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 Background and Objectives: In this work, a dual workfunction gate-source 
pocket-retrograde doping-tunnel field effect transistor (DWG SP RD-TFET) is 
proposed and investigated.  
Methods: The dual workfunction gate-source pocket-retrograde doping-
tunnel field effect transistor is a Silicon-channel TFET with two isolated metal 
gates (main gate and auxiliary gate) and a source pocket in the channel close 
to the source-channel junction to increase the carrier tunneling rate.  
Results: For further enhancement in the tunneling rate, source doping near 
the source-channel junction, i.e., underneath the auxiliary gate is heavily 
doped to create more band bending in energy band diagram. Retrograde 
doping in the channel along with auxiliary gate over the source region also 
improve device subthreshold swing and leakage current. Based on our 
simulation results, excellent electrical characteristics with ION/IOFF ratio > 
109, point subthreshold swing (SS) of 6 mV/dec and high gm/ID ratio at room 
temperature shows that this tunneling FET can be a promising device for low 
power applications 
Conclusion: In order to increase the ON-current in this device, we utilized 
several methods including incorporation of high-K material in top oxide, 
source pocket in channel and a thin auxiliary gate with high workfunction 
over the source region. Incorporating auxiliary gate over the source also 
caused a barrier formation in the energy band diagram profile of this device 
which it leds electron concentration in the channel, subthreshold swing and 
OFF-current to be reduced. 
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Introduction 
Recently, low power consumption is one of the most 

important requirements in both digital and analogue 

circuits ‎[1], ‎[2] and it has become more serious by 

scaling-down in semiconductor industry. Scaling supply 

voltage (VDD) down plays an important role in reducing 

both standby and dynamic power consumptions ‎[3], ‎[4]. 

For conventional complementary metal-oxide 

semiconductor (CMOS) devices, VDD scaling is slowing 

down due to non-scalability of built-in potential and 

because down scaling of threshold voltage (Vth) leads to 

increase of OFF-current (IOFF) ‎[5], ‎[6]. In fact, OFF-current 

increase originates from subthreshold swing limitation of 

60 mV/dec in MOSFETs, due to Boltzmann distribution of 

carriers at room temperature ‎[4], ‎[7], ‎[8]. In order to 

overcome above-mentioned restrictions, different 

structures and materials including multi-gate transistors 

and high-k materials have proposed yet ‎[9]-‎[16].  
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In the meantime, Tunnel FET can operate at lower 

voltage ‎[17]-‎[20], and it has excellent subthreshold 

characteristic compared to MOSFET ‎[21], ‎[22]. Unlike 

MOSFETs in which injection mechanism is because of 

thermal injection and drift-diffusion, injection 

mechanism in TFET is based on interband to band 

tunneling (BTBT) ‎[22]-‎[24]. TFET transistor has the ability 

of lower subthreshold swing, lower off-current and they 

are less influenced by short channel effects than 

MOSFETs and CMOS process compatible ‎[25]-‎[27]. 

Among these advantages, TFET device has its drawbacks 

too. It suffers from lack of ON-current compared to 

MOSFET and it has ambipolar current for negative gate 

voltages ‎[28]-‎[30]. However, to increase drive-current, 

various interesting structures have been suggested to 

satisfy ITRS requests which are mostly based on doping 

and work function engineering in the channel and 

gate ‎[31]. These ideas include utilizing strain silicon in 

the transistor active region ‎[32], or using P-N-P-N doping 

profile with just source pocket ‎[12], ‎[24], ‎[33]. Other 

suggestions include using heterogeneous gate oxide with 

different metal gate or other structures like dual gate or 

more than two gates ‎[7], ‎[25]. In our study, we use 

doping engineering by incorporating both pocket in 

source-channel junction and retrograde doping in the 

channel to enhance ON-current and reduce OFF-current, 

respectively. For further enhancement in ON-current, 

while reducing OFF-current, we utilize a thin isolated 

auxiliary gate with higher metal workfunction compared 

to main gate over the source region near the channel. 

The higher metal workfunction in the auxiliary gate 

causes a barrier in bandgap of device profile which it 

leads to reduction in OFF-current at subthreshold 

voltages and enhancement in ON-current at higher gate 

voltages. In addition, we use high-k (HfO2) gate dielectric 

material to uplift the ON current much more. In the 

following we comparatively study the electrical 

characteristics of three devices of source pocket tunnel 

field-effect transistor (SP TFET), dual workfunction gate 

source pocket tunnel field effect transistor (DWG SP 

TFET) and dual workfunction gate source pocket 

retrograde doping tunnel field effect transistor (DWG SP 

RD TFET) to prove better electrical performance of our 

proposed device. The remaining parts of this work are 

divided into three sections. In the Section two we 

present a schematic cross section view of SP TFET, DWG 

SP TFET, and DWG SP RD TFET with related parameters. 

