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 Background and Objectives: Different energy demand calls the need for 
utilizing Energy Hub Systems (EHS), but the economic dispatch issue has 
become complicated due to uncertainty in demand. So, scenario generation 
and reduction techniques are used to considering the uncertainty of the EH 
demand. Dependent on the amount of fuel used, each system has various 
generation costs. Configuration selection stands as a challenging dilemma in 
the EHS designing besides economic problems. In this paper, the optimal EHS 
operation along with configuration issue is tackled. 
Methods: To do so, two EHS types are investigated to evaluate the 
configuration effect besides energy prices simultaneously change. Typically, 
the effect of the Demand Response (DR) feature is rarely considered in EHSs 
management which is considered in this paper. Also, Metaheuristic 
Automatic Data Clustering (MADC) is used to reduce the decision-making 
problem dimension instead of using human decision-makers in the subject of 
cluster center numbers and considering uncertainty. The "Shannon's 
Entropy" and the "TOPSIS" methods are also used in the decision-making. 
The study is carried out in MATLAB

©
 and GAMS

©
. 

Results: In addition to minimizing the computational burden, the proposed 
EHS not only serves an enhancement in benefit by reducing the cost but also 
provides a semi-flat load curve in peak period by employing the Emergency 
Demand Response Program (EDRP) and Time of Use (TOU). 
Conclusion: The results show that significant computational burden 
reduction is possible in the field of demand data by using the automatic 
clustering method without human interference. In addition to the proposed 
configuration's results betterment, the approach demonstrated EH's 
configuration effect could consider as important as other features in the 
presence of DRPs for reaching the desires of EHs customers which is rarely 
considered. Also, "Shannon's Entropy" and the "TOPSIS" methods integration 
could select the best DRP scenario without human interference. The results 
of this study are encouraging and warrant further analysis and researches. 
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Introduction 

A. Motivation 

The EHSs or briefly energy hubs (EHs) [1] could consider 

as a form of integrated distributed generations (DGs) [2],  

 
[3] which meet a variety of demands. Imported natural 

gas and electrical energy are typically the major supplies 

to these devices. EH as the system for managing power 
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grids is most important for its role in future networks, 

energy management systems, and Demand Response 

Programs (DRP) [4] along with achieving economic goals. 

As one of the most modern developments in the power 

systems, EHs have been commonly used in numerous 

implementations with diverse purposes to satisfy the 

needs of different demands like cool, heating, and 

electricity together.  

To satisfy the various types of loads listed above, the 

EHs may be used, including various types of energy 

services such as upstream grid, Combined Heat and 

Power (CHP) units, boilers, and others. It should be 

mentioned that the requirements of energy systems can 

be different. While economic concerns have always been 

the first concern in the scheduling and management of 

power systems problems, a limited deal of effort has 

recently been made to recognize the role of EHs 

configuration effect in the optimal management and 

economic benefits EHs besides considering DRPs [5]. 

EH structures may include industrial plants, large 

housing complexes, or rural and urban districts. From an 

operating point of view, a key problem is the efficient 

management of such an organization (e.g., prices, peak 

reduction, and other elements).  

The efficiency of the hub solution offers considerable 

management opportunities. For example, it is feasible, 

to stop using the particular equipment because of 

competitive electrical energy prices from the power grid 

at some special hours. The EH tends to be dynamic and 

competitive in terms of demand sensitivity. This issue 

could be a beneficial attribute for the introduction of 

EHs [6]. Concerning the mentioned questions, optimal 

operation of EH considering different structures was 

developed, where the concentration is on configuration 

effects to objective function in the DRPs presence and 

applying MADC.  The EH configuration’s effect [7], [8] 

rarely evaluated as an effective way of optimizing the 

mentioned objectives alongside other opportunities 

especially in presence of DRPs. As well, the DRP needs an 

approach for classifying the big data of demands which 

here is automatically clustering. This is while the system 

needs a pre-decision plan to participate (or not) in DRP. 

The reliable results will be encouraging to use the 

system of automatic clustering on conventional 

platforms to reduce the costs of analyzing big data. In 

this vision, it is important to find out the data cluster 

centers automatically for using in DRP decision-making, 

instead of human decision-making methods which in 

some of the research considered. 

B. Literature Survey 

Previously, EHs have been researched and their 

reviews are briefly described as follows: 

Some papers like [9] analyzed price and security 

balance in power markets and proofed that this balance 

depends on prices in involuntary load shedding mode. It 

is said that by increasing in price the customer less 

notice to security and reliability of the system. The 

optimal economic operation of the EH has been 

determined in [10]. In the paper [11], a novel matrix 

modeling approach was suggested to promote the 

computerized simulation of multi-energy structures. In 

[12], the authors used a heuristic-based optimization 

algorithm called time variable acceleration coefficient-

gravitational search algorithm to solve the power flow 

problem of the EH. To minimize the overall cost of EH 

operation, a robust optimization approach is employed 

in [13]. The paper [14] is about gas transmission [15] but 

so close to subject analysis the successive linear 

programming (SLP) for economic load dispatch. The 

paper [16] discussed gas and electricity mutual effect. 

This influence directly affects system security as paper 

[[17] evaluated.  

The consequence of gas price increase is an increase 

in economic dispatch prices. This is reasonable because 

the gas price depends on fossil fuels. Likewise, fossil 

fuels are affected by electricity prices in energy markets.  

This is because of that the most usage of gas is by 

power plants. By considering most of the works 

published about EH, the most popular inputs considered 

are electricity and gas, also it is proposed to use 

especially renewable energy in future investigations is 

out of the scope of this paper. 

 Paper [18] used a special model for EH economic 

dispatch. In this paper, some CHPs and other system parts 

like the furnace, transformers, compressors, and heater 

exchangers modeled.  

