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 The most important very large scale integration (VLSI) circuits are digital 
filters and transformers, which are widely used in audio and video 
processing, medical signal processing, and telecommunication systems. 
High-level synthesis (HLS) is one of the substantial steps in designing 
VLSI digital circuits. The primary purpose of HLS is to minimize the 
digital units used in the system to improve their power, delay, and area. 
This is fulfilled by analyzing the data flow graph (DFG). The complex, 
expansive, and discrete nature of design space in high-level synthesis 
problems has made them one of the most difficult problems in VLSI 
circuit design. In the modified MFO algorithm presented in this paper, a 
hyperbolic spiral is chosen as the update mechanism of moths. Also, by 
presenting a new approach, a paramount issue involved in applying meta-
heuristic methods for solving HLS problems of VLSI circuits has been 
disentangled. Finally, by comparing the performance of the proposed 
method with Genetic algorithm (GA)-based method and particle swarm 
optimization (PSO)-based method for the synthesis of the digital filters, it 
is concluded that the proposed method has the higher ability in the HLS of 
data path in digital filters. The best improvement is 2.78% for the delay 
(latency), 6.51% for the occupied area of the chip and 6.93% in power 
consumption. Another feature of the proposed method is its high-speed in 
finding optimal solutions, in a manner which, more than 21.6% and 
12.9% faster than the GA-based and PSO-based methods, respectively on 
average. 
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1.  INTRODUCTION 

HLS is one of the important levels in designing digital 
very large scale integration (VLSI) circuits such as 
digital filters so that improvements in this level have a 
higher efficiency than optimization at other lower 
levels. Besides, high-level optimization reduces the 
design time and increases the velocity of design at 
lower levels, leading to better circuit indices [1]. High-
level synthesis (HLS) is a level of VLSI design wherein 
behavioral description is converted into a structural 
characteristic [2], [3]. This behavioral description is 
generally shown as a graphical schematic called the 

data flow graph (DFG). The obtained structural 
characteristic is a mapping corresponding to the 
initial behavioral description which describes how to 
implement the behavioral description. For a unique 
and certain behavioral description, there could be 
some structural characteristics and it is of note that 
their outputs are to be equivalent to the output being 
considered in the behavioral description [4]. 
Typically, the aims of high-level optimization are to 
improve the circuit performance in terms of speed 
(delay), the occupied area on the chip, power 
consumption, construction cost, and the like. These 
goals are generally in conflict with each other, and any 
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improvement in one might weaken another. 
Consequently, establishing a compromise between 
these conflicting goals is oftentimes required 
depending on the intended use. As an illustration, the 
performance and speed of digital filters are high-
priority whilst the cost and power consumption rank 
next in devices such as high-powered computer 
systems used in servers and supercomputers. On the 
other hand, in high-volume market gadgets such as 
ASICs (Application-specific integrated circuits) for cell 
phones, tablets, and laptops, the final cost and power 
consumption are the main priorities in design, 
whereas the performance and speed have less 
priority.  Therefore, it can be concluded that according 
to the type of intended use, the design space should be 
explored and the optimal and appropriate design 
should be selected [5]. 

Due to the complexity and spread of design space 
in HLS problems, making use of automated methods in 
solving them is highly indispensable [6], [7]. 
Moreover, if the dimensions of the problem increase, 
the design space will also be greatly growing up and it 
will be more difficult to find the optimal solutions. As 
a result, utilizing CAD-based automated methods is 
exceedingly felt.  

It should be underscored that in [8], scheduling and 
binding in HLS have been conducted simultaneously 
in which priorit ies and time limits have been 
formulated under the Integer linear programming 
(ILP). As in [9], power optimization has been 
undertaken using the ILP and it is claimed that making 
use of this method will be practically impossible for 
large-dimension problems due to its very low runtime 
in reaching a response [10]. In [11], a scheduling DFG 
is optimized in terms of power by using the game 
theory where the operators have been considered as 
players whereas the fitness function is assumed to be 
the consumption power. It needs to be asserted that 
the computational load of this method is very heavy 
requiring a very large runtime, particularly for real 
problems having high dimensions. Indeed, this will be 
tremendously overpriced, increasing exponentially. 

Another method to solve HLS problems is to 
initially use default schedules and then the problem is 
solved. Afterward, by repeatedly applying the 
transformations, the initial schedule is gradually 
improved [12]. The focal demerit of this method is 
that the obtained responses are highly sensitive to the 
transformation which is used. Also, [13] addressed 
HLS problem solving by using the parallel 
programming language (PPL) method. Moreover, the 
simulation annealing (SA) algorithm was addressed in 
[14] while in [15] the r egisters were simultaneously 
scheduled, allocated, and reduced using the SA 
algorithm. Another method based on the SA is SALSA 
introduced in [16] which has been employed to solve 

HLS problems. Besides, in [17], an improved firefly 
algorithm is used. In this method, the combination of 
firefly algorithm and Tabu search (TS) algorithm is 
used and finally the problem is optimized in terms of 
speed and power. 

The simplest solution is to execute HLS steps 
independently. In these methods, only one operator is 
scheduled at a time and the process continues in the 
same fashion until all the operators are scheduled. 
Having done the scheduling, functional units (FUs) are 
allocated. An illustration of this includes the as-soon-
as-possible (ASAP) scheduling [18], as-late-as-
possible (ALAP) scheduling [18], path-based 
scheduling (PBS) [19], and force-directed scheduling 
(FDS) [20]. In [21], the delay and power are optimized 
using the memetic algorithm. In [22], researchers 
have also proposed a method based on the bacterial 
foraging optimization algorithm (BFOA) to solve the 
HLS problems. 

In [23], weighted sum Genetic algorithm (WSGA) 
method was recommended to optimize the delay and 
occupied area in datapath synthesis, where the WSGA 
algorithm was employed to simultaneously schedule 
and allocate FUs for the DFG synthesis. In [24], 
another instance of GA was introduced to explore the 
design space during the DFG scheduling. In [25], a 
multi -objective evolutionary approach named non-
dominated sorting Genetic algorithmɀII (NSGA-II) was 
presented in which scheduling and allocating of the 
FUs was undertaken simultaneously. In [26], with the 
intention of minimizing the schedule time, a PSO-
based method was introduced by assuming that the 
problem is resource-constrained. In [27], a PSO-based 
method was introduced in which scheduling and 
ÂÉÎÄÉÎÇ ÉÎ ÔÈÅ ÆÉÌÔÅÒȭÓ ÄÁÔÁÐÁÔÈ ÉÓ ÐÅÒÆÏÒÍÅÄ 
simultaneously while a weighted particle swarm 
optimization (WSPSO) approach was proposed in [25] 
to solve the HLS problem. In order to optimize the 
area and delay in HLS problems, a design space 
exploration method using the NSGA-II algorithm was 
recommended in [28] in which the linear regression 
was employed to calculate the area and delay 
objective functions. Moreover, the researchers in [29] 
introduced the ant colony optimization (ACO) 
algorithm whereas the Tabu search meta-heuristic 
algorithm was utilized to solve the HLS problem in 
[30]. 

