
http://jecei.srttu.edu   

 

Journal of Electrical and Computer Engineering Innovations 

JECEI, Vol. 3, No. 2, 2015 

Regular Paper 
 

 

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, 123-129 123 
 

SRTTU 

A CSA Method for Assigning Client to Servers in Online Social 
Networks  
Shahriar Minaee Jalil1,*, Ali khaleghi1 

1 Imam Khomeini International University, Qazvin, Iran 
*Corresponding Author’s Information: minaee@eng.ikiu.ac.ir 
 

 
ARTICLE INFO 

  
ABSTRACT 

 
ARTICLE HISTORY: 
Received 24 October 2015 
Revised 7 December 2015 
Accepted 9 December 2015 

 This paper deals with the problem of user-server assignment in online 
social network systems. Online social network applications such as 
Facebook, Twitter, or Instagram are built on an infrastructure of servers 
that enables them to communicate with each other. A key factor that 
determines the facility of communication between the users and the 
servers is the Expected Transmission Time (ETT). A smart user-server 
assignment can avoid the low quality links and improve the 
communication between nodes and also save the valuable 
communication resources. Unfortunately, finding the optimal assignment 
turns out to be a NP-hard problem. This paper proposes the use of a 
heuristic algorithm named Centralized Simulated Annealing (CSA) to get a 
good near optimum solution for this problem. Simulation results of this 
investigation show that using a relatively small number of iterations, this 
approach achieves a very good performance improvement. On the other 
hand, the average number of iterations needed to achieve the near-
optimal solution, will be slightly increased when the number of users in 
the network increase. 

 
KEYWORDS: 
Online social networks 
Client-server assignment 
Centralized simulated 
Annealing algorithm 

 

 

 
1.  INTRODUCTION  

Online social network applications rely on an 
infrastructure of servers that facilitate communication 
among their users [1]. In this scenario, users 
communicate to each other through the servers. 
Specifically, for an online social network system like 
Facebook or Instagram, the profile of users is saved at 
their primary server, and when a user (ݑ) posts a 
message or any other contents in his/her network, it 
will be saved at his/her server (ܵݑ). Suppose that 
there is a user (ݒ) which is friend with (in connection 
to) ݑ. Then, whenever ݒ gets online, the message will 
be showed to ݒ if ݒ is located in the same server as ݑ. 
Otherwise, if ݒ is located in a different server (ܵݒ) an 
extra procedure should be followed. When user ݒ gets 
online, ݒ sends a read request from ܵݒ to ܵݑ and ܵݑ 
sends the message to ܵݒ and ݒ gets it from ܵݑܵ .ݒandܵݒ 
perform the communication on behalf of their users. 

This architecture could be scaled up by adding servers 
to the network with the help of some other resources. 
In this indirect communication pattern, if two 
communicating users (friends) are located at the same 
server, then only one server is active to enable the 
communication. If the communicating users are 
located in two different servers, then both servers are 
involved in the process, which obviously maintains an 
increase in the communication overhead of the 
network. 

The problem of client-server assignment in a high 
scale networks is crucial. The aim of this paper is to 
present a client-server assignment method which 
aims at assigning highly connected users to the same 
server and minimizing the Expected Transmission 
Tine (ETT) of users located in different servers. We 
assume that the messages and information that users 
share with each other are the mainly time-consuming 

http://jecei.srttu.edu
mailto:minaee@eng.ikiu.ac.ir


 

124 

loads. We can deduce the following presumptions 
from the above assumption: 

1- ETT for messages between users that are 
assigned to the same server is less than the 
users that are assigned to different ones. It 
means that if we assign all the users that 
communicate with each other to same server, 
it will reduce the total transmission time in a 
system. 

2- Consider the case in which most of the users 
in the network are friends. If we assign those 
users to the same server to achieve a shorter 
transmission time, the total load of the server 
increases and it becomes a bottleneck. 
Bottlenecks often crash over time. 

3- As a result of 1 and 2, the best strategy to 
minimize the ETT between servers is to 
assign the friends to the same server, and to 
assign users with less/no communication rate 
to different servers. 

Above deductions indicate that a good client-server 
assignment depends on the communication pattern 
between users.  

