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 Background and Objectives: Nowadays, video hosting services receive and 
stream videos using standard protocols like Real-Time Messaging Protocol 
(RTMP). During the streaming process, video file streams are usually divided 
into small multi-second parts, and the player receives these parts instead of 
the whole file at once. Most of the streaming protocols are capable of 
adaptive streaming and tolerating faults like device failures, and link 
disconnections. Faults might affect the performance of live streaming in 
terms of packet loss, latency, jitter, and video quality. The software-defined 
networking paradigm has also gained momentum in enterprise networks due 
to its lower-cost management and better network utilization. However, full 
migration from the current networks to the SDN model is not practical. 
Methods: The purpose of this study is to investigate the effectiveness of fault 
tolerance mechanisms of RTMP protocol on hybrid software-defined 
networks (SDN). In this paper, a practical and straightforward hybrid network 
architecture is proposed for gradual migration from traditional IP networks. 
Then, the performance of the RTMP protocol is compared for live video 
streaming on this network with different streams facing multiple failures.  
Results: Our experiments show that network failure recovery time in SDN is 
directly depends on the video stream recovery time while in traditional 
networks, streams need to be buffered again and it takes another several 
seconds due to the long interruption time. We propose an equation to give a 
rough estimation of data loss in SDN network during failures based on our 
observations which helps us in comparisons. We also demonstrate the 
average switching time in the SDN networks is almost half of the switching 
time in traditional networks.  
Conclusion: Our experiments proves, practically, video recovery time in SDN 
is less than a traditional network and has more correspondence with 
mechanisms of RTMP. 
 

©2019 JECEI. All rights reserved. 

 

Keywords: 
Software-defined network 

Hybrid SDN 

RTMP  

Live video streaming 

Fault Tolerance 

 

 

 

*Corresponding Author’s Email 
Address: 
h.khanmirza@kntu.ac.ir 

 

 

Introduction 

Software-Defined Network (SDN) denotes a specific 

approach in designing networks that try to separate the 

decision-oriented control plane functions from data 

plane functions that mainly deal with the forwarding of 

network packets. The main advantage of this separation 

is in this fact that the responsibility of the control plane 

can be assigned to a software or a set of software 

packages as the brain of the network known as the 

network controller. The network controller dynamically 

and centrally controls the behavior of the whole network 

based on the defined policies, which give great flexibility 

to network providers to rapidly change the policies and 
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introduce new services based on the customer  needs.  It  

also reduces network operation costs by reducing the 

number of administrators and eliminating human errors.  

The core of the network controller package provides a 

set of Application Programming Interfaces (APIs) for 

developing various controlling software and translates 

the intended policies into commands which are installed 

in data plane devices through protocols like OpenFlow. 

SDN paradigm increases flexibility and eases the 

management and debugging of the network, and for 

these reasons, it is strongly considered as a proper 

alternative for traditional IP networks ‎[1]. Nowadays, 

some IT-related businesses have implemented this type 

of network in their enterprise or Wide-Area Network 

(WAN) networks known as Software-Defined WAN 

(SDWAN) technology. It is predicted that 25% of WAN 

traffic would be for SDWAN by 2021 ‎[2].  

For SDN to become a prevalent paradigm, traditional 

devices of networks should be upgraded or replaced, 

which imposes a high cost to the companies. Besides, 

the migration process may cause prolonged periods of 

servicing interruptions. The gentler solution to this 

problem is to move gradually toward SDN, where SDN-

capable devices are progressively added to the network. 

In such networks, known as hybrid SDN networks, both 

types of traditional and SDN-capable devices co-exist 

and function simultaneously. In most hybrid SDN 

networks, some modules are installed in SDN data path 

devices or in the controller that makes them capable of 

understanding the protocols of traditional networks and 

talking with traditional devices. Fig. 1 shows a typical 

hybrid SDN network model ‎[3].  

 

Fig. 1:  Illustration of hybrid SDN network: SDN enabled 
OpenFlow switches operate alongside legacy switches ‎[4]. 

 

Currently, video traffic accounts for more than 70% of 

Internet traffic, and it is likely to reach 90% by 2020. 

