
 J. Electr. Comput. Eng. Innovations, 7(2): 241-250, 2019

Doi: 10.22061/JECEI.2020.6416.314 241

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

 Research paper

Fault Tolerance of RTMP Protocol for Live Video Streaming
Applications in Hybrid Software-Defined Networks

A. Oloomi, H. Khanmirza*

Computer Engineering Department, K. N. Toosi University of Technology, Tehran, Iran.

Article Info Abstract

Article History:
Received 14 August 2018
Reviewed 11 October 2018
Revised 04 March 2019
Accepted 11 May 2019

 Background and Objectives: Nowadays, video hosting services receive and
stream videos using standard protocols like Real-Time Messaging Protocol
(RTMP). During the streaming process, video file streams are usually divided
into small multi-second parts, and the player receives these parts instead of
the whole file at once. Most of the streaming protocols are capable of
adaptive streaming and tolerating faults like device failures, and link
disconnections. Faults might affect the performance of live streaming in
terms of packet loss, latency, jitter, and video quality. The software-defined
networking paradigm has also gained momentum in enterprise networks due
to its lower-cost management and better network utilization. However, full
migration from the current networks to the SDN model is not practical.
Methods: The purpose of this study is to investigate the effectiveness of fault
tolerance mechanisms of RTMP protocol on hybrid software-defined
networks (SDN). In this paper, a practical and straightforward hybrid network
architecture is proposed for gradual migration from traditional IP networks.
Then, the performance of the RTMP protocol is compared for live video
streaming on this network with different streams facing multiple failures.
Results: Our experiments show that network failure recovery time in SDN is
directly depends on the video stream recovery time while in traditional
networks, streams need to be buffered again and it takes another several
seconds due to the long interruption time. We propose an equation to give a
rough estimation of data loss in SDN network during failures based on our
observations which helps us in comparisons. We also demonstrate the
average switching time in the SDN networks is almost half of the switching
time in traditional networks.
Conclusion: Our experiments proves, practically, video recovery time in SDN
is less than a traditional network and has more correspondence with
mechanisms of RTMP.

©2019 JECEI. All rights reserved.

Keywords:
Software-defined network

Hybrid SDN

RTMP

Live video streaming

Fault Tolerance

*Corresponding Author’s Email
Address:
h.khanmirza@kntu.ac.ir

Introduction

Software-Defined Network (SDN) denotes a specific

approach in designing networks that try to separate the

decision-oriented control plane functions from data

plane functions that mainly deal with the forwarding of

network packets. The main advantage of this separation

is in this fact that the responsibility of the control plane

can be assigned to a software or a set of software

packages as the brain of the network known as the

network controller. The network controller dynamically

and centrally controls the behavior of the whole network

based on the defined policies, which give great flexibility

to network providers to rapidly change the policies and

http://jecei.sru.ac.ir/
mailto:h.khanmirza@kntu.ac.ir

A. Oloomi et al.

242

introduce new services based on the customer needs. It

also reduces network operation costs by reducing the

number of administrators and eliminating human errors.

The core of the network controller package provides a

set of Application Programming Interfaces (APIs) for

developing various controlling software and translates

the intended policies into commands which are installed

in data plane devices through protocols like OpenFlow.

SDN paradigm increases flexibility and eases the

management and debugging of the network, and for

these reasons, it is strongly considered as a proper

alternative for traditional IP networks ‎[1]. Nowadays,

some IT-related businesses have implemented this type

of network in their enterprise or Wide-Area Network

(WAN) networks known as Software-Defined WAN

(SDWAN) technology. It is predicted that 25% of WAN

traffic would be for SDWAN by 2021 ‎[2].

For SDN to become a prevalent paradigm, traditional

devices of networks should be upgraded or replaced,

which imposes a high cost to the companies. Besides,

the migration process may cause prolonged periods of

servicing interruptions. The gentler solution to this

problem is to move gradually toward SDN, where SDN-

capable devices are progressively added to the network.

In such networks, known as hybrid SDN networks, both

types of traditional and SDN-capable devices co-exist

and function simultaneously. In most hybrid SDN

networks, some modules are installed in SDN data path

devices or in the controller that makes them capable of

understanding the protocols of traditional networks and

talking with traditional devices. Fig. 1 shows a typical

hybrid SDN network model ‎[3].

Fig. 1: Illustration of hybrid SDN network: SDN enabled
OpenFlow switches operate alongside legacy switches ‎[4].

Currently, video traffic accounts for more than 70% of

Internet traffic, and it is likely to reach 90% by 2020.

Real-time or live video streaming is of great importance

in many applications, including live events, video

conferences, video surveillance, and public safety. These

applications need a reasonable delay and jitter support

from the underlying network to deliver a smooth

playback and the expected user experience in case of

congestion and network outage, which is very common

in networks. Most video-on-demand (VOD) applications

and streaming protocols provide various built-in high-

level fault tolerance mechanisms like video stream

replication and client-side buffering ‎[5] to tackle the

issue. These mechanisms are often difficult to design,

put pressure on streaming servers, and require tighter

integration of streaming protocols with underlying

forwarding protocols. In our research, we mainly want to

find the level of correspondence between fault-

tolerance mechanisms in streaming protocols like RTMP

and fault tolerance mechanisms in hybrid SDNs,

especially when the network faces faults.