The spread of the search space in the HLS problems 
as well as the three steps of scheduling, binding, and 
allocation, which are completely interdependent 
together, make attractive the use of population-based 
metaheuristic algorithms to solve such problems. 
Algorithms such as GA, PSO, ACO and Tabu search 
methods are among the methods used in this field. 
These heuristic algorithms can provide a large group 
of solutions in an implementation. 
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This paper is pioneering in that it has scrutinized 
using a modified meta-heuristic MFO method when 
solving a complex VLSI circuit engineering problem 
for the first time. In the MFO algorithm, the hyperbolic 
spiral function is used to move the moths toward its 
corresponding flame. The obtained results not only 
confirm the efficiency of the MFO method in the 
complex problem of HLS of VLSI circuits (digital filters 
as an instance here) but also validate its superiority 
over other renowned evolutionary methods (such as 
GA) and swarm intelligence (such as PSO). It is 
overstated that based on the existing literature, large 
dimensions of the exploration design space have been 
an outstanding feature of the HLS problems causing 
troubles in the methods. This and many design 
constraints such as the limited number of FUs and the 
ÏÐÅÒÁÔÏÒÓȭ ÅØÅÃÕÔÉÏÎ ÐÒÉÏÒÉÔÙ ÈÁÖÅ ÎÏÔ ÏÎÌÙ ÌÏ×ÅÒÅÄ 
the algorithm runtime, but also influenced the final 
results. In this research work, we have overcome the 
limitations by introducing a novel solution and by 
applying the optimization algorithm separately for 
each operator and updating the priorities at each 
stage. When applying this solution, the problem 
limitations are mitigated while the meta-heuristic 
method is directed towards more effective and useful 
areas of the exploration space. This implies that the 
agents do not incline towards the unbeneficial areas 
which fail to fulfill the requirements. Plus, improving 
the obtained response, this also increases the 
convergence speed of the algorithm. 

The structure of this paper is organized as follows: 
Section 2 is intended to explain the high-level 
synthesis of VLSI circuits. In Section 3, the meta-
heuristic MFO-based proposed method is presented, 
and Section 4 includes the results of the simulation. In 
this section, a comparison of the proposed method 
with the GA-based method and PSO-based method is 
also established. Finally, Section 5 is dedicated to the 
conclusion. 

2.  HIGH-LEVEL SYNTHESIS OF VLSI CIRCUITS 

Synthesis is in front of the analysis, in which the 
features and behavior of the circuit are taken as 
inputs and according to the existing resource 
constraints and intended objectives, the circuit is 
designed and implemented on the chip. 

The synthesis of a digital filter involves different 
levels and stages. The first level in synthesis is to 
define the behavioral description of the circuit, which 
describes how to implement the commands and 
arrange the placement of operators. It is commonly 
characterized as a graph called DFG, in which the 
inputs and outputs and, interconnections between 
them have been specified. Indeed, all the operators in 
a behavioral description and all the relationships 
between them are represented graphically. The next 

level is to convert the behavioral description into a 
structural characteristic. This level is called register 
transfer level (RTL). Thereafter, there is the logical 
level in which the RTL design obtained from the 
previous level is converted to the logical gates level by 
logical synthesis methods and, according to the 
obtained design, the logic gates are placed. 

The next step in designing a digital filter is called 
the layout level which helps us to determine the type 
of transistors and the required technology to 
implement the circuit. Furthermore, implementation 
of the logic gates on the chip area can also be 
considered at this level. To end with, the final step in 
designing a digital filter is the implementation of the 
circuit on the chip via available technologies. 

HLS is the first step in synthesizing a circuit where 
the behavioral description is converted into a 
structural characteristic. As stated earlier, the 
behavioral description is generally represented by a 
graph called DFG. Fig. 1 illustrates a hypothetical DFG 
for (1). 

        (1) 

ὣ ὥ ὦ ὧ Ὠ

Ὡ Ὢ Ὣ Ὤ

Ὡ Ὢ Ὣ Ὤ  

where a, bȟ ȣȟ h are the output and Y is the input. 
In each DFG, the nodes represent the operators 

and, the edges determine the dependencies between 
these operators. For example, in Fig. 1, there are four 
adder operators and four multiplier operators to 
perform and calculate (1). The outputs of operators 1 
and 2 are considered as the inputs of operator 5 and, 
the outputs of operators 3 and 4 are considered as the 
inputs of operator 6. This can also be considered for 
other nodes and operators.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Data flow graph for (1). 
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The simplest but not necessarily the most optimal 
way to implement each DFG is to map each operator 
or node one by one into a distinct FU. For instance, in 
Fig. 1, the desired description can be implemented 
and executed by 4 adder and 4 multiplier units. 
Nonetheless, the fact is that this may be feasible and 
affordable for DFGs with a low number of nodes, but 
by increasing the number of nodes and increasing the 
number of operational units, the final cost (in terms of 
power consumption or area) greatly increases. As a 
result, for reducing the number of FUs, another 
approach can be employed in which those nodes 
doing the same operation can be executed by a 
specific FU albeit at different time steps. 

Datapath synthesis involves scheduling, allocation, 
and binding steps. Fig. 2 shows these three steps in 
HLS. 

 

 

Figure 2: HLS subtasks. 
 

Scheduling is a stage of HLS that determines the 
time step in which a particular node in the DFG is to 
be executed. The number of all steps required for 
executing all the operators is called schedule length. 

A sample of the scheduling for the DFG presented 
in Fig. 1 is shown in Fig. 3. By having a closer look, it is 
observed that the schedule length is equal to 4 
because four steps are required for all the operators 
to be executed leading to an output. Nodes 1 to 4 are 
executed in the first time step, nodes 5 and 6 in the 
second time step, node 7 in the third time step, and 
finally, node 8 is executed in the fourth time step. 