The proposed method should give a good trade-off 
between minimizing transmission time between 
severs and reducing the total ETT for servers. This 
method requires centralized processing of the 
communication pattern. Also, the complexity of 
obtaining the optimal solution turns out to be 
computationally expensive.  

The main contribution of this paper is to propose 
an efficient way to find a good solution for this 
problem. This method uses the Centralized Simulated 
Annealing (CSA) algorithm [2]. The CSA produces 
optimal solutions for static systems and needs 
accurate information of system.  

This method uses ETT between nodes as the input 
data to give a good client-server assignment topology. 

The problem of client-server assignment can be 
mapped into a k-way graph partitioning problem. The 
k-way graph partitioning problem is defined as 
follows:  

Consider an undirected graph ܩ = ,ܧ,ܸ)    with ,(ݓ,ܿ
݊ = |ܸ| vertices and ݉ =  and (ݑ)ܿ edges, where |ܧ|
 are non-negative weights of a vertex and an ({ݒ,ݑ})ݓ
edge, respectively. Let ܲ be a collection of ݇ subsets 
{ܲ0, … ,ܲ݇−1}of ܸ, we can define the set ܥ = {ݒ,ݑ}} ∈
ݑ|ܧ ∈ ௜ܲ , ݒ ∈ ௝ܲ  , 0 ≤ ݅ ≤ ݆ ≤ ݇ − 1} of cut edges and 
also the cut size 
(ܲ)ߠ = ∑ ఢ஼{௨,௩}({ݒ,ݑ})ݓ , 
 

which is equal to the cardinality of ܥ if all the edges 
are unitary but different in all other aspects. 

 The problem of k-way graph partitioning with 
balance 1 ≤ ߝ < ݇ can be described by the following 
model: 

 

Minimize ߠ(ܲ) 
Subject to: 

0 < ෍ (ݑ)ܿ  ≤ ඍ
ߝ
݇
෍ܿ(ݒ)
௩∈௏

එ
௨ఢ௉೔

 

∀݅ ∈ [0,݇ − 1] 
ራ ௜ܲ = ܸ
଴ஸ௜ழ௞

 

௜ܲ ∩ ௝ܲ = ∅      ∀݅, ݆ ∈ [0,݇ − 1]|݅ ≠ ݆ 
 

Unfortunately, in [3] it is shown that k-way graph 
partitioning is a NP-hard problem, i.e., there is no 
solution to find the optimal answer in polynomial 
time. But, there are several studies focused on 
heuristic algorithms that tries to find a good solution 
for the problem. The problem of k-way graph 
partitioning has been studied in many fields and many 
heuristic algorithms have been developed for it. Some 
famous algorithms are Kerninghan-Lin (KL) algorithm 
[4] and Fiduccia-Mattheyes (FM) algorithm [5]. The 
authors in [6] tried to reduce the maximum flow 
between partitions to solve the partitioning problem. 
In [7-9] and [10] the proposed algorithms focus on 
balancing the quantity of elements in each cluster 
without considering the effects of edge-cut on the 
weights of the elements. In [11], [12] and [13], the 
application of k-way graph partitioning have been 
studied in job scheduling on distributed systems. 
However in, task scheduling and/or allocation 
problems,  the total load incurred by execution tasks 
at processors are independent of the inter-
communication load [14] [15]. In general, the k-way 
graph partitioning has several applicationsin 
problems concerning to make a balance between 
weight of partitions and reduce the total 
communication load. 

The rest of this paper is organized as follows. The 
problem formulation and outlines our approach to 
tackle this problem are presented in Section 2, 3. The 
proposed algorithm is introduced in Section 4. Some 
simulation results are presented in Section 5 to show 
the performance of the proposed algorithm. As the 
final Section 6 concludes the paper. 

2.  PROBLEM FORMULATION 

The aim of this paper is to propose a method for 
assigning users to servers. The assignment should be 
done in such a way that it reduces the ETT between 
users in a server as well as the transmission time 
between users in different servers. We will reach this 
goal by optimizing the objective function. 

Let us introduce the variables and notations used 
in this paper: 

 M is the number of users. 
 N is the number of servers. 