Real-time or live video streaming is of great importance 

in many applications, including live events, video 

conferences, video surveillance, and public safety. These 

applications need a reasonable delay and jitter support 

from the underlying network to deliver a smooth 

playback and the expected user experience in case of 

congestion and network outage, which is very common 

in networks. Most video-on-demand (VOD) applications 

and streaming protocols provide various built-in high-

level fault tolerance mechanisms like video stream 

replication and client-side buffering ‎[5] to tackle the 

issue. These mechanisms are often difficult to design, 

put pressure on streaming servers, and require tighter 

integration of streaming protocols with underlying 

forwarding protocols. In our research, we mainly want to 

find the level of correspondence between fault-

tolerance mechanisms in streaming protocols like RTMP 

and fault tolerance mechanisms in hybrid SDNs, 

especially when the network faces faults.  

Various protocols have been presented for live video 

streaming, which can be selected using the service type 

or software/hardware infrastructure. Many of the video 

protocols employ adaptive streaming such that audio 

and video contents of the network are adapted based on 

constraints of the network, and each one uses its specific 

methods to stream data. RTMP (Real-Time Messaging 

Protocol) ‎[6] is developed by Macromedia and is one of 

the most widely used protocols for video streaming and 

VOD applications on the Internet. RTMP uses 

Transmission Control Protocol (TCP) and employs a 

combination of buffering and prefetching methods to 

implement fault tolerance ‎[7]. Separation of control and 

data plane in SDN helps to provide better fault tolerance 

in networks because the controller can understand the 

semantics of packets arriving from various sources and 

occurred faults, and also it has a central view of all 

available resources ‎[8]. Consequently, when a link is 

disconnected, as an example, the controller can 

understand which links are active and which available 

resources should be substituted to deliver the services 

without interruption. Without the dynamic 

programmability feature of SDN, providing a fault-

tolerant service becomes a real challenge to the degree 

that most approaches on video streaming over SDN are 

compared with high capacity and rather expensive 

traditional network environments ‎[9]. By the emergence 

of the SDN paradigm, valuable researches are done on 

video over SDN subject. Most of the researches focuses 

on traffic engineering and efficient routing algorithms to 

provide quality of service for video 

streams ‎[1] ‎[10]‎[11]‎[12]. Some works also propose a new 

architecture for control and data plane ‎[13]‎[14]. So far, a 

few works have studied the behavior of video streaming 

protocols and their fault tolerance mechanisms, 

especially in live stream scenarios. Authors in ‎[5] have 

tested several streaming protocols on a pure SDN 

testbed. Most of the other works focus on tolerating 

faults in the control plane ‎[15]‎[16]‎[17]‎[18]. 

In this paper, at first, we propose a hybrid SDN 



Fault Tolerance of RTMP Protocol for Live Video Streaming Applications in Hybrid Software-Defined Networks 

243 
 

architecture with an ONOS (Open Network Operating 

System) controller ‎[19]. This architecture is built based 

on a real-world traditional enterprise network. The new 

architecture helps current administrators with little 

knowledge of SDN to experience a new paradigm of 

networking and gradually shift their production network 

toward the full SDN model based on their budget and 

intended plan.  In addition, our proposed approach does 

not force to employ additional and unnecessary 

protocols to avoid complexity in building, configuring, 

and maintaining. In contrast with other hybrid 

approaches ‎[3] ‎[20], our emphasis is on simplicity. 

In the next step, we conduct multiple live video 

streaming experiments with RTMP over the new hybrid 

network in the presence of various network faults. With 

these tests, we investigate the practicability and 

effectiveness of our proposed architecture in one hand 

and the fault-tolerance of RTMP protocol on the other 

hand. Our experiments show that the hybrid scheme, 

not only helps gradual transition to the new networking 

paradigm but also hides some severe shortcomings of 

traditional networks, especially in a faulty and congested 

environment. Based on experiments, we conclude that 

the SDN paradigm has better correspondence with the 

streaming mechanisms of RTMP. To this end, video is 

transmitted from a live video source in the traditional 

network to video streaming servers in SDN and 

traditional networks. To the best of our knowledge, this 

is the first research that studies the performance of live 

video streaming on a hybrid SDN network. The rest of 

this paper is organized as follows: Section II studies 

various faults in the networks. Section III presents the 

implementation and analysis methods. Section IV 

presents the empirical results. Finally, the paper is 

concluded in Section V, and future suggestions are 

presented.  