Allocation is a stage of HLS in which the number of 
hardware resources required to execute the operators 
as well as the number of required registers is 
determined. Binding assigns an FU for executing each 
node. For example, two possible ways for DFG 
scheduling in Fig. 1 can be seen in Fig. 3 and Fig. 4. 

Mobility allows some nodes to be executed at 
different time steps without affecting the overall 
nature and output of the problem. For example, in the 
scheduled DFG in Fig. 4, node 3 is moved to the second 

time step, node 6 is transported to the third time step, 
node 7 is moved to the fourth time step, while node 8 
is sent to the fifth time step. As can be seen, both Fig. 3 
and Fig. 4 exhibit the same DFG but with different 
scheduling. In Fig. 3, the schedule length is equal to 4 
while it is 5 in Fig. 4. Despite the increase in the 
schedule length in Fig. 4 compared to Fig. 3, the 
number of FUs has decreased compared to Fig. 3. In 
the scheduled DFG in Fig. 3, the number of required 
adders and multipliers is 2 and 2, respectively, which 
is reduced to 1 and 2 for Fig. 4, respectively. 

 

 
Figure 3: Illustration of a scheduled DFG presented in Fig. 1. 
 

 
Figure 4: Another way of a scheduled DFG for Fig. 1. 
 

Digital transformers and digital filters have a 
special place in the VLSI circuits. So that in most 
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circuits and applications we can find a snare of them 
[31] -[34]. However, digital filters are the most 
commonly used circuits in digital circuit design which 
are widely used in signal processing applications. 
Digital filters are abundantly used to process signals, 
images, and videos, communication applications, and 
so on. The infinite impulse response (IIR), the finite 
impulse response (FIR), the auto regressive filter 
(ARF), the band-pass filter (BPF), the elliptic wave 
filter (EWF) and the wave digital filter (WDF) are the 
digital filters used in this paper. The data flow graph 
of the two ARF and FIR filters used in this paper has 
been shown in Fig. 5 [35]. 

 

 
(a) 

 
(b) 

 
Figure 5: (a) ARF data flow graph, (b) FIR data flow graph. 

3.  THE PROPOSED METHOD 

The nature of HLS problems in which the search 
space is highly widespread and complex and 
discreteness of this space, has led the researchers to 
take advantage of the metaheuristic methods in this 
field. In this paper, the modified MFO-based approach 
is used to simultaneously optimize delay, area, and 
power consumption in HLS of datapaths in digital 
filters. Finally, the proposed method is compared with 
the GA-based and PSO-based methods. The MFO 
algorithm is one of the metaheuristic algorithms 
which was proposed by [36]. This algorithm, like 
other metaheuristic methods, is inspired by nature to 
find optimal solutions. The idea of the MFO algorithm 
is originated from the moths and their instinctive 
navigation system and their flights towards light 
sources. 

In the MFO, moths can be considered as the 
chromosomes in GA, the swarm in PSO, and the ants in 
ACO. The variables and dimensions of the problem are 
the same as the position of the moths in the design 
ÓÐÁÃÅȢ 4ÈÅ ÍÏÔÈÓȭ ÐÏÓÉÔÉÏÎ ÃÁÎ ÂÅ ÄÅÆÉÎÅÄ ÁÓ ɉρɊȡ 

        (2) ὓ

ά Ȣ   ά Ȣ  Ễ  ά Ȣ

ά Ȣ  ά Ȣ  Ễ  ά Ȣ

ể         ể        Ệ        ể
ά Ȣ  ά Ȣ  Ễ  ά Ȣ

 

where n is the number of moths, d is the number of 
variables of the problem and mi,j is the i-th variable of 
the j-th moth. The corresponding fitness values of the 
moths can also be stored in a matrix as follows: 

            (3) ὕὓ

ὕὓ
ὕὓ
ể
ὕὓ 

 

where n is the number of flames and OMi is the fitness 
value of i-th moth. Two other matrices can be defined 
for flames in the form of (4) and (5). 

             (4) Ὂ

ὪȢ   ὪȢ  Ễ  ὪȢ
ὪȢ  ὪȢ  Ễ  ὪȢ
ể         ể        Ệ        ể
ὪȢ  ὪȢ  Ễ  ὪȢ

 

where n is the number of moths, d is the number of 
variables of the problem and Fi,j is the i-th variable of 
the j-th moth. 

       (5) ὕὊ

ὕὊ
ὕὊ
ể
ὕὊ 

 

where n is the number of moths and OFi is the fitness 
value of i-th flame. 

Here, both the moths and the flames are feasible 
solutions of the problem; yet, the difference is that the 
flames are the best position of the moths to this 
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moment, and the moths are the solutions to move in 
the search space for reaching to the optimal solution. 

Indeed, each moth moves around a flame until it 
finds a better position and replaces it with the flame 
position. To escape from the local optima and increase 
the exploration capability, each moth updates its 
position only with its corresponding flame in the 
flame sorted matrix so that more space would be 
ÅØÐÌÏÒÅÄȢ &ÏÒ ÉÎÓÔÁÎÃÅȟ ÔÈÅ ÆÉÒÓÔ ÍÏÔÈ ÉÎ ÔÈÅ ÍÏÔÈÓȭ 
matrix is updated with the best flame and, the last 
moth is updated with the worst flame in the sorted 
matrix of the flames. 

In addition to the basic MFO algorithm, other 
methods have been developed based on this 
algorithm. In [37], an improved version of MFO 
algorithm based on Lévy-flight strategy, which is 
named as LMFO, is proposed. Lévy-flight can increase 
the diversity of the population against premature 
convergence and make the algorithm jump out of local 
optimum more effectively. In [38], Chaos theory and 
crossover processes are introduced in MFO algorithm 
which increases the randomness or diversity. Chaotic 
systems have properties like randomness, certainty 
and ergodicity which help the solution to jump out of 
local minima. In [39], a Cauchy distribution function is 
added to enhance the exploration capability, influence 
of best flame has been added to improve the 
exploitation and adaptive step size and division of 
iterations is followed to maintain a balance between 
the exploration and exploitation. 

A.  Defining the samples position 

An example of the position of a moth for the DFG 
shown in Fig. 1 can be indicated as {4 1 3 6 2 5 7 8: 1 
2}. 