 

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 123-129                                                                                                      125
   

 G(V,E) is a weighted graph that represents 
communication among users. E is the set of vertices  
|V|=M, where each vertex represents a user. E is the 
set of edges that shows communication between 
users. An edge between two vertices Vi and Vj 
represents that there is a communication between 
these two users. 

 AM*N is the adjacent matrix of graph G. Any 
entry Auv=0 indicates that there is no communication 
between two users such as u and v. Elements on the 
diagonal of the matrix will be zero because we assume 
that there is no self communication between users. 
The graph is symmetric because the cost of 
communication from u to v is equal to the cost of 
communication from v to u. We can normalize the 
elements of matrix by dividing any element to the sum 
of all elements. As a result, each element 0< Auv <1 
represents a percentage of the total ETT in the 
network. Elements in this matrix are ETTs for 
transmitting a fixed size packet from u to v. The ETT 
index has been used to predict the expected 
transmission time between two nodes in a hop in 
large scale [16], [17]. 

 XM*N ߳ {0,1}: X is an assignment matrix. Xui=1 
if user u is assigned to server i. Since each user can be 
assigned to only one server, we have ∑ ܺ௨௜ே

௜ୀଵ = 1. 
 ܮே∗ே(ܺ) represents the ETT for transferring a 

message between two servers for an assignment 
matrix X. ܮ௜௝(ܺ) indicates the ETT for transferring a 
message between two different servers, and ܮ௜௜(ܺ) 
indicates the ETT for transferring a message between 
users inside the server ݅. 

 ܵ(ܺ): indicates the total ETTs for all the 
servers. 

 Our goal is to optimize the function ܵ(ܺ). 
Minimizing ܵ(ܺ) causes a reduction in the total ETT 

for transferring messages in the network. Let us 
assume that M, N, G and ܣெ∗ெ are known. Our goal is 
to find an assignment matrix X such that it minimizes 
ܵ(ܺ). Hence, the problem of assigning the clients to 
the servers is expressed as follow: 

 
Min S(X) 

subject to: 
 

X୳୧ ϵ {0,1} 
∑ X୳୧୧ = 1     ∀ u ϵ{1,2,3, … , M}, i ϵ {1,2, … , N}            (1) 

 
For Development of the Formulation first we find 

the mathematical formula to calculate the matrices 
LN∗N(X) and S(X) using X. At first, we find a formula to 
calculate the overall ETTs for transferring messages 
between servers. We note that this matrix is 
symmetric, because ETT for transferring a message 
from user u to v is equal to transfer a message from 
user v to u. 

Inter-server ETTs will be calculated from ETT for 
transferring a message between users in any server i 
to another server j, assuming that i ≠ j. We calculate 
this value from assignment matrix X using the 
following formula: 

L୧୨(X) = ൫1− α൯෍෍A୩୪

୑

୪ୀଵ

X୩୧X୪୨

୑

୩ୀଵ

                               (2) 

Internal ETTs for a server will be the ETT for 
transferring a message between users inside a server 
and it is defined as follows: 

L୧୧(X) = α෍෍A୩୪

୑

୪ୀଵ

X୩୧X୪୧

୑

୩ୀଵ

                                           (3) 

In (2) and (3), the parameter α is a positive 
coefficient between 0 and 1. We know that the 
average ETT for transferring messages between users 
assigned to one server is usually much smaller than 
this value for users that are assigned to different 
servers. We use α to give more weight to the ETTs of 
the former compared to the latter. S(X) is the sum of 
all elements of L(X) for assignment matrix X and it is 
defined as follow: 
S(X ) =  ൫1− α൯ห|X୘AX|ห

ଵ − (1− 2 ∗ α)Tr(X୘AX) (4) 
The operator ||. ||1 denotes the sum of all elements 

in a matrix. In (4), coefficient of the first expression, 
(1 − α), is the weight of inter-server ETTs and 
coefficient of the second expression, (1 − 2 ∗ α), is the 
weight of internal ETTs of each server. This term is 
calculated as follows:  

First we subtracted (1 − α) which is the coefficient 
of the first term, and then we add α. If we assign all 
users to the same server to get a minimum total ETT, 
the server will be overloaded. The coefficient α 
regulates acceptable balance between internal ETTs 
and inter-server ETTs. Letting α = 0, removes the 
effects of internal ETTs in the calculations. If we 
assume α = 1, we have forgotten inter-server ETTs. It 
means that we have just minimized internal ETTs. So, 
the coefficient α should be considered a small value to 
give more weight to inter-server ETTs. 