Network Faults  

Different types of failures might occur in a network 

that can be separated based on where the fault has 

occurred.  

A.  Data Plane Faults  

The primary duty of a data plane consisting of SDN-

capable switches is forwarding packets based on the 

rules installed in their route table. The most common 

error at this plane is a link failure, which might occur due 

to cable failure ‎[21]. Such faults might also be due to 

software bugs or incorrect configuration of the devices 

by operators ‎[22]. In this study, failures of the data plane 

are implemented as device failure or communication link 

disconnection, and fault recovery is performed on other 

active links ‎[26]. In order to recover from such faults, 

techniques like proactive forwarding and planned back-

up paths are used ‎[24].      

B.  Control Plane Faults  

SDN controller defines rules based on network 

policies and installs them on the network devices in the 

data plane. Controller failure, application unavailability, 

API failure are among the faults which might occur in this 

plane. Such faults can be recovered by creating a cluster 

of mirrored controllers. If a fault occurs in one controller, 

one of the cluster members becomes active, and loss of 

network control and traffic is avoided ‎[25]. Other 

methods try to keep an SDN network active without 

using OpenFlow protocol and can be used in scenarios 

when the communication of a device with the controller 

is disconnected. In such circumstances, SDN-capable 

devices switch to the standalone mode and operate as a 

traditional network device and keep the network 

working until the communication path is recovered ‎[26]. 

Implementation Method  

Fig. 2 shows the implemented experiment 

environment of this manuscript. The environment is 

implemented in Graphical Network Simulator-3 

(GNS3) ‎[27]. GNS3 is a network emulator software and is 

primarily used for accurate modeling and analysis of 

network protocols and networks with real-world device 

models. Our network consists of two SDN and two 

traditional networks. We use OpenvSwitch (OVS) 

switches v2.4.0 ‎[28] in the data plane and ONOS v1.15.0 

in the controller plane ‎[19]. Today, there are plenty of 

choices for the controller from the centralized, 

multithreaded to the distributed controllers, which are 

extensively discussed in. Since we are planning to 

implement the proposed architecture in a production 

network, it is not reasonable to use centralized 

controllers due to future scalability issues. On the other 

hand, most of the distributed controllers are commercial 

and closed source and force the user to use vendor-

specific devices, according to ‎[1]. To avoid vendor-lockin 

problems, we investigated open source solutions. 

Among open source solutions, only ONOS and 

OpenDayLight (ODL) ‎[29] controllers are used in the 

production environment and actively supported by the 

major players of the computer network field.  

Several reasons motivated us to prefer ONOS to ODL: 

1. ONOS provides a useful platform for developing 

network applications for application-specific 

scenarios, including custom communication routing, 

management, or service monitoring. 

2. ONOS supports hardware and software updates 

without interrupting network traffic. 

3. It can be executed as a distributed system with 

multiple servers and allows simultaneous use of 

their CPU and memory resources with failure 

tolerance 

4. ONOS platform is developed as an extendible, 
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modular, and distributed controller. 

5. ONOS has more flexibility in building the 

infrastructure layer such that it is able to configure 

OpenFlow switches to emulate devices of layer 

three and supports switching devices of layer 2 with 

OpenFlow capabilities.  

6. It can install paths automatically using the Fast 

Reroute (FRR) mechanism, which significantly 

reduces switching time compared to a manual 

configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  Architecture 

In [3], several architectures listed to implement a 

hybrid SDN network. An organization might choose one 

of the architectures based on factors like its target 

budget for migration, current network design, and 

requirement of its services. As this paper is a research 

base for a real migration scenario, we selected an 

isolated island model, since it noticeably eases the 

migration process in several aspects. First, the 

organization can create a small SDN island according to 

its budget and gain real experiences by routing part of its 

actual traffic over the new network. Second, the island 

can be extended, duplicated, and tested without 

interfering with the old network. Third, the new islands 

can be used to build new service types or application 

domains in addition to the old services over the 

traditional network. To ease the development of the 

hybrid scheme, we created the SDN site, named SDN1, in 

the middle of the traditional network in  a  way  that  the  

7. ONOS requires less hardware compared to the ODL 

controller. 