Various protocols have been presented for live video

streaming, which can be selected using the service type

or software/hardware infrastructure. Many of the video

protocols employ adaptive streaming such that audio

and video contents of the network are adapted based on

constraints of the network, and each one uses its specific

methods to stream data. RTMP (Real-Time Messaging

Protocol) ‎[6] is developed by Macromedia and is one of

the most widely used protocols for video streaming and

VOD applications on the Internet. RTMP uses

Transmission Control Protocol (TCP) and employs a

combination of buffering and prefetching methods to

implement fault tolerance ‎[7]. Separation of control and

data plane in SDN helps to provide better fault tolerance

in networks because the controller can understand the

semantics of packets arriving from various sources and

occurred faults, and also it has a central view of all

available resources ‎[8]. Consequently, when a link is

disconnected, as an example, the controller can

understand which links are active and which available

resources should be substituted to deliver the services

without interruption. Without the dynamic

programmability feature of SDN, providing a fault-

tolerant service becomes a real challenge to the degree

that most approaches on video streaming over SDN are

compared with high capacity and rather expensive

traditional network environments ‎[9]. By the emergence

of the SDN paradigm, valuable researches are done on

video over SDN subject. Most of the researches focuses

on traffic engineering and efficient routing algorithms to

provide quality of service for video

streams ‎[1] ‎[10]‎[11]‎[12]. Some works also propose a new

architecture for control and data plane ‎[13]‎[14]. So far, a

few works have studied the behavior of video streaming

protocols and their fault tolerance mechanisms,

especially in live stream scenarios. Authors in ‎[5] have

tested several streaming protocols on a pure SDN

testbed. Most of the other works focus on tolerating

faults in the control plane ‎[15]‎[16]‎[17]‎[18].

In this paper, at first, we propose a hybrid SDN

Fault Tolerance of RTMP Protocol for Live Video Streaming Applications in Hybrid Software-Defined Networks

243

architecture with an ONOS (Open Network Operating

System) controller ‎[19]. This architecture is built based

on a real-world traditional enterprise network. The new

architecture helps current administrators with little

knowledge of SDN to experience a new paradigm of

networking and gradually shift their production network

toward the full SDN model based on their budget and

intended plan. In addition, our proposed approach does

not force to employ additional and unnecessary

protocols to avoid complexity in building, configuring,

and maintaining. In contrast with other hybrid

approaches ‎[3] ‎[20], our emphasis is on simplicity.

In the next step, we conduct multiple live video

streaming experiments with RTMP over the new hybrid

network in the presence of various network faults. With

these tests, we investigate the practicability and

effectiveness of our proposed architecture in one hand

and the fault-tolerance of RTMP protocol on the other

hand. Our experiments show that the hybrid scheme,

not only helps gradual transition to the new networking

paradigm but also hides some severe shortcomings of

traditional networks, especially in a faulty and congested

environment. Based on experiments, we conclude that

the SDN paradigm has better correspondence with the

streaming mechanisms of RTMP. To this end, video is

transmitted from a live video source in the traditional

network to video streaming servers in SDN and

traditional networks. To the best of our knowledge, this

is the first research that studies the performance of live

video streaming on a hybrid SDN network. The rest of

this paper is organized as follows: Section II studies

various faults in the networks. Section III presents the

implementation and analysis methods. Section IV

presents the empirical results. Finally, the paper is

concluded in Section V, and future suggestions are

presented.

Network Faults

Different types of failures might occur in a network

that can be separated based on where the fault has

occurred.

A. Data Plane Faults

The primary duty of a data plane consisting of SDN-

capable switches is forwarding packets based on the

rules installed in their route table. The most common

error at this plane is a link failure, which might occur due

to cable failure ‎[21]. Such faults might also be due to

software bugs or incorrect configuration of the devices

by operators ‎[22]. In this study, failures of the data plane

are implemented as device failure or communication link

disconnection, and fault recovery is performed on other

active links ‎[26]. In order to recover from such faults,

techniques like proactive forwarding and planned back-

up paths are used ‎[24].

B. Control Plane Faults

SDN controller defines rules based on network

policies and installs them on the network devices in the

data plane. Controller failure, application unavailability,

API failure are among the faults which might occur in this

plane. Such faults can be recovered by creating a cluster

of mirrored controllers. If a fault occurs in one controller,

one of the cluster members becomes active, and loss of

network control and traffic is avoided ‎[25]. Other

methods try to keep an SDN network active without

using OpenFlow protocol and can be used in scenarios

when the communication of a device with the controller

is disconnected. In such circumstances, SDN-capable

devices switch to the standalone mode and operate as a

traditional network device and keep the network

working until the communication path is recovered ‎[26].

Implementation Method

Fig. 2 shows the implemented experiment

environment of this manuscript. The environment is

implemented in Graphical Network Simulator-3

(GNS3) ‎[27]. GNS3 is a network emulator software and is

primarily used for accurate modeling and analysis of

network protocols and networks with real-world device

models. Our network consists of two SDN and two

traditional networks. We use OpenvSwitch (OVS)

switches v2.4.0 ‎[28] in the data plane and ONOS v1.15.0

in the controller plane ‎[19]. Today, there are plenty of

choices for the controller from the centralized,

multithreaded to the distributed controllers, which are

extensively discussed in. Since we are planning to

implement the proposed architecture in a production

network, it is not reasonable to use centralized

controllers due to future scalability issues. On the other

hand, most of the distributed controllers are commercial

and closed source and force the user to use vendor-

specific devices, according to ‎[1]. To avoid vendor-lockin

problems, we investigated open source solutions.

Among open source solutions, only ONOS and

OpenDayLight (ODL) ‎[29] controllers are used in the

production environment and actively supported by the

major players of the computer network field.

Several reasons motivated us to prefer ONOS to ODL:

1. ONOS provides a useful platform for developing

network applications for application-specific

scenarios, including custom communication routing,

management, or service monitoring.

2. ONOS supports hardware and software updates

without interrupting network traffic.

3. It can be executed as a distributed system with

multiple servers and allows simultaneous use of

their CPU and memory resources with failure

tolerance

4. ONOS platform is developed as an extendible,

A. Oloomi et al.

244

modular, and distributed controller.