The paper [19] compounds EH and DR and 

simultaneously try to use this concept by considering load 

shedding and other roles in energy management. For 

achieving the best result, this paper considered weather 

data, load data log, and fuel curves. Fig. 1, shows the 

mentioned paper’s concept by using Supervisory Control 

and Data Acquisition (SCADA) center. This figure could be 

mentioned as the main idea of EH investigations. Paper [20] 

used different strategies for analyzing the compound share 

of wind, gas, and electrical energy as an input in the new 

structures of energy systems [21]. The model of the EH 

model matrix deliberate as Fig. 2 [22]. This matrix is like 

other popular energy systems. The input is connected by an 

energy converting box to output. Further, this idea will be 

detailed. Typically, conventional networks are hierarchical. 

In this structure, the input and output never interact. The 

main ring, which connects the future vision of the network 

to the conventional form, are the parts like CHP and 

Renewable Energy Sources (RES). This kind of network faces 

some problems like low power quality, complexity, 

protection problems, and environmental concerns [23]. The 

structures of new networks are nonhierarchical [24].  
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Fig. 2: Energy hub model. 

The future structure of power systems is depicted in 

Fig. 3. In this figure, EHs are the interface between 

participation and transmission systems. So, EH and 

related forms which are bases of it—like energy 

management systems, CHP, DRP, etc.—are the 

forecasted system for future networks. Fig. 4 depicts a 

conventional model of industrial EH which could be an 

industrial site. 

Demand-side is also an important subject for numerous 

researchers. A variety of solutions can be used as a supply-

side uncertainties management in power systems. Since the 

short-term and long-term planning uncertainties of EH 

demand is not deniable, power system decision-makers and 

operators have used different uncertainty handling 

strategies, as described by [25]. The key difference 

between these instruments is related to the various 

approaches used to characterize the uncertain parameters. 

Stochastic models, for example, use the Probability Density 

Function (PDF) to model an uncertain parameter, while the 

fuzzy approach uses membership functions to define it [26]. 

In some references, the Monte Carlo approach was used to 

obtain the best precision [27]. Some researches, on the 

other hand, have focused on other approaches to finding 

effective solutions, including the point estimation method 

[28]. In [29], the point estimating approach is used to tackle 

the stochastic nature of renewable generating systems, and 

the demand uncertainty is provided by a robust 

optimization approach. However, compared to the above 

approaches, a variety of experiments have used a scenario-

based approach to achieve acceptable accuracy [30], [31], 

and [32]. 

However, the Monte Carlo Simulation (MCS) method 

can be used effectively for probabilistic evaluation, but it 

requires a huge computational burden, making it unsuitable 

for problems with online optimization in particular. The 

alternative techniques that present an acceptable level of 

accuracy are quick and easy to apply. Some of these 

alternative methods are the point estimation method, the 

method of data clustering [33] and the method of Latin 

Hypercube Sampling (LHS) [34]. The proposed approach in 

this paper (MADC) needs no specific knowledge of the data 

to be categorized, as opposed to most of the mentioned 

methods. Instead, it evaluates the optimum number of 

scenarios of the results which named cluster centers. 

Economic dispatch modeling is used for economic 

trading between the cost of production and the cost of 

versatility to reach the highest degree of network 

efficiency in the presence of storage and related 

technologies as a kind of energy system. In the smart 

grid systems, Demand Response Resources (DRRs) are 

implemented as a virtual power plant to improve the 

adequacy of the power network. DRRs frequently 

struggle to reduce their load. In [35], the reliability 

model of the DRR is developed as a multi-state 

traditional generation unit, where the probability, 

frequency of occurrence, and departure rate of each 

state can be obtained. Using the principle of power to 

gas has been analyzed to reach economic objectives in 

[36]. To reduce the running costs of the microgrid-based 

energy center network, a real-time pricing method has 

been used by [37]. The problem of EH economic dispatch 

is discussed in [38]. 

C. Contribution and Novelty 

The key objective of this study is to enhance the 

economic operation of the EH and to resolve the problem 

of DRP alongside suggesting an optimal configuration. 

Operational costs and EH configuration are interconnected. 

A thorough approach has therefore been developed to 

include a desirable solution for operational costs and DRP. 

Many techniques such as the K-means have been 

implemented for data clustering in previous papers. The K-

means algorithm is one of the easiest and most common 

categorization algorithms. This approach is capable of 

classifying a vast amount of data and clustering is such that 

the overall size of each data to the closest center of the 

cluster is reduced [39]. Regardless of its advantages, the K-

means cannot find the number of optimal clusters. By using 

the MADC approach, the proposed model is resolved and 

various answers are obtained. The mentioned solution is 

also a more unfailing method rather than the data 

clustering (which more depends on human attitude). In 

automatic data clustering, the demand side reduced 

scenarios will choose automatically by using metaheuristic 

algorithms. 

Additionally, in this paper for more reliability, the 
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final solution is compared with base configuration 

outcomes in the presence of DRP to demonstrate the 

efficiency of the proposed configuration. 

Electricity
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Storage

 
Fig. 3: Multi EHS diagram. 
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Fig.4: The Conventional Model of EHS. 

As the Multiple Criteria Decision Making (MCDM) 

technique, the "Shannon's Entropy" and the "Technique 

for Order Preference by Similarity to Ideal Solution 

(TOPSIS)" methods are used to choose the best 

compromise solution from the solutions obtained. 

Briefly, analyzing the effect of energy hub configuration 

on DRP peak reduction considering MADC has been 

evaluated. The novelties of this paper are highlights as 

follows: 

 Presenting the MADC through metaheuristic 

algorithms for managing the optimal operational 

performance of EHS in the presence of EDRP and 

TOU; 

 Using automatic clustering instead of focusing on a 

large amount of data for considering uncertainty; 

 Considering variable prices for electricity and gas 

simultaneously; 

 Proposing an efficient configuration and analyzing the 

configuration effect in the presence of DRP to load 

shedding and other parameters; 

 Investigating the benefits of the optimal 

configuration; 

 Using "Shannon's Entropy" for weighting and the 

"TOPSIS" approach for the optimal scenario; 

 Comparing the proposed configuration with the base 

configuration and encouraging and warrant further 

analysis and research. 