Since the problem of minimizing S(X) by changing 
the assignment matrix X is NP-hard, we will use a 
heuristic algorithm to find a good solution.  

3.  ALGORITHMIC OUTLINE 

Here an iterative approach will be proposed. At the 
beginning, users are randomly assigned to the servers. 
At each iteration, the algorithm decides to change the 
assignment based on servers’ information and it may 
move users from one server to another. Before 
presenting the algorithm, let us introduce the 
following notation. Parameter t represents iteration 
number. The maximum number of iterations must be 
known, because finding the optimal answer may take 
a very long time.  



 

126 

We add parameter t to the assignment matrix ܺ 
(i.e., we have ܺ(ݐ)) to represent assignment matrix in 
time interval ݐ. ܵ(ܺ) changes to ܵ(ܺ(ݐ)) that 
represents the value of goal function at time interval ݐ. 
For convenience, we remove ܺ from expressions. As 
an example, ܵ(ܺ(ݐ)) changes to ܵ(ݐ). 

At each iteration of the algorithm, some users move 
between servers. Remind that total ETT is a part of 
goal function and every change in user’s location will 
change the total ETT. Therefore, we should calculate 
the total ETT at each iteration when a user’s location 
is changed. At each time interval ݐ that user ݑ moves 
from server ݅ to server ݆, total ETT will be changed at 
servers ݅ and ݆, and it remains unchanged at other 
servers. The changes of ETT is as follows: 

The new ETT in server i is: 

S୧(t + 1) = S୧(t) −  ෍ ෍A୳୪

୑

୪ୀଵ

X୪ୱ(t)
୒

ୗୀଵ|ୱஷ୧

                   (5) 

The new ETT in server j is:  

S୨(t + 1) = S୨(t) +  ෍ ෍A୧୪

୑

୪ୀଵ

X୪ୱ(t)
୒

ୗୀଵ|ୱஷ୨

                   (6) 

And it is un changed in other servers: 
 

   Sୱ(t + 1) = Sୱ                                                                  (7) 
 
As a result, the new total ETT will be defined as 

follow: 

S(t + 1) = S(t) +෍A୳୪ ቀX୪୧(t) − X୪୨(t)ቁ
୑

୪ୀଵ

             (8) 

The second part in equation (5) represents the ETT 
of user ܝ at server ܑ for communicating with other 
servers. Index ܑ will be excluded because user ܝ is not 
in server ܑ anymore. The operation reduces the value, 
because we should exclude ETT of user ܝ from total 
ETT of server ܑ. We repeat (6) until the operation 
increases the value, as a result of joining user to 
server ܒ.  

Before and after the changes in location of user, the 
total ETT for servers in (7) will remain unchanged 
except that of ܑ and ܒ. Equation (8) represents the 
summation of (5) and (6). The results are used in the 
algorithm. 

4.  ALGORITHM 

In this section, we introduce the Centralized 
Simulated Annealing (CSA) algorithm for problem of 
assigning clients to servers algorithm and exploit the 
developed formulas of the previous section. CSA is 
based on simulated annealing framework and it is 
proved that it works well for large scale optimization 
problems [18] [19].  

The CSA algorithm is in the class of stochastic 
greedy search algorithms, in wich the probability of 

searching in the next configuration is based on the 
objective value at the current and the next 
configuration. CSA works based on decreasing the 
optimization-value parameter which enables 
algorithm to check many configurations before it 
represents an optimized solution.  

This stochastic search gives the ability to deal with 
local minimum to algorithm. 

Considering goal function for the client-server 
assignment problem as ܵ(ܺ), we can consider any 
assignment matrix ܺ as a new configuration. There is 
a centralized controller that optimizes the goal 
function. This controller keeps communication 
pattern between users and servers information. The 
controller uses CSA to minimize goal function and find 
an optimized assignment matrix. 

