[1] R. Rajabioun, “Cuckoo Optimization Algorithm,” Applied Soft Computing, 2011.
[2] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, 1995.
[3] M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique,” IEEE Computational Intelligence Magazine, 2006.
[4] S. Arora, and S. Singh, “The Firefly Optimization Algorithm: Convergence Analysis and Parameter Selection,” International Journal of Computer Applications, Vol. 69. 3, 2013.
[5] L. Fister, L. Fister Jr, X. She yang, and J. Brest, “A comprehensive review of firefly algorithm,” Swarm and Evolutionary Computation, vol. 13, pp. 34-46, Des. 2013.
[6] D. Karaboga, and B. Basturk, “On the performance of artificial bee colony algorithm,” Applied Soft Computing, vol. 8, 2008.
[7] D. Pham, A. Ghanbarzadeh, A. Koc, S. Otri, S. Rahim, and M. Zaidi, “The bees algorithm, Technical note, Cardiff university,” UK: Manufactoring Engineering center, 2005.
[8] J. Han, and M. Kamber, “Data mining: Concept and Techniques,”Morgan Kaufmann publisher, 2001.
[9] D. J. Hand, H. Mannila, and P. Smyte, “Principles of Data Mining,” The MIT Press, 2001.
[10] M.P. Veyssieres, and R.E. Plant , “Identification of vegetation state and transition domains in California’s hardwood rangelands,” University of California, 1998.
[11] R. Xu, and D. Wunsch, “Survey of Clustering Algorithms,” IEEE TRANSACTIONS ON NEURAL NETWORKS, vol. 16. 3, 2005.
[12] A. Barladi, E. Alpaydin, “Constructive feedforward ART clustering networks,” Part I and II. IEEE Trans. Neural Netw, vol. 13. 3, pp. 662 – 677, May. 2002.
[13] V. Cherkassky, and F. Mulier, “Learning From Data: Concepts, Theory, and Methods,” New York : Wiley, 1998.
[14] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data clustering: A review,” ACM Comput. Surv, vol. 31. 3, 1999.
[15] L. Rokach, “A survey of Clustering Algorithms,” Data Mining and Knowledge Discovery Handbook, 2nd ed. Springer Science. 10.1007/978-0-387-09823-4_14, 2010 .
[16] Y. Marinakis, M. Marinaki, M. Doumpos, N. Matsatsinis, and C. Zopounidis, “A hybrid stochastic genetic—GRASP algorithm for clustering analysis,” Oper. Res. Int. J.(ORIJ) , vol. 8. 1, 2008.
[17] D. Karaboga, and C. Ozturk, “A novel clustering approach: Artificial Bee Colony (ABC) algorithm,” Applied Soft Computing, Elsevier, 10.1016/j.asoc.12.025, 2009.
[18] C.L. Blake, and C.J. Merz. The University of California at Irvine Repository of Machine, http://www.ics.uci.edu/ mlearn/MLRepository., 1998.
[19] I. De Falco, A. Della Cioppa, and E. Tarantino, “Facing classification problems with Particle Swarm Optimization,” Appl. Soft Comput, vol. 7. 3, pp. 652-658, 2007.
[20] F. Jensen, “An Introduction to Bayesian Networks,” UCL Press/Springer–Verlag, 1996.
[21] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning representation by backpropagation errors”, Nature, 323(9), pp. 533-536, 1986.
[22] M H. Hassoun, “Fundamentals of Artificial Neural Networks,” The MIT Press, Cambridge, MA, 1995.
[23] J.C. Cleary, and L.E. Trigg, “An instance-based learner using an entropic distance measure,” Proceedings of the 12th International Conference on Machine Learning. pp. 108–114, 1995.
[24] L. Breiman, “Bagging predictors,” Mach. Learn, vol. 24. 2, pp.123-140, 1996.
[25] G.I. Webb, “Multiboosting: a technique for combining boosting and wagging,” Mach. Learn, vol. 40. 2, pp. 159-196, 2000.
[26] R. Kohavi, “Scaling up the accuracy of naive-Bayes classifiers: a decision tree hybrid, in: E. Simoudis, J.W. Han, U. Fayyad (Eds.),” Proceedings of the Second International ConferenceonKnowledge Discovery and Data Mining, AAAI Press. pp. 202–207, 1996.
[27] P. Compton, and R. Jansen, “Knowledge in context: a strategy for expert system maintenance, in: C.J., Barter, M.J., Brooks (Eds.),” Proceedings of Artificial Intelligence LNAI, Berlin, Springer–Verlag, Adelaide, Australia, vol. 406. pp. 292–306, 1988.
[28] G. Demiroz, and A. Guvenir, “Classification by voting feature intervals,” Proceedings of the Seventh European Conference on Machine Learning, pp. 85–92, 1997.
[29] D. Rumelhart, E. Hinton, and J. Williams, Learning internal representation by error propagation, “Parallel Distribute Processing,” vol. 1, pp. 318-362, 1986.
[30] M. B. Menhaj, Principles of Neural Networks, Amirkabir University of Technology, second edition, pp.715, 2002.
[31] R. Omidvar, H. Parvin, and F. Rad, “SSPCO Optimization Algorithm (See-See Partridge Chicks Optimization),” 14 th-Mexican international conferences on artificial intelligence, IEEE, 2015.
[32] Statistical Consultant for Doctoral Students and Researchers, http://www.statisticallysignificantconsulting.com/Ttest.htm.
[33] J. K. Kruschke, “Bayesian estimation supersedes the t test,” Journal of Experimental Psychology: General Version of May 31, 2012.
[34] J. C. F. De. Winter, “Using the Student’s t-test with extremely small sample sizes,” Practical Assessment, Research & Evaluation, vol 18, no 10, 2013.
[35] Y. He, J. Zhou, X. Xiang, H. Chen, and H. Qin, “Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling,” Chaos Solitons Fractals 2009;42:3169-76.
[36] L. Coelho, and V. Mariani, “Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization,” Expert Syst Appl 2008;34:1905-13.
[37] H. Gao, Y. Zhang, S. Liang, and D. Li, “A new chaotic algorithm for image encryption,” Chaos Solitons Fractals 2006;29:393-9.
[38] D. Kuo, Chaos and its computing paradigm. IEEE Potentials Mag 2005;24:13-5.
[39] J. Nayak, B. Naik, and H.S. Behera, “Fuzzy C-Means (FCM) lustering algorithm: a decade review from 2000 to 2014,” Comput. Intell. Data Min, vol. 2, pp. 133–149 (2014).
[40] J. Nayak, M. Nanda, K. Nayak, B. Naik, and H.S. Behera, “An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets,” Smart Innov. Syst. Technol. Vol 27, pp. 339– 348, 2014.
[41] X. Wu,B. Wu, J. Sun, S. Qiu, and X. Li, “A hybrid fuzzy Kharmonic means clustering algorithm,” Appl. Math. Model. vol 39(12), pp. 3398–3409, 2015.
[42] S. Shamshirband, A. Amini, N B. Anuar, L M. Kiah, “D-FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks,” Measurement, 55, pp. 212–226, 2014.