
http://jecei.sru.ac.ir

Journal of Electrical and Computer Engineering Innovations

JECEI, Vol. 7, No. 1, 2019

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 93

SRTTU

A Framework for High-Level Synthesis of VLSI Circuits Using a
Modified Moth-Flame Optimization Algorithm

Mohammad R. Esmaeili1, Seyed Hamid Zahiri1,*, and Seyed Mohammad Razavi1

1Deptartment of Electrical Engineering, Faculty of Electrical and computer Engineering, University of Birjand,
Birjand, Iran
*#ÏÒÒÅÓÐÏÎÄÉÎÇ !ÕÔÈÏÒȭs Informatio n: hzahiri@birjand.ac.ir

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY:
Received 22 September 2019
Revised 05 February 2020
Accepted 05 February 2020

 The most important very large scale integration (VLSI) circuits are digital
filters and transformers, which are widely used in audio and video
processing, medical signal processing, and telecommunication systems.
High-level synthesis (HLS) is one of the substantial steps in designing
VLSI digital circuits. The primary purpose of HLS is to minimize the
digital units used in the system to improve their power, delay, and area.
This is fulfilled by analyzing the data flow graph (DFG). The complex,
expansive, and discrete nature of design space in high-level synthesis
problems has made them one of the most difficult problems in VLSI
circuit design. In the modified MFO algorithm presented in this paper, a
hyperbolic spiral is chosen as the update mechanism of moths. Also, by
presenting a new approach, a paramount issue involved in applying meta-
heuristic methods for solving HLS problems of VLSI circuits has been
disentangled. Finally, by comparing the performance of the proposed
method with Genetic algorithm (GA)-based method and particle swarm
optimization (PSO)-based method for the synthesis of the digital filters, it
is concluded that the proposed method has the higher ability in the HLS of
data path in digital filters. The best improvement is 2.78% for the delay
(latency), 6.51% for the occupied area of the chip and 6.93% in power
consumption. Another feature of the proposed method is its high-speed in
finding optimal solutions, in a manner which, more than 21.6% and
12.9% faster than the GA-based and PSO-based methods, respectively on
average.

KEYWORDS:
Digital VLSI circuits

Datapath

Digital filters

High-Level Synthesis

Moth-Flame algorithm

1. INTRODUCTION

HLS is one of the important levels in designing digital
very large scale integration (VLSI) circuits such as
digital filters so that improvements in this level have a
higher efficiency than optimization at other lower
levels. Besides, high-level optimization reduces the
design time and increases the velocity of design at
lower levels, leading to better circuit indices [1]. High-
level synthesis (HLS) is a level of VLSI design wherein
behavioral description is converted into a structural
characteristic [2], [3]. This behavioral description is
generally shown as a graphical schematic called the

data flow graph (DFG). The obtained structural
characteristic is a mapping corresponding to the
initial behavioral description which describes how to
implement the behavioral description. For a unique
and certain behavioral description, there could be
some structural characteristics and it is of note that
their outputs are to be equivalent to the output being
considered in the behavioral description [4].
Typically, the aims of high-level optimization are to
improve the circuit performance in terms of speed
(delay), the occupied area on the chip, power
consumption, construction cost, and the like. These
goals are generally in conflict with each other, and any

Mohammad R. Esmaeili et al.

94

improvement in one might weaken another.
Consequently, establishing a compromise between
these conflicting goals is oftentimes required
depending on the intended use. As an illustration, the
performance and speed of digital filters are high-
priority whilst the cost and power consumption rank
next in devices such as high-powered computer
systems used in servers and supercomputers. On the
other hand, in high-volume market gadgets such as
ASICs (Application-specific integrated circuits) for cell
phones, tablets, and laptops, the final cost and power
consumption are the main priorities in design,
whereas the performance and speed have less
priority. Therefore, it can be concluded that according
to the type of intended use, the design space should be
explored and the optimal and appropriate design
should be selected [5].

Due to the complexity and spread of design space
in HLS problems, making use of automated methods in
solving them is highly indispensable [6], [7].
Moreover, if the dimensions of the problem increase,
the design space will also be greatly growing up and it
will be more difficult to find the optimal solutions. As
a result, utilizing CAD-based automated methods is
exceedingly felt.

It should be underscored that in [8], scheduling and
binding in HLS have been conducted simultaneously
in which priorit ies and time limits have been
formulated under the Integer linear programming
(ILP). As in [9], power optimization has been
undertaken using the ILP and it is claimed that making
use of this method will be practically impossible for
large-dimension problems due to its very low runtime
in reaching a response [10]. In [11], a scheduling DFG
is optimized in terms of power by using the game
theory where the operators have been considered as
players whereas the fitness function is assumed to be
the consumption power. It needs to be asserted that
the computational load of this method is very heavy
requiring a very large runtime, particularly for real
problems having high dimensions. Indeed, this will be
tremendously overpriced, increasing exponentially.

Another method to solve HLS problems is to
initially use default schedules and then the problem is
solved. Afterward, by repeatedly applying the
transformations, the initial schedule is gradually
improved [12]. The focal demerit of this method is
that the obtained responses are highly sensitive to the
transformation which is used. Also, [13] addressed
HLS problem solving by using the parallel
programming language (PPL) method. Moreover, the
simulation annealing (SA) algorithm was addressed in
[14] while in [15] the r egisters were simultaneously
scheduled, allocated, and reduced using the SA
algorithm. Another method based on the SA is SALSA
introduced in [16] which has been employed to solve

HLS problems. Besides, in [17], an improved firefly
algorithm is used. In this method, the combination of
firefly algorithm and Tabu search (TS) algorithm is
used and finally the problem is optimized in terms of
speed and power.

The simplest solution is to execute HLS steps
independently. In these methods, only one operator is
scheduled at a time and the process continues in the
same fashion until all the operators are scheduled.
Having done the scheduling, functional units (FUs) are
allocated. An illustration of this includes the as-soon-
as-possible (ASAP) scheduling [18], as-late-as-
possible (ALAP) scheduling [18], path-based
scheduling (PBS) [19], and force-directed scheduling
(FDS) [20]. In [21], the delay and power are optimized
using the memetic algorithm. In [22], researchers
have also proposed a method based on the bacterial
foraging optimization algorithm (BFOA) to solve the
HLS problems.

In [23], weighted sum Genetic algorithm (WSGA)
method was recommended to optimize the delay and
occupied area in datapath synthesis, where the WSGA
algorithm was employed to simultaneously schedule
and allocate FUs for the DFG synthesis. In [24],
another instance of GA was introduced to explore the
design space during the DFG scheduling. In [25], a
multi -objective evolutionary approach named non-
dominated sorting Genetic algorithmɀII (NSGA-II) was
presented in which scheduling and allocating of the
FUs was undertaken simultaneously. In [26], with the
intention of minimizing the schedule time, a PSO-
based method was introduced by assuming that the
problem is resource-constrained. In [27], a PSO-based
method was introduced in which scheduling and
ÂÉÎÄÉÎÇ ÉÎ ÔÈÅ ÆÉÌÔÅÒȭÓ ÄÁÔÁÐÁÔÈ ÉÓ ÐÅÒÆÏÒÍÅÄ
simultaneously while a weighted particle swarm
optimization (WSPSO) approach was proposed in [25]
to solve the HLS problem. In order to optimize the
area and delay in HLS problems, a design space
exploration method using the NSGA-II algorithm was
recommended in [28] in which the linear regression
was employed to calculate the area and delay
objective functions. Moreover, the researchers in [29]
introduced the ant colony optimization (ACO)
algorithm whereas the Tabu search meta-heuristic
algorithm was utilized to solve the HLS problem in
[30].

The spread of the search space in the HLS problems
as well as the three steps of scheduling, binding, and
allocation, which are completely interdependent
together, make attractive the use of population-based
metaheuristic algorithms to solve such problems.
Algorithms such as GA, PSO, ACO and Tabu search
methods are among the methods used in this field.
These heuristic algorithms can provide a large group
of solutions in an implementation.