 Afterwards, the controller assigns users to the 
server based on an optimized assignment matrix. CSA 
pseudo-code is displayed on Figure 1. 

At the beginning, controller calculates the 
parameters of (8) and calculates the goal function 
with a randomly initialized assignment matrix. The 
optimization-value parameter Tb has a big value at 
first, enough for reaching an optimized assignment 
matrix. Controller creates next configuration of 
assignment matrix by choosing a random user and 
changes its location and calculates the new value of 
goal function (8) for this assignment matrix. If this 
new value is smaller than before, this assignment 
matrix ܺ will be considered as a new optimized 
assignment matrix.  

This process will continue until optimization-value 
parameter Tb be greater than a threshold ϵ. Each time 
when a new value of goal function is found, this 
optimization-value parameter will be reduced one 
degree. 

 

 

 

5.  SIMULATION RESULTS 

Simulation results are represented in this section.   

Algorithm 1: Centralized SA Algorithm(CSA) 

1. Calculate Global parameters L, S-init 
2. Initialize Tb 
3. while Tb> ϵ do 
4.     Select an user u 
5. Select  server v 
6.     Calculate new-S 
7.     If new-S < S-init 
8.         Switch user u to server v 
9.         Decrease Tb 
10.     End if 
11. End while 

 

Figure 1: CSA algorithm pseudo-code. 



 

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 123-129                                                                                                      127
   

We initialized α with a small value (ߙ = 0.1) to give 
more weight to the inter-server ETT values. This 
assumption is supported by the fact that really, the 
inter-server ETTs are usually much larger than 
internal ETTs at each server.  

A.  Experiment 1 
At this experiment, we tested the proposed method 

with small made-up graphs. The ETT matrix (ܣெ∗ே) 
was filled with random values based on normal 
distribution. As a result of this experiment, by scaling 
up the users in the network, the required iterations to 
calculate an optimized assignment matrix will be 
increased. This increase is due to the increasing the 
number of states that a user can assign to a server 
with respect to the goal of problem. It is obvious that 
by scaling up the number of users, combination of 
assigning users to servers will be increased too. 
Figure 2 shows this argument. 

By repeating this experiment 100 times for various 
configurations of the network, the number of users 
and an the average numberof iterations have been 
calculated. 

B.  Experiment 2 
At this experiment, we calculated the average of 

goal function for the fixed number of iterations. We 
performed this experiment for two settings with 5 and 
20 users. This experiment shows how the value of 
goal function changes through the optimization 
process.  

In the proposed method, algorithm will continue 
until the value of objective function reaches to its 
minimum bound that represents the optimized 
assignment matrix. As we mentioned in Section 4, the 
algorithm continues its procedure until the 
optimization-value parameter is greater or equal to a 
threshold value ϵ. As indicated in Figure 3, the 
calculated value for objective function is at its highest 
level at the beginning of work.  

This value will be decreased by proceeding the 
algorithm (increasing iterations) and gets close to its 
optimal value. 

In Figure 3, changes in the average value of the 
objective function is displayed. This test was run in a 
system with 5 users and 4 servers in three values for 
optimization-value parameter Tb. We set the 
threshold parameter to ϵ = 10. We repeated this 
experiment 100 times for various values of Tb. As it is 
displayed in Figure 3, changing Tb will change the 
slope of objective function. The smaller this 
parameter, the faster the optimized value of objective 
function will be found. Increasing this parameter will 
increase computational cost and time. 

 

 

Figure 2: The average number of iterations of the algorithm 
in terms of the number of users. 
 
 
 
 

 
 
Figure 3: Changes in the average value of the objective 
function for the case of 5 users and ϵ=10. 
 

We repeated experiment 2 with the same 
configuration, but this time we put ϵ = 1. By looking at 
the diagram in Figure 4, it is obvious that our 
argument for changing Tb will change the slope of 
objective function and changing ϵ does not effect on it. 
 