In Section three, the simulated and extracted results are 

illustrated. In the last section, we explain comprehensive 

conclusion for the presented study. 

Device Design and Parameters 

The main approach of this work is enhancing ON-

current and reducing OFF-current to achieve high ION/IOFF 

ratio. In heterogeneous metal gates, the metal gate with 

higher workfunction uplift energy bandgap profile ‎[4]. 

Regarding to this, we incorporate an auxiliary gate with 

higher metal workfunction to exist a knee joint profile in 

the minimum of conduction band (Ec) and maximum of 

valance bond (Ev). This profile will exist barrier in the 

conduction band and expand band to band tunneling 

height in valance band in which, Ec and Ev stand more 

face to face in diagram band. The existed barrier limits 

minority carriers (electrons) in the source to enter into 

the channel and this reduces leakage current and 

subthreshold swing. Expansion in band to band tunneling 

height causes more ON-current. In order to enhance ON-

current furthermore, we utilize High-k material in gate 

dielectric (for higher gate electrostatic control over the 

channel ‎[12]), source pocket in the channel and heavily 

doping near the source-channel junction in the source 

region (for more band bending in bandgap profile). We 

also utilize retrograde doping in the channel to reduce 

OFF-current and subthreshold swing furthermore. Fig. 1 

(a-c) illustrates the schematic view of SP TFET, DWG SP 

TFET, and DWG SP RD TFET, respectively. All geometrical 

and process parameters related to three structures are 

presented in Table 1. To simulate the different electrical 

characteristics of above-mentioned devices, 2-D ATLAS 

device simulator from SILVACO, Inc. was used. Atlas 

simulator can predict the electrical characteristics of 

semiconductor devices associated with specified bias 

conditions and based on comprehensive sets of physical 

models including drift-diffusion and quantum models 

embedded in it. In order to have reliable results, we used 

FermiDirac distribution function model. SRH and Auger 

models were used to consider generation/recombination 

like ‎[23], ‎[34] did. BBT.NONLOCAL model has been 

applied to consider nonlocal band-to-band tunneling 

(BTBT) in the lateral direction ‎[8], ‎[35], since it 

incorporates carriers transfer from one energy band into 

another in the source-channel junction in this work.  

BGN model accounted for applying doping dependence 

of band gap in simulations ‎[35]. In order to have more 

reliable results, the simulator is calibrated against two 

simulation results, reference ‎[6] which device 

simulations were performed using ISE-TCADs DESSIS 

device simulator (ver.10.0.4) and FLOOPS process 

simulator, and ‎[12] which device simulations were 

performed using 2-D ATLAS, as shown in Fig. 2. 

 It should be noted that in this work we have ignored 

tunneling through gate oxide as in recent 

works ‎[23], ‎[33], ‎[36], and our main aim is to enhance 

ON-current and reduce OFF-current by utilizing a new 

doping profile (P
+
-P

++
-N

++
-N-N

+
) and auxiliary gate. 

Results and Discussion 

Fig. 3 shows transfer characteristics of SP TFET, DWG 

SP TFET and DWG SP RD TFET at bias VDS=1.0 V. It is 

observed at nonlinear subthreshold region that DWG SP 
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RD TFET has the lowest OFF-current and point 

subthreshold swing (IOFF=4 fA and SS=5 mV/dec) 

compared to SP TFET (IOFF=2 nA and SS=42 mV/dec) and 

DWG SP TFET (IOFF=0.8 nA and SS=42 mV/dec) at VGS=0 V.  

The very low OFF current in the DWG SP RD TFET 

improves its ION/IOFF ratio compared to other 

counterparts which is a figure of merit for this device.  

We can explain this improvement for DWG SP RD TFET 

with energy band diagram and electron concentration 

profiles. Fig. 4 shows conduction band and valance band 

energy profile of three devices at VGS=0 V and VDS=1.0 V. 

According to this figure, both DWG SP TFET and DWG SP 

RD TFET devices have a knee joint profile in their 

conduction band (Ec) near the source-channel junction 

position. 
 