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 95

This paper is pioneering in that it has scrutinized
using a modified meta-heuristic MFO method when
solving a complex VLSI circuit engineering problem
for the first time. In the MFO algorithm, the hyperbolic
spiral function is used to move the moths toward its
corresponding flame. The obtained results not only
confirm the efficiency of the MFO method in the
complex problem of HLS of VLSI circuits (digital filters
as an instance here) but also validate its superiority
over other renowned evolutionary methods (such as
GA) and swarm intelligence (such as PSO). It is
overstated that based on the existing literature, large
dimensions of the exploration design space have been
an outstanding feature of the HLS problems causing
troubles in the methods. This and many design
constraints such as the limited number of FUs and the
ÏÐÅÒÁÔÏÒÓȭ ÅØÅÃÕÔÉÏÎ ÐÒÉÏÒÉÔÙ ÈÁÖÅ ÎÏÔ ÏÎÌÙ ÌÏ×ÅÒÅÄ
the algorithm runtime, but also influenced the final
results. In this research work, we have overcome the
limitations by introducing a novel solution and by
applying the optimization algorithm separately for
each operator and updating the priorities at each
stage. When applying this solution, the problem
limitations are mitigated while the meta-heuristic
method is directed towards more effective and useful
areas of the exploration space. This implies that the
agents do not incline towards the unbeneficial areas
which fail to fulfill the requirements. Plus, improving
the obtained response, this also increases the
convergence speed of the algorithm.

The structure of this paper is organized as follows:
Section 2 is intended to explain the high-level
synthesis of VLSI circuits. In Section 3, the meta-
heuristic MFO-based proposed method is presented,
and Section 4 includes the results of the simulation. In
this section, a comparison of the proposed method
with the GA-based method and PSO-based method is
also established. Finally, Section 5 is dedicated to the
conclusion.

2. HIGH-LEVEL SYNTHESIS OF VLSI CIRCUITS

Synthesis is in front of the analysis, in which the
features and behavior of the circuit are taken as
inputs and according to the existing resource
constraints and intended objectives, the circuit is
designed and implemented on the chip.

The synthesis of a digital filter involves different
levels and stages. The first level in synthesis is to
define the behavioral description of the circuit, which
describes how to implement the commands and
arrange the placement of operators. It is commonly
characterized as a graph called DFG, in which the
inputs and outputs and, interconnections between
them have been specified. Indeed, all the operators in
a behavioral description and all the relationships
between them are represented graphically. The next

level is to convert the behavioral description into a
structural characteristic. This level is called register
transfer level (RTL). Thereafter, there is the logical
level in which the RTL design obtained from the
previous level is converted to the logical gates level by
logical synthesis methods and, according to the
obtained design, the logic gates are placed.

The next step in designing a digital filter is called
the layout level which helps us to determine the type
of transistors and the required technology to
implement the circuit. Furthermore, implementation
of the logic gates on the chip area can also be
considered at this level. To end with, the final step in
designing a digital filter is the implementation of the
circuit on the chip via available technologies.

HLS is the first step in synthesizing a circuit where
the behavioral description is converted into a
structural characteristic. As stated earlier, the
behavioral description is generally represented by a
graph called DFG. Fig. 1 illustrates a hypothetical DFG
for (1).

 (1)

ὣ ὥ ὦ ὧ Ὠ

Ὡ Ὢ Ὣ Ὤ

Ὡ Ὢ Ὣ Ὤ

where a, bȟ ȣȟ h are the output and Y is the input.
In each DFG, the nodes represent the operators

and, the edges determine the dependencies between
these operators. For example, in Fig. 1, there are four
adder operators and four multiplier operators to
perform and calculate (1). The outputs of operators 1
and 2 are considered as the inputs of operator 5 and,
the outputs of operators 3 and 4 are considered as the
inputs of operator 6. This can also be considered for
other nodes and operators.

Figure 1: Data flow graph for (1).

Mohammad R. Esmaeili et al.

96

The simplest but not necessarily the most optimal
way to implement each DFG is to map each operator
or node one by one into a distinct FU. For instance, in
Fig. 1, the desired description can be implemented
and executed by 4 adder and 4 multiplier units.
Nonetheless, the fact is that this may be feasible and
affordable for DFGs with a low number of nodes, but
by increasing the number of nodes and increasing the
number of operational units, the final cost (in terms of
power consumption or area) greatly increases. As a
result, for reducing the number of FUs, another
approach can be employed in which those nodes
doing the same operation can be executed by a
specific FU albeit at different time steps.

Datapath synthesis involves scheduling, allocation,
and binding steps. Fig. 2 shows these three steps in
HLS.

Figure 2: HLS subtasks.

Scheduling is a stage of HLS that determines the
time step in which a particular node in the DFG is to
be executed. The number of all steps required for
executing all the operators is called schedule length.

A sample of the scheduling for the DFG presented
in Fig. 1 is shown in Fig. 3. By having a closer look, it is
observed that the schedule length is equal to 4
because four steps are required for all the operators
to be executed leading to an output. Nodes 1 to 4 are
executed in the first time step, nodes 5 and 6 in the
second time step, node 7 in the third time step, and
finally, node 8 is executed in the fourth time step.

Allocation is a stage of HLS in which the number of
hardware resources required to execute the operators
as well as the number of required registers is
determined. Binding assigns an FU for executing each
node. For example, two possible ways for DFG
scheduling in Fig. 1 can be seen in Fig. 3 and Fig. 4.

Mobility allows some nodes to be executed at
different time steps without affecting the overall
nature and output of the problem. For example, in the
scheduled DFG in Fig. 4, node 3 is moved to the second

time step, node 6 is transported to the third time step,
node 7 is moved to the fourth time step, while node 8
is sent to the fifth time step. As can be seen, both Fig. 3
and Fig. 4 exhibit the same DFG but with different
scheduling. In Fig. 3, the schedule length is equal to 4
while it is 5 in Fig. 4. Despite the increase in the
schedule length in Fig. 4 compared to Fig. 3, the
number of FUs has decreased compared to Fig. 3. In
the scheduled DFG in Fig. 3, the number of required
adders and multipliers is 2 and 2, respectively, which
is reduced to 1 and 2 for Fig. 4, respectively.

Figure 3: Illustration of a scheduled DFG presented in Fig. 1.

Figure 4: Another way of a scheduled DFG for Fig. 1.

Digital transformers and digital filters have a
special place in the VLSI circuits. So that in most

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 97

circuits and applications we can find a snare of them
[31] -[34]. However, digital filters are the most
commonly used circuits in digital circuit design which
are widely used in signal processing applications.
Digital filters are abundantly used to process signals,
images, and videos, communication applications, and
so on. The infinite impulse response (IIR), the finite
impulse response (FIR), the auto regressive filter
(ARF), the band-pass filter (BPF), the elliptic wave
filter (EWF) and the wave digital filter (WDF) are the
digital filters used in this paper. The data flow graph
of the two ARF and FIR filters used in this paper has
been shown in Fig. 5 [35].

(a)

(b)

Figure 5: (a) ARF data flow graph, (b) FIR data flow graph.

3. THE PROPOSED METHOD

The nature of HLS problems in which the search
space is highly widespread and complex and
discreteness of this space, has led the researchers to
take advantage of the metaheuristic methods in this
field. In this paper, the modified MFO-based approach
is used to simultaneously optimize delay, area, and
power consumption in HLS of datapaths in digital
filters. Finally, the proposed method is compared with
the GA-based and PSO-based methods. The MFO
algorithm is one of the metaheuristic algorithms
which was proposed by [36]. This algorithm, like
other metaheuristic methods, is inspired by nature to
find optimal solutions. The idea of the MFO algorithm
is originated from the moths and their instinctive
navigation system and their flights towards light
sources.

In the MFO, moths can be considered as the
chromosomes in GA, the swarm in PSO, and the ants in
ACO. The variables and dimensions of the problem are
the same as the position of the moths in the design
ÓÐÁÃÅȢ 4ÈÅ ÍÏÔÈÓȭ ÐÏÓÉÔÉÏÎ ÃÁÎ ÂÅ ÄÅÆÉÎÅÄ ÁÓ ɉρɊȡ

 (2) ὓ

ά Ȣ ά Ȣ Ễ ά Ȣ

ά Ȣ ά Ȣ Ễ ά Ȣ

ể ể Ệ ể
ά Ȣ ά Ȣ Ễ ά Ȣ

where n is the number of moths, d is the number of
variables of the problem and mi,j is the i-th variable of
the j-th moth. The corresponding fitness values of the
moths can also be stored in a matrix as follows:

 (3) ὕὓ

ὕὓ
ὕὓ
ể
ὕὓ

where n is the number of flames and OMi is the fitness
value of i-th moth. Two other matrices can be defined
for flames in the form of (4) and (5).