8. ONOS has a more robust cluster management 

system ‎[30]. 

ONOS controllers are booted from the virtual 

environment running on Oracle VirtualBox ‎[31] with 

identical hardware and are added to GNS3. Each of the 

controllers is executed on an Ubuntu virtual machine 

with a dual-core CPU, 2GB of RAM, 10GB of HDD, and a 

network interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

network is partitioned into two isolated parts. With this 

configuration, the SDN site acts as a transit network and 

can be extended in all directions toward edges switch-

by-switch until all the network turned into the full SDN 

model.  

This architecture has an additional advantage that the 

SDN site manages the core of our network, where the 

transition is more straightforward due to having less 

protocol variety. However, in the core, the traffic is 

aggregated from several edge points and needs smarter 

management to meet service level agreements. SDN1 

has a cluster of controllers, including two ONOS 

controllers, where their state is synchronized 

automatically and continuously.  

The SDN2 site models a customer site and 

implemented to compare the SDN-to-SDN and SDN-to-

traditional interactions in failures.  

At the edge of both SDN networks, Cisco routers are 

used to communicate with the external network and 

Fig. 2: Architecture of the implemented network platform. Red marks show the location of injected faults. 
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route the packets. In SDN2 and LN2, there is a video 

streaming server that uses the Wowza streaming 

server ‎[32], streaming RTMP video traffic with different 

bit rates, frame rates, and resolutions. In LN1, using 

Open Broadcaster Software (OBS) studio ‎[33], which is a 

live video stream recorder and player software, live 

video is captured and is transmitted to video streaming 

servers. In SDN1, seven OVS instances are installed and 

are connected to the controllers’ cluster. With this 

strategy, both controllers in the cluster have full control 

over all of the switches, and if one of the controllers 

fails, the other controller takes control. In SDN2, there 

are five OVSes managed by a standalone controller. 

When the switches are connected to their respective 

controllers, rules of their flows are installed into ONOS.  

Fig. 3 shows the resultant topology of SDN1 after the 

switches receive OpenFlow packets by the controller 

cluster. All controllers of the cluster are defined in each 

OVS instance. When the switch is turned on, and the 

OpenFlow packet is transmitted, the workload on each 

controller is reduced, and each controller manages the 

switches actively. Assigning switches to the controller in 

new versions of ONOS is performed by Atomix ‎[30]. 

In experiments, we create intentional faults in SDN1 

and LN1 networks. In traditional networks, we employ 

the recommended three-layer hierarchical design of 

Cisco ‎[34], and it corresponds to our current network 

architecture. Both traditional networks use the Open 

Short Path First (OSPF) protocol for routing, and each of 

them is a separate subnetwork. In all experiments, clocks 

of all devices get synchronized. Hybrid networks must 

employ a dual routing system since traditional networks 

use distributed protocols to build routing tables, while in 

SDN networks, the controller centrally calculates and 

dictates the routes. In a common and straightforward 

method, the controller has the responsibility for 

connecting two sides by translating routing information. 

In this model, all SDN switches relay all protocol-related 

packets toward the controller. The controller 

understands these packets using a set of installed helper 

modules and reads and applies the routing information 

into the SDN data plane. It also distributes the routing 

information from the SDN side to the traditional side 

with the same protocol used on the traditional side.  

In our proposed topology, a tunnel is created 

between edge routers of the SDN networks, and the 

tunnels are defined as OSPF interfaces. The routers at 

the edge of SDN1 receive traffic of OSPF and apply it to 

their routing table. Thus, the traffic of OSPF packets does 

not directly enter SDN1. If this mechanism is not used 

and the packets directly enter SDN1, since OSPF packets 

are unknown to the switches, they deliver the unknown 

traffic to the controller. In the controller, the OSPF 

routing module should be installed to handle these 

packets, which produces a high workload on the 

controller, as discussed. Routing in SDN can be executed 

either manually or dynamically using routing applications 

written on top of ONOS. Migrating from the traditional 

world and having a great experience, we decided to 

employ the Border Gateway Protocol (BGP) for routing 

inside SDN1 and SDN2 networks. ONOS has built-in 

support for BGP via a module. Switches in SDN network 

talk with the controller with BGP, and the controller 

builds the central and aggregated routing table with BGP 

advertisements and applies rules downward to switches 

with OpenFlow protocol. To connect devices of SDN and 

traditional network, edge routers of SDN distribute the 

routes inserted by BGP in their routing table in the OSPF. 