In this definition, the position of each moth (or 
flame) has been divided into two parts. The left part 
indicates the order and priority to execute the nodes 
in the DFG. The right part characterizes the number of 
the FUs of each type. In this example, there are one 
adder and two multiplier FUs. The order for the 
number of the nodes in the priority part specifies the 
node which has to be executed earlier. As in the 
example above, nodes 4, 1, and 3 are executed 
respectively, and this process lasts until all the nodes 
are executed. It should be noted that the priority to 
execute the nodes must be taken into account in all 
moths and flames. For instance, in DFG shown in Fig. 
3, node 6 has to be executed after the execution of 
nodes 3 and 4 because the outputs of the operators 3 
and 4 are required for its execution, but the same 
node (node 6) is independent of nodes 1, 2, and 5, and 
it can be executed before or after them. 

In order to schedule the mentioned moth, we start 
from the first node and place the nodes in the time 
steps according to the available resources. In this 
example, first, the node 4, which is a multiplier, is 

placed at the first time step and one of the two 
multiplier functional units is occupied. Then, node 1 is 
checked and because there is an unused adder FU, this 
node can also be executed at this time step. Since the 
only adder unit in this time step is being used to 
execute node 1, node 3 as an adder cannot be 
executed in this time step. Now it is time to execute 
node 6, but since the execution of this node depends 
on the output of nodes 3 and 4, these outputs are not 
yet available, so this node may not be executed at this 
time step. Then, node 2 as a multiplier needs to be 
executed; nonetheless, because there is still an unused 
multiplier unit and this n ode is not dependent on the 
other nodes, so node 2 is executed in this time step. 
This process continues until the executable nodes in 
the first step are identified. The same process is 
repeated for the rest of the nodes so that an FU will be 
allocated to each node. As such, the entire nodes are 
scheduled and the obtained scheduling for the 
mentioned example has been illustrated in Fig. 4. This 
process is carried out for all moths and flames. 

In the next step, for updating the position of the 
moths using the position of the corresponding flames, 
the method described in the following is used and the 
new position of the moth is calculated. 

The MFO algorithm is applied separately to both 
the priority and the FUs part. In the former part, the 
first node on the left is considered as the starting 
point. Afterward, the successor and the predecessor 
allowable location of this node is found which is saved 
as the upper and lower bounds of the node, as 
indicated by ub1 and lb1, respectively. Subsequently, 
ÕÓÉÎÇ ɉφɊ ×ÈÉÃÈ ÉÎÄÉÃÁÔÅÓ ÔÈÅ ÍÏÔÈÓȭ ÍÏÖÅÍÅÎÔ 
towards the flame, the new location of the given node 
is calculated. 

           (6) άȢ ὨȢ
ÃÏÓ ς“ὸ

ὸ
ὪȢ 

where mi,l(New) is the new position of l-th variables of 
i-th  moth, t is a random number in [-1, 1], fj,l is the 
position of l-th variables of j-th  flame and di,l indicates 
the distance between the position of l-th variables of i-
th moth and the position of l-th variables of j-th flame 
that is obtained by (7). 

            (7) ὨȢ ὪȢ άȢ 

where di,l indicates the distance between the position 
of l-th variables of i-th moth and the position of l-th 
variables of j-th flame, mi,l is the  position of l-th 
variables of i-th  moth, and fj,l is the position of l-th 
variables of j-th  flame.  

Such a process applies in turn to all the nodes in 
ÔÈÅ ÍÏÔÈȭÓ ÐÒÉÏÒÉÔÙ ÐÁÒÔȢ !Ó ÆÏÒ ÔÈÅ &5Ó ÐÁÒÔȟ ÁÎ 
equation is used similar to (6), except for the fact that 
instead of the location of the variables, the number of 
the FUs is calculated. Moreover, the lower and upper 
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limits of each FU, which are indeed the lowest and 
highest allowable numbers of that type of FU, are 
predefined and constant. Lastly, ÔÈÅ ÍÏÔÈȭÓ ÎÅ× 
position is attained after determining all the variables, 
whether in the priority or the FU parts. Also, in order 
to improve the exploitation of the algorithm, the 
number of flames in each iteration is updated through 
(8). 

                  (8) 

ὊὰὥάὩὔόάὦὩὶὙέόὲὨὔ Ὅ
ὔ ρ

ὓὥὼ
 

where FlameNumber is the number of flames, N is the 
maximum number of flames, I is the current iteration 
and Maxi is the maximum number of iterations. 
Therefore, all the moths move around the best 
remaining flame in the final steps of iterations. Other 
methods have been proposed to increase the 
exploration and exploitation of the MFO algorithm.  

B.  The fitness function 

In order to evaluate the parameters of delay, area, 
and power in the proposed method and compare its 
performance against the previous methods, the 
following Fitness function is used: 

        (9) 

ὊὭὸὲὩίίὡ
ὒ

ὒ
ὡ

ὃ

ὃ
ὡ

ὖ

ὖ
 

where Fitness is the fitness function, Lt is the schedule 
length of sample evaluated, LMax is the longest 
schedule length in the current generation, At is the 
total number of transistors in the operators and 
registers, AMax is the largest area in the current 
population, Pt is the power consumption of the all 
operators and PMax is the highest power consumption 
in the current population. W1, W2, and W3 are the 
weights of the delay, occupied area, and power 
consumption terms, respectively. These three 
coefficients according to which of the parameters of 
time, occupied area or power consumption is 
optimization priority, are selected in such a way that 
their sum is always equal to one. 

The number of operators was obtained directly 

from the number of FUs and the number of registers 

was obtained by the LEA method [20]. 

4.  SIMULATION RESULTS  

The results of the simulation of the proposed 
method as well as the algorithm-based method of GA 
[23] and PSO [40] and a comparison of these three 
methods are presented in this section. 

 All three methods are implemented in MATLAB 
software (R2015b) under the system with Core i7 
6700HQ processor and 8GB of RAM. The initial 

population and the maximum number of iterations, in 
all three methods, is equal to 30 and 100, respectively. 
In GA, the mutation probability is equal to 0.1 and the 
crossover probability is equal to 0.9. Each algorithm is 
executed 50 times and the average of the obtained 
responses is given as the final response. The 
maximum number of resources and operational units 
are assumed to be equal to 5 for the entire cases. 

A.  Results 

Tables (1) to (6) show the results of the synthesis 
of the digital filters. In these tables, the delay term is 
the same as the schedule length that represents the 
time steps required to execute the DFG. The area 
represents the total number of transistors needed to 
implement the operators and registers, and the power 
is the total power consumption of the FUs [41]. In all 
the Tables, W1, W2, and W3 vary in three different 
modes notwithstanding having a total sum being 
always equal to 1. 