Table 1: parameters for SP TFET, DWG SP TFET and DWG SP RD 

TFET structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This knee joint profile formation (which is the result 

of incorporating high workfunction metal in the auxiliary 

gate,) behaves like a barrier against source minority 

carriers (electrons) and limits their entrance to the 

channel due to thermal emission and this leads OFF-

current to reduce in these devices. Fig. 5 which shows 

electron concentration profile along three devices at 

VDS=1.0 V, VGS=0 V, confirms our claim. According to this 

figure, SP TFET (/DWG SP RD TFET) has highest (/lowest) 

electron concentration in the channel. So we can expect 

that SP TFET (/DWG SP RD TFET) has highest (/lowest) 

OFF-current. The lower OFF-current (/electron 

concentration) in the DWG SP RD TFET compared to 

DWG SP TFET, is due to retrograde doping in the channel 

of this device. Indeed, retrograde doping underneath the 

channel, scatters electrons which tend to pass from 

depth of the channel, where gate electrostatic control 

over the channel is lower compared to the surface. 
 

 
 

Fig. 1: Cross section view of (a) SP TFET, (b) DWG SP TFET, and 
(c) DWG SP RD TFET structures. 

 
So, incorporating this doping profile firstly reduces 

electron mobility in the depth of channel, secondly 

reduces channel thickness virtually. Therefore, we 

Parameter 

Values 

SP TFET DWG SP TFET 
DWG SP 

RD TFET 

Top oxide 

thickness (Tox) 
0.5 nm 0.5 nm 0.5 nm 

Silicon channel 

thickness 
10 nm 10 nm 10 nm 

Buried oxide 

thickness (BOX) 
60 nm 60 nm 60 nm 

Retrograde 

doping thickness 
- - 6 nm 

Channel length 30 nm 30 nm 30 nm 

Auxiliary gate 

length 
- 2 nm 2 nm 

Retrograde 

Doping Length 
- - 4 nm 

Main gate and 

auxiliary gate 

space gap 

- 1 nm 1 nm 

Main gate 

workfunction 
4.2 eV 4.2 eV 4.2 eV 

Auxiliary gate 

workfunction 
- 5.3 eV 5.3 eV 

Pocket doping 

(N
++

) 
9×10

19
 cm

-3
 9×10

19
  cm

-3
 

9×10
19

  

cm
-3

 

Channel doping 

(N) 
3e18 cm

-3
 3×10

18
  cm

-3
 

3×10
18

  

cm
-3

 

Source doping 

(P
+
)/(P

++
) 

5×10
18

 /9×10
19

  

cm
-3

 

5e18/9×10
19

  

cm
-3

 

5×10
18

 

/9×10
19

  

cm
-3

 

Drain doping (N
+
) 8×10

18
  cm

-3
 8×10

18
  cm

-3
 

8×10
18

  

cm
-3

 

Net retrograde 

doping (P) 
- - 

1.1×10
19

  

cm
-3
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expect DWG SP RD TFET has lower OFF-current and 

subthreshold swing as they are reduced by channel 

thickness reduction ‎[18]. The lower electron 

concentration in DWG SP RD TFET due to retrograde 

doping can also be explained by energy band diagram 

concept. 

 
 

 
 

Fig. 2: Calibration of ATLAS simulation results against 
simulation results of ‎[6] and ‎[12] at VDS=1.0 V. 

 

Fermi-Dirac distribution function which gives the 

probability that an electronic state at energy E is 

occupied by an electron, is defined by:  

KTfEED

e
Ef

/)(
1

1
)(






 
        (1) 

where K is Boltzmann’s constant, T is absolute 

temperature (in Kelvin) and Ef is the Fermi level ‎[37].  

In fact, p-type retrograde doping can cause the Fermi 

level distance from valance band to be reduced, and this 

increases the conduction band energy level distance 

from the Fermi level.  

So, based on Fermi distribution function, this limits 

electronic state occupation probability in the conduction 

band of this device and thus electron concentration will 

be reduced. 

It is also observed from Fig. 3 that at higher gate 

voltages (>1.0 V), ON-current of DWG SP TFET and DWG 

SP RD TFET become higher than SP TFET. This is due to 

DWG SP TFET and DWG SP RD TFET have an auxiliary 

gate with higher metal workfunction. According to the 

Fig. 6, embedding auxiliary gate in these devices causes 

firstly, Ec and Ev energy bands slope (i.e. electric field) 

increase, secondly, Ec and Ev energy bands stands more 

face to face.  

The former sentence means higher electric field in the 

junction and the later sentence means lower tunneling 

width in higher energy height. So, tunneling chance in 

these devices are higher and it is expected they have 

more ON-current compared with SP TFET. 

In fact, ON-current in DWG SP RD TFET is a little lower 

than DWG SP TFET, because retrograde doping in its 

channel reduces electron mobility (as a result of impurity 

scattering) and this leads ON-current to decrease. 

 
Fig. 3: Transfer characteristics of SP TFET, DWG SP TFET, and 

DWG SP RD TFET at VDS=1.0 V. 
 

 
 

Fig. 4: Energy band diagram profiles of SP TFET, DWG SP TFET, 
and DWG SP RD TFET at VGS=0 V and VDS=1.0 V. 