D. Organization 

The remainder of the paper is established as follows: 

The problem formulation and implementation which 

includes the associated constraints discussed in problem 

formulation section. Afterward, the system under study, 

including input data, assumptions, and the results of the 

EHS scheduling problem are presented. Likewise, this 

section studies the objective function.  Eventually, the 

conclusion of the proposed EH and the discussion are 

presented and discussed in last section. 

Problem Formulation and Implementation 

A. Model of Conventional EH 

As mentioned, modeling the EH is so similar to other 

systems. The model consists of three parts as all regular 

energy systems. The first part is input, then the process 

part, and finally the output block. The matrix in (1) will 

introduce this system as an integrated part. In this 

matrix, C is the coupling matrix, and "α, β, etc." 

represent energy carriers, and "1, 2, etc." represent 

various outputs. 

The PY present output and the PX on the other side is 

the input matrix which the dimension depends on the 

configuration. 
 

1

2

Y X

Y X

n
Y X

C C CP P

C C CP P

C C CP P


  


  


  

    
    
    
    
    

        

 (1) 

PX as an input supplied by transformers and other 

subsystems of EH which is mentioned before. The middle 

matrix is the presenter of conversion, storage, and 

transmission part [22]. 

The thorough system can model by (2), which P is the 

input supplied by transformers and other systems, E  is 

the storage part, S presents converters, and L leads to 

load. C, as introduced before, is the coupling matrix. 

 . .
P

L S P C E S C
E

 
     

 
 (2) 

EH and its components, which consist of power 

resources, transmission, storage, and load management 

systems, are one by one a complete system. It is 

important to emphasize connections between smart 

grids main idea and EHs, where an EH could be a part of 

the smart grid. In the part of the converter, CHP has the 

most role. The EH concept could be a single house or an 

entire region of the city.  

The formulas of each part of the system used, 

simplified, and linearized. The linearization can be 

focused on by whom favorite to accurate results. 

 CHP 

CHP is the most famous part of EH. Herein CHP 

receives the natural gas (Gt) and outputs heat (Ht) or 

electricity (Et). This means 
chp

t gh tH G  (3) 

chp
t ge tE G  (4) 
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In the above equations chp
gh  and chp

ge  are the 

coefficient of heat and electricity in CHP. 

 Electric heat pump 

The Electric Heat Pump (EHP), gets electricity and 

gives heat (Ht) or cool (Ct) at one moment (not 

simultaneously). This means 

t t tC H E COP     (5) 

min maxh EHP ch
t t t t tH I H H I   (6) 

min maxc EHP c
t t t t tC I C C I   (7) 

1c h
t tI I   (8) 

, 0,1c h
t tI I   

(9) 

COP in the above equations is the coefficient factor, 
max,min
tH  / max,min

tC  are the low and high capacity of 

heat/cool generation of EHP.  

 Chiller boiler 

The Chiller Boiler (CB) receives heat and change to 

cool to provide cool demand. Here is the equation which 

hc  is the coefficient of CB: 

t cb tC H  (10) 

 Electricity storage system 

The Electricity Storage System (ESS) is the most 

important part to provide flexibility in electricity 

provision, which is used as storage. ESS formulated as 

below: 

1 ( / )ch dch
t t t c t d tSOC SOC E E      (11) 

min max
ch ch ch

tE E E   (12) 

min max
dch dch dch

tE E E   (13) 

min maxtSOC SOC SOC   (14) 

1dch ch
t tI I   (15) 

, 0,1dch ch
t tI I   

(16) 

SOCt and SOCt-1 are states of charge at moment t 

(which in this paper the dimension is 1 hour) and the 

moment before t which is t-1. Socmax/min is the high/low 

limit of these factors. ,
min/max
ch dchE  and ,ch dch

tE respectively are 

limitations of ESS charge or discharge at moment t, that 

means to get electricity from the network or give it to 

load, the ,ch dch
tI control not to do this function at the same 

time. The charge and discharge efficiency showed by 

/c d . Notice that as the period is 1 hour, so 1 MWh=1 

MW. ESS help to control the operation of the hub by 

charging/discharging in the necessary hours. Low price 

time is thus the correct time to charge, and high price 

time is used to avoid the purchase of electricity from the 

network. All electrical and gas resources are included in 

the operation of the hub and their optimum use was 

explored in order to reduce the running costs of the 

system. 

 Transformer 

Transformer (Tr) which receives electricity and give—

in a different level of voltage—electricity, formulated as 

follows, where 
ee  is the coefficient of Tr. It is important 

to notice that the change in voltage levels doesn't 

change in energy amounts. This means both sides -which 

are named the primary side and the secondary sides- are 

the same in energy amounts (except the energy loss), 

but the current and respectively the voltage change as 

mentioned (the current and voltage are out of scope in 

this paper). The /in out
tE represent the power of 

input/output. 
out in
t ee tE E  (17) 

 Furnace 

Furnace (F) converts gas to heat by the coefficient of 

gh : 

t gh tH G  (18) 

Mentioned parts summarized in the Table 1: 

 

Table 1: Parameters of EHS equipment 

Equipment Output Input 

CHP 

CHP
tH  chp

gh

in
tG  

CHP
tE  chp

ge

in
tG  

EHP EHP EHP
t tC H  in

tE COP  

Chiller boiler CB
tC  

cb

in
tH  

Transformer Tr
tE  in

ee tE  

Furnace 
1, 2,t t t

H H H   
gh

in
tG  

 

B. Case Study 

The EHs including "base structure" and "proposed 

structure " are presented in two types as shown in Fig. 5 

and Fig. 6.  

In type-A EHP is fed from the demand side but in 

type-B, EHP is fed from the input of EH. In other words, 

in the topology type-A, EHP has been fed as a part of 

total electricity demand which is presented by e
tD for 

both types. Equation (19) shows the economic operation 

cost function which is introduced as the Objective 

Function (OF).  

The power balance equations for both types are 

presented as (20) and (21). Table 2 represents the 

variable of ED optimization variables. 