5. ONOS has more flexibility in building the

infrastructure layer such that it is able to configure

OpenFlow switches to emulate devices of layer

three and supports switching devices of layer 2 with

OpenFlow capabilities.

6. It can install paths automatically using the Fast

Reroute (FRR) mechanism, which significantly

reduces switching time compared to a manual

configuration.

A. Architecture

In [3], several architectures listed to implement a

hybrid SDN network. An organization might choose one

of the architectures based on factors like its target

budget for migration, current network design, and

requirement of its services. As this paper is a research

base for a real migration scenario, we selected an

isolated island model, since it noticeably eases the

migration process in several aspects. First, the

organization can create a small SDN island according to

its budget and gain real experiences by routing part of its

actual traffic over the new network. Second, the island

can be extended, duplicated, and tested without

interfering with the old network. Third, the new islands

can be used to build new service types or application

domains in addition to the old services over the

traditional network. To ease the development of the

hybrid scheme, we created the SDN site, named SDN1, in

the middle of the traditional network in a way that the

7. ONOS requires less hardware compared to the ODL

controller.

8. ONOS has a more robust cluster management

system ‎[30].

ONOS controllers are booted from the virtual

environment running on Oracle VirtualBox ‎[31] with

identical hardware and are added to GNS3. Each of the

controllers is executed on an Ubuntu virtual machine

with a dual-core CPU, 2GB of RAM, 10GB of HDD, and a

network interface.

network is partitioned into two isolated parts. With this

configuration, the SDN site acts as a transit network and

can be extended in all directions toward edges switch-

by-switch until all the network turned into the full SDN

model.

This architecture has an additional advantage that the

SDN site manages the core of our network, where the

transition is more straightforward due to having less

protocol variety. However, in the core, the traffic is

aggregated from several edge points and needs smarter

management to meet service level agreements. SDN1

has a cluster of controllers, including two ONOS

controllers, where their state is synchronized

automatically and continuously.

The SDN2 site models a customer site and

implemented to compare the SDN-to-SDN and SDN-to-

traditional interactions in failures.

At the edge of both SDN networks, Cisco routers are

used to communicate with the external network and

Fig. 2: Architecture of the implemented network platform. Red marks show the location of injected faults.

Fault Tolerance of RTMP Protocol for Live Video Streaming Applications in Hybrid Software-Defined Networks

245

route the packets. In SDN2 and LN2, there is a video

streaming server that uses the Wowza streaming

server ‎[32], streaming RTMP video traffic with different

bit rates, frame rates, and resolutions. In LN1, using

Open Broadcaster Software (OBS) studio ‎[33], which is a

live video stream recorder and player software, live

video is captured and is transmitted to video streaming

servers. In SDN1, seven OVS instances are installed and

are connected to the controllers’ cluster. With this

strategy, both controllers in the cluster have full control

over all of the switches, and if one of the controllers

fails, the other controller takes control. In SDN2, there

are five OVSes managed by a standalone controller.

When the switches are connected to their respective

controllers, rules of their flows are installed into ONOS.

Fig. 3 shows the resultant topology of SDN1 after the

switches receive OpenFlow packets by the controller

cluster. All controllers of the cluster are defined in each

OVS instance. When the switch is turned on, and the

OpenFlow packet is transmitted, the workload on each

controller is reduced, and each controller manages the

switches actively. Assigning switches to the controller in

new versions of ONOS is performed by Atomix ‎[30].

In experiments, we create intentional faults in SDN1

and LN1 networks. In traditional networks, we employ

the recommended three-layer hierarchical design of

Cisco ‎[34], and it corresponds to our current network

architecture. Both traditional networks use the Open

Short Path First (OSPF) protocol for routing, and each of

them is a separate subnetwork. In all experiments, clocks

of all devices get synchronized. Hybrid networks must

employ a dual routing system since traditional networks

use distributed protocols to build routing tables, while in

SDN networks, the controller centrally calculates and

dictates the routes. In a common and straightforward

method, the controller has the responsibility for

connecting two sides by translating routing information.

In this model, all SDN switches relay all protocol-related

packets toward the controller. The controller

understands these packets using a set of installed helper

modules and reads and applies the routing information

into the SDN data plane. It also distributes the routing

information from the SDN side to the traditional side

with the same protocol used on the traditional side.

In our proposed topology, a tunnel is created

between edge routers of the SDN networks, and the

tunnels are defined as OSPF interfaces. The routers at

the edge of SDN1 receive traffic of OSPF and apply it to

their routing table. Thus, the traffic of OSPF packets does

not directly enter SDN1. If this mechanism is not used

and the packets directly enter SDN1, since OSPF packets

are unknown to the switches, they deliver the unknown

traffic to the controller. In the controller, the OSPF

routing module should be installed to handle these

packets, which produces a high workload on the

controller, as discussed. Routing in SDN can be executed

either manually or dynamically using routing applications

written on top of ONOS. Migrating from the traditional

world and having a great experience, we decided to

employ the Border Gateway Protocol (BGP) for routing

inside SDN1 and SDN2 networks. ONOS has built-in

support for BGP via a module. Switches in SDN network

talk with the controller with BGP, and the controller

builds the central and aggregated routing table with BGP

advertisements and applies rules downward to switches

with OpenFlow protocol. To connect devices of SDN and

traditional network, edge routers of SDN distribute the

routes inserted by BGP in their routing table in the OSPF.

Fig. 3: Topology of SDN1 in ONOS.