 
Fig. 3: Topology of SDN1 in ONOS. 

 

Some hybrid approaches, such as SDN-IP 

architecture ‎[20], suggest treating each SDN island as an 

AS (Autonomous System). They developed an application 

that provides the integration mechanism between BGP 

and ONOS within the AS. At the protocol level, SDN-IP 

behaves as a regular BGP speaker. Our architecture has 

several advantages over such proposals. First, such 

approaches impose the overhead of running another 

protocol (BGP) beside the intra-AS protocol. All switches 

in the traditional sites must understand BGP protocol in 

addition to OSPF, which complicates the configuration, 

operation, and maintenance of the network. Second, 

BGP is a complex internet-scale routing protocol and 

principally used in ISP or service provider networks, and 

basically, it is not intended to be used in organizations or 

enterprise networks. In the proposed approach, BGP is 

used only inside the SDN1 site, and LN networks are not 

aware of BGP as they talk with their neighbors with OSPF 

packets through tunnels. 

B.  Analysis  

In the implemented network, the video stream is 

transmitted for live streaming to the Wowza Streaming 

Engine by OBS Studio, and Wireshark collects video 

traffic at the beginning and end of the network. With this 

method, the output traffic of OBS and input traffic to 
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Wowza can be easily captured for future analyses. To 

evaluate the performance of RTMP when a fault occurs, 

we tested videos of different qualities, as shown in Table 

1. According to this table, there are low bit rate and high 

bit rate test for each video quality. Besides, video 

streaming for each bit rate is performed with two frame 

rates. For each experiment, data is collected with and 

without fault. According to the collected samples, the 

performance of RTMP is evaluated based on fault 

recovery time in SDN, video data loss, latency, and jitter. 

To measure the lost video data, we use the following 

formula to estimate the real data loss:   

                         (1)             

In this formula, Navg is the average number of video 

packets in a second in the corresponding fault-less 

scenario, and R and Savg are network recovery time and 

the average size of the packets, respectively. Using the 

above formula, we estimate the amount of lost data for 

each sample, and we report the average of high and low 

bitrates. We also calculate latency and jitter using the 

average Round Trip Time (RTT) reported by Wireshark. 

 
Table 1: Video Streaming Parameters 
 
Streaming 
Protocol 

Resolution 
(pixel) 

Bitrate 
(bps) 

Framerate 
(fps) 

RTMP 240 200 - 700 24 - 60 
RTMP 360 400 - 900 24 - 60 
RTMP 480 500 - 1000 24 - 60 

 

C.  Data Plane Fault Tolerance 

To test data plane fault tolerance, we remove the 

links or switches between source and destination in the 

test environment, which forces the controller to re-

calculate the new routes. This process must be done in a 

limited time period in a way that live streaming is 

sustained during the auto-recovery process without user 

intervention.  

D.  Control Plane Fault Tolerance   

Control plane fault tolerance is defined as the ability 

to recover the control of the data plane after the failure 

of an SDN controller, and the data plane continues its 

operation. To test, the main controller in the cluster is 

disabled.  

E.  Fault Tolerance in Traditional Networks  

In the design of traditional networks, having 

redundant links is an important feature that prevents 

interruption of traffic flows in case of link failures. 

However, Ethernet protocol with the MAC learning 

mechanism ‎[35] does not support reserving redundant 

links as it can cause the creation of loops. Loops can 

paralyze a network, especially in broadcast scenarios. 

With loops in the network, broadcast traffic is 

continuously flowing and get larger in each hop and 

stops only when the bandwidth is filled, and devices halt 

due to massive traffic volume. In large LANs to have 

redundant links, Spanning Tree Protocol (STP) ‎[36] is 

used, which is a protocol that blocks the redundant 

route when it is not required but allows us to have 

several reserved paths between switches; one route as 

the main route and others as reserves. If the main route 

is disconnected, the reserve route immediately replaces 

the main one. In order to compare the recovery time of 

the traditional network with SDN, link failure faults are 

applied in LN1. 

