Optimum Design of a SRM Using FEM and PSO

Document Type: Research Paper

Authors

1 Faculty of Engineering, University of Guilan, Rasht, Iran.

2 Faculty of Engineering, University of Guilan, Rasht, Iran

Abstract

Nowadays the use of the Switched Reluctance Motors (SRMs) has been considerably increased in various home and industrial applications. Despite of many advantages of this type of motors, such as simple structure, low cost, and high reliability, the main disadvantage of them is the generation of high torque pulsation. This paper presents a novel method to optimize a typical SRM such that the torque ripple reaches its minimum value. Meanwhile, the torque average and the motor efficiency become maximum. It is shown that the pole width to the pole pitch ratio, for both stator and rotor poles, have a great impact on the torque ripple and torque average. Finite Element Method (FEM) is used to obtain the torque ripple, the torque average and the motor efficiency for a large number of ratios. A functional relationship is developed between the input and the output parameters. Normalized summation of the torque ripple minus the torque average and the efficiency is considered to be the cost function, which must be minimized. Then, the Particle Swarm Optimization (PSO) is used to find the optimum ratio of pole width to pole pitch, for both stator and rotor. The optimum design is verified by FEM.

Keywords


[1] T. J. E. Miller, "Switched Reluctance Motors and Their Control,"  New York, Oxford Univ. Press, 1993. 

[2] K.  Russa,  I.  Husain,  and  M.  Elbuluk,  “Torque  ripple  minimization  in  switched  reluctance  machines  over  a  wide  speed  range," in  IEEE  Ind.  Applicat.  Soc.  Annu.  Meeting, New  Orleans, LA, Oct. 5–9, 1997.

  [3] Z.  Lin, et al.,  "High  Performance  current  Control  for  switched  reluctance  motors  based  on  on‐line  estimated  parameters,"  IET Electri. Power Appl., Vol.4, pp.67‐74, 2010. 

[4] K.  M.  Rahman,  S.  E.  Schulz,  "Design  of  high‐efficiency  and  highdensity  switched  reluctance  motor  for  vehicle  propulsion,"  IEEE  Trans.  Ind.  Applicat.,  Vol.  38,  No.  6,  pp.  2104–2110, Nov.‐Dec. 2002.

  [5] P.  J.  Lawrenson,  J.  M.  Stephenson,  P.  T.  Blenkinsop,  J.  Corda,  and N. N. Fulton, "Variable‐speed switched reluctance motors,"  Proc.  Inst.  Elec.  Eng.,  Vol.  127,  No.  4,  pt.  B,  pp.  253–265,  Jul.  1980. 

[6] J. Oyama, T. Higuchi, T. Abe, and K. Tanaka, "The Fundamental  Characteristics  of  Novel  Switched  Reluctance  Motor  with  Segment Core Embedded in Aluminum Rotor Block," Journal of  Electrical  Engineering  &  Technology,  Vol.  1,  No.1,  pp.  58‐62  2006. 

[7] T. Ueda, T. Abe, and T. Higuchi, "Decrease of Pulsating Torque  for  Novel  Segment  Type  Switched  Reluctance  Motor  Using  Slide  Structural  Rotor,"  Proc.  of  the  2008  JIAS  Conference,  Vol.3, No.3‐31, 2008, pp. 233 ‐ 236. 

[8] J.  Oyama,  T.  Higuchi,  T.  Abe,  and  N.  Kifuji,  "Novel  Switched  Reluctance Motor with Segment Core Embedded in Aluminum  Rotor  Block,"  IEEJ  Trans.  IA,  Vol.126‐D,  No.4,  pp.  385‐390,  2006. 

[9] S. Mao,M. Tsai, "A novel switched reluctance motor with C‐core  stators,"  IEEE Transactions  on Magnetics,  Vol.  41, No.  12,  pp.  4413‐4420, Dec. 2005. 

[10] C. Lee, R. Krishnan, and N. S. Lobo, "Novel two phase switched  reluctance  machine  using  common‐pole  E‐core  structure:  concept,  analysis,  and  experimental  verification,"  IEEE  Transactions on  Industry Applications, Vol. 45, No. 2, pp 703‐ 711, Mar./Apr. 2009. 

[11] S.  Oh,R.  Krishnan,  "Two‐phase  SRM  with  flux‐reversal‐free  stator:  concept,  analysis,  design,  and  experimental  verification," IEEE Transactions on Industry Applications, Vol. 43, No. 5, pp 1247‐1257, Sep./Oct. 2007.  [12] R.  Gobbi,K.  Ramar,  "Optimization  techniques  for  a  hysteresis  current  controller  to  minimize  torque  ripple  in  switched  reluctance motors," IET Electric Power Applications, Vol. 3, No.  5, pp. 453‐460, 2009.

  [13] X. D. Xue, K. W. E. Cheng,S. L. Ho, "Optimization and evaluation  of  torque‐sharing  functions  for  torque  ripple minimization in  switched  reluctance  motor  drives,"  IEEE  Transactions  on  Power Electronics, Vol. 24, No. 9, pp. 2076‐2090, Sep. 2009.

  [14] N. Inanc,V. Ozbulur, "Torque ripple minimization of a switched  reluctance  motor  by  using  continuous  sliding  mode  control  technique," Electric Power System Research (Elsevier), Vol. 66, pp. 241‐251, 2003.

  [15] H. Sahraoui, H. Zeroug, and H.A Toliyat, "Switched Reluctance  Motor Design using Neural‐Network Method with Static Finite‐ Element  Simulation,"  IEEE  Trans.  on  Magn.,  Vol.  43,  No.  12,  Dec. 2007. 

[16] T.  Higuchi,  T.  Ueda,  and  T.  Abe,  "Torque  Ripple  Reduction  Control  of  a  Novel  Segment  Type  SRM  with  2‐steps  slide  Rotor,"  International  Power  Electric  Conference,  pp.  2175‐ 2180, 2010. 

[17] J. W. Lee, H. S. Kim, B. Kwon, and B.T. Kim, "New Rotor Shape  Design  for Minimum Tprque Ripple of SRM Using FEM,"  IEEE  Trans. on Magn., Vol. 40, No. 2, pp.754‐757, March 2004. 

[18] J.P.A. Bastos,N.Sadowski,  "Electromagnetic Modeling by Finite  Element Methods, Marcel‐Dekker," 2003. 

[19] J.Kennedy,  R.C.  Eberhart,  "Particle  Swarm  Optimizatin,"  IEEE  International Conference on Neural Network, Vol. 4, pp. 1942‐ 1948, 1995. 

[20] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, "A Combinatorial Particle  Swarm  Optimization  for  Solving  Multi‐mode  Resource‐  constrained  Project Scheduling  Problems," Applied  Mathematics and Computation, pp. 299‐308, 2008.  [21] K. T. Chaturvedi, M. Pandit, and L. Srivastava, "Particle Swarm Optimization  with  Time  Varying  Acceleration  Coefficients  for  Non‐Convex Economic Power Dispatch," Electrical Power and  Energy Systems, Vol. 31, No. 6, pp. 249‐257,