Some hybrid approaches, such as SDN-IP

architecture ‎[20], suggest treating each SDN island as an

AS (Autonomous System). They developed an application

that provides the integration mechanism between BGP

and ONOS within the AS. At the protocol level, SDN-IP

behaves as a regular BGP speaker. Our architecture has

several advantages over such proposals. First, such

approaches impose the overhead of running another

protocol (BGP) beside the intra-AS protocol. All switches

in the traditional sites must understand BGP protocol in

addition to OSPF, which complicates the configuration,

operation, and maintenance of the network. Second,

BGP is a complex internet-scale routing protocol and

principally used in ISP or service provider networks, and

basically, it is not intended to be used in organizations or

enterprise networks. In the proposed approach, BGP is

used only inside the SDN1 site, and LN networks are not

aware of BGP as they talk with their neighbors with OSPF

packets through tunnels.

B. Analysis

In the implemented network, the video stream is

transmitted for live streaming to the Wowza Streaming

Engine by OBS Studio, and Wireshark collects video

traffic at the beginning and end of the network. With this

method, the output traffic of OBS and input traffic to

A. Oloomi et al.

246

Wowza can be easily captured for future analyses. To

evaluate the performance of RTMP when a fault occurs,

we tested videos of different qualities, as shown in Table

1. According to this table, there are low bit rate and high

bit rate test for each video quality. Besides, video

streaming for each bit rate is performed with two frame

rates. For each experiment, data is collected with and

without fault. According to the collected samples, the

performance of RTMP is evaluated based on fault

recovery time in SDN, video data loss, latency, and jitter.

To measure the lost video data, we use the following

formula to estimate the real data loss:

 (1)

In this formula, Navg is the average number of video

packets in a second in the corresponding fault-less

scenario, and R and Savg are network recovery time and

the average size of the packets, respectively. Using the

above formula, we estimate the amount of lost data for

each sample, and we report the average of high and low

bitrates. We also calculate latency and jitter using the

average Round Trip Time (RTT) reported by Wireshark.

Table 1: Video Streaming Parameters

Streaming
Protocol

Resolution
(pixel)

Bitrate
(bps)

Framerate
(fps)

RTMP 240 200 - 700 24 - 60
RTMP 360 400 - 900 24 - 60
RTMP 480 500 - 1000 24 - 60

C. Data Plane Fault Tolerance

To test data plane fault tolerance, we remove the

links or switches between source and destination in the

test environment, which forces the controller to re-

calculate the new routes. This process must be done in a

limited time period in a way that live streaming is

sustained during the auto-recovery process without user

intervention.

D. Control Plane Fault Tolerance

Control plane fault tolerance is defined as the ability

to recover the control of the data plane after the failure

of an SDN controller, and the data plane continues its

operation. To test, the main controller in the cluster is

disabled.

E. Fault Tolerance in Traditional Networks

In the design of traditional networks, having

redundant links is an important feature that prevents

interruption of traffic flows in case of link failures.

However, Ethernet protocol with the MAC learning

mechanism ‎[35] does not support reserving redundant

links as it can cause the creation of loops. Loops can

paralyze a network, especially in broadcast scenarios.

With loops in the network, broadcast traffic is

continuously flowing and get larger in each hop and

stops only when the bandwidth is filled, and devices halt

due to massive traffic volume. In large LANs to have

redundant links, Spanning Tree Protocol (STP) ‎[36] is

used, which is a protocol that blocks the redundant

route when it is not required but allows us to have

several reserved paths between switches; one route as

the main route and others as reserves. If the main route

is disconnected, the reserve route immediately replaces

the main one. In order to compare the recovery time of

the traditional network with SDN, link failure faults are

applied in LN1.

Empirical and Analytical Results

A. Data Plane Fault

a) Estimating Video Data Loss

Fig. 4 shows the transmitted and received video data

and estimation of lost data in a 1-min video stream in

Kilobyte (KB). It is trivial that with a higher quality of

videos, data loss increases because higher resolution and

framerate increases the data rate. According to Fig. 4,

the data loss in the best quality is about 2MB, which is

approximately four times more than what the minimum

quality misses. Considering the diagram represented in

Fig. 5, the percent of loss in all videos is almost the same.

This indicates that data loss is quite constant. In other

words, if two to three frames are lost in low-quality

video streaming, the same amount of data is lost in

higher quality videos. Data loss in SDN is far less than a

traditional network which is discussed in 4.c.(a)

The important point which can be seen in Fig. 5 is the

accuracy of data loss estimation based on (1). By adding

the amount of received data at the destination with the

amount of estimated data loss, total estimated

transmitted data volume is obtained, which slightly

differs from the total measured transmitted data at the

source (numbers written at the top of the columns). This

difference mainly relates to the adaptive streaming

mechanism of RTMP that adjusts the quality of video and

amount of data based on the network condition.

Considering these results, we can conclude that (1) has a

close-to-reality estimation of data loss in short periods of

streaming.

1965

5890

3549

7482

4320

8280

489
1471

682
1857

1043
19921521

4605

2592

5439

3314

6000

200 700 400 900 500 1000
0

2000

4000

6000

8000

10000

12000

V
id

e
o

 D
a

ta
 (K

B
)

Resoulotion and Bitrate (bps)

 Loss Data

 All Data

 Faulty Data

240p 360p 480p

Fig. 4: Data Loss estimation.

Fault Tolerance of RTMP Protocol for Live Video Streaming Applications in Hybrid Software-Defined Networks

247

Fig. 5: Data Loss Percentage.

b) Latency

Fig. 6 shows the average latency with and without

fault using the RTT parameter measured with Wireshark

in milliseconds. Based on Fig. 6, there is no meaningful

relationship between latency and video stream quality.

However, occurring of faults in the network increases

latencies up to 4 times. Amount of delays due to faults

strongly depends on the controller speed to detect and

recover the faulty route, which has a tight dependency

with switching time and is discussed in 4.D(a). This result

was expected due to this fact that increasing the

framerate increases the amount of data injected into the

network core, and this is not related to the delay of data.

