Document Type: Original Research Paper

Authors

1 College of Internet of Things Engineering, Hohai University Changzhou, Jiangsu, China

2 Petroweld Kurdistan, Erbil, Iraq

3 Pakistan Steel Mills, Karachi, Pakistan

4 Dow University of Health Sciences, Karachi, Pakistan

10.22061/jecei.2020.6874.344

Abstract

Background and Objectives: The quick response time and the coverage range are the crucial ‎factors by which the quality service of a wireless sensor network ‎can be acknowledged. In some cases, even networks possess ‎sufficient available bandwidth but due to coverage tribulations, the ‎customer satisfaction gets down suddenly. The increasing number of ‎nodes directly is neither a canny solution to overcome the coverage ‎problem nor a cost-effective. In fact, by changing the positions of the ‎deployed node sagaciously can resolve the coverage issue and seems ‎a cost-effective solution. Therefore, keeping all circumstances, a ‎Depuration based Efficient Coverage Mechanism (DECM) has been ‎developed. This algorithm suggests the new shifting positions for ‎previously deployed sensor nodes to fill the coverage gap.
Methods: It is a redeployment process and accomplished in two rounds. The ‎first round avails the Dissimilitude Enhancement Scheme (DES)‎, ‎which searches the node to be shifted at new positions. The second ‎round controls the unnecessary movement of the sensor nodes by ‎the Depuration mechanism thereby the distance between previous ‎and new positions is reduced. ‎
Results: The factors like loudness, pulse emission rate, maximum ‎frequency, and sensing radius are meticulously explored during ‎simulation rounds conducted by MATLAB. The performance of ‎DECM has been compared with superlative algorithms i.e., Fruit Fly ‎Optimization Algorithm (FOA)‎, Particle Swarm Optimization ‎‎(PSO)‎, ‎and Ant Colony Optimization ‎‎(ACO)‎ in terms of mean coverage ‎range, computation time, standard deviation, and network energy ‎diminution.‎
Conclusion: According to the simulation results, the DECM has achieved more ‎than 98% coverage range, with a trivial computation time of nearly ‎‎0.016 seconds as compared to FOA, PSO, and ACO.  ‎

Keywords

Main Subjects

[1] M. Abazeed, N. Faisal, S. Zubair, A. Ali, ‎‎“Routing Protocols for Wireless Multimedia Sensor Network: ‎A Survey,” 2013: 1-12, 2013.

[2] S. Ashraf, T. Ahmed, “Machine Learning Shrewd Approach ‎For An Imbalanced Dataset Conversion Samples,” J. Eng. ‎Technol. JET, 11(1): 1-9, 2020.

[3] M. S. Aliyu, A. H. Abdullah, H. Chizari, T. Sabbah, A. ‎Altameem, “Coverage Enhancement Algorithms for ‎Distributed Mobile Sensors Deployment in Wireless Sensor ‎Networks,” Int. J. Distrib. Sens. Netw., 12(3): ‎‎9169236, 2016.

[4] S. Ashraf, Z. A. Arfeen, M. A. Khan, T. Ahmed, “SLM-OJ: ‎Surrogate Learning Mechanism during Outbreak Juncture,” ‎Int. J. Mod. Trends Sci. Technol., 6(5): 162–167, ‎‎2020.

[5] F. Ait Aoudia, M. Gautier, M. Magno, O. Berder, L. Benini, ‎‎“A Generic Framework for Modeling MAC Protocols in ‎Wireless Sensor Networks,” IEEEACM Trans. Netw., 25(3): 1489–1500, 2017.

[6] S. Ashraf, A. Ahmad, A. Yahya, T. Ahmed, “Underwater ‎routing protocols: Analysis of link selection challenges,” ‎AIMS Electron. Electr. Eng., 4(3): 234–248, 2020.