For each mode, the average of the acquired 
responses for a 50-time execution of the algorithm has 
been tabulated along with their relevant standard 
deviations. Due to a large amount of the occupied 
surface area and the power consumption, standard 
deviation of the response logarithms has been used to 
better represent and comparison of the data. 

As shown in Tables 1 to 6, as the weight of each 
parameter increases, a significant improvement has 
been observed to find the optimal response of the 
same parameter. For example, by considering 0.8 for 
W1 which is the weighting factor related to the delay 
parameter, and 0.1 for W2 and W3 which are the 
coefficients of the occupied surface area and power 
consumption respectively, the best delay compared to 
the other two modes will be obtained. The same 
applies to the other two modes. The delay in the first 
row of each table shows the best delay, while the area 
in the second row is the best occupied surface and the 
obtained power in the third row shows the best 
power consumption compared to the other two rows. 

In Table 1, which presents the synthesis of the IIR 
filter, the proposed method and the PSO-based 
method obtain an average value of 5 for the delay. But 
the GA-based method performed slightly weaker and 
presented an average of 5.08. In the case of the lowest 
occupied area and power consumption, the proposed 
method performed better than the other two methods 
with average values of 3076.48 and 3147.24, 
respectively. In the FIR synthesis shown in Table 2, 
the proposed method performs better than the other 
two methods in all three modes. In this filter, the 
delay, area, and power consumption are 9.1, 3542.08 
and 3147.24, respectively. In the ARF, the proposed 
algorithm yielded better results of 8.12, 3534.08, and 
3142.2, respectively for the delay, occupied area, and 
power consumption. 



Mohammad R. Esmaeili et al. 

100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1  
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON IIR DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 5 5868.8 6324.75 5.08 6369.28 6917.47 5 6442.88 7007.66 

Std. 0 0.007 0.007 0.274 0.095 0.107 0 0.062 0.068 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 7.02 3076.48 3147.24 7.46 3209.92 3222.89 7.42 3199.68 3217.85 

Std. 0.318 0.010 0.006 0.503 0.023 0.018 0.538 0.025 0.021 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 7.12 3090.88 3147.24 7.3 3228.16 3207.76 7.3 3210.24 3187.59 

Std. 0.328 0.011 0.006 0.580 0.02 0.018 0.544 0.017 0.015 

 

 TABLE 2 
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON FIR DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 9.1 7029.44 7198.70 9.36 7923.52 8152.76 9.3 7855.04 8084.97 

Std. 0.303 0.060 0.069 0.485 0.072 0.083 0.462 0.077 0.088 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 14.8 3542.08 3162.37 15.06 3763.2 3232.98 15 3742.72 3222.89 

Std. 0.606 0.013 0.010 0.712 0.025 0.024 0.782 0.024 0.021 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 15.14 3704.32 3147.24 15.12 3733.44 3157.33 15.16 3723.2 3152.29 

Std. 0.350 0.010 0.006 0.773 0.009 0.009 0.618 0.01 0.008 

 

TABLE 3 
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON ARF DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 8.18 11172.16 12119.97 8.36 11348.8 12419.74 8.3 11340.8 12394.53 

Std. 0.388 0.005 0.004 0.563 0.045 0.053 0.505 0.023 0.027 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 18.2 3534.08 3182.54 18.38 3658.88 3300.77 18.44 3627.2 3258.2 

Std. 0.404 0.010 0.013 0.923 0.035 0.041 0.787 0.016 0.017 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 18.4 3555.84 3142.2 18.72 3704 3182.55 18.6 3688.32 3187.59 

Std. 0.494 0.011 0.004 0.757 0.012 0.013 0.670 0.014 0.014 
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TABLE 4 
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON EWF DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 14 6848.64 6617.25 14.08 6834.88 6597.68 14 6924.8 6702.99 

Std. 0 0.006 0.007 0.396 0.044 0.056 0 0.006 0.007 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 25.06 3857.28 3202.72 23.52 4125.76 3483.95 22.76 4039.04 3388.73 

Std. 4.037 0.014 0.019 4.841 0.059 0.077 5.057 0.043 0.057 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 25.24 3949.76 3167.41 25.16 4152 3403.26 24.46 4070.08 3323.16 

Std. 2.924 0.014 0.011 3.247 0.057 0.077 3.95 0.043 0.057 

 

TABLE 5 
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON BPF DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 8.06 6546.24 6699.58 8.24 7304.64 7549.95 8.22 6996.48 7203.75 

Std. 0.239 0.034 0.038 0.555 0.069 0.078 0.545 0.062 0.069 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 17.7 3605.12 3197.67 16.76 3835.84 3298.54 15.94 3884.48 3333.84 

Std. 3.688 0.018 0.014 3.426 0.035 0.028 3.449 0.033 0.027 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 16.92 3744 3217.85 16.7 3969.92 3346.16 17.42 3870.72 3263.24 

Std. 3.212 0.028 0.015 3.37 0.039 0.049 3.038 0.025 0.025 

. 

TABLE 6 
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON WDF DFG 

 

 
MFO GA PSO 

Delay Area Power Delay Area Power Delay Area Power 

W1=0.8 

W2=0.1 

W3=0.1 

Ave. 14.08 6883.84 6330.98 14.28 6656.32 6072.74 14.12 6904.64 6353.97 

Std. 0.274 0.053 0.070 0.640 0.079 0.104 0.385 0.063 0.082 

W1=0.1 

W2=0.8 

W3=0.1 

Ave. 24.74 4144 3207.76 20.86 4400 3467.19 22.28 4310.08 3359.06 

Std. 4.303 0.013 0.018 5.660 0.033 0.049 5.789 0.019 0.032 

W1=0.1 

W2=0.1 

W3=0.8 

Ave. 
25.82 4245.12 3172.46 22.62 4422.72 3366.33 23.18 4342.72 3298.54 

Std. 
3.617 0.011 0.011 5.421 0.03 0.048 5.283 0.016 0.029 
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With reference to the EWF synthesis, both MFO-

based and PSO-based methods have obtained the 
same average delay. But in the other two cases, 
finding the best area and power consumption, the 
method based on the MFO algorithm performed better 
with the values of 3857.28 and 3167.41, respectively. 

In Table 5, which presents the synthesis of the BPF, 
the results show that the proposed method performs 
better. The best average delay, occupied area and, 
power consumption obtained in this filter were 8.06, 
3605.12 and 3217.85, respectively. 