 (4) Ὂ

ὪȢ ὪȢ Ễ ὪȢ
ὪȢ ὪȢ Ễ ὪȢ
ể ể Ệ ể
ὪȢ ὪȢ Ễ ὪȢ

where n is the number of moths, d is the number of
variables of the problem and Fi,j is the i-th variable of
the j-th moth.

 (5) ὕὊ

ὕὊ
ὕὊ
ể
ὕὊ

where n is the number of moths and OFi is the fitness
value of i-th flame.

Here, both the moths and the flames are feasible
solutions of the problem; yet, the difference is that the
flames are the best position of the moths to this

Mohammad R. Esmaeili et al.

98

moment, and the moths are the solutions to move in
the search space for reaching to the optimal solution.

Indeed, each moth moves around a flame until it
finds a better position and replaces it with the flame
position. To escape from the local optima and increase
the exploration capability, each moth updates its
position only with its corresponding flame in the
flame sorted matrix so that more space would be
ÅØÐÌÏÒÅÄȢ &ÏÒ ÉÎÓÔÁÎÃÅȟ ÔÈÅ ÆÉÒÓÔ ÍÏÔÈ ÉÎ ÔÈÅ ÍÏÔÈÓȭ
matrix is updated with the best flame and, the last
moth is updated with the worst flame in the sorted
matrix of the flames.

In addition to the basic MFO algorithm, other
methods have been developed based on this
algorithm. In [37], an improved version of MFO
algorithm based on Lévy-flight strategy, which is
named as LMFO, is proposed. Lévy-flight can increase
the diversity of the population against premature
convergence and make the algorithm jump out of local
optimum more effectively. In [38], Chaos theory and
crossover processes are introduced in MFO algorithm
which increases the randomness or diversity. Chaotic
systems have properties like randomness, certainty
and ergodicity which help the solution to jump out of
local minima. In [39], a Cauchy distribution function is
added to enhance the exploration capability, influence
of best flame has been added to improve the
exploitation and adaptive step size and division of
iterations is followed to maintain a balance between
the exploration and exploitation.

A. Defining the samples position

An example of the position of a moth for the DFG
shown in Fig. 1 can be indicated as {4 1 3 6 2 5 7 8: 1
2}.

In this definition, the position of each moth (or
flame) has been divided into two parts. The left part
indicates the order and priority to execute the nodes
in the DFG. The right part characterizes the number of
the FUs of each type. In this example, there are one
adder and two multiplier FUs. The order for the
number of the nodes in the priority part specifies the
node which has to be executed earlier. As in the
example above, nodes 4, 1, and 3 are executed
respectively, and this process lasts until all the nodes
are executed. It should be noted that the priority to
execute the nodes must be taken into account in all
moths and flames. For instance, in DFG shown in Fig.
3, node 6 has to be executed after the execution of
nodes 3 and 4 because the outputs of the operators 3
and 4 are required for its execution, but the same
node (node 6) is independent of nodes 1, 2, and 5, and
it can be executed before or after them.

In order to schedule the mentioned moth, we start
from the first node and place the nodes in the time
steps according to the available resources. In this
example, first, the node 4, which is a multiplier, is

placed at the first time step and one of the two
multiplier functional units is occupied. Then, node 1 is
checked and because there is an unused adder FU, this
node can also be executed at this time step. Since the
only adder unit in this time step is being used to
execute node 1, node 3 as an adder cannot be
executed in this time step. Now it is time to execute
node 6, but since the execution of this node depends
on the output of nodes 3 and 4, these outputs are not
yet available, so this node may not be executed at this
time step. Then, node 2 as a multiplier needs to be
executed; nonetheless, because there is still an unused
multiplier unit and this n ode is not dependent on the
other nodes, so node 2 is executed in this time step.
This process continues until the executable nodes in
the first step are identified. The same process is
repeated for the rest of the nodes so that an FU will be
allocated to each node. As such, the entire nodes are
scheduled and the obtained scheduling for the
mentioned example has been illustrated in Fig. 4. This
process is carried out for all moths and flames.

In the next step, for updating the position of the
moths using the position of the corresponding flames,
the method described in the following is used and the
new position of the moth is calculated.

The MFO algorithm is applied separately to both
the priority and the FUs part. In the former part, the
first node on the left is considered as the starting
point. Afterward, the successor and the predecessor
allowable location of this node is found which is saved
as the upper and lower bounds of the node, as
indicated by ub1 and lb1, respectively. Subsequently,
ÕÓÉÎÇ ɉφɊ ×ÈÉÃÈ ÉÎÄÉÃÁÔÅÓ ÔÈÅ ÍÏÔÈÓȭ ÍÏÖÅÍÅÎÔ
towards the flame, the new location of the given node
is calculated.

 (6) άȢ ὨȢ
ÃÏÓ ς“ὸ

ὸ
ὪȢ

where mi,l(New) is the new position of l-th variables of
i-th moth, t is a random number in [-1, 1], fj,l is the
position of l-th variables of j-th flame and di,l indicates
the distance between the position of l-th variables of i-
th moth and the position of l-th variables of j-th flame
that is obtained by (7).

 (7) ὨȢ ὪȢ άȢ

where di,l indicates the distance between the position
of l-th variables of i-th moth and the position of l-th
variables of j-th flame, mi,l is the position of l-th
variables of i-th moth, and fj,l is the position of l-th
variables of j-th flame.

Such a process applies in turn to all the nodes in
ÔÈÅ ÍÏÔÈȭÓ ÐÒÉÏÒÉÔÙ ÐÁÒÔȢ !Ó ÆÏÒ ÔÈÅ &5Ó ÐÁÒÔȟ ÁÎ
equation is used similar to (6), except for the fact that
instead of the location of the variables, the number of
the FUs is calculated. Moreover, the lower and upper

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 99

limits of each FU, which are indeed the lowest and
highest allowable numbers of that type of FU, are
predefined and constant. Lastly, ÔÈÅ ÍÏÔÈȭÓ ÎÅ×
position is attained after determining all the variables,
whether in the priority or the FU parts. Also, in order
to improve the exploitation of the algorithm, the
number of flames in each iteration is updated through
(8).

 (8)

ὊὰὥάὩὔόάὦὩὶὙέόὲὨὔ Ὅ
ὔ ρ

ὓὥὼ

where FlameNumber is the number of flames, N is the
maximum number of flames, I is the current iteration
and Maxi is the maximum number of iterations.
Therefore, all the moths move around the best
remaining flame in the final steps of iterations. Other
methods have been proposed to increase the
exploration and exploitation of the MFO algorithm.

B. The fitness function

In order to evaluate the parameters of delay, area,
and power in the proposed method and compare its
performance against the previous methods, the
following Fitness function is used:

 (9)

ὊὭὸὲὩίίὡ
ὒ

ὒ
ὡ

ὃ

ὃ
ὡ

ὖ

ὖ

where Fitness is the fitness function, Lt is the schedule
length of sample evaluated, LMax is the longest
schedule length in the current generation, At is the
total number of transistors in the operators and
registers, AMax is the largest area in the current
population, Pt is the power consumption of the all
operators and PMax is the highest power consumption
in the current population. W1, W2, and W3 are the
weights of the delay, occupied area, and power
consumption terms, respectively. These three
coefficients according to which of the parameters of
time, occupied area or power consumption is
optimization priority, are selected in such a way that
their sum is always equal to one.

The number of operators was obtained directly

from the number of FUs and the number of registers

was obtained by the LEA method [20].

4. SIMULATION RESULTS

The results of the simulation of the proposed
method as well as the algorithm-based method of GA
[23] and PSO [40] and a comparison of these three
methods are presented in this section.