 

 

 
 

Fig. 5: Electron concentration profile of SP TFET, DWG SP TFET, 
and DWG SP RD TFET at VDS=1.0 V, VGS=0 V. 

 

 
Fig. 6: Energy band diagram profiles of SP TFET, DWG SP TFET, 

and DWG SP RD TFET at VGS=1.5 V and VDS=1.0. 
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Transconductance gm is a figure of merit in both 

analogue and digital devices and is defined by the 

following relation ‎[38]: 

constDSVGS

D
m

dV

dI
g




 

(2) 

Higher gm in a device means the gate has better 

control over drain current. The ratio of gm/ID in a device 

represents how much of the energy supplied (ID) has 

been consumed for amplification (gm) ‎[38]. Fig. 7 shows 

this ratio in the DWG SP RD TFET is more than its 

counterparts in all gate voltages under study. Indeed, 

this superiority in DWG SP RD TFET indebted in its better 

subthreshold characteristics compared to its 

counterparts.  
 

 
Fig. 7: gm/ID ratio of SP TFET, DWG SP TFET, and DWG SP RD 

TFET at VDS=1.0 V. 

 

Due to DWG SP RD TFET shows excellent transfer 

characteristic and energy band diagram profile (because 

of auxiliary gate with higher metal workfunction), in the 

following we are going to investigate auxiliary gate 

workfunction variations effect on ON-current, OFF-

current and point subthreshold swing (SS). As Fig. 8 

shows, ON-current, OFF-current and subthreshold swing 

reduce by increasing workfunction value in auxiliary 

gate. Fig. 9 can help us to explain the reason. According 

to this figure, increasing the workfunction value causes 

the valance band to stay further from quasi-Fermi level 

at the source region.  

Based on Fermi-Dirac distribution function, it is 

expected that the concentration of electrons with the 

energy higher than Fermi level to be reduced at room 

temperature and this causes ON-current to be decreased 

as indicated in Fig. 8(a). It seems WFaux= 5.3 eV is the 

optimum for drive current which it can be Copper (Cu) or 

Nickel (Ni) metals ‎0. Increment in auxiliary gate 

workfunction also causes the height of knee joint profile 

in source-channel junction position to increase (both in 

Ec and Ev) and the barrier against minority carriers 

(electrons) in the p-type source raises.  

In this case, lower lucky electrons can enter to the 

channel due to thermal emission mechanism and this 

leads OFF-current to reduce (Fig. 8(b)) and they can be 

much better controlled by gate. So, it is expected 

subthreshold swing (SS) to be reduced according to the 

Fig. 8(c). 

 

 
Fig. 8: (a) ON-current at VGS= VDS=1.0 V, (b) OFF-current, (c) 

point subthreshold swing of DWG SP RD TFET versus auxiliary 
gate workfunction variations at VGS=0 and VDS=1.0 V. 

 
 

 
 

Fig. 9: Energy band diagram profiles of DWG SP RD TFET at 
different workfunction values in auxiliary gate at VGS=VDS=1.0. 

 
Finally, Table 2 compares some figures of merits in 

this work (DWG SP RD TFET) with other published works 

in the TFET domain at the same technology node. ION/IOFF 

ratio and subthreshold slope are presented in this table. 

It is seen that our proposed device has steep 

subthreshold slope while maintaining high value of 
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ION/IOFF ratio compared to other published works.  
Table 2: Comparison of Ion/Ioff Ratio and subthreshold slope of 

DWG SP RD TFET with other published works 

 
parameter This work ‎[4] ‎[41] ‎[42] ‎[43] 

ION/IOFF 4.38×10
9
 2×10

9
 2.7×10

12
 2×10

5
 1×10

7
 

SS (mV/dec) 6 48 35 45 2.8 

 

Conclusion 

In this work we proposed dual workfunction gate 

source pocket retrograde doping tunnel field effect 

transistor (DWG SP RD TFET). In order to increase the 

ON-current in this device, we utilized several methods 

including incorporation of high-K material in top oxide, 

source pocket in channel and a thin auxiliary gate with 

high workfunction over the source region. Incorporating 

auxiliary gate over the source also caused a barrier 

formation in the energy band diagram profile of this 

device which it leds electron concentration in the 

channel, subthreshold swing and OFF-current to be 

reduced. We also embedded a retrograde doping 

underneath the channel to virtually decrease channel 

thickness for further reduction in OFF-current and 

subthreshold swing. Based on excellent ION/IOFF ratio (> 

10
9
), low point subthreshold swing (SS<=6 mV/dec) and 

high gm/ID ratio which achieved in our simulations, this 

device can be among promising candidates for future 

technology nodes. 
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