[7] S. Ashraf, D. Muhammad, Z. Aslam, “Analyzing challenging ‎aspects of IPv6 over IPv4,” J. Ilm. Tek. Elektro Komput. Dan ‎Inform., 6(1): 54–67, 2020.

[8] S. Ashraf, Z. Aslam, S. Saleem, S. Afnan, M. Aamer, “Multi-‎biometric Sustainable Approach for Human Appellative,” ‎CRPASE Trans. Electr. Electron. Comput. Eng., 6(3): 146–152, 2020.‎

[9]  S. Goyal, M. S. Patterh, “Flower pollination algorithm ‎based localization of wireless sensor network,” in Proc. 2015 2nd ‎International Conference on Recent Advances in Engineering ‎Computational Sciences (RAECS): 1–5, 2015.

[10] S. Ashraf, Z. Aslam, A. Yahya, A. Tahir, “Underwater ‎Routing Protocols Analysis of Intrepid Link Selection ‎Mechanism, Challenges and Strategies,” Int. J. Sci. Res. Comput. ‎Sci. Eng., 8(2): 1–9, 2020.

[11] S. Ashraf, M. Gao, Z. Mingchen, T. Ahmed, A. Raza, H. ‎Naeem, “USPF: Underwater Shrewd Packet Flooding ‎Mechanism through Surrogate Holding Time,” Wirel. ‎Commun. Mob. Comput., 2020:  1–12, 2020.

[12] S. Ashraf, A. Raza, Z. Aslam, H. Naeem, T. Ahmed, ‎‎“Underwater Resurrection Routing Synergy using Astucious ‎Energy Pods,” J. Robot. Control JRC, 1(5): 173-184, 2020.

[13] S. Ashraf, S. Saleem, A. H. Chohan, Z. Aslam, A. Raza, ‎‎“Challenging strategic trends in green supply chain ‎‎management,” Int. J. Res. Eng. Appl. Sci. JREAS, 5(2): ‎‎71–74, 2020.

[14] S. Ashraf, T. Ahmed, S. Saleem, Z. Aslam, “Diverging ‎Mysterious in Green Supply Chain Management,” Orient. J. ‎Comput. Sci. Technol., 13(1): 22–28, 2020.‎

[15] S. Ashraf, T. Ahmed, A. Raza, H. Naeem, “Design of Shrewd ‎Underwater Routing Synergy Using Porous Energy Shells,” ‎Smart Cities, 3(1): 74–92, 2020.

[16] S. Ashraf, T. Ahmed, “Dual-nature biometric recognition ‎epitome,” Trends Comput. Sci. Inf. Technol., 5(1): ‎‎008–014, 2020.

[17] Q. Zhang, M. Fok, “A Two-Phase Coverage-Enhancing ‎Algorithm for Hybrid Wireless Sensor Networks,” Sensors, ‎17(12): 117, 2017.

[18] J. Li, B. Zhang, L. Cui, S. Chai, “An Extended Virtual Force-‎Based Approach to Distributed Self-Deployment in Mobile ‎Sensor Networks,” Int. J. Distrib. Sens. Netw., 8(3): 417307, 2012.‎

[19] G. Wang, G. Cao, T. F. La Porta, “Movement-assisted ‎sensor deployment,” IEEE Trans. Mob. Comput., 5(6): 640–652, 2006.

[20] H. Mahboubi, A. G. Aghdam, “Distributed Deployment ‎Algorithms for Coverage Improvement in a Network of ‎Wireless Mobile Sensors: Relocation by Virtual Force,” IEEE ‎Trans. Control Netw. Syst., 4(4): 736–748, 2017.

[21] W.-T. Pan, “A new Fruit Fly Optimization Algorithm: Taking ‎the financial distress model as an example,” Knowl.-Based ‎Syst., 26: 69–74, 2012.

[22] M. Marinaki, Y. Marinakis, “A Glowworm Swarm ‎Optimization algorithm for the Vehicle Routing Problem with ‎Stochastic Demands,” Expert Syst. Appl., 46: 145–163, ‎2016.