Empirical and Analytical Results  

A.  Data Plane Fault  

a) Estimating Video Data Loss  

Fig. 4 shows the transmitted and received video data 

and estimation of lost data in a 1-min video stream in 

Kilobyte (KB). It is trivial that with a higher quality of 

videos, data loss increases because higher resolution and 

framerate increases the data rate. According to Fig. 4, 

the data loss in the best quality is about 2MB, which is 

approximately four times more than what the minimum 

quality misses. Considering the diagram represented in 

Fig. 5, the percent of loss in all videos is almost the same. 

This indicates that data loss is quite constant. In other 

words, if two to three frames are lost in low-quality 

video streaming, the same amount of data is lost in 

higher quality videos. Data loss in SDN is far less than a 

traditional network which is discussed in 4.c.(a) 

The important point which can be seen in Fig. 5 is the 

accuracy of data loss estimation based on (1). By adding 

the amount of received data at the destination with the 

amount of estimated data loss, total estimated 

transmitted data volume is obtained, which slightly 

differs from the total measured transmitted data at the 

source (numbers written at the top of the columns). This 

difference mainly relates to the adaptive streaming 

mechanism of RTMP that adjusts the quality of video and 

amount of data based on the network condition. 

Considering these results, we can conclude that (1) has a 

close-to-reality estimation of data loss in short periods of 

streaming.  
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Fig. 4: Data Loss estimation. 
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Fig. 5: Data Loss Percentage. 

 

b) Latency 

Fig. 6 shows the average latency with and without 

fault using the RTT parameter measured with Wireshark 

in milliseconds. Based on Fig. 6, there is no meaningful 

relationship between latency and video stream quality. 

However, occurring of faults in the network increases 

latencies up to 4 times. Amount of delays due to faults 

strongly depends on the controller speed to detect and 

recover the faulty route, which has a tight dependency 

with switching time and is discussed in 4.D(a). This result 

was expected due to this fact that increasing the 

framerate increases the amount of data injected into the 

network core, and this is not related to the delay of data. 

However, with higher frame rates, more packets 

experience higher delays. 

c) Jitter 

Fig. 7 shows the average jitter in the original network 

and the presence of faults. This parameter is calculated 

based on changes in latency between all consecutive 

packets. In general, jitter in both is negligible because 

the operational environment is a simulation 

environment. Similar to the latency, jitter increases with 

faults which were expected; since when data 

transmission is disrupted, latency in receiving the 

packets at the destination increases and causes 

significant gaps in latency. Also, like latency, this 

parameter does not depend on the quality and 

streaming rate of the videos, too. Jitter amplitude mainly 

depends on network condition, the number of streams, 

and their behavior. 
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Fig. 6: Average Latency (ms). 
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Fig. 7: Average jitter (ms). 

 

d) Switching Time  

Fig. 8 shows the switching time when a fault occurs in 

the network. These results indicate that traffic recovery 

time very closely matches the average switching time. 

Video streaming traffic is affected until the controller 

detects the fault and uses a redundant route. During this 

recovery process, the live video freezes on the Wowza 

stream engine.  

In SDN1, the average fault recovery time in the data 

plane is around 15 seconds, with a maximum latency of 

17 seconds, which is an acceptable time to recover from 

a disconnection fault. In all of the obtained samples, 

RTMP was able to recover the live video stream when a 

failure occurred. 

B.  Control Plane Fault  

In order to test control plane failure, one of the ONOS 

controllers in the cluster is disabled. All OVS switches 

under control of the disabled controller continued their 

normal operation as the other controller instantly takes 

the control, and no video stream traffic is affected. This 

behavior was anticipated from ONOS, as recovering from 

this kind of fault is supported by default ‎[37]. When both 

controllers of SDN1 are disabled, data plane traffic is 

affected, because there is no other controller to take 

control of OVSs.  

For such conditions, ONOS pushes OVSs to a pre-

defined standalone mode.  

Indeed, when OVS instances get disconnected from 

the controller, they operate as a traditional switch and 

receive the traffic from the port learned through MAC 

learning until their connection to the controller is 

recovered. Another scenario of control plane failure is 

the disconnection of the communication cable of one of 

the ONOS controllers, which shows a behavior similar to 

the case in which one of the controllers is disabled, and 

the data plane was not affected. This case is verified by 

the Wowza server, using ping and collecting traffic by 
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Wireshark.  
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Fig. 8: Switching time of the Network for recovering video 

stream traffic. 
 