C. Input Data and Assumptions 

Daily demands and price [40] are as Table 3. The data 

used for both types. Demands per hour for heat, 

electrical and cool demands )MW( and carriers’ price 

($/MWh) change as shown by Fig. 7, which Dh is heating 

demand, De electrical, and Dc cooling demand. 
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Table 2: Variables of the optimization problem 

Variable/Parameter Description 

1
tE  ESS input for period t 

2
tE  Transformer input for period t 

3
tE  EHP input for period t 

1
tG  CHP input for period t 

2
tG  Furnace input for period t 

 e
t

 Electricity price for period t 

 g
t

 Gas price for period t 

 

Gt

Electricity

Gas

Electricity

Heat

Cooling

EHP

CHP

ESS

Et

Gt

E2t

E3t

E1t

F

CB

H1t

G2t H2t

Dt
h

Dt
c

Dt
e

G1t

Tr

 
Fig. 5: EH configuration of type-A. 
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Fig. 6: EH configuration of type-B. 

 

 
Fig. 7: Total electric, cool, and heat demand. 

Table 3: Daily load demand and price 

 

T 

(hours) 

Dh 

(MW) 

De 

(MW) 

Dc 

(MW) 

Electricity 

price 

$/MWh 

Gas 

price 

$/MWh 

t1 21.41 52.10 11.51 22.02 5 

t2 23.21 66.70 13.68 24.24 5 

t3 26.09 72.20 16.01 23.1 6 

t4 26.72 78.37 21.42 22.8 6 

t5 25.59 120.20 21.97 24.12 6 

t6 26.45 83.48 30.80 23.16 7 

t7 39.54 110.40 38.94 31.38 7 

t8 47.28 124.29 46.78 40.38 8 

t9 52.12 143.61 50.97 42.3 8 

t10 49.13 149.28 48.86 39.72 11 

t11 69.26 154.19 34.77 43.98 11 

t12 61.97 147.30 32.68 36.48 11 

t13 68.04 200.71 27.77 37.92 14 

t14 68.56 174.37 32.02 42.48 15 

t15 56.40 176.54 33.22 37.86 15 

t16 41.32 136.11 34.13 31.5 15 

t17 37.43 108.71 40.78 34.2 16 

t18 25.44 96.90 43.56 29.52 16 

t19 25.66 89.08 51.48 28.5 16 

t20 21.94 82.49 43.15 29.7 16 

t21 22.44 76.93 36.49 31.86 16 

t22 24.63 66.85 27.68 30.96 18 

t23 22.72 47.17 19.14 30.3 20 

t24 22.59 64.67 11.04 21.84 20 

D. Constraints 

The base test system (Type-A) is chosen for the 

analysis of EH properties, based on [40]. Type-B is the 

proposed configuration. This structure will be chosen by 

looking at reducing cost function and other objectives. 

The structure is based on the assumptions that 

follow: 

 Analysis of the system in a stable state.  

 The power flow through the converters is described 

as just power and efficiency.  

 Losses are evaluated only as efficiency factors for 

each element. 

 The performance of the converter systems is 

assumed to be constant.      

 Reverse control flow doesn't occur. 

 The coupling matrix is not normally invertible 

0

50

100

150

200

250

t1 t4 t8 t12 t16 t20 t24

D
em

an
d

s 
(M

W
) 

hours (h) 

De Dh Dc

e g
t t t t

t

OF E G    (19) 

2, 1, 3,

2, 1,

e dch
t ee t t ge t t

e dch
t ee t t ge t

if type A D E E G E

if type B D E E G

 

 

     


   

 
(20) 

1, 2,

1, 2, 3,

t t t

t t t t

if type A E E E

if type B E E E E

  


   
 (21) 
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(underdetermined equation structure).  

 In the household EH under analysis, the natural gas 

obtained at the input ports of the hub is divided into 

two paths, one path to the supply of CHP and the 

other path to the furnace. 

 The gas-consuming components which are the CHP, 

EHP, and furnace unit provide the need for electricity. 

 Demands and price of the energy carrier are obtained 

over a regular day of the market (unless stated 

otherwise, as in the clustering part) 

 The price and demand for both systems change 

identically to achieve a sustainable position. 

 Opposite of [40] which the price of the gas is 

constant, the gas price varies but the average is the 

same {12 $/MWH} as the base EH). 

The architecture of the EH studied in this paper is 

linear. It should be assumed that the same outcome 

(with more accuracy) could be obtained by applying the 

proposed approach to a nonlinear problem. Also, results 

are encouraging and warrant further analysis and 

research. Since the nonlinear problem is beyond the 

scope of this article, and the emphasis is only on the 

demand side and MADC relating to the economic 

dispatch of DRP, in this work, after evaluating cluster 

centers by MADC, the problem will be tackled by using 

Mixed Integer Linear Programming (MILP), in GAMS
©

 

and using "CPLEX" [41] solver. The "CPLEX" Optimizer as 

its simplex method used in the "C programming 

language" is used. However today it still supports many 

forms of mathematical optimization and provides 

interfaces other than "C". The analysis is applied on a 

Windows 10
©

 PC with a 2.6 GHz 7-core processor and 16 

GB RAM. The analysis is carried out in GAMS
©

 and 

MATLAB
©

 to incorporate MADC, EH Economic Dispatch 

(EHED), and DRP. The average simulation time is 69.40 

sec for MATLAB
©

 and less than 10 seconds for GAMS
©

. 

The model suggested for household consumption may 

also be used for other different applications. 

All of the data series assumed that is obtained by 

using a sampling cycle Ts equal to one hour, for an 

operational horizon which here is a typical single day. 

The electricity prices of energy depend on the hour of 

the day, with a “high” value of 43.98 $/MWh applied at 

all hours from 00:00 to 24:00 and a “low” value of 21.84 

$/MWh. Gas costs as mentioned change from 5 to 20 

$/MWh. It is important to notice that the average is 12 

$/MWh which is like the mentioned reference [40]. 