[23] Y. Yoon, Y.-H. Kim, “An Efficient Genetic Algorithm for ‎Maximum Coverage Deployment in Wireless Sensor ‎Networks,” IEEE Trans. Cybern., 43(5): 1473–1483, ‎ 2013.

[24] L. Sun, X. Song, T. Chen, “An Improved Convergence ‎Particle Swarm Optimization Algorithm with Random ‎Sampling of Control Parameters,” Journal of Control Science ‎and Engineering, 2019: 1-1-11, 2019.

[25]  ‎“How to Calculate Euclidean Distance.”, 2020.

[26] S. Ashraf, S. Saleem, T. Ahmed, Z. Aslam, D. Muhammad, ‎‎“Conversion of adverse data corpus to shrewd output using ‎sampling metrics,” Vis. Comput. Ind. Biomed. Art, 3(19): 1-13, 2020.

[27] R. Storn, K. Price, “Differential Evolution – A Simple and ‎Efficient Heuristic for global Optimization over Continuous ‎Spaces,” J. Glob. Optim., 11(4): 341–359, 1997.

[28] S. Balsamo, A. Marin, E. Vicario, Eds., New Frontiers in ‎Quantitative Methods in Informatics: 7th Workshop, InfQ ‎‎2017, Venice, Italy, December 4, 2017, Revised Selected ‎Papers, 1st ed. 2018 edition. New York, NY: Springer, 2018.‎

[29] S. Das, A. Biswas, S. Dasgupta, A. Abraham, “Bacterial ‎Foraging Optimization Algorithm: Theoretical Foundations, ‎Analysis, and Applications,” in Foundations of ‎Computational Intelligence Volume 3: Global Optimization, A. ‎Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht, Eds. ‎Berlin, Heidelberg: Springer: 23–55, 2009.

[30] M. Li, X. Du, X. Liu, C. Li, “Shortest Path Routing Protocol ‎Based on the Vertical Angle for Underwater Acoustic ‎Networks,” Journal of Sensors, 2019: 1-14, 2019. ‎

[31] R. Yongmao, L. Jun, S. Shanshan, L. Lingling, W. Guodong, Z. Beichuan, “Congestion ‎control in named data networking – A survey,” Comput. ‎Commun., 86: 1–11, 2016.

[32] S. Ashraf, D. Muhammad, M. Shuaeeb, Z. Aslam, ‎‎“Development of Shrewd Cosmetology Model Through Fuzzy ‎Logic,” J. Res. Eng. Appl. Sci., 5(3): 93–99, 2020.

[33] S. Ashraf, S. Saleem, T. Ahmed, “Sagacious Communication ‎Link Selection Mechanism for Underwater Wireless Sensors ‎Network,” Int. J. Wirel. Microw. Technol., 10(4): ‎‎22–33, 2020.

[34] S. Ashraf, M. Gao, Z. Chen, S. Kamran, Z. Raza, “Efficient ‎Node Monitoring Mechanism in WSN using Contikimac ‎Protocol,” Int. J. Adv. Comput. Sci. Appl., 8(11): 429-437, 2017.

[35] S. Ashraf, M. Gao, Z. Chen, H. Naeem, A. Ahmad, T. Ahmed, ‎‎“Underwater Pragmatic Routing Approach Through Packet ‎Reverberation Mechanism,” IEEE Access, 8: 163091–‎‎163114, 2020.

[36] M. Safkhani, “Cryptanalysis of R2AP an Ultralightweight ‎Authentication Protocol for RFID,” J. Electr. Comput. Eng. ‎Innov., 6(1):  111-118, 2018.

[37] S. Shams Shamsabad Farahani, “Congestion Control ‎Approaches Applied to Wireless Sensor Networks: A Survey,” ‎J. Electr. Comput. Eng. Innov., 6(2): 129-149, 2018.