Finally, in the WDF filter, the proposed method still 
performs better. The proposed method has a delay of 
14.08 as the best delay, which is better than the other 
two methods with values of 14.28 and 14.12 for GA-
based and PSO-based methods, respectively. The best 
area and power consumption in the MFO-based 
algorithm are also obtained 4144 and 3172.46, which 
is better than the other two methods. 

Using the information in Tables 1 to 6, although the 
delay, occupied area, and power consumption in the 
proposed method are better than the other two 
methods, at each mode with the improvement of one 
parameter, the other two parameters increase 
significantly. 

For example, as the delay improves, two other 
parameters, namely power consumption and occupied 
area increase at first mode. It seems that the kind of 
decrease in the number of flames after each iteration 
causes these drastic changes. In this paper, the 
number of flames in each iteration is updated through 
(8). 

Fig. 6 shows a representation of the best-averaged 
responses for each filter. 

The percentage of improvement obtained by the 
proposed method based on MFO algorithm compared 
to the other two methods based on GA and PSO 
algorithm in the synthesis of each digital filter is 
presented in Table 7. 

As shown in Table 7, in the IIR and EWF filters, the 
proposed method together with the PSO-based 
method calculated the same delay. But in other cases, 
the proposed method based on the MFO algorithm has 
shown better performance. 

In order to obtain optimal delay, the proposed 
method showed the best performance in FIR filter 
synthesis with 2.78% and 2.15% improvement 
compared to the GA-based and PSO-based methods, 
respectively.  

Regarding the optimal occupied area, the best 
performance has been found in the BPF synthesis with 
a 7.19% improvement compared to the PSO-based 
method and in the EWF filter synthesis with a 6.51% 
improvement compared to GA-based method. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6: The best results for a) Delay, b) Occupied area, and 
c) Power in digital filter synthesis. 

 
The highest improvement in power consumption 

was also achieved in the EWF, with 6.93% and 4.69% 
improvement compared to GA and PSO, respectively. 

Fig. 7 shows some examples of the proposed 
method and the two GA-based and PSO-based 
methods when calculating the best power of the 6 
filters (W3=0.8 and W1=W2=0.1). While the 
Continuous black lines depict the data obtained from 
the proposed method based on the MFO algorithm, 
the blue dotted lines show the data from the PSO-
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based method and the red lines illuminate the data of 
the GA-based method. 

Then, by considering three objective functions 
(delay, area, and power), the Pareto front display 
estimated by the proposed method for all three 
functions simultaneously will be three-dimensional 
and will not be an efficient and appropriate criterion 
for the visual measurement. Therefore, by considering 
the weight of power is constant (W3 = 0.3 which 
means that the importance of this target is never less 
than 30% compared to the other objectives, the 
Pareto front has been shown in two dimensions for 
contrasting the other two objectives (delay and 
occupied area). 

 
TABLE 7 

IMPROVEMENT OF THE MFO-BASED METHOD COMPARED TO GA-
BASED AND PSO-BASED METHODS 

 
Performance improvements (%)  

Power Area Delay 

1.89 4.16 1.57 GA 
IIR 

1.26 3.85 0 PSO 

0.32 5.87 2.78 GA 
FIR 

0.16 5.36 2.15 PSO 

1.27 3.41 2.15 GA 
ARF 

1.42 2.57 1.44 PSO 

6.93 6.51 0.57 GA 
EWF 

4.69 4.5 0 PSO 

3.83 6.01 2.18 GA 
BPF 

1.39 7.19 1.95 PSO 

5.76 5.82 1.4 GA 
WDF 

3.82 3.85 0.28 PSO 

 
Table 8 demonstrates the final response of the 

investigated methods. In this table, W3 is considered 
to be 0.3 while W1 and W2 have been changed from 0.1 
to 0.6 with the interval of 0.1 so that the sum of all 
three coefficients will be always equal to 1. It can be 
therefore inferred that the proposed method based on 
the MFO algorithm performs better than the other two 
methods based on GA and PSO algorithm with 
improvements in delay, area and, power consumption. 

It can be seen that by changing the coefficients 
related to delay, and area, W1 and W2, there are 
significant changes in the obtained responses. 

It is observed that there will be a diminishment in 
the delay and a rise in the occupied area by increasing 
the delay coefficient (W1) and decreasing the occupied 
area coefficient (W2). 

For instance, by increasing W1 and decreasing W2 in 
the proposed method for the synthesis of the IIR filter, 
there will be a reduction in the delay from 7.38 to 5.9 
and a rise in the area from 3192.64 to 4194.56. In the 
same vein, in the GA-based method, there is a fall in 
the delay from 7.58 to 6.18 and an upsurge in the area 
from 3377.92 to 4241.6.  

 

In the PSO-based method, the delay was decreased 
from 7.42 to 6.06 and the occupied area increased 
from 3232.64 to 4229.76. It is of note that the 
proposed method had a better performance on the 
other filt ers, too. 

Fig. 8 shows the Pareto fronts obtained using the 
data in Table (8) for the studied filters, where the 
continuous black lines show the data obtained from 
the proposed method based on the MFO algorithm 
while the blue dotted lines depict the data from the 
PSO-based algorithm and the red lines show the data 
related to the GA-based algorithm. Besides, to better 
represent the data, in the vertical axis, the logarithm 
of the obtained area has been used to better 
comparison of the three methods. 

It can be seen from Fig. 8 that in all the 
benchmarks, the lower diagram of the proposed 
method and hence the lower area under this curve 
compared to the red and blue curves of the GA-based 
and the PSO-based methods, respectively demonstrate 
the better performance of the proposed method in 
finding optimal responses. 

After all, to prove the improvement of the proposed 
method based on the MFO algorithm over the other 
two methods, statistical hypothesis test has been 
conducted. Table 9 shows the results of the statistical 
hypothesis test. 

According to the findings reported in Table 9, it can 
be seen that by performing the statistical hypothesis 
test, in all cases except power consumption of the FIR 
filter, the proposed method performs better compared 
to the GA method with a confidence level of 99%. 
Compared to the PSO method, in all cases except 
power consumption of the FIR, delay of the ARF, and 
delay of the WDF, the proposed method performs 
better with a confidence level of 99%. As such, in the 
case of delay of the ARF with a confidence interval of 
97.5%, the proposed method is better. 