Other constraints summarized as following tables 

which directly get from [40]: 
 

Table 4: Efficiency data 


/ch dch
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  
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  
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  
f

gh
  hc

  
ehp

W  

0.9 0.98 0.35 0.45 0.9 0.95 2.5 
 

Table 5: Capacity data 
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The demand curve is usually distributed. It can be 

concluded that the distribution of the average daily is 

usually normal [42]. The approach used in this paper to 

produce data clusters which will be discussed in the 

following sections. Additionally, as data are directly 

derived from [40], there are no details about the 

consumption for MADC implementation. In order to 

investigate the uncertainty, overall uncertainty modeled 

by MADC to scenarios reduction. As a consequence, the 

usual distribution used to generate data for which 

simulate the sampling cycle Ts mentioned before. The 

following formula shows the probability density function 

(PDF) of a conventional load [42]. Electrical heating and 

cooling loads are modeled using the typical PDF: 

2

2

2( )
1 2

( )
2

L

L

L

L

PDF L e










  (22) 

In the above equations L  and L specify the 

standard deviation and mean, respectively, L expresses 

the load value as well. The mean stands “the mean of 

the demands in a particular period” which the data 

collector saved and sigma is assumed to be %5. 

E. DRP Modeling 

Demand Side Management (DSM) as one of the most 

significant techniques used to maximize the benefits of 

electricity market players. DSM is called DR in 

deregulated power systems. Programs are typically 

divided into one of two categories: Incentive-Based 

Programs (IBP) and Time-Based Programs (TBP). Time-

based pricing systems consist of the following schemes 

and the price of energy varies over times [43]: 

 Real-Time Pricing (RTP),  

 Time of Use (TOU),  

 Critical Peak Pricing (CPP). 

Incentive-based programs include:  

 Interruptible/Curtailable service (I/C), 

 Capacity market Program (CAP),  

 Direct Load Control (DLC),  

 Demand Bidding (DB), 

 Emergency Demand Response Program (EDRP), 

 Ancillary Service (A/S) programs. 

Two DR mechanisms were mainly focused in this 

paper: TOU and EDRP. Also, DR is modeled based on the 

principle of load elasticity, considering TOU and EDRP 

approaches, respectively using the multi-period load 
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models which will consider in the following section. The 

suggested model is based on the EH model and the 

optimal rates are calculated for the TOU system (with 

the variable price of gas and electricity) as well as the 

optimal benefits for the integrated TOU and EDRP 

schemes. In the EDRP scheme [43] based on historical 

demand data, price data, and short-term load 

forecasting, Independent System Operator (ISO) seeks to 

reduce peak demand. Large EHs that want to reduce 

their consumption based on ISO announcements will 

participate in these programs. The ISO will pay them a 

significant amount of money (sometimes 10 times the 

electricity price in the off-peak period) as an incentive. It 

is obvious that customers will participate in this program 

voluntarily. This will raise a great deal of uncertainty 

about the peak reduction, but due to the pre-

determination of the incentive amounts and also 

because there is not any penalty price for consumers 

who do not reduce their consumption, participation in 

this program has been very good in most systems. The 

ISO was able to return the price to its normal value by 

forecasting the load curve for other days out of the 

working days of the DRP. As a result, peak loading and 

price reduction are the program results. Electrical 

consumers can participate in EDRP in the energy market, 

to reduce their costs. In these processes, customers 

attempt to move their demands of electricity from peak 

to off-peak. The current electrical charge is equal to the 

main load plus the variable load according to DRP. These 

factors may be a decrease or increase in load either 

positive or negative value. The amount of load increase 

or decrease that is the percentage of load participation 

in EDRP should be subject to a predefined limit. 

Simultaneous load increase/decrease is not allowed, 

however. According to the fundamental rule of EDRPs, 

the amount of the moving demand will be almost zero 

for a complete cycle of service which here is 24 hours. 

The DRP equations could summarize by the following 

equations: 

0
D DR

Dt t
t t tD

t

P P
DRP P P

P


       (23) 

max 0 max 0
t t tDRP P DRP DRP P        (24) 

1

0
T

t
t

DRP


    (25) 

In the TOU plan, energy prices are assessed based on 

the cost of production. Consequently, the price will 

generally be inexpensive during the low loading period, 

moderate during the off-peak period, and high during 

the peak period. By operating this scheme, consumers, 

who can move their consumption, will adjust to their 

prices. As a result, peak demand will be reduced and 

loads will shift from peak to off-peak or low periods [43].  

 

 

As the consumers have been separated from the 

effects and market behavior, "elasticity" as the 

determiner of the customers' behavior is characterized 

as a price-sensitive demand [43]: 

0

0

.
q dq

Elasticity
q dp






 


 (26) 

Where q is the demand value (MWh), ρ is electricity 

energy price ($/MWh), ρ0 is the initial electricity energy 

price ($/MWh) and q0 presents the initial demand value 

(MWh). 

When the price of electrical energy varies over 

various times, the market may respond to one of the 

following: 

 Some loads are not able to switch from one time to 

another (e.g., lighting loads) and maybe "on" or "off" 

only. So, such loads are flat and it's called "Self-

Elasticity," so it has always a negative value.  

0
j

j

D
Self Elasticity




  


 (27) 

 Some consumption could be moved from high to off-

peak or low times. This action is called Multi-Period 

Sensitivity and is determined by "Cross-Elasticity." 

This value is always positive. 

0
j

j

D
Cross Elasticity




  


 (28) 

where in the above equations ∆Dj is demand changes in 

period j, and ∆ρj represents price changes in period j. 

The elasticity coefficients for hours of the day can 

then be represented in a 24×24 matrix by the Table 6 

role which assumed as in [44]:  

 
Table 6: Elasticities 
 

 Peak Off-peak Low 

Peak -0.02 0.0032 0.0024 
Off-peak 0.0032 -0.02 0.002 

Low 0.0024 0.002 -0.02 

 
The method of modeling and formulating how the 

DRP system impacts the market for energy and how the 

full gain to consumers is reached has been discussed 

[43], [44].  