 All three methods are implemented in MATLAB
software (R2015b) under the system with Core i7
6700HQ processor and 8GB of RAM. The initial

population and the maximum number of iterations, in
all three methods, is equal to 30 and 100, respectively.
In GA, the mutation probability is equal to 0.1 and the
crossover probability is equal to 0.9. Each algorithm is
executed 50 times and the average of the obtained
responses is given as the final response. The
maximum number of resources and operational units
are assumed to be equal to 5 for the entire cases.

A. Results

Tables (1) to (6) show the results of the synthesis
of the digital filters. In these tables, the delay term is
the same as the schedule length that represents the
time steps required to execute the DFG. The area
represents the total number of transistors needed to
implement the operators and registers, and the power
is the total power consumption of the FUs [41]. In all
the Tables, W1, W2, and W3 vary in three different
modes notwithstanding having a total sum being
always equal to 1.

For each mode, the average of the acquired
responses for a 50-time execution of the algorithm has
been tabulated along with their relevant standard
deviations. Due to a large amount of the occupied
surface area and the power consumption, standard
deviation of the response logarithms has been used to
better represent and comparison of the data.

As shown in Tables 1 to 6, as the weight of each
parameter increases, a significant improvement has
been observed to find the optimal response of the
same parameter. For example, by considering 0.8 for
W1 which is the weighting factor related to the delay
parameter, and 0.1 for W2 and W3 which are the
coefficients of the occupied surface area and power
consumption respectively, the best delay compared to
the other two modes will be obtained. The same
applies to the other two modes. The delay in the first
row of each table shows the best delay, while the area
in the second row is the best occupied surface and the
obtained power in the third row shows the best
power consumption compared to the other two rows.

In Table 1, which presents the synthesis of the IIR
filter, the proposed method and the PSO-based
method obtain an average value of 5 for the delay. But
the GA-based method performed slightly weaker and
presented an average of 5.08. In the case of the lowest
occupied area and power consumption, the proposed
method performed better than the other two methods
with average values of 3076.48 and 3147.24,
respectively. In the FIR synthesis shown in Table 2,
the proposed method performs better than the other
two methods in all three modes. In this filter, the
delay, area, and power consumption are 9.1, 3542.08
and 3147.24, respectively. In the ARF, the proposed
algorithm yielded better results of 8.12, 3534.08, and
3142.2, respectively for the delay, occupied area, and
power consumption.

Mohammad R. Esmaeili et al.

100

TABLE 1
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON IIR DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 5 5868.8 6324.75 5.08 6369.28 6917.47 5 6442.88 7007.66

Std. 0 0.007 0.007 0.274 0.095 0.107 0 0.062 0.068

W1=0.1

W2=0.8

W3=0.1

Ave. 7.02 3076.48 3147.24 7.46 3209.92 3222.89 7.42 3199.68 3217.85

Std. 0.318 0.010 0.006 0.503 0.023 0.018 0.538 0.025 0.021

W1=0.1

W2=0.1

W3=0.8

Ave. 7.12 3090.88 3147.24 7.3 3228.16 3207.76 7.3 3210.24 3187.59

Std. 0.328 0.011 0.006 0.580 0.02 0.018 0.544 0.017 0.015

 TABLE 2
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON FIR DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 9.1 7029.44 7198.70 9.36 7923.52 8152.76 9.3 7855.04 8084.97

Std. 0.303 0.060 0.069 0.485 0.072 0.083 0.462 0.077 0.088

W1=0.1

W2=0.8

W3=0.1

Ave. 14.8 3542.08 3162.37 15.06 3763.2 3232.98 15 3742.72 3222.89

Std. 0.606 0.013 0.010 0.712 0.025 0.024 0.782 0.024 0.021

W1=0.1

W2=0.1

W3=0.8

Ave. 15.14 3704.32 3147.24 15.12 3733.44 3157.33 15.16 3723.2 3152.29

Std. 0.350 0.010 0.006 0.773 0.009 0.009 0.618 0.01 0.008

TABLE 3
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON ARF DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 8.18 11172.16 12119.97 8.36 11348.8 12419.74 8.3 11340.8 12394.53

Std. 0.388 0.005 0.004 0.563 0.045 0.053 0.505 0.023 0.027

W1=0.1

W2=0.8

W3=0.1

Ave. 18.2 3534.08 3182.54 18.38 3658.88 3300.77 18.44 3627.2 3258.2

Std. 0.404 0.010 0.013 0.923 0.035 0.041 0.787 0.016 0.017

W1=0.1

W2=0.1

W3=0.8

Ave. 18.4 3555.84 3142.2 18.72 3704 3182.55 18.6 3688.32 3187.59

Std. 0.494 0.011 0.004 0.757 0.012 0.013 0.670 0.014 0.014

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 101

TABLE 4
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON EWF DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 14 6848.64 6617.25 14.08 6834.88 6597.68 14 6924.8 6702.99

Std. 0 0.006 0.007 0.396 0.044 0.056 0 0.006 0.007

W1=0.1

W2=0.8

W3=0.1

Ave. 25.06 3857.28 3202.72 23.52 4125.76 3483.95 22.76 4039.04 3388.73

Std. 4.037 0.014 0.019 4.841 0.059 0.077 5.057 0.043 0.057

W1=0.1

W2=0.1

W3=0.8

Ave. 25.24 3949.76 3167.41 25.16 4152 3403.26 24.46 4070.08 3323.16

Std. 2.924 0.014 0.011 3.247 0.057 0.077 3.95 0.043 0.057

TABLE 5
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON BPF DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 8.06 6546.24 6699.58 8.24 7304.64 7549.95 8.22 6996.48 7203.75

Std. 0.239 0.034 0.038 0.555 0.069 0.078 0.545 0.062 0.069

W1=0.1

W2=0.8

W3=0.1

Ave. 17.7 3605.12 3197.67 16.76 3835.84 3298.54 15.94 3884.48 3333.84

Std. 3.688 0.018 0.014 3.426 0.035 0.028 3.449 0.033 0.027

W1=0.1

W2=0.1

W3=0.8

Ave. 16.92 3744 3217.85 16.7 3969.92 3346.16 17.42 3870.72 3263.24

Std. 3.212 0.028 0.015 3.37 0.039 0.049 3.038 0.025 0.025

.

TABLE 6
COMPARISON OF THE PROPOSED MFO-BASED METHOD WITH GA-BASED AND PSO-BASED METHODS ON WDF DFG

MFO GA PSO

Delay Area Power Delay Area Power Delay Area Power

W1=0.8

W2=0.1

W3=0.1

Ave. 14.08 6883.84 6330.98 14.28 6656.32 6072.74 14.12 6904.64 6353.97

Std. 0.274 0.053 0.070 0.640 0.079 0.104 0.385 0.063 0.082

W1=0.1

W2=0.8

W3=0.1

Ave. 24.74 4144 3207.76 20.86 4400 3467.19 22.28 4310.08 3359.06

Std. 4.303 0.013 0.018 5.660 0.033 0.049 5.789 0.019 0.032

W1=0.1

W2=0.1

W3=0.8

Ave.
25.82 4245.12 3172.46 22.62 4422.72 3366.33 23.18 4342.72 3298.54

Std.
3.617 0.011 0.011 5.421 0.03 0.048 5.283 0.016 0.029

Mohammad R. Esmaeili et al.

102

With reference to the EWF synthesis, both MFO-

based and PSO-based methods have obtained the
same average delay. But in the other two cases,
finding the best area and power consumption, the
method based on the MFO algorithm performed better
with the values of 3857.28 and 3167.41, respectively.

In Table 5, which presents the synthesis of the BPF,
the results show that the proposed method performs
better. The best average delay, occupied area and,
power consumption obtained in this filter were 8.06,
3605.12 and 3217.85, respectively.

Finally, in the WDF filter, the proposed method still
performs better. The proposed method has a delay of
14.08 as the best delay, which is better than the other
two methods with values of 14.28 and 14.12 for GA-
based and PSO-based methods, respectively. The best
area and power consumption in the MFO-based
algorithm are also obtained 4144 and 3172.46, which
is better than the other two methods.