As shown in Tables 1 and 4, that represent the 
synthesis of the IIR and EWF, standard deviation of 
the delay of the proposed method is equal to 0. 
Therefore, the result of T-test is negative infinity and 
ÈÁÓ ÂÅÅÎ ÓÈÏ×Î ×ÉÔÈ ÔÈÅ Ȱ-Ðȱ ÓÙÍÂÏÌ ÉÎ 4ÁÂÌÅ ωȢ 

The use of the proposed new approach, which 
applies the optimization algorithm separately for each 
operator and updating the priorities at each stage, has 
made the algorithm escape the local optima and 
increase the exploration and exploitation 
simultaneously. Also, as mentioned, in MFO algorithm 
each moths searches around a unique flame. This 
significantly increases the exploration at the 
beginning of the execution of the algorithm, because 
the flames are located in different parts of the search 
space and the moths can search for larger space by 
moving around these flames. 
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Figure 7: An example of the implementing MFO, PSO, and GA-based methods for W2=W1=0.1 and W3=0.8 in the synthesis of 
a) IIR, b) FIR, c) ARF, d) EWF, e) BPF, and f) WDF. 
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TABLE 8 
RESULTS ON BENCHMARKS. DELAY (SCHEDULE LENGTH), AREA (NUMBER OF TRANSISTORS), AND POWER (µW) 

 

PSO GA MFO  

W3=0.3 Power Area Delay Power Area Delay Power Area Delay 

3212.81 3232.64 7.42 3343.93 3377.92 7.58 3177.50 3192.64 7.38 
W1=0.1 
W2=0.6 

IIR 
 

3388.73 3399.68 7.3 3439.16 3450.24 7.46 3265.46 3276.16 7.2 
W1=0.2 
W2=0.5 

3404.45 3434.56 7.26 3444.79 3467.52 7.36 3263.24 3274.56 7.1 
W1=0.3 
W2=0.4 

3482.32 3500.48 7.1 3638.07 3632.32 7.16 3341.11 3352 6.82 
W1=0.4 
W2=0.3 

3640.29 3625.28 6.66 3665.51 3647.68 6.8 3632.43 3609.28 6.4 
W1=0.5 
W2=0.2 

4367.99 4229.76 6.06 4378.08 4241.6 6.18 4345 4194.56 5.9 
W1=0.6 
W2=0.1 

3202.72 3776.64 15.14 3268.28 3840.64 15.2 3197.68 3723.2 14.92 
W1=0.1 
W2=0.6 

FIR 

3325.98 3851.2 14.26 3341.11 3879.04 14.6 3320.94 3800.64 13.68 
W1=0.2 
W2=0.5 

3504.72 4052.8 13.44 3592.68 4144.96 13.78 3364.10 3891.2 12.92 
W1=0.3 
W2=0.4 

3588.23 4156.16 13 3688.5 4247.36 13.24 3475.05 4001.28 12.2 
W1=0.4 
W2=0.3 

4015.12 4504.32 12.04 4320.97 4768 12.12 3881.77 4357.44 11.62 
W1=0.5 
W2=0.2 

5164.08 5456.96 10.9 5279.48 5564.48 11.04 4626.83 4939.52 10.6 
W1=0.6 
W2=0.1 

3566.87 3893.76 17.78 3581 3901.44 18.04 3516.44 3851.84 17.5 
W1=0.1 
W2=0.6 

ARF 

4221.74 4456.96 16.6 4241.91 4472 16.78 4055.91 4301.76 16.48 
W1=0.2 
W2=0.5 

4567.94 4765.12 15.48 4693.43 4875.84 15.56 4364.58 4542.4 15.44 
W1=0.3 
W2=0.4 

4959.53 5067.52 14.74 4969.62 5076.48 14.88 4823.96 4950.72 14.48 
W1=0.4 
W2=0.3 

6608.21 6464.32 12.18 6761.14 6601.92 12.3 6053.6 5989.44 11.92 
W1=0.5 
W2=0.2 

8427.17 8013.76 10.28 8595.22 8150.4 10.36 7987.96 7678.08 10.16 
W1=0.6 
W2=0.1 

4148.91 4666.24 21.92 4201.57 4709.76 22.12 3807.76 4376.96 21.66 
W1=0.1 
W2=0.6 

EWF 

4262.09 4818.24 20.46 4314.74 4861.76 20.6 4013.93 4614.08 19.86 
W1=0.2 
W2=0.5 

4443.05 4943.68 19.2 4490.66 4974.08 19.46 4222.34 4757.76 18.58 
W1=0.3 
W2=0.4 

4815.06 5275.52 17.64 4988.16 5428.16 17.78 4499.12 5014.4 16.94 
W1=0.4 
W2=0.3 

5269.39 5673.6 16.32 5332.13 5723.2 16.5 4970.8 5404.48 15.72 
W1=0.5 
W2=0.2 

5427.95 5793.92 15.2 5528.23 5870.72 15.32 5297.42 5684.48 15.06 
W1=0.6 
W2=0.1 

4250.37 4475.84 12.2 4418.43 4618.24 12.38 4062.14 4309.76 12.16 
W1=0.1 
W2=0.6 

BPF 

4243.1 4650.24 11.84 4248.15 4657.6 11.9 4064.96 4496 11.6 
W1=0.2 
W2=0.5 

4699.66 5038.4 11.18 4704.7 5051.52 11.36 4411.16 4758.08 11 
W1=0.3 
W2=0.4 

4975.85 5250.56 10.68 5091.25 5352.32 10.86 4745.05 5055.68 10.64 
W1=0.4 
W2=0.3 

5347.26 5537.92 10.2 5442.49 5630.4 10.38 5159.03 5343.04 9.84 
W1=0.5 
W2=0.2 

6375.78 6329.6 9.24 6481.09 6428.16 9.4 6260.38 6219.2 9.1 
W1=0.6 
W2=0.1 

3900.76 4744.32 21.62 4001.03 4824 22.28 3574.73 4462.72 21.08 
W1=0.1 
W2=0.6 

WDF 

4003.85 4847.04 20.18 4151.73 4965.76 20.84 3854.87 4704.96 19.7 
W1=0.2 
W2=0.5 

4269.95 5093.44 19.02 4427.92 5221.12 19.26 4111.98 4954.24 18.36 
W1=0.3 
W2=0.4 

4543.91 5309.76 18.1 4649.22 5396.8 18.32 4348.42 5140.48 17.14 
W1=0.4 
W2=0.3 

5126.55 5815.68 16.46 5236.9 5910.08 16.68 4931.05 5649.28 15.86 
W1=0.5 
W2=0.2 

5473.34 6125.12 14.8 5526 6168.64 15.06 5425.73 6086.08 14.6 
W1=0.6 
W2=0.1 
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Figure 8: The Pareto front by coefficients changes of W1, W2, and W3 = 0.3 for a) IIR, b) FIR, c) ARF, d) EWF, e) BPF, and f) 
WDF. 
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TABLE 9 
THE Z VALUE OBTAINED IN THE STATISTICAL HYPOTHETICAL TEST 