Also, details of the demand response economic model 

and the effect on electricity consumption, which is 

focused on optimizing the benefits are described in the 

mentioned papers.  

The related sensitive economic final model of the load 

is thus presented as follows: 
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where 
0 ( )d i  is demand in i-th hour (MWh), 

0 ( )i  

presents electricity price in i-th hour ($/MWh), and ( )A j  

is the incentive in i-th hour ($/MWh). By considering the 

mentioned equations and definitions, the introduced 

EHs could model in the presence of the DR management 

system by Fig. 8. The detailed line connection in each 

type is presented in Fig. 9 and Fig. 10. The Mentioned 

equations indicate how high the customer's demand will 

be in order to achieve the full benefits within 24 hours. 

In the numerical results section, incentives could shift 

the demand curve when EDRP and TOU programs are 

running. 

Load 1

 

Load m

Loads  

Side

Generators  

Side

Source 1

Source n

...

...

 
Fig. 8: Conceptual model of energy hub demand response. 
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Fig. 9: Energy Hub type A's demand response scheme. 
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Fig. 10: Energy Hub type B's demand response scheme. 

F. MADC 

Clustering or unsupervised learning is the method of 

grouping data items into different partitions or clusters. 

In other terms, clustering identifies feasible cluster 

centers of multidimensional data based on some 

measure of uniqueness. This paper discusses the 

implementation of automated clustering [45] of large 

data sets which here is demand in the context of DRP. 

The proposed automatic clustering method does not 

require the preceding label of the data to be categorized. 

Also, it calculates the optimum number of data 

partitions automatically based on the metaheuristic 

algorithm laws. For clustering the data as mentioned in 

the previous section, the normal PDF applied to available 

data to produce demand scenario data. The most 

common approach to determine the similarities 

between two cluster centers is a distance measurement. 

The cluster validity indexes refer to the statistical-

mathematical functions used to quantitatively test the 

performance of a clustering algorithm. 

 
Table 7: MADC DB index approach outline 
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The cluster validity index usually has two functions. 

First, it can be used to calculate the number of clusters, 

and second, it can be used to identify the best cluster 

centers. Two of the well-known indexes used in the 

literature for crisp clustering are the "DB" (Davies-

Bouldin) index and the "CS" (Chou-Su and Lai) index [45]. 

Due to their optimizing nature, cluster validity indexes 

are better used in combination with any optimization 

algorithms such as GA, PSO, etc. In this paper, the DB 
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index integrated with the GA algorithm has been used in 

the analysis of DRP for finding out the configuration 

effect of EHS, because of its achievements in multi 

demand EHs [46]. Through using clustering instead of 

focusing on a large amount of data, only specified 

categories are evaluated. The comprehensive process of 

modeling and formulating the DB index has been 

discussed in [45], which can be used for more 

explanation. Table 7 summarized the mentioned 

method. The MADC 's superiority is demonstrated by 

[45] comparing it with two established techniques of 

partitional clustering and one common hierarchical 

clustering algorithm. Besides, the objective function of 

DB and CS indices which introduced in this paper could 

present the optimal solution's guarantee based on the 

cluster scatter and distance eigen. Also, the key 

difference between these instruments is related to its 

ability to evaluate the optimum number of scenarios of 

the results which named cluster centers automatically 

without a human-deciding process. 

"Shannon entropy" and "TOPSIS" Method Application 

The Shannon entropy [47] can be used to assess the 

degree of disorder and its effectiveness in system 

information. The lower the entropy value, the lower the 

system's degree of disorder. The "Shannon entropy" 

weight approach is based on the amount of information 

needed to calculate the weight of the index and is one of 

the objective fixed weight methods. An entropy weight 

approach is used to evaluate the weight of the index in 

this paper, which is determined as follows. "TOPSIS" is 

the principle of identifying the optimal solution for 

decision-making problems, first of all, then finding a 

feasible and final solution and rating the solutions 

according to the similarity of the feasible solution to the 

optimal solution (positive or negative according to 

reduction or increasing need), finding the nearest 

solution to the ideal solution and the furthest from the 

negative one. The comprehensive process of modeling 

and formulating "Shannon's Entropy" and the "TOPSIS" 

methods have been discussed in [48], which can be used 

for more explanation. Table 8 and Table 9 abridged both 

approaches. 

Results and Discussion 

A. Optimal Configuration Selection Considering DRP 

As mentioned in the structured EHS, EHP fed point 

distinct both types "A" and "B". Conditions of both case 

studies and optimal EH’s operation cost has been 

presented through Fig. 11 to Fig. 17. 

EHP converts electricity to heat and cool energy. 

Operation cost variation shows the effects of the new 

configuration in the EHP fed point. Results indicate that 

changing configuration is capable of reducing the 

operation cost to 0.06% in a single day. This reduction is 

achieved because of the EHP ability to manage energy. 

Operation cost changing demonstrates the fed point of 

equipment and consequently configuration influence on 

this subject. Only a little change in the fed point cause to 

reduce the hub’s operation cost and it is obvious this 

reduction has been obtained with assumed demand and 

this percentage can change by differing mentioned 

conditions. Implementation of the selected scenario 

which is EDRP with $40 incentive rate in the following 

sections will result in %7.8-%9.9 cost reduction 

(operational cost for 1st cluster center is $74,925 and for 

2nd one is $76,664 in the presence of DRP for type "B" in 

the selected scenario which will be discussed in the 

following section). 

As shown in Fig. 11 and Fig. 13, the E1 and E3 inputs 

vary in the same way. This is because the EHP energy 

consumption is not related to the energy direction of the 

E1 and E3. On the other hand, the E2 vice versa E1 and E3 

changes in a different way for both types, which showed 

by Fig. 12 for both topologies. The E1 constancy is 

because the E1 is the basis of De energy consumption. 

The changelessness of E3 is because of its role in feeding 

DC, which in both types is the same.  

It is necessary to compare the whole electricity 

energy usage in Fig. 14. It is important to mention again 

that the same demand is considered for both types of 

EHSs. Total input gas energy is depicted in Fig. 15. Heat 

demand production by the furnace and chiller boiler is 

illustrated in Fig. 16.  