0

200

400

600

800

1000

1200

1400

1600

5 7 10121518202325273032353740
Av

er
ag

e 
nu

m
be

r o
f i

te
ra

tio
ns

Number of users

0
0.5

1
1.5

2
2.5

3
3.5

4

1
12

3
24

5
36

7
48

9
61

1
73

3
85

5
97

7
10

99
12

21
13

43Av
er

ag
e 

va
lu

e 
of

 th
e 

ob
je

ct
iv

e 
fu

nc
tio

n

Number of iterations
Tb = 50 Tb = 100 Tb = 150



 

128 

 
 
Figure 4: Changes in the average value of the objective 
function for the case of 5 users and ϵ=1. 
 
 

 
 
Figure 5: Changes in the average value of the objective 
function for the case of 20 users and ϵ=10. 

 
In the following, we repeat the second experiment 

with the same configuration for 20 users. In a similar 
way, Figures 5 and 6 represent changes in the value of 
objective function in terms of the number of 
iterations. This time, we tested our proposed method 
with 20 users and for two threshold values, ϵ= 1and ϵ 
= 10. These two figures are the same as Figure 3 and 4 
which prove our arguments. The only difference is the 
initial value of the objective function due to the 
number of users that makes the matrix of ETTs and 
the value of objective function larger. By proceeding 
the algorithm, the value of objective function becomes 

smaller and gets closer to its optimal value. 

6.  CONCLUSION 

In this paper, the problem of assigning users to the 
servers in the online social network systems has been 
studied. Online social network applications like 
Facebook, Twitter or Instagram are built on an 
infrastructure of servers that make it possible for 
users of this social network to communicate with each 
other.  

By considering the expected transmission time of 
messages between users, the way of assigning users to 
the servers is critical to reach a minimum ETT for 
users in a server and a balanced transmission time 
between servers. Our objective was to present a 
method for assigning the users to the servers. 

 A good assignment will achieve our goal. This 
paper has tried a metaheuristic algorithm named 
Centralized Simulated Annealing (CSA) to get a good 
near optimum solution for this problem. Simulation 
results showed that the algorithm searches in 
different configurations of assigning user to the 
servers until it finds the best approximately optimal 
solution.  

Also, by scaling up the number of users, it was 
shown that the algorithm needs more iterations to 
achieve a good answer. This is because that it should 
check various combinations of assigning the user to 
the servers. In the proposed method, the algorithm 
starts with a randomly initialized assignment matrix. 
However, changing this matrix improves the value of 
the objective function. 

 

 

Figure 6: Changes in the average value of the objective 
function for the case of 20 users and ϵ=1. 

0

0.5

1

1.5

2

2.5

3

3.5

4

1
12

6
25

1
37

6
50

1
62

6
75

1
87

6
10

01
11

26
12

51
13

76

Av
er

ag
e 

va
lu

e 
of

 th
e 

ob
je

ct
iv

e 
fu

nc
tio

n

Number of iterations

Tb = 50 Tb = 100 Tb = 150

0

10

20

30

40

50

60

70

80

1
10

9
21

7
32

5
43

3
54

1
64

9
75

7
86

5
97

3
10

81
11

89
12

97
14

05Av
er

ag
e 

va
lu

e 
of

 th
e 

ob
je

ct
iv

e 
fu

nc
tio

n

Number of iterations

Tb = 50 Tb = 100 Tb = 150

0

10

20

30

40

50

60

70

80

1
10

9
21

7
32

5
43

3
54

1
64

9
75

7
86

5
97

3
10

81
11

89
12

97
14

05Av
er

ag
e 

va
lu

e 
of

 th
e 

ob
je

ct
iv

e 
fu

nc
tio

n

Number of iterations

Tb = 50 Tb = 100 Tb = 150



 

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 123-129                                                                                                      129
   

REFERENCES 

[1] A. Lakshman, P. Malik, "Cassandra: A decentralized structured," 
ACM SIGOPS Oper. Syst. Rev., vol. 44, no. [Online]. Available: 
http://doi.acm.org/10.1145/, pp. 35–40, Apr. 2010. 

[2] K. Lee, M. El-Sharkawi, "Fundamentals of simulated annealing 
in modern heuristic optimization techniques: Theory and 
applications to power sSystems," Wiley-IEEE Press, 2008, pp. 
123 - 146. 

[3] R. Michael Garey, S. David Johnson, "Computers and 
intractability: A guide to the theory of NP-completeness," New 
York, NY, USA: W. H. Freeman & Co, 1979.  