Table 2: Comparison of data lost in SDN and traditional 
network Numbers calculated using (1) and results of Fig. 8 and 
Fig. 9 
 

Resolution 
(pixel) 

Bitrate 
(bps) 

Total Data 
Sent (KB) 

Loss Data 
in SDN (KB) 

Loss Data 
in Legacy 
Network 
(KB) 

240 200 1965 489 1515 
240 700 5890 1471 4560 
360 400 3549 682 2680 
360 900 7482 1857 5697 
480 500 4320 1043 3372 
480 1000 8280 1992 6377 

 

C.  Fault in Traditional Network 

a) Video Recovery Time  

To compare the behavior of video recovery time in 

traditional networks with SDN, we disconnected a link in 

the LN1 site. After disconnection, STP enters the 

listening and learning steps after sensing the 

interruption and finally enters a forwarding state. This 

process takes 30 to 40 seconds from detection to 

retransmission. Since the processing time of STP is 

specified by the standard, video recovery time is 

calculated through collecting data by Wireshark, which is 

shown in Fig. 9. As can be seen, the average video 

recovery time at the destination is 48 seconds.  

Fig. 9: Video stream traffic recovery time. 

By substituting the recovery times obtained in this 

experiment and from the experiment 4.A.d in (1), 

amount of lost data when a fault occurs in the SDN and 

traditional network is obtained; for example, for the best 

quality scenario, 480p-1000, this value is 1992 KB in SDN 

while it is 6377 kB in a traditional network. The amount 

of loss for other scenarios is given in Table 2.  

Fig. 10 compares the data loss percentage in SDN and 

traditional networks. As can be seen, data loss in the 

traditional network is about three times that of SDN.  

We also observed an operational difference for RTMP 

in SDN and traditional networks in the presence of this 

fault. In the SDN test, RTMP protocol was interrupted 

around 15 seconds and recorded one integrated file 

while the video remained standstill for this period.  
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Fig. 10: Comparing the percentage of data loss in SDN and 

traditional network . 

 

However, in experiments performed on the 

traditional network, which was interrupted around 40 

seconds, the recorded file is divided into two sections. 

The recording was stopped after 25 seconds, and after 

the support link is installed and the communication link 

established with the server, capturing continued with a 

new file. We believe that this behavior relates to the 

RTMP standard, which requires some time for buffering 

after a long interruption. According to our 

measurements, the buffering time is about 10s.  

Results and Discussion 

Real-time video streaming is an essential solution for 

many applications like public safety, entertainment, and 

teleconferencing. However, there is a lack of 

understanding of how different real-time video 

streaming protocols perform in terms of fault tolerance. 

In this study, fault tolerance performance of a well-

known real-time video streaming protocol, RTMP, is 

tested in a hybrid SDN network. Many of the streaming 

services like Netflix and YouTube provide fault tolerance 

between the client and the server; however, in this 

study, fault tolerance between the video source and the 

server is tested.  

Conclusion 

According to the results, it can be concluded that: 1) 

network failure recovery time (switching time) in SDN is 

the same as the video stream recovery time while in 

traditional networks, streams need to be buffered again 
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and it takes another 10 seconds due to the long 

interruption time. 2) Equation (1) gives a reasonable 

estimation of data loss, and the numbers are very close 

to real measurements. 3) Current video traffic flows 

without interruption even if all controllers fail, but new 

video streams need at least one active controller. 4) The 

average switching time in the SDN network was 15 

seconds, which is almost half of the switching time in 

traditional networks. 5) Video recovery time in SDN is 

less than a traditional network and has more 

correspondence with mechanisms of RTMP. 6) According 

to previous researches, best latency and jitter for live 

video streaming are 146 and 28 ms ‎[38], and average 

values we obtained in SDN networks under faulty 

conditions are 179 and 12ms, which indicates the 

flawless operation of RTMP in hybrid networks.  

In the next step, we are trying to test the 

performance of other real-time video streaming 

protocols on our hybrid networks.  
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