 By utilizing the objective function which presented 

before, the energy hub economic dispatch will cost as 

shown by Fig. 17. As can be seen, in the case without DR 

for both types (and just variable costs as different 

operational costs, not TOU applying), the value of 

operation cost for type "A" and "B" are $83,205.885 and 

$83,157.136, respectively. By comparing both cases, it 

can be found that, by employing type "B", operation cost 

reduced up to $48.74 which is 0.06%. 
 

Table 8: Shannon entropy method outlines 
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Table 9: TOPSIS approach outlines 
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By utilizing EDRP for peak hours (14-18) and different 

incentive rates, the mentioned types result as Fig. 18.  

In type "B", the electrical energy input directions play 

a complementary role and help to cost reductions.  

For comparing the results for both types, the 

simulation result of the optimization problem in 

deterministic conditions has been presented in Table 10, 

too.  

These results imply that the hub’s operation cost has 

a direct relation with the configuration. 

The operational cost in type A is almost $83,206. So, 

by employing type "B" and applying EDRP, operation 

cost reduced up to $1244. In comparison with base type 

results (as Fig. 17), the operational cost for the least 

incentive rate ($1) reduced 0.32% and for the highest 

incentive rate ($20) reduced 1.50% in the selected type 

which is "B".  

By considering the mentioned results type B is 

selected for applying the MADC approach. Also, the 

selected type is less complicated as presented in past 

sections. By considering both types as Fig. 19 presents, a 

configuration selection center could manage the effect 

of the configuration in reducing costs and emissions for a 

special site depending on situations (with DRP or without 

DRP and the combination of these configurations). 

 
Fig. 11: E1 consumption for both type-A and type-B. 

 

Fig. 12: E2 consumption for both type-A and type-B. 

 

 
Fig. 13: E3 consumption for both type-A and type-B. 

 

 
Fig. 14: Total energy input E for both type-A and type-B. 

 

 
Fig. 15: Input gas energy for both types. 
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Fig. 16: Amount of produced heat by the furnace and chiller 

boiler for both types. 
 

 

Fig. 17: Total operation cost of the base and proposed EH. 

 

 
Fig. 18: Total operation cost comparison based on different 

incentives in the presence of EDRP. 
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Fig. 19: Configuration selection scheme. 

B. MADC Approach 

In this section, MADC has been evaluated. In this 

paper for more reasonable results, the demands 

designate in a complete clustering act instead of 

clustering each hour [46]. For computing cluster center 

with MADC (by using GADB [46] as mentioned before) 

following assumptions used: 

 Maximum number of iterations=200; 

 Population size (nPop)=100; 

 Crossover percentage (Pc)=0.8; 

 Off springs number (parents)=2×round (Pc  × nPop/2); 

 Mutation percentage (Pm)=0.3; 

 Number of mutants=round (Pm  × nPop); 

 gamma=0.05; 

 Mutation rate=0.02; 

 Selection pressure=8. 

MADC was executed 100 times and the average run 

time is 69.40 sec, notice that the approach should run 3 

times to result in cluster center combination of 3 

demands (the last run results considered). Also, the 

average amount (costs) of the MADC fitness function 

(which is mentioned in Table 7) are 0.999, 0.990, and 

1.014. 

As it is illustrated in Fig. 20, by utilizing the automatic 

clustering method for each demand data, two cluster 

center results as each demand cluster centers. The 

illustrated data clusters as a complete view showed by 

Fig. 21. By considering the mentioned figures the final 

combination could be the as following matrix 
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(30) 

For achieving the final results, the first cluster center 

combinations (1,2) are considered in this paper. Table 11 

presents the selected cluster centers. Also, the results 

were analyzed by descriptive statistics in the mentioned 

table. For more reliability, the other combinations could 

consider that's beyond the scope of this paper. For 

future researches, the combinations could consider by 

two techniques. First, re-cluster detected clusters 

combination with an adaptable approach (like using 

metaheuristic algorithms), second using descriptive 

statistics features of evaluated cluster centers. 

C. Different Scenarios in the Presence of EDRP and 
Prioritizing 

Several DR scenarios have been considered for both 

evaluated cluster centers as indicated by Table 12 and 

Table 13. The suggested DRP is split into 6 scenarios. In 

the base case, base prices are implemented where no DR 

program is adopted as mentioned in the previous 

sections.  It should be mentioned again that the price 

change in Table 3 is because of the operational cost of 

EH's equipment. Scenario #1 is the DRP without any 

variable price for electricity or gas (the average price in 

Table 3 considered for both which are $12 and $31.65 

for gas and electricity respectively). Scenario #2 to 
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Scenario #4 are the IBP class, which includes the EDRP 

program with different incentive rates from $10 to $40. 

Finally, scenario #5 and Scenario #6 are the scenarios 

with %80 and %120 of elasticity and an incentive rate of 

$20. 

In order to enhance the characteristics of the load 

profile as well as the customer’s benefit, the following 

attributes are considered as elements 1 to 6 as seen in 

Table 12 and Table 13: “operational cost without DR )$(, 

customer bill ($), operational cost reduction ($), 

costumer benefit ($), electrical energy peak reduction 

(MWh) and gas energy peak reduction )MWh(”.   

The attributes are weighted using the "Shannon 

entropy" method. The weights of the attributes 

measured are seen in Table 14. The decision matrix is 

then defined using "TOPSIS" with the results of Table 15. 

As mentioned, the decision matrix reflects the 

performance of each program for each attribute. As seen 

in Table 15, scenarios 4, 6, 3, 1, 5, and 2 give the best 

results respectively for both cluster centers. In order to 

avoid a vast number of statistics and tables from all the 

results of the scenarios, only results relating to the 

selected scenario (#4) have been presented and 

discussed in this section. The results of the simulation 

studies and the effect on the load curve characteristics 

of the selected DRP scenario (# 4) using the load 

economic model are shown in Fig. 22 and Fig. 23 for 

both cluster centers considering peak reduction in 14-18 

periods. Load shifting -as one of the demand response 

strategies- has been successfully applied in all types of 

demand, electricity, heat, and cooling. The demand side 

action for both forms is acceptable. The detailed peak 

reduction for each demand is depicted in Fig. 24 and Fig. 

