A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

Document Type: Research Paper

Authors

Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.

Abstract

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses and to increase efficiency, converters based on soft-switching are utilized. This paper presents the design of a soft-switching DC-DC buck converter in a 90-nm CMOS technology. Simulation results by HSPICE shows a 21 mV output ripple on a 0.5 V output voltage for an input voltage of 1.4 V. Finally, the efficiency of 95% at a load current of 50 mA having 74 mA of current ripple is achievable.

Keywords


[1] S. Zhou and G. A. Rincon-Mora, “A high efficiency, soft switching dc–dc converter with adaptive current-ripple control for portable applications,” IEEE Trans. Circuits and Systems, vol. 53, no. 4, pp. 319–323, 2006.

[2] B. Razavi, Design of Analog CMOS Integrated Circuits, Boston, MA: McGraw-Hill, 2001.

[3] A. Stratakos, “High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications,” PhD thesis, Berkeley Univ, 1999.

[4] W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A High Efficiency DualMode Buck Converter IC for Portable Applications,” IEEE Trans. Power Electronics, vol. 23, no. 2, pp. 667-677, 2008.

[5] M. Brown, Practical switching power supply design, Academic Press, 1990.G. A. Rincón-Mora and B. Sahu, “An Accurate, LowVoltage, CMOS Switching Power Supply With Adaptive On

Time Pulse-Frequency Modulation (PFM) Control,” IEEE Trans. Circuits and Systems, vol. 54, no. 2, 2007.

[6] V. Yousefzadeh, N. Wang, and Z. P. D. Maksimovic, “A Digitally Controlled DC/DC Converter for an RF Power Amplifier,” IEEE Trans. Power Electronics, vol. 21, no. 1, pp. 164-172, 2006.

[7] Z. Bi and W. Xia, “Modeling and Simulation of Dual-Mode DC/DC Buck Converter,” Second International Conference on Computer Modeling and Simulation, 2010.

[8] Ch. L. Chen, W. L. Hsieh, K. J. Lai, K. H. Chen, and Ch. S. Wang, “A New PWM/PFM Control Technique for Improving Efficiency Over Wide Load Range,” 15th IEEE International Conference on Electronics, Circuits and Systems, 2008.

[9] Ch. Ch. Wang, Ch. L. Chen, G. N. Sung, and Ch. L. Wang, “A highefficiency DC–DC buck converter for sub-2_VDD power supply,” Microelectronics J, vol. 42, no. 5, pp. 709-717, 2011.

[10] D. Fernandez, “Modeling and Analysis of the Effects of PCB Parasitics on Integrated DC-DC Converters,” Master of Science thesis, California Polytechnic State Univ, 2011