However, with higher frame rates, more packets

experience higher delays.

c) Jitter

Fig. 7 shows the average jitter in the original network

and the presence of faults. This parameter is calculated

based on changes in latency between all consecutive

packets. In general, jitter in both is negligible because

the operational environment is a simulation

environment. Similar to the latency, jitter increases with

faults which were expected; since when data

transmission is disrupted, latency in receiving the

packets at the destination increases and causes

significant gaps in latency. Also, like latency, this

parameter does not depend on the quality and

streaming rate of the videos, too. Jitter amplitude mainly

depends on network condition, the number of streams,

and their behavior.

3
0

.8
6

2
9

.6
1

4
4

.3
1

4
0

.8
5

3
6

.4
5

3
2

.9
6

5
0

.9
4

5
0

.4
4

3
9

.1
3

3
5

.4
2

5
4

.1
1

4
9

.6
9

1
4

3
.5

8

1
4

9
.6

4

1
8

3
.7

2
0

5
.3

8

1
6

2
.1

4

9
4

.8
2

1
7

1
.6

8 2
3

8
.1

4

1
6

1
.1

3

2
0

3
.2

2

2
3

3
.9

1

2
0

3
.7

7

200

24 (fps)

200

60 (fps)

700

24 (fps)

700

60 (fps)

400

24 (fps)

400

60 (fps)

900

24 (fps)

900

60 (fps)

500

24 (fps)

500

60 (fps)

1000

24 (fps)

1000

60 (fps)

0

50

100

150

200

250

T
im

e
 (
In

 m
il
is

e
c
o

n
d

s
)

 No Fault

 Faulty

240p 360p 480p

Fig. 6: Average Latency (ms).

2
.5

7

2
.2 3

.8

3
.3

3
.2

1

2
.3

5

4
.1

6

3
.9

6

3
.2

8

2
.5

4

4
.2

2

3
.8

9

2
1
.5

9

1
8
.5

4

1
0
.8

6

9
.6

8

1
5
.0

1

7
.2

4 1
0
.6

2

8
.9

6 1
2
.3

6

1
1
.3

3

9
.4

1

9
.0

7

200

24 (fps)

200

60 (fps)

700

24 (fps)

700

60 (fps)

400

24 (fps)

400

60 (fps)

900

24 (fps)

900

60 (fps)

500

24 (fps)

500

60 (fps)

1000

24 (fps)

1000

60 (fps)

0

5

10

15

20

25

T
im

e
 (
In

 m
il
li
s
e

c
o

n
d

s
)

 No Fault

 Faulty

240p 360p 480p

Fig. 7: Average jitter (ms).

d) Switching Time

Fig. 8 shows the switching time when a fault occurs in

the network. These results indicate that traffic recovery

time very closely matches the average switching time.

Video streaming traffic is affected until the controller

detects the fault and uses a redundant route. During this

recovery process, the live video freezes on the Wowza

stream engine.

In SDN1, the average fault recovery time in the data

plane is around 15 seconds, with a maximum latency of

17 seconds, which is an acceptable time to recover from

a disconnection fault. In all of the obtained samples,

RTMP was able to recover the live video stream when a

failure occurred.

B. Control Plane Fault

In order to test control plane failure, one of the ONOS

controllers in the cluster is disabled. All OVS switches

under control of the disabled controller continued their

normal operation as the other controller instantly takes

the control, and no video stream traffic is affected. This

behavior was anticipated from ONOS, as recovering from

this kind of fault is supported by default ‎[37]. When both

controllers of SDN1 are disabled, data plane traffic is

affected, because there is no other controller to take

control of OVSs.

For such conditions, ONOS pushes OVSs to a pre-

defined standalone mode.

Indeed, when OVS instances get disconnected from

the controller, they operate as a traditional switch and

receive the traffic from the port learned through MAC

learning until their connection to the controller is

recovered. Another scenario of control plane failure is

the disconnection of the communication cable of one of

the ONOS controllers, which shows a behavior similar to

the case in which one of the controllers is disabled, and

the data plane was not affected. This case is verified by

the Wowza server, using ping and collecting traffic by

200 700 400 900 500 1000

0

5

10

15

20

25

P
er

ce
nt

ag
e

(%
)

Resoulotion and Bitrate (bps)

 SDN Network Loos Data Percentage

480p360p240p

A. Oloomi et al.

248

Wireshark.

16
15

17

14

16

8

17

14
15 15 15 15

200

24 (fps)

200

60 (fps)

700

24 (fps)

700

60 (fps)

400

24 (fps)

400

60 (fps)

900

24 (fps)

900

60 (fps)

500

24 (fps)

500

60 (fps)

1000

24 (fps)

1000

60 (fps)

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

In
 s

e
c
o
n
d
s
)

 Switch Time

240p 360p 480p
Fig. 8: Switching time of the Network for recovering video

stream traffic.

Table 2: Comparison of data lost in SDN and traditional
network Numbers calculated using (1) and results of Fig. 8 and
Fig. 9

Resolution
(pixel)

Bitrate
(bps)

Total Data
Sent (KB)

Loss Data
in SDN (KB)

Loss Data
in Legacy
Network
(KB)

240 200 1965 489 1515
240 700 5890 1471 4560
360 400 3549 682 2680
360 900 7482 1857 5697
480 500 4320 1043 3372
480 1000 8280 1992 6377

C. Fault in Traditional Network

a) Video Recovery Time

To compare the behavior of video recovery time in

traditional networks with SDN, we disconnected a link in

the LN1 site. After disconnection, STP enters the

listening and learning steps after sensing the

interruption and finally enters a forwarding state. This

process takes 30 to 40 seconds from detection to

retransmission. Since the processing time of STP is

specified by the standard, video recovery time is

calculated through collecting data by Wireshark, which is

shown in Fig. 9. As can be seen, the average video

recovery time at the destination is 48 seconds.