[4] B. W. Kernighan , S. Lin, "An efficient heuristic procedure for 
partitioning graphs," Bell Syst. Tech. J, vol. 49, no. 2, pp. 291–
307, 1970.  

[5] C. M. Fiduccia, R. M. Mattheyses, "A linear-time heuristic for 
improving network partitions," in Proc. 19th Design 
Automation Conference, pp. 175-181, 1982.  

[6] Z. Wu,  R. Leahy, "An optimal graph theoretic approach to data 
clustering: Theory and its application to image segmentation," 
IEEE Trans. Pattern Anal. Mach. Intell, vol. 15, no. 11, pp. 1101–
1113, Nov. 1993.  

[7] J. Shi,  J. Malik, "Normalized cuts and image segmentation," IEEE 
Trans. Pattern Anal. Mach. Intell, vol. 22, no. 8, pp. 888–905, 
Aug. 2000.  

[8] I. S. Dhillon, Y. Guan, and B. Kulis, "Weighted graph cuts without 
eigenvectors a multilevel approach," IEEE Trans. Pattern Anal. 
Mach. Intell, vol. 29, no. 11, pp. 1944–1957, Nov. 2007.  

[9] B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear component 
analysis," Neural Comput, vol. 10, no. 5, pp. 1299-1319, 1998.  

[10] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, "‘A min-
max cut," in Proc. IEEEInt. Conf. Data Mining (ICDM), pp. 107–
114, Dec. 2001.  

[11] H. S. Stone, "Multiprocessor scheduling with the aid of 
network flow algorithms," IEEE Trans. Softw. Eng, vol. SE-3, 
no. 1, pp. 85–93, Jan. 1977.  

[12] G. Sabin, V. Sahasrabudhe, and P. Sadayappan, "On fairness in 
distributed job scheduling across multiple sites," in Proc. IEEE 
Int. Conf. Cluster comput, pp. 35–44, Sep. 2004.  

[13] D. P. Vidyarthi, B. K. Sarker, A. K. Tripathi, and L. T. Yang, 
"Scheduling in distributed computing systems: Analysis, 
design and models," Berlon, Germany: Springer Publishing 
Company, Incorporated, 2008. 

[14] Y. Jiang, Y. Zhou, and W. Wang, "Task allocation for 
undependable multiagent systems in social networks," IEEE 
Trans. Parallel Distrib. Syst., vol. 24, no. 8, pp. 1671–1681, 
Aug. 2013.  

[15] Y. Jiang, J. Jiang, "Contextual resource negotiation-based task 
allocation and load balancing in complex software systems," 
IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 5, pp. 641–653, 
May. 2009.  

[16] D. S. J. D. Couto, "High-throughput routing for multi-hop 
wireless networks," Ph.D. dissertation, Dept. Elect. Eng. 
Comput. Sci., 2004.  

[17] C. A. Chen, M. Won,R. Stoleru, and G. G.  Xie, "Energy-Efficient 
Fault-Tolerant Data Storage and Processing in Mobile Cloud," 
IEEE Trans. on cloud computing, vol. 3, no. 1, pp. 28 - 41, 
January. 2015.  

[18] S. Kirkpatrick, M. P. Vecchi, "Optimization by simmulated 
annealing," Science, vol. 220, no. 4598, pp. 671–680, 1983.  

[19] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, 
"Part I, graph partitioning," Elsevier Science B.V., vol. 37, no. 6, 
pp. 865–892,  June. 1998.  

BIOGRAPHIES 

 
Shahriar Minaee Jalil was born in Iran in 
1992. Received the B.Sc. degree in 
hardware engineering from the Hamedan 
University of Technology, Iran, in 2014, He 
is M.Sc. student in software engineering at 
Imam Khomeini International University, 
Qazvin, Iran from 2014. 
 
 

 
 

Ali Khaleghi was born in Iran in 1973. He 
received the B.E. in Computer and software 
engineering from Azad university, Ghazvin, 
Iran in 1999, M.Sc. in Information Systems 
Management from University of Savoie, 
Annecy, France and Ph.D. degree in 
Information Systems from University of 
Grenoble, France in 2007. 

http://doi.acm.org/10.1145/,