25.  

D. TOU and TOU+EDRP Integration Scheme for Cluster 
Centers 

Typical EDRP has been completed with TOU in this 

paper for full utilization of the demand-side potential for 

decreasing operational costs. The TOU program is one of 

the most popular programs among the DRPs.  

By using this program, the ISO can obtain optimum 

results with most benefits. Besides, the DRP control unit 

could adjust the energy usage from a particular time in 

the EH, which has a higher electricity price, to a night 

period with a lower electricity price with the use of 

demand response capability programs (which here this 

case considered by just doubling prices).  

Most of the demands of the system are made up of 

external energy networks (so this could be a major 

possibility to change consume side behavior by adjusting 

energy price for gas/electricity).  

Energy carriers have been described in this paper as 

electricity, natural gas. 

As a consequence, this change impacts the power grid 

and the natural gas network. The initial price variability 

of energy carriers causes the EH management unit of the 

system to follow various strategies to achieve optimum 

benefit. As a special case for observing TOU effect Table 

16 and Table 17 reflects the results of doubling just 

electricity price and as other case both electricity and 

gas prices for both cluster centers. 

Fig. 26 to Fig. 29 are demonstrators of imported 

energy form the electrical /natural gas grid during the 24 

hours for the selected type that is B. Applied approaches 

such as EDRP integrated with TOU changes the imported 

power amount significantly. In other words, the variation 

of electricity/gas price in proportion to its constant price 

manner results in providing the demand for EH in 

optimal scheduling. 

Fig. 26 and Fig. 27 depict the twofold electricity price in 

peak for first and second cluster centers respectively. Also, 

Fig. 28 and Fig. 29 represent twofold electricity and gas 

price in peak for both cluster centers.  

As seen doubling just electricity price (which in 

conventional systems could be even more) could reduce 

electricity usage to zero. In the other case by twofold 

electricity and gas price simultaneously the Ein and Gin 

reduced considerably. 

E. Priorities for Future Researches 

The impacts of other configurations could consider in 

future articles to get more certainty. Admittedly, by using 

more inputs including water and other facilities, it is 

possible to increase the baseline performance. 

Furthermore, the price profile (because of demand) may 

change on a seasonal, weekly, or even daily basis, so that 

the mathematical model may have to be adjusted almost 

daily depending on the operating conditions to avoid 

performance aberrations.  

For each hour the uncertainties could be considered by 

greater reliability. Besides, the use of appliances such as 

CHP, turbine, etc.  

to minimize the buying of energy from the power grid, 

is one of the solutions to increase the profit and reduce 

the expense of the energy center.  

Analysis of the intermittent renewable energy 

production impacts could deliberate. Considering the 

natural energy, including wind turbines and PVs will 

improve the model. Thus, wind speed and solar radiation 

uncertainties will influence the outcome. The association 

and variability of the PV and wind turbines would have a 

direct effect on transmission lines and bus voltages.  

Also, as mentioned the more cluster center 

combinations considering could increase reliability. So, for 

accurate, the forecast models the other available 

combinations could consider by re-cluster detected 

clusters combination or using descriptive statistics 

features of evaluated cluster centers.  

The mentioned constraints could consider in further 
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works without changing the main mean and just by little 

changes in scenarios. 

 

 
 

Fig. 20: Automatic clustering of demand's data. 

 

 

 
 

Fig. 21: Auto clustering of demands in a complete view. 

 

 

 
 

Fig. 22: EDRP peak reduction for 1
st

 cluster center (#4 Type B). 

 
 

Fig. 23: EDRP peak reduction for 2
nd

 cluster center (#4 Type B). 

 

 
 

Fig. 24: Demands peak reduction 1
st

 cluster center (#4 Type B). 

 
 

 
 

Fig. 25: Demands peak reduction 2
nd

 cluster center (#4 Type B). 
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Fig. 26: Electricity and gas usage change 1st cluster center 

(twofold electricity price in peak). 
 

 
Fig. 27: Electricity and gas usage change 2nd cluster center 

(twofold electricity price in peak). 
 

 
Fig. 28: Electricity and gas usage change 1st cluster center 

(twofold electricity and gas price in peak). 
 

 
Fig. 29: Electricity and gas usage change 2nd cluster center 

(twofold electricity and gas price in peak). 

Conclusion 

In this paper demand-side uncertainties model of EH 

has been incorporated with selected DRP. The 

uncertainties of EH various demands including heating, 

cooling, and electricity have been defined as scenarios 

based on the PDFs of demands. Along with proposing 

DRP, the EH operator willing to minimize its costs has to 

determine the optimal scheduling of EHs as well as the 

selected DR scenarios based on two integrated 

approaches "TOPSIS" and "Shannon Entropy". The 

proposed problem has been solved by the MADC 

approach through the genetic algorithm and using the 

DB index. A typical EH has been employed to analyze the 

different aspects of the proposed method and improved 

by proposing some configuration changes. The effect of 

configurations considered in detail. It was shown that in 

the system which EHP was fed directly by the network, 

the total cost is less than the other structure. This is 

because of EHS acting by giving feedback from the 

output and reducing wasted energy and converting it to 

other kinds of energy. Also, the MADC model for EH in 

the presence of DR was developed to evaluate the 

prioritizing of DRPs and reducing the problem 

dimension. The "Shannon Entropy" method was used to 

obtain the weights. Then the "TOPSIS" method was used 

to select the best result and reasonably achievable by 

choosing available variables. Two cluster center 

combination models were presented and analyzed, with 

variables that met the EHED. The most important 

variables to evaluate the DRP of EH in the study area 

were the operational cost without DR ($), the customer 

bill ($), the operational decreased cost ($), the customer 

benefit ($), the peak reduced