ieee.org/abstract/document/4362631
https://ieeexplore.ieee.org/abstract/document/4362631
https://ieeexplore.ieee.org/abstract/document/4362631
https://ieeexplore.ieee.org/abstract/document/4362631
https://ieeexplore.ieee.org/abstract/document/268921
https://ieeexplore.ieee.org/abstract/document/268921
https://ieeexplore.ieee.org/abstract/document/815326
https://ieeexplore.ieee.org/abstract/document/815326
https://ieeexplore.ieee.org/abstract/document/1159027
https://ieeexplore.ieee.org/abstract/document/1159027
https://link.springer.com/article/10.1023/A:1025817312035
https://link.springer.com/article/10.1023/A:1025817312035
https://digital-library.theiet.org/content/journals/10.1049/sej.1987.0014
https://digital-library.theiet.org/content/journals/10.1049/sej.1987.0014
https://digital-library.theiet.org/content/journals/10.1049/sej.1987.0014
https://ieeexplore.ieee.org/document/476281
https://ieeexplore.ieee.org/document/476281
https://link.springer.com/article/10.1023/A:1018516103435
https://link.springer.com/article/10.1023/A:1018516103435
https://link.springer.com/article/10.1023/A:1018516103435
https://ieeexplore.ieee.org/abstract/document/1702388
https://ieeexplore.ieee.org/abstract/document/1702388
http://airccse.org/journal/ijsea/papers/5614ijsea03
http://airccse.org/journal/ijsea/papers/5614ijsea03
http://airccse.org/journal/ijsea/papers/5614ijsea03
https://link.springer.com/chapter/10.1007/3-540-45144-7_26
https://link.springer.com/chapter/10.1007/3-540-45144-7_26
https://ieeexplore.ieee.org/abstract/document/4539553
https://ieeexplore.ieee.org/abstract/document/4539553
https://ieeexplore.ieee.org/abstract/document/4539553
https://ieeexplore.ieee.org/abstract/document/4539553
https://link.springer.com/article/10.1007/s11334-007-0039-7
https://link.springer.com/article/10.1007/s11334-007-0039-7
https://link.springer.com/article/10.1007/s11334-007-0039-7
https://link.springer.com/article/10.1007/s11334-007-0039-7
https://ieeexplore.ieee.org/abstract/document/1293078
https://ieeexplore.ieee.org/abstract/document/1293078
https://ieeexplore.ieee.org/abstract/document/8386840
https://ieeexplore.ieee.org/abstract/document/8386840
https://ieeexplore.ieee.org/abstract/document/8386840
https://ieeexplore.ieee.org/abstract/document/8386840
https://dl.acm.org/doi/10.1145/1668862.1668863
https://dl.acm.org/doi/10.1145/1668862.1668863
https://dl.acm.org/doi/10.1145/1668862.1668863
https://dl.acm.org/doi/book/10.5555/1502163
https://dl.acm.org/doi/book/10.5555/1502163
https://books.google.com/books/about/Characteristics_of_Software_Quality.html?id=Cdm0AAAAIAAJ
https://books.google.com/books/about/Characteristics_of_Software_Quality.html?id=Cdm0AAAAIAAJ
https://books.google.com/books/about/Software_Metrics.html?id=o4hGAAAAYAAJ
https://books.google.com/books/about/Software_Metrics.html?id=o4hGAAAAYAAJ
https://www.cse.cuhk.edu.hk/~lyu/book/reliability
https://www.cse.cuhk.edu.hk/~lyu/book/reliability
https://books.google.com.ua/books/about/Software_Reliability_Engineering.html?id=lF78PjXhI-cC&redir_esc=y
https://books.google.com.ua/books/about/Software_Reliability_Engineering.html?id=lF78PjXhI-cC&redir_esc=y
https://books.google.com.ua/books/about/Software_Reliability.html?id=_i3CPQAACAAJ&redir_esc=y
https://books.google.com.ua/books/about/Software_Reliability.html?id=_i3CPQAACAAJ&redir_esc=y
https://www.springer.com/gp/book/9783642385704
https://searchsoftwarequality.techtarget.com/news/1316385/CMM-founder-Focus-on-the-product-to-improve-quality

M. Sadeghzadeh Hemayati et al.

76

[40] A. Alvaro, E. S. Almeida, S.‎R.‎L.‎Meira,‎“Towards‎a‎software‎component‎
quality‎model,”‎presented‎at‎the‎5th International Conference on Quality
Software (QSIC), Bangalore, India, 2005.

[41] T.‎ Bakota,‎ P.‎ Hegedűs,‎ P.‎ Körtvélyesi,‎ R.‎ Ferenc,‎ T.‎ Gyimóthy,‎ “A‎
probabilistic‎ software‎ quality‎ model,”‎ presented‎ at‎ the‎ 27th IEEE
International Conference on Software Maintenance (ICSM): 243-252,
2011.

[42] B. W. Boehm, J. R. Brown, M.‎ Lipow,‎ “Quantitative‎ evaluation‎ of‎
software‎quality,”‎in‎Proc.‎The‎2nd International Conference on Software
Engineering: 592-605, 1976.