Using the information in Tables 1 to 6, although the
delay, occupied area, and power consumption in the
proposed method are better than the other two
methods, at each mode with the improvement of one
parameter, the other two parameters increase
significantly.

For example, as the delay improves, two other
parameters, namely power consumption and occupied
area increase at first mode. It seems that the kind of
decrease in the number of flames after each iteration
causes these drastic changes. In this paper, the
number of flames in each iteration is updated through
(8).

Fig. 6 shows a representation of the best-averaged
responses for each filter.

The percentage of improvement obtained by the
proposed method based on MFO algorithm compared
to the other two methods based on GA and PSO
algorithm in the synthesis of each digital filter is
presented in Table 7.

As shown in Table 7, in the IIR and EWF filters, the
proposed method together with the PSO-based
method calculated the same delay. But in other cases,
the proposed method based on the MFO algorithm has
shown better performance.

In order to obtain optimal delay, the proposed
method showed the best performance in FIR filter
synthesis with 2.78% and 2.15% improvement
compared to the GA-based and PSO-based methods,
respectively.

Regarding the optimal occupied area, the best
performance has been found in the BPF synthesis with
a 7.19% improvement compared to the PSO-based
method and in the EWF filter synthesis with a 6.51%
improvement compared to GA-based method.

(a)

(b)

(c)

Figure 6: The best results for a) Delay, b) Occupied area, and
c) Power in digital filter synthesis.

The highest improvement in power consumption

was also achieved in the EWF, with 6.93% and 4.69%
improvement compared to GA and PSO, respectively.

Fig. 7 shows some examples of the proposed
method and the two GA-based and PSO-based
methods when calculating the best power of the 6
filters (W3=0.8 and W1=W2=0.1). While the
Continuous black lines depict the data obtained from
the proposed method based on the MFO algorithm,
the blue dotted lines show the data from the PSO-

0

5

10

15

IIR FIR ARF EWF BPF WDF

S
c
h
e

d
u
le

 L
e

n
g
th

MFO GA PSO

0

1000

2000

3000

4000

5000

IIR FIR ARF EWF BPF WDF

N
u

m
b

e
r

o
f
T

ra
n

s
is

to
rs

MFO GA PSO

3000

3100

3200

3300

3400

3500

IIR FIR ARF EWF BPF WDF

µ
W

MFO GA PSO

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 103

based method and the red lines illuminate the data of
the GA-based method.

Then, by considering three objective functions
(delay, area, and power), the Pareto front display
estimated by the proposed method for all three
functions simultaneously will be three-dimensional
and will not be an efficient and appropriate criterion
for the visual measurement. Therefore, by considering
the weight of power is constant (W3 = 0.3 which
means that the importance of this target is never less
than 30% compared to the other objectives, the
Pareto front has been shown in two dimensions for
contrasting the other two objectives (delay and
occupied area).

TABLE 7

IMPROVEMENT OF THE MFO-BASED METHOD COMPARED TO GA-
BASED AND PSO-BASED METHODS

Performance improvements (%)

Power Area Delay

1.89 4.16 1.57 GA
IIR

1.26 3.85 0 PSO

0.32 5.87 2.78 GA
FIR

0.16 5.36 2.15 PSO

1.27 3.41 2.15 GA
ARF

1.42 2.57 1.44 PSO

6.93 6.51 0.57 GA
EWF

4.69 4.5 0 PSO

3.83 6.01 2.18 GA
BPF

1.39 7.19 1.95 PSO

5.76 5.82 1.4 GA
WDF

3.82 3.85 0.28 PSO

Table 8 demonstrates the final response of the

investigated methods. In this table, W3 is considered
to be 0.3 while W1 and W2 have been changed from 0.1
to 0.6 with the interval of 0.1 so that the sum of all
three coefficients will be always equal to 1. It can be
therefore inferred that the proposed method based on
the MFO algorithm performs better than the other two
methods based on GA and PSO algorithm with
improvements in delay, area and, power consumption.

It can be seen that by changing the coefficients
related to delay, and area, W1 and W2, there are
significant changes in the obtained responses.

It is observed that there will be a diminishment in
the delay and a rise in the occupied area by increasing
the delay coefficient (W1) and decreasing the occupied
area coefficient (W2).

For instance, by increasing W1 and decreasing W2 in
the proposed method for the synthesis of the IIR filter,
there will be a reduction in the delay from 7.38 to 5.9
and a rise in the area from 3192.64 to 4194.56. In the
same vein, in the GA-based method, there is a fall in
the delay from 7.58 to 6.18 and an upsurge in the area
from 3377.92 to 4241.6.

In the PSO-based method, the delay was decreased
from 7.42 to 6.06 and the occupied area increased
from 3232.64 to 4229.76. It is of note that the
proposed method had a better performance on the
other filt ers, too.

Fig. 8 shows the Pareto fronts obtained using the
data in Table (8) for the studied filters, where the
continuous black lines show the data obtained from
the proposed method based on the MFO algorithm
while the blue dotted lines depict the data from the
PSO-based algorithm and the red lines show the data
related to the GA-based algorithm. Besides, to better
represent the data, in the vertical axis, the logarithm
of the obtained area has been used to better
comparison of the three methods.

It can be seen from Fig. 8 that in all the
benchmarks, the lower diagram of the proposed
method and hence the lower area under this curve
compared to the red and blue curves of the GA-based
and the PSO-based methods, respectively demonstrate
the better performance of the proposed method in
finding optimal responses.

After all, to prove the improvement of the proposed
method based on the MFO algorithm over the other
two methods, statistical hypothesis test has been
conducted. Table 9 shows the results of the statistical
hypothesis test.

According to the findings reported in Table 9, it can
be seen that by performing the statistical hypothesis
test, in all cases except power consumption of the FIR
filter, the proposed method performs better compared
to the GA method with a confidence level of 99%.
Compared to the PSO method, in all cases except
power consumption of the FIR, delay of the ARF, and
delay of the WDF, the proposed method performs
better with a confidence level of 99%. As such, in the
case of delay of the ARF with a confidence interval of
97.5%, the proposed method is better.

As shown in Tables 1 and 4, that represent the
synthesis of the IIR and EWF, standard deviation of
the delay of the proposed method is equal to 0.
Therefore, the result of T-test is negative infinity and
ÈÁÓ ÂÅÅÎ ÓÈÏ×Î ×ÉÔÈ ÔÈÅ Ȱ-Ðȱ ÓÙÍÂÏÌ ÉÎ 4ÁÂÌÅ ωȢ

The use of the proposed new approach, which
applies the optimization algorithm separately for each
operator and updating the priorities at each stage, has
made the algorithm escape the local optima and
increase the exploration and exploitation
simultaneously. Also, as mentioned, in MFO algorithm
each moths searches around a unique flame. This
significantly increases the exploration at the
beginning of the execution of the algorithm, because
the flames are located in different parts of the search
space and the moths can search for larger space by
moving around these flames.

Mohammad R. Esmaeili et al.

104

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: An example of the implementing MFO, PSO, and GA-based methods for W2=W1=0.1 and W3=0.8 in the synthesis of
a) IIR, b) FIR, c) ARF, d) EWF, e) BPF, and f) WDF.