 
 GA PSO 

IIR 

Delay -Ð -Ð 

Area -12.24 -11.3 

Power -8.57 -5.71 

FIR 

Delay -7.22 -5.68 

Area -13.52 -12.27 

Power -1.43 -0.71 

ARF 

Delay -3.28 -2.19 

Area -9.93 -7.41 

Power -8 -9 

EWF 

Delay -Ð -Ð 

Area -14.09 -9.54 

Power -20.15 -13.3 

BPF 

Delay -5.31 -4.72 

Area -10.66 -12.91 

Power -7.64 -2.70 

WDF 

Delay -5.16 -1.03 

Area -14.1 -9.15 

Power -15.51 -10.87 

 
 

At the end of the execution of the algorithm, the 
number of flames decreases according to (8) and the 
best flame remain. So, all the moths move around the 
best flame, which greatly enhances the exploitation of 
the algorithm at the end of the execution. 

But for example in PSO algorithm, if the inertia 
weight is low and the leader of the group moves 
toward local optima, the whole particle also converges 
to local optima and the algorithm is trapped in that 
point. 

It is also difficult in the PSO and GA to accurately 
determine the parameters of the algorithm. However, 
the low number of parameters in the modified MFO 
algorithm makes that significantly less sensitive to the 
parameters. 

In addition, because of the simpler equation of the 
movement in the modified MFO algorithm, the 
runtime of the proposed algorithm is greatly 
increased. 

A.  Computational complexity 

The computational complexity of the algorithm 
depends on the number of variables, the number of 
moths, the maximum number of iterations, and the 
flame sorting algorithm in each iteration. Using the 
Quicksort algorithm, the computational complexity of 
sorting is at the best as O(nlogn) and at the worst as 
O(n2). The total computational complexity is also 
calculated by (10). 

          (10) 
ὕὓὊὕ ὕὸὕὗόὭὧὯ ίέὶὸ

ὕὖέίὭὸὭέὲ ὟὴὨὥὸὩ 

where O is the computational complexity order and t 
is the maximum number of iterations. 

The computational complexity is, at the worst  case, 
equal to (11). 

       (11) 
ὕὓὊὕ ὕὸὲ ὲ Ὠ

ὕὸὲ ὸὲὨ 

where O is the computational complexity order, t is 
the maximum number of iterations, n is the number of 
moths and d is the number of variables. 

B.  Runtime 

One of the prominent feature of the proposed 
method is its fast runtime in comparison with the 
other two methods in obtaining the solutions. 

Table 10 shows a comparison of the average 
runtime of the three methods to achieve the solution. 
According to Table 10, the runtime of the proposed 
MFO-Based method is faster than the other two GA-
based and PSO-based methods. An average 
improvement of more than 21% in the runtime of the 
proposed method compared to the GA-based method 
and more than 12% compared to the PSO-based 
method guarantees the fast runtime of our approach. 

The maximum improvement in the runtime of this 
method over the PSO-based method in the EWF was 
27.14%, while in the FIR filter it was 25.45%, and in 
the IIR filter being 21.43%. Likewise, the highest 
improvement over the PSO-based method was 
observed in the synthesis of the EWF, BPF, and ARF 
filters being 19.68%, 17.78%, and 17.65%, 
respectively. Finally, in Table 11 the advantages and 
disadvantages of the proposed method are compared 
to the other two methods. 

5.  CONCLUSION 

One of the most important and influential steps in 
the design of a digital VLSI filter is high-level 
synthesis. Due to the vast and discrete search space 
and the priorities for executing the operators, high-
level synthesis problems have their complexity and 
are one of the most difficult problems in engineering. 
However, using metaheuristic methods that have 
already demonstrated their performance in solving 
such problems [42], [43] may improve the 
performance of the synthesis and find optimal 
solutions. In this paper, a novel method based on MFO 
metaheuristic algorithm has been presented that after 
applying this method to synthesize the tested digital 
filters, it was found that this method has a higher 
ability to find the optimal solution compared to the 
GA-based and PSO-based methods. In the MFO 
algorithm, moths use a system called transverse 
orientation to move toward the flame. This transverse 
orientation system ensures that the moths move in a 
spiral direction toward the flame. 
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In the method presented in this paper, the 

hyperbolic spiral function is used to move the moths 
toward its corresponding flame. Finally, the obtained 
results were compared in terms of delay, occupied 
area, and power consumption. The results indeed 
showed an improvement in all the above-mentioned 
parameters. The greatest improvement was observed 
in the delay with a rate of 2.78% in the FIR synthesis 
compared to the GA-based method. A 7.19% 
improvement in the area in the synthesis of the BPF 
and a 6.93% improvement in the power consumption 
in the synthesis of the EWF were also obtained 
compared to the PSO-based and the GA-based 
methods, respectively. Also, the better performance of 
the proposed method has been proved based on the 
statistical hypothesis test. 

Then, by plotting the Pareto fronts for a certain 
mode of the problem, it is observed that in the 
proposed method, the area left below the curve in all 
the cases was lower than the other two methods. 

The fast runtime of the proposed method to 
achieve the appropriate solutions is another striking 
feature of the MFO-based method proposed here. The 
results showed an average improvement of more than 
21% in the runtime of the proposed method 
compared to the GA-based method and more than 
12% compared to the PSO-based method. This 
improvement in runtime accelerates the design speed, 
especially in very large-scale problems having a high 
number of operators.  

Although the obtained delay, area, and power in the 
proposed method are better than the other two 
methods, with the improvement of one parameter, the 
other two parameters increase significantly. 

For example, as the area improves, two other 
parameters, namely power consumption and delay 
increase at first mode. It seems that the kind of 
decrease in the number of flames after each iteration 
causes these drastic changes. Therefore, as a 
suggestion, different methods can be used to reduce 

the number of flames. This directly increases the 
exploitation of the algorithm in the final iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 11 

THE ADVANTAGES AND DISADVANTAGES OF THE PROPOSED METHOD 

COMPARED TO TWO OTHER METHODS 
 

Advantages Disadvantages 

Good solutions 

Fast runtime 

Proper Exploitation 

Low number of the 

parameters 

Easy implementation 

Escape from local optima 

Weaker Exploration 

 

Slower Convergence 
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