Fig. 9: Video stream traffic recovery time.

By substituting the recovery times obtained in this

experiment and from the experiment 4.A.d in (1),

amount of lost data when a fault occurs in the SDN and

traditional network is obtained; for example, for the best

quality scenario, 480p-1000, this value is 1992 KB in SDN

while it is 6377 kB in a traditional network. The amount

of loss for other scenarios is given in Table 2.

Fig. 10 compares the data loss percentage in SDN and

traditional networks. As can be seen, data loss in the

traditional network is about three times that of SDN.

We also observed an operational difference for RTMP

in SDN and traditional networks in the presence of this

fault. In the SDN test, RTMP protocol was interrupted

around 15 seconds and recorded one integrated file

while the video remained standstill for this period.

200 700 400 900 500 1000

0

10

20

30

40

50

60

70

80

L
o

o
s
 D

a
ta

 P
e

rc
e

n
ta

g
e

 (
%

)

Resoulotion and Bitrate (bps)

 Tradional Network

 SDN Network

240p 360p 480p

Fig. 10: Comparing the percentage of data loss in SDN and

traditional network .

However, in experiments performed on the

traditional network, which was interrupted around 40

seconds, the recorded file is divided into two sections.

The recording was stopped after 25 seconds, and after

the support link is installed and the communication link

established with the server, capturing continued with a

new file. We believe that this behavior relates to the

RTMP standard, which requires some time for buffering

after a long interruption. According to our

measurements, the buffering time is about 10s.

Results and Discussion

Real-time video streaming is an essential solution for

many applications like public safety, entertainment, and

teleconferencing. However, there is a lack of

understanding of how different real-time video

streaming protocols perform in terms of fault tolerance.

In this study, fault tolerance performance of a well-

known real-time video streaming protocol, RTMP, is

tested in a hybrid SDN network. Many of the streaming

services like Netflix and YouTube provide fault tolerance

between the client and the server; however, in this

study, fault tolerance between the video source and the

server is tested.

Conclusion

According to the results, it can be concluded that: 1)

network failure recovery time (switching time) in SDN is

the same as the video stream recovery time while in

traditional networks, streams need to be buffered again

47
49 48 48

46
48 47 48 49 48 48 48

200

24 (fps)

200

60 (fps)

700

24 (fps)

700

60 (fps)

400

24 (fps)

400

60 (fps)

900

24 (fps)

900

60 (fps)

500

24 (fps)

500

60 (fps)

1000

24 (fps)

1000

60 (fps)

0

10

20

30

40

50

T
im

e
 (

In
 s

e
c
o

n
d

s
)

 Switch Time

480p360p240p

Fault Tolerance of RTMP Protocol for Live Video Streaming Applications in Hybrid Software-Defined Networks

249

and it takes another 10 seconds due to the long

interruption time. 2) Equation (1) gives a reasonable

estimation of data loss, and the numbers are very close

to real measurements. 3) Current video traffic flows

without interruption even if all controllers fail, but new

video streams need at least one active controller. 4) The

average switching time in the SDN network was 15

seconds, which is almost half of the switching time in

traditional networks. 5) Video recovery time in SDN is

less than a traditional network and has more

correspondence with mechanisms of RTMP. 6) According

to previous researches, best latency and jitter for live

video streaming are 146 and 28 ms ‎[38], and average

values we obtained in SDN networks under faulty

conditions are 179 and 12ms, which indicates the

flawless operation of RTMP in hybrid networks.

In the next step, we are trying to test the

performance of other real-time video streaming

protocols on our hybrid networks.

Author Contributions

A. Oloomi designed the experiments, collected the

data, carried out the data analysis, and interpreted the

results, wrote the manuscript in Persian. H. Khanmirza,

the supervisor, translated the manuscript in English,

Edited the primary and secondary research, and revise

the paper.

Acknowledgment

The author gratefully acknowledges the H. Khanmirza

for their work on the original version of this document.

Conflict of Interest

The author declares that there is no conflict of

interest regarding the publication of this manuscript. In

addition, the ethical issues, including plagiarism,

informed consent, misconduct, data fabrication and/or

falsification, double publication and/or submission, and

redundancy have been completely observed by the

authors.

Abbreviations

SDN Software-Defined Network
API Application Programming Interfaces
WAN Wide-Area Network
SDWAN Software-Defined WAN
VOD Video-on-demand
RTMP Real-Time Messaging Protocol
TCP Transmission Control Protocol
ONOS Open Network Operating System
GNS3 Graphical Network Simulator-3
OVS OpenvSwitch
ODL OpenDayLight
FRR Fast Reroute
OBS Open Broadcaster Software
OSPF Open Short Path First
BGP Border Gateway Protocol

Navg Average video packets in a second
R Network recovery time
Savg Average size of the packets
RTT Round Trip Time
STP Spanning Tree Protocol
KB Kilobyte
MB Megabyte
ms miliseconds
bps bit per second
p pixel

References

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Verı´ssimo, C. Esteve
Rothenberg, S. Azodolmolky, S. Uhlig, "Software-defined
Networking: A Comprehensive Survey," Proceedings of the IEEE,
103(1): 10-76, 2015.

[2] Cisco Public, "The Zettabyte Era: Trends and Analysis," Cisco,
2017.

[3] Sandhya, Y. Sinha, K. Haribabu, "A survey: Hybrid SDN," in Journal
of Network and Computer Applications, 100: 35-55, 2017.

[4] Rashid Amin, Martin Reisslein, Nadir Shah, “Hybrid SDN
Networks: A Survey of Existing Approaches,” in IEEE
Communications Surveys & Tutorials, 20: 3259-3306, 2018.