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 105

TABLE 8
RESULTS ON BENCHMARKS. DELAY (SCHEDULE LENGTH), AREA (NUMBER OF TRANSISTORS), AND POWER (µW)

PSO GA MFO

W3=0.3 Power Area Delay Power Area Delay Power Area Delay

3212.81 3232.64 7.42 3343.93 3377.92 7.58 3177.50 3192.64 7.38
W1=0.1
W2=0.6

IIR

3388.73 3399.68 7.3 3439.16 3450.24 7.46 3265.46 3276.16 7.2
W1=0.2
W2=0.5

3404.45 3434.56 7.26 3444.79 3467.52 7.36 3263.24 3274.56 7.1
W1=0.3
W2=0.4

3482.32 3500.48 7.1 3638.07 3632.32 7.16 3341.11 3352 6.82
W1=0.4
W2=0.3

3640.29 3625.28 6.66 3665.51 3647.68 6.8 3632.43 3609.28 6.4
W1=0.5
W2=0.2

4367.99 4229.76 6.06 4378.08 4241.6 6.18 4345 4194.56 5.9
W1=0.6
W2=0.1

3202.72 3776.64 15.14 3268.28 3840.64 15.2 3197.68 3723.2 14.92
W1=0.1
W2=0.6

FIR

3325.98 3851.2 14.26 3341.11 3879.04 14.6 3320.94 3800.64 13.68
W1=0.2
W2=0.5

3504.72 4052.8 13.44 3592.68 4144.96 13.78 3364.10 3891.2 12.92
W1=0.3
W2=0.4

3588.23 4156.16 13 3688.5 4247.36 13.24 3475.05 4001.28 12.2
W1=0.4
W2=0.3

4015.12 4504.32 12.04 4320.97 4768 12.12 3881.77 4357.44 11.62
W1=0.5
W2=0.2

5164.08 5456.96 10.9 5279.48 5564.48 11.04 4626.83 4939.52 10.6
W1=0.6
W2=0.1

3566.87 3893.76 17.78 3581 3901.44 18.04 3516.44 3851.84 17.5
W1=0.1
W2=0.6

ARF

4221.74 4456.96 16.6 4241.91 4472 16.78 4055.91 4301.76 16.48
W1=0.2
W2=0.5

4567.94 4765.12 15.48 4693.43 4875.84 15.56 4364.58 4542.4 15.44
W1=0.3
W2=0.4

4959.53 5067.52 14.74 4969.62 5076.48 14.88 4823.96 4950.72 14.48
W1=0.4
W2=0.3

6608.21 6464.32 12.18 6761.14 6601.92 12.3 6053.6 5989.44 11.92
W1=0.5
W2=0.2

8427.17 8013.76 10.28 8595.22 8150.4 10.36 7987.96 7678.08 10.16
W1=0.6
W2=0.1

4148.91 4666.24 21.92 4201.57 4709.76 22.12 3807.76 4376.96 21.66
W1=0.1
W2=0.6

EWF

4262.09 4818.24 20.46 4314.74 4861.76 20.6 4013.93 4614.08 19.86
W1=0.2
W2=0.5

4443.05 4943.68 19.2 4490.66 4974.08 19.46 4222.34 4757.76 18.58
W1=0.3
W2=0.4

4815.06 5275.52 17.64 4988.16 5428.16 17.78 4499.12 5014.4 16.94
W1=0.4
W2=0.3

5269.39 5673.6 16.32 5332.13 5723.2 16.5 4970.8 5404.48 15.72
W1=0.5
W2=0.2

5427.95 5793.92 15.2 5528.23 5870.72 15.32 5297.42 5684.48 15.06
W1=0.6
W2=0.1

4250.37 4475.84 12.2 4418.43 4618.24 12.38 4062.14 4309.76 12.16
W1=0.1
W2=0.6

BPF

4243.1 4650.24 11.84 4248.15 4657.6 11.9 4064.96 4496 11.6
W1=0.2
W2=0.5

4699.66 5038.4 11.18 4704.7 5051.52 11.36 4411.16 4758.08 11
W1=0.3
W2=0.4

4975.85 5250.56 10.68 5091.25 5352.32 10.86 4745.05 5055.68 10.64
W1=0.4
W2=0.3

5347.26 5537.92 10.2 5442.49 5630.4 10.38 5159.03 5343.04 9.84
W1=0.5
W2=0.2

6375.78 6329.6 9.24 6481.09 6428.16 9.4 6260.38 6219.2 9.1
W1=0.6
W2=0.1

3900.76 4744.32 21.62 4001.03 4824 22.28 3574.73 4462.72 21.08
W1=0.1
W2=0.6

WDF

4003.85 4847.04 20.18 4151.73 4965.76 20.84 3854.87 4704.96 19.7
W1=0.2
W2=0.5

4269.95 5093.44 19.02 4427.92 5221.12 19.26 4111.98 4954.24 18.36
W1=0.3
W2=0.4

4543.91 5309.76 18.1 4649.22 5396.8 18.32 4348.42 5140.48 17.14
W1=0.4
W2=0.3

5126.55 5815.68 16.46 5236.9 5910.08 16.68 4931.05 5649.28 15.86
W1=0.5
W2=0.2

5473.34 6125.12 14.8 5526 6168.64 15.06 5425.73 6086.08 14.6
W1=0.6
W2=0.1

Mohammad R. Esmaeili et al.

106

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: The Pareto front by coefficients changes of W1, W2, and W3 = 0.3 for a) IIR, b) FIR, c) ARF, d) EWF, e) BPF, and f)
WDF.

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 107

TABLE 9
THE Z VALUE OBTAINED IN THE STATISTICAL HYPOTHETICAL TEST

 GA PSO

IIR

Delay -Ð -Ð

Area -12.24 -11.3

Power -8.57 -5.71

FIR

Delay -7.22 -5.68

Area -13.52 -12.27

Power -1.43 -0.71

ARF

Delay -3.28 -2.19

Area -9.93 -7.41

Power -8 -9

EWF

Delay -Ð -Ð

Area -14.09 -9.54

Power -20.15 -13.3

BPF

Delay -5.31 -4.72

Area -10.66 -12.91

Power -7.64 -2.70

WDF

Delay -5.16 -1.03

Area -14.1 -9.15

Power -15.51 -10.87

At the end of the execution of the algorithm, the
number of flames decreases according to (8) and the
best flame remain. So, all the moths move around the
best flame, which greatly enhances the exploitation of
the algorithm at the end of the execution.

But for example in PSO algorithm, if the inertia
weight is low and the leader of the group moves
toward local optima, the whole particle also converges
to local optima and the algorithm is trapped in that
point.

It is also difficult in the PSO and GA to accurately
determine the parameters of the algorithm. However,
the low number of parameters in the modified MFO
algorithm makes that significantly less sensitive to the
parameters.

In addition, because of the simpler equation of the
movement in the modified MFO algorithm, the
runtime of the proposed algorithm is greatly
increased.

A. Computational complexity

The computational complexity of the algorithm
depends on the number of variables, the number of
moths, the maximum number of iterations, and the
flame sorting algorithm in each iteration. Using the
Quicksort algorithm, the computational complexity of
sorting is at the best as O(nlogn) and at the worst as
O(n2). The total computational complexity is also
calculated by (10).

 (10)
ὕὓὊὕ ὕὸὕὗόὭὧὯ ίέὶὸ

ὕὖέίὭὸὭέὲ ὟὴὨὥὸὩ

where O is the computational complexity order and t
is the maximum number of iterations.

The computational complexity is, at the worst case,
equal to (11).

 (11)
ὕὓὊὕ ὕὸὲ ὲ Ὠ

ὕὸὲ ὸὲὨ

where O is the computational complexity order, t is
the maximum number of iterations, n is the number of
moths and d is the number of variables.

B. Runtime

One of the prominent feature of the proposed
method is its fast runtime in comparison with the
other two methods in obtaining the solutions.

Table 10 shows a comparison of the average
runtime of the three methods to achieve the solution.
According to Table 10, the runtime of the proposed
MFO-Based method is faster than the other two GA-
based and PSO-based methods. An average
improvement of more than 21% in the runtime of the
proposed method compared to the GA-based method
and more than 12% compared to the PSO-based
method guarantees the fast runtime of our approach.

The maximum improvement in the runtime of this
method over the PSO-based method in the EWF was
27.14%, while in the FIR filter it was 25.45%, and in
the IIR filter being 21.43%. Likewise, the highest
improvement over the PSO-based method was
observed in the synthesis of the EWF, BPF, and ARF
filters being 19.68%, 17.78%, and 17.65%,
respectively. Finally, in Table 11 the advantages and
disadvantages of the proposed method are compared
to the other two methods.

5. CONCLUSION

One of the most important and influential steps in
the design of a digital VLSI filter is high-level
synthesis. Due to the vast and discrete search space
and the priorities for executing the operators, high-
level synthesis problems have their complexity and
are one of the most difficult problems in engineering.
However, using metaheuristic methods that have
already demonstrated their performance in solving
such problems [42], [43] may improve the
performance of the synthesis and find optimal
solutions. In this paper, a novel method based on MFO
metaheuristic algorithm has been presented that after
applying this method to synthesize the tested digital
filters, it was found that this method has a higher
ability to find the optimal solution compared to the
GA-based and PSO-based methods. In the MFO
algorithm, moths use a system called transverse
orientation to move toward the flame. This transverse
orientation system ensures that the moths move in a
spiral direction toward the flame.