[43] M. Broy, F. Deissenboeck, M.‎Pizka,‎ “Demystifying‎maintainability,”‎ in‎
Proc. The 4th Workshop on Software Quality: 21-26. ACM Press, 2006.

[44] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller,‎“Predicting‎vulnerable‎
software‎components,”‎in‎Proc.‎The‎14th ACM Conference on Computer
and Communications Security: 529-540, 2007.

[45] F. Radulovic, R. García-Castro,‎“Extending‎software‎quality‎models‎ - A
sample‎ in‎ the‎ semantic‎ technologies‎ domain,”‎ in‎ Proc.‎ The‎ 23rd
International Conference on Software Engineering and Knowledge
Engineering (SEKE): 25-30, 2011.

[46] L. Samoladas, G. Gousios, D. Spinellis, I.‎Stamelos,‎“The‎SQO-OSS quality
model:‎Measurement‎based‎open‎source‎software‎evaluation,”‎in‎Proc.‎
IFIP International Federation for Information Processing, 275: 237-248,
2008.

[47] ISO/IEC., Systems and Software Engineering - Systems and Software
Quality Requirements and Evaluation (Square) - System and Software
Quality Models, 2011.

[48] ISO/IEC 14598: Information Technology – Software Product Evaluation,
1999.

[49] ISO/IEC 9126-1., Software Engineering - Product Quality -Part 1: Quality
Model, International Organization for Standardization, Geneva,
Switzerland, 2001.

[50] ISO/IEC 25000, Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE). International
Organization for Standardization, Geneva, Switzerland, 2014.

[51] ISO/IEC 25022, Systems and software engineering — Systems and
software quality requirements and evaluation (SQuaRE) - Measurement
of quality in use, International Organization for Standardization, Geneva,
Switzerland, 2016.

Biographies

Mohammad Sadeghzadeh Hemayati was
born in Ardabil, Iran, in 1981. He received
the B.Sc. degree in Software Engineering
from the Islamic Azad University, Tabriz,
Iran, in 2008, the M.Sc. degree in Software
Engineering from the Islamic Azad
University, Tehran, Iran, in 2011, and he is
attending the Ph.D. degree in Software
Engineering from the Islamic Azad
University, Qazvin, Iran, from 2011 up to
know. In 2010, he joined the department of
Electrical, Computer and Information

Technology, the Islamic Azad University as a Lecturer. His current
research interests include software quality, software testing, non-
functional requirements in service-oriented architecture and dynamic
software product line.

Hassan Rashidi is an Associate Professor in
Department of Mathematics and Computer
Science of Allameh Tabataba'i University. He
received the B.Sc. degree in Computer
Engineering and M.Sc. degree in Systems
Engineering and Planning, both from the
Isfahan University of Technology, Iran. He
obtained Ph.D. from Computer Science and
Electronic System Engineering department
of University of Essex, UK. His research
interests include software engineering,
software testing, and scheduling algorithms.

He has published many research papers in International conferences
and Journals.

Copyrights

©2020 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:

M. Sadeghzadeh Hemayati, H. Rashidi, “Software quality models: A

comprehensive review and analysis,”‎ Journal of Electrical and Computer

Engineering Innovations, 6(1): 59-76, 2018.

DOI: 10.22061/JECEI.2019.1076

URL: http://jecei.sru.ac.ir/article_1076.html

https://www.cin.ufpe.br/~if723/seminarios-2005-1/Component%20Quality%20Model-v2
https://www.cin.ufpe.br/~if723/seminarios-2005-1/Component%20Quality%20Model-v2
https://www.cin.ufpe.br/~if723/seminarios-2005-1/Component%20Quality%20Model-v2
https://ieeexplore.ieee.org/abstract/document/6080791
https://ieeexplore.ieee.org/abstract/document/6080791
https://ieeexplore.ieee.org/abstract/document/6080791
https://ieeexplore.ieee.org/abstract/document/6080791
https://dl.acm.org/doi/10.5555/800253.807736
https://dl.acm.org/doi/10.5555/800253.807736
https://dl.acm.org/doi/10.5555/800253.807736
https://dl.acm.org/doi/abs/10.1145/1137702.1137708
https://dl.acm.org/doi/abs/10.1145/1137702.1137708
https://dl.acm.org/doi/abs/10.1145/1315245.1315311
https://dl.acm.org/doi/abs/10.1145/1315245.1315311
https://dl.acm.org/doi/abs/10.1145/1315245.1315311
http://oa.upm.es/8926
http://oa.upm.es/8926
http://oa.upm.es/8926
http://oa.upm.es/8926
https://link.springer.com/chapter/10.1007/978-0-387-09684-1_19
https://link.springer.com/chapter/10.1007/978-0-387-09684-1_19
https://link.springer.com/chapter/10.1007/978-0-387-09684-1_19
https://link.springer.com/chapter/10.1007/978-0-387-09684-1_19
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/24902.html
https://www.iso.org/standard/24902.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/64764.html
https://www.iso.org/standard/64764.html
https://www.iso.org/standard/64764.html
https://www.iso.org/standard/35746.html
https://www.iso.org/standard/35746.html
https://www.iso.org/standard/35746.html
https://www.iso.org/standard/35746.html