[5] S. Gaikwad, S. Tafleen, R. Gottumukkala, K. Elgazzar, "Fault
Tolerance of Real-time Video Streaming Protocols over SDN
Networks," in Proc. 14th Wireless Communications and Mobile
Computing Conference, IWCMC, Limassol: 101-107, 2018.

[6] H. Parmar, M. Thornburgh, “Adobe’s Real Time Messaging
Protocol,” 2012.

[7] X. Lei, X. Jiang, C. Wang, "Design and implementation of
streaming media processing software based on RTMP," in Proc.
5th International Congress on Image and Signal Processing,
Chongqing: 192-196, 2012.

[8] H. Kim, N. Feamster, "Improving network management with
software defined networking," IEEE Communications Magazine,
51(2): 114-119, 2013.

[9] Q. Wang, K. Xu, R. Izard, B. Kribbs, J. Porter, K.-C. Wang, A.
Prakash, P. Ramanathan, "GENI Cinema: An SDN-Assisted Scalable
Live Video Streaming Service," in Proc. IEEE 22nd International
Conference on Network Protocols, Raleigh, NC: 529-532, 2014.

[10] M. Karakus, A. Durresi, "Quality of Service (QoS) in Software
Defined Networking (SDN): A survey," in Journal of Network and
Computer Applications, 80: 200-218, 2017.

[11] A. Ben Letaifa, “Adaptive QoE monitoring architecture in SDN
networks: Video streaming services case,” in Proc. 13th
International Wireless Communications and Mobile Computing
Conference (IWCMC), Valencia, Spain, 2017.

[12] Eirini Liotou, Konstantinos Samdanis, Nikos Passas, Lazaros
Merakos, “QoE-SDN APP: A Rate-guided QoE-aware SDN-APP for
HTTP Adaptive Video Streaming,” in IEEE Journal on Selected
Areas in Communications, 36(3): 598-615, 2018.

[13] H. Owens II, A. Durresi, "Video over Software-Defined Networking
(VSDN)," in Computer Networks, 92(2): 341-356, 2015.

[14] Sahil Garg, Kuljeet Kaur, Neeraj Kumar, Joel J. P. C. Rodrigues,
“Hybrid Deep-Learning-Based Anomaly Detection Scheme for
Suspicious Flow Detection in SDN: A Social Multimedia
Perspective,” in IEEE Transactions on Multimedia, 21(3): 566-578,
2019.

[15] N. Katta, H. Zhang, M. Freedman, J. Rexford, "Ravana: controller
fault-tolerance in software-defined networking," in Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
http://www.hit.bme.hu/~jakab/edu/HTI18/Litr/Cisco_The_Zettabyte_Era_2017June__vni-hyperconnectivity-wp.pdf
http://www.hit.bme.hu/~jakab/edu/HTI18/Litr/Cisco_The_Zettabyte_Era_2017June__vni-hyperconnectivity-wp.pdf
https://doi.org/10.1016/j.jnca.2017.10.003
https://doi.org/10.1016/j.jnca.2017.10.003
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/IWCMC.2018.8450440
https://doi.org/10.1109/IWCMC.2018.8450440
https://doi.org/10.1109/IWCMC.2018.8450440
https://doi.org/10.1109/IWCMC.2018.8450440
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://doi.org/10.1109/CISP.2012.6469981
https://doi.org/10.1109/CISP.2012.6469981
https://doi.org/10.1109/CISP.2012.6469981
https://doi.org/10.1109/CISP.2012.6469981
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/ICNP.2014.84
https://doi.org/10.1109/ICNP.2014.84
https://doi.org/10.1109/ICNP.2014.84
https://doi.org/10.1109/ICNP.2014.84
https://doi.org/10.1016/j.jnca.2016.12.019
https://doi.org/10.1016/j.jnca.2016.12.019
https://doi.org/10.1016/j.jnca.2016.12.019
https://doi.org/10.1109/IWCMC.2017.7986486
https://doi.org/10.1109/IWCMC.2017.7986486
https://doi.org/10.1109/IWCMC.2017.7986486
https://doi.org/10.1109/IWCMC.2017.7986486
https://doi.org/10.1109/JSAC.2018.2815421
https://doi.org/10.1109/JSAC.2018.2815421
https://doi.org/10.1109/JSAC.2018.2815421
https://doi.org/10.1109/JSAC.2018.2815421
https://doi.org/10.1109/NBiS.2013.10
https://doi.org/10.1109/NBiS.2013.10
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/TMM.2019.2893549
https://www.cs.princeton.edu/~jrex/papers/ravana15.pdf
https://www.cs.princeton.edu/~jrex/papers/ravana15.pdf
https://www.cs.princeton.edu/~jrex/papers/ravana15.pdf

A. Oloomi et al.

250

Networking Research, New York: 1-12, 2015.

[16] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E.
Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya, K. Zarifis, S.
Shenker, "Troubleshooting Blackbox SDN Control Software with
Minimal Causal Sequences," in ACM SIGCOMM Computer
Communication Review, 44(4): 395-406, 2014.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, "Onix: A Distributed
Control Platform for Large-scale Production Networks," in Proc.
9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver: 351-364, 2010.

[18] B. Chandrasekaran, B. Tschaen, T. Benson, "Isolating and
Tolerating SDN Application Failures with LegoSDN," in
Proceedings of the Symposium on SDN Research, Santa Clara: 1-
12, 2016.

[19] “Open Network Operating System (ONOS) SDN Controller for
SDN/NFV Solutions”.

[20] “SDN-IP Architecture,”

[21] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner and N.
Feamster, "CORONET: Fault tolerance for Software Defined
Networks," in Proc. 20th IEEE International Conference on
Network Protocols (ICNP), Austin: 1-2, 2012.