Mohammad R. Esmaeili et al.

108

In the method presented in this paper, the

hyperbolic spiral function is used to move the moths
toward its corresponding flame. Finally, the obtained
results were compared in terms of delay, occupied
area, and power consumption. The results indeed
showed an improvement in all the above-mentioned
parameters. The greatest improvement was observed
in the delay with a rate of 2.78% in the FIR synthesis
compared to the GA-based method. A 7.19%
improvement in the area in the synthesis of the BPF
and a 6.93% improvement in the power consumption
in the synthesis of the EWF were also obtained
compared to the PSO-based and the GA-based
methods, respectively. Also, the better performance of
the proposed method has been proved based on the
statistical hypothesis test.

Then, by plotting the Pareto fronts for a certain
mode of the problem, it is observed that in the
proposed method, the area left below the curve in all
the cases was lower than the other two methods.

The fast runtime of the proposed method to
achieve the appropriate solutions is another striking
feature of the MFO-based method proposed here. The
results showed an average improvement of more than
21% in the runtime of the proposed method
compared to the GA-based method and more than
12% compared to the PSO-based method. This
improvement in runtime accelerates the design speed,
especially in very large-scale problems having a high
number of operators.

Although the obtained delay, area, and power in the
proposed method are better than the other two
methods, with the improvement of one parameter, the
other two parameters increase significantly.

For example, as the area improves, two other
parameters, namely power consumption and delay
increase at first mode. It seems that the kind of
decrease in the number of flames after each iteration
causes these drastic changes. Therefore, as a
suggestion, different methods can be used to reduce

the number of flames. This directly increases the
exploitation of the algorithm in the final iterations.

TABLE 11

THE ADVANTAGES AND DISADVANTAGES OF THE PROPOSED METHOD

COMPARED TO TWO OTHER METHODS

Advantages Disadvantages

Good solutions

Fast runtime

Proper Exploitation

Low number of the

parameters

Easy implementation

Escape from local optima

Weaker Exploration

Slower Convergence

REFERENCES

[1] N. S. Kim, J. Xiong, and W. W. Hwu, ȰHeterogeneous computing
meets near-memory acceleration and high-level synthesis in
the post-moore era,ȱ IEEE Micro., vol. 37, no. 4, pp. 10-18,
2017.

[2] C. Pilato, S. Garg, K. Wu, R. Karri, and F. Regazzoni, ȰSecuring
hardware accelerators: A new challenge for high-level
synthesis,ȱ IEEE Embedded Systems Letters, vol. 10, no. 3, pp.
77-80, Sept. 2018.

[3] A. Sengupta, S. Bhadauria, and S. P. Mohanty, ȰTL-HLS:
methodology for low cost hardware Trojan security aware
scheduling with optimal loop unrolling factor during high level
synthesis,ȱ IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 4, pp. 655-668,
April 2017.

[4] A. Mahapatra and B. C. Schafer, ȰVeriIntel2C: Abstracting RTL
to C maximize high-Level synthesis design space exploration,ȱ
Integration, vol. 64, pp. 1-12, Jan. 2019.

[5] S. Das, R. Maity and N. P. Maity, ȰVLSI-based pipeline
architecture for reversible image watermarking by difference
expansion with high-level synthesis approach,ȱ Circuits,
Systems, and Signal processing, vol. 37, no. 4, pp. 1575-1593,
April 2018.

[6] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He,
ȰCOMBA: A comprehensive model-based analysis framework
for high level synthesis of real applications," in Proc. IEEE/ACM
International Conference on Computer-Aided Design, Irvine, CA,
USA, 2017.

TABLE 10
EXECUTION TIMES

PSO GA MFO

Reduction (%) Runtime (s) Reduction (%) Runtime (s)

Runtime

(s)

8.33 2.4 21.43 2.8 2.2 IIR

4.65 4.3 25.45 5.5 4.1 FIR

17.65 8.5 21.35 8.9 7 ARF

19.68 12.7 27.14 14 10.2 EWF

17.78 9 20.43 9.3 7.4 BPF

9.56 13.6 13.99 14.3 12.3 WDF

A Framework for High-Level Synthesis of VLSI Circuits Using a Modified Moth-Flame Optimization Algorithm

J. Elec. Comput. Eng. Innov. 2019, Vol. 7, No. 1, pp. 93-110, DOI: 10.22061/JECEI.2020.5992.272 109

[7] P. Fezzardi, C. Pilato, and F. Ferrandi, ȰEnabling automated bug
detection for IP-based design using high-level synthesis,ȱ IEEE
Design & Test, vol. 35, no. 5, pp. 54-62, April 2018.

[8] X. Tang, T. Jiang, A. Jones, and P. Banerjee, ȰBehavioral
synthesis of data-dominated circuits for minimal energy
implementation,ȱ presented at the 18th International
Conference on VLSI Design, Kolkata, India, 3-7 January 2005.

[9] N. Chabini and W. Wolf, ȰUnification of scheduling, binding,
and retiming to reduce power consumption under timings and
resources constraints,ȱ IEEE Transactions on VLSI Systems, vol.
13, no. 10, pp. 1113ɀ1126, 2005.

[10] A. Kumar and M. Bayoumi, ȰMultiple voltage-based scheduling
methodology for low power in the high level synthesis,ȱ in
Proc. of the International Symposium on Circuits and Systems
(ISCAS), pp. 371ɀ379, 1999.

[11] A. K. Murugavel and N. Ranganathan, ȰA game theoretic
approach for power optimizatiÏÎ ÄÕÒÉÎÇ ÂÅÈÁÖÉÏÒÁÌ ÓÙÎÔÈÅÓÉÓȟȱ
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 6, pp. 1031ɀ1043, 2003.

[12] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten, and J. van
Eijndhoven, ȰThe Yorktown silicon compiler system,ȱ in Silicon
Compilation, D. D. Gajski, Ed. Reading, MA: Addison-Wesley, pp.
204ɀ310, 1988.

[13] O. V. Nepomnyashchiy, I. V. Ryjenko, V. V. Shaydurov, N.
Y. Sirotinina, and A. I. Postnikov, ȰThe VLSI high-level
synthesis for building onboard spacecraft control systems,ȱ in
Proc. The Scientific-0ÒÁÃÔÉÃÁÌ #ÏÎÆÅÒÅÎÃÅ Ȱ2ÅÓÅÁÒÃÈ ÁÎÄ
Development 2016, pp. 229-238, 2018.

[14] S. P. Mohanty, R. Velagapudi, and E. Kougianos, ȰPhysical-
aware simulated annealing optimization of gate leakage in
nanoscale datapath circuits,ȱ in Proc. the Conference on Design,
Automation and Test in Europe, pp. 1191ɀ1196, 6-10 March
2006.

[15] S. Devadas and A. R. Newton, ȰAlgorithms for hardware
allocation in data path synthesis,ȱ IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
8, no. 7, pp. 768-781, 1989.

[16] J. A. Nestor and G. Krishnamoorthy, ȰSALSA: A new approach
to scheduling with timing constraints,ȱ IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
12, pp. 1107ɀ1122, 1993.

[17] S. Rajmohan and N. Ramasubramanian, ȰGroup influence based
improved firefly algorithm for design space exploration of
datapath resource allocation,ȱ Applied Intelligence, vol. 49, no.
6, pp. 2084-2100, June 2019.

[18] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York 1994.

[19] R. Camposano, ȰPath-based scheduling for synthesis,ȱ IEEE
Trans. Comput. -Aided Des., vol. 10, pp. 85ɀ93, 1991.

[20] S. H. Gerez, Algorithms for VLSI Design Automation, Wiley,
2004.

[21] S. Rajmohan and N. Ramasubramanian, ȰA Memetic algorithm
based design space exploration for datapath resource
allocation during high level synthesis,ȱ Journal of Circuits,
Systems and Computers, DOI:10.1142/s0218126620500012,
2019.