[22] L. J. Jagadeesan, V. Mendiratta, "Programming the Network:
Application Software Faults in Software-Defined Networks," in
Proc. IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), Ottawa): 125-131, 2016.

[23] B. J. v. Asten, N. L. M. v. Adrichem, F. A. Kuipers, "Scalability and
Resilience of Software-Defined Networking: An Overview," in
Networking and Internet Architecture, New York, 2014.

[24] S. Zhang, Y. Wang, Q. He, J. Yu, S. Guo, "Backup-resource based
failure recovery approach in SDN data plane," in Proc. 18th Asia-
Pacific Network Operations and Management Symposium
(APNOMS), Kanazawa: 1-6, 2016.

[25] A. Xie, X. Wang, W. Wang, S. Lu, "Designing a disaster-resilient
network with software defined networking," in Proc. IEEE 22nd
International Symposium of Quality of Service (IWQoS), Hong
Kong: 135-140, 2014.

[26] "Open vSwitch Manual," Open vSwitch.

[27] "The official guide and reference for GNS3," GNS3, 15 January
2020.

[28] "Open vSwitch Downloads Page," Open vSwitch.

[29] “OpenDaylight SDN Controller,”.

[30] "ONOS Wiki," ONOS.

[31] "Oracle VM VirtualBox," ORACLE.

[32] “Wowza Media Systems | Live Video Streaming Solutions,”.

[33] “OBS: Open Broadcaster Software,”.

[34] A. Bruno, S. Jordan, CCDA 200-310, CiscoPress,): 112-121, 2016.

[35] "Ethernet Protocol," ScienceDirect..

[36] "Spanning Tree Protocol (STP) Application of the Inter-Chassis
Communication Protocol (ICCP)," IETF, 2016.

[37] A. S. Muqaddas, A. Bianco, P. Giaccone, G. Maier, "Inter-
controller Traffic in ONOS Clusters for SDN Networks," in Proc.
IEEE International Conference on Communications (ICC), Kuala
Lumpur: 1-6, 2016.

[38] A. Nurrohman, M. Abdurohman, "High Performance Streaming
Based on H264 and Real Time Messaging Protocol (RTMP)," in
Proc. 6th International Conference on Information and
Communication Technology (ICoICT), Bandung: 174-177, 2018.

Biographies

The Authors’ photographs and biographies not available at the time

of publication.

Copyrights

©2019 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
A. Oloomi, H. Khanmirza, “Fault Tolerance of RTMP Protocol for Live Video Streaming
Applications in Hybrid Software-Defined Networks,” Journal of Electrical and Computer
Engineering Innovations, 7(2): 241-250, 2019.

DOI: 10.22061/JECEI.2020.6416.314

URL: http://jecei.sru.ac.ir/article_1227.html

https://www.cs.princeton.edu/~jrex/papers/ravana15.pdf
https://people.eecs.berkeley.edu/~apanda/assets/papers/sts.pdf
https://people.eecs.berkeley.edu/~apanda/assets/papers/sts.pdf
https://people.eecs.berkeley.edu/~apanda/assets/papers/sts.pdf
https://people.eecs.berkeley.edu/~apanda/assets/papers/sts.pdf
https://people.eecs.berkeley.edu/~apanda/assets/papers/sts.pdf
https://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
https://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
https://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
https://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf
https://doi.org/10.1145/2890955.2890965
https://doi.org/10.1145/2890955.2890965
https://doi.org/10.1145/2890955.2890965
https://doi.org/10.1145/2890955.2890965
https://www.opennetworking.org/onos/
https://www.opennetworking.org/onos/
https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1109/ICNP.2012.6459938
https://doi.org/10.1109/ISSREW.2016.23
https://doi.org/10.1109/ISSREW.2016.23
https://doi.org/10.1109/ISSREW.2016.23
https://doi.org/10.1109/ISSREW.2016.23
https://arxiv.org/pdf/1408.6760
https://arxiv.org/pdf/1408.6760
https://arxiv.org/pdf/1408.6760
https://doi.org/10.1109/APNOMS.2016.7737211
https://doi.org/10.1109/APNOMS.2016.7737211
https://doi.org/10.1109/APNOMS.2016.7737211
https://doi.org/10.1109/APNOMS.2016.7737211
https://doi.org/10.1109/IWQoS.2014.6914312
https://doi.org/10.1109/IWQoS.2014.6914312
https://doi.org/10.1109/IWQoS.2014.6914312
https://doi.org/10.1109/IWQoS.2014.6914312
www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
www.openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
https://docs.gns3.com/
https://docs.gns3.com/
https://www.openvswitch.org/download/
https://www.openvswitch.org/download/
https://www.opendaylight.org/
https://www.opendaylight.org/
wiki.onosproject.org/pages/viewpage.action?pageId=28836788
wiki.onosproject.org/pages/viewpage.action?pageId=28836788
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.wowza.com/
http://www.wowza.com/
obsproject.com
obsproject.com
https://www.pdfdrive.com/ccda-200-310-official-cert-guide-e55998334.html
https://www.sciencedirect.com/topics/computer-science/ethernet-protocol
https://www.sciencedirect.com/topics/computer-science/ethernet-protocol
https://tools.ietf.org/html/rfc7727%23section-4.2.1
https://tools.ietf.org/html/rfc7727%23section-4.2.1
https://doi.org/10.1109/ICC.2016.7511034
https://doi.org/10.1109/ICC.2016.7511034
https://doi.org/10.1109/ICC.2016.7511034
https://doi.org/10.1109/ICC.2016.7511034
https://doi.org/10.1109/ICoICT.2018.8528770
https://doi.org/10.1109/ICoICT.2018.8528770
https://doi.org/10.1109/ICoICT.2018.8528770
https://doi.org/10.1109/ICoICT.2018.8528770
http://jecei.sru.ac.ir/article_1227.html