[22] S. Bhadauria and A. Sengupta, ȰAdaptive bacterial foraging
driven datapath optimization: Exploring power-performance
tradeoff in high level synthesis,ȱ Applied Mathematics and
Computation, vol. 269, pp. 265-278, Oct. 2015.

[23] V. Krishnan and S. Katkoori, ȰA genetic algorithm for the
design space exploration of datapaths during high-level
synthesis,ȱ IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 213ɀ
229, 2006.

[24] A. Sengupta and R. Sedaghat, ȰIntegrated scheduling, allocation
and binding in high level synthesis using multi structure
Genetic Algorithm based design space exploration,ȱ in Proc.

The 12th International Symposium on Quality Electronic Design,
pp. 1-9, 14-16 March 2011.

[25] D. S. Harish Ram, M. C. Bhuvaneswari, and S. S. Prabhu, ȰA
novel framework for applying multiobjective GA and PSO
based approaches for simultaneous area, delay, and power
optimization in high level synthesis of datapaths,ȱ VLSI Design,
vol. 2012, pp. 1-12, 2012.

[26] R. F. Abdel-kader, ȰParticle swarm optimization for
constrained instruction scheduling,ȱ VLSI Design, vol. 2008, no.
4, pp. 1-7, January 2008.

[27] S. A. Hashemi and B. Nowrouzian, ȰA novel particle swarm
optimization for high-level synthesis of digital filters,ȱ in Proc.
The 25th IEEE International Symposium on Circuits and Systems,
pp 580ɀ583, 20-23 May 2012.

[28] C. Pilato, D. Loiacono, A. Tumeo, F. Ferrandi, P. L. Lanzi, and
D. Sciuto, ȰSpeeding-up expensive evaluations in high-level
synthesis using solution modeling and fitness inheritance,ȱ
Computational Intelligence in Expensive Optimization Problems,
vol. 2, pp. 701ɀ723, 2010.

[29] G. Wang, W. Gong, B. DeRenzi, and R. Kastner, ȰDesign space
exploration using time and resource duality with the ant
colony optimization,ȱ in Proc. The 43rd ACM/IEEE Design
Automation Conference, pp. 451ɀ454, 24-28 July 2006.

[30] C. Gopalakrishnan and S. Katkoori, ȰTabu search based
behavioral synthesis of low leakage datapaths,ȱ in Proc. IEEE
Computer Society Annual Symposium on VLSI, pp. 260ɀ261, 19-
20 Feb. 2004.

[31] R. Kianzad and H. M. Kordy, ȰAutomatic sleep stages detection
based on EEG signals using combination of classifiers,ȱ Journal
of Electrical and Computer Engineering Innovations (JECEI), vol.
1, no. 2, pp. 99-105, Spring 2014.

[32] A. Khalili, A. Rastegarnia, V. Vahidpour, and Md. K. Islam,
ȰAdaptive-filtering -based algorithm for impulsive noise
cancellation from ECG signal,ȱ Journal of Electrical and
Computer Engineering Innovations (JECEI), vol. 4, no. 2, pp.
169-176, Autumn 2016.

[33] A. Ghanbari, A. Sadr, and M. Nikoo, ȰHigh speed delay-locked
loop for multiple clock phase generation,ȱ Journal of Electrical
and Computer Engineering Innovations (JECEI), vol. 1, no. 1, pp.
19-27, Autumn 2013.

[34] M. Moradi and M. R. Sadeghi, "Combining and steganography
of 3-d face textures,ȱ Journal of Electrical and Computer
Engineering Innovations (JECEI), vol. 5, no. 2, pp. 93-100,
Autumn 2017.

[35] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra, Low-
Power High-Level Synthesis for Nanoscale CMOS Circuits,
Springer US, India 2008.

[36] S. Mirjalili, ȰMoth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm,ȱ Knowledge-Based
Systems, vol. 89, pp. 228-249, Nov. 2015.

[37] Z. Li, Y. Zhou, S. Zhang, and J. Song ȰLevy-flight moth-flame
algorithm for function optimization and engineering design
problemsȟȱ Mathematical Problems in Engineering, vol. 2016.
https://doi.org/10.1155/2016/1423930 .

[38] N. Muangkote, K. Sunat, and S. Chiewchanwattana, ȰMultilevel
thresholding for satellite image segmentation with moth-flame
based optimization,ȱ presented at the 13th International Joint
Conference on Computer Science and Software Engineering
(JCSSE), Khon Kaen, Thailand, July 2016.

[39] K. Kaur, U. Singh, and R. Salgotra, ȰAn enhanced moth flame
optimization,ȱ Neural Comput. & Applic., 2018, Available:
https://link.springer.com/article/10.1007/s00521 -018-3821-
6.

[40] M. C. Bhuvaneswari, Application of Evolutionary Algorithms for
Multi -Objective Optimization in VLSI and Embedded Systems,
Springer, India 2015.

https://doi.org/10.1142/s0218126620500012
https://ieeexplore.ieee.org/xpl/conhome/7731988/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7731988/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7731988/proceeding
https://link.springer.com/article/10.1007/s00521-018-3821-6
https://link.springer.com/article/10.1007/s00521-018-3821-6

Mohammad R. Esmaeili et al.

110

[41] M. Jhamb, Garima, and H. Loohani, ȰDesign, implementation
and performance comparison of multiplier topologies in
power-delay space,ȱ Engineering Science and Technology, an
International Journal, vol. 19, no. 1, pp. 355-363, March 2016.

[42] S. S. Choong, L. P. Wong, and C. P. Lim, ȰAn artificial bee colony
algorithm with a modified choice function for the traveling
salesman problem,ȱ Swarm and Evolutionary Computation, vol.
44, pp. 622-635, Feb. 2019.

[43] D. Karaboga and B. Gorkemli, ȰMAHA: A program for datapath
synthesis,ȱ presented at the 23rd ACM/IEEE Design
Automation Conference, Las Vegas, USA, 29June-2 July, 1986.

BIOGRAPHIES

Mohammad Reza Esmaeili received the
B.Sc. degree in Electronics Engineering
from University of Birjand, Birjand, Iran in
2011 and the M.Sc. degree in Electronics
Engineering from University of Birjand,
Birjand, Iran in 2013. He is currently
working toward the Ph.D. degree in
Electronics Engineering at University of
Birjand, Birjand, Iran. His research interest
includes signal processing, evolutionary
algorithms, swarm intelligence algorithms,

and VLSI design.

Seyed Hamid Zahiri received the B.Sc.,
M.Sc., and Ph.D. degrees in Electronics
Engineering from Sharif University of
Technology, Tehran, Tarbiat Modares
University, Tehran, and Mashhad Ferdowsi
University, Mashhad, Iran, in 1993, 1995,
and 2005, respectively. Currently, he is a
Professor with the Department of
Electronics Engineering, University of
Birjand, Birjand, Iran. His research interests
include pattern recognition, evolutionary

algorithms, swarm intelligence algorithms, and soft computing.

Seyed Mohammad Razavi was born in
Birjand, Iran. He received the B.Sc., M.Sc.,
and Ph.D. degrees in Electrical Engineering
from Amirkabir University of Technology,
Tehran, Iran, Tarbiat Modares University,
Tehran, Iran, and Tarbiat Modares
University, Tehran, Iran, in 1994, 1997, and
2006, respectively. Currently, he is an

Associate Professor with the Department of
Electronics Engineering, University of
Birjand, Birjand, Iran. His research interests

include text and character recognition, pattern recognition, and
Image processing.

How to cite this paper:
M. R. Esmaeili, S. Hamid Zahiri, and S. M. Razavi, ȰA framework for high-level
synthesis of VLSI circuits using a modified moth-flame optimization algorithm,ȱ
Journal of Electrical and Computer Engineering Innovations, vol. 7, no. 1, pp. 93-110,
2019.
DOI: 10.22061/JECEI.2020.5992.272
URL: http://jecei.sru.ac.ir/article_1190.html

https://ieeexplore.ieee.org/xpl/conhome/10572/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10572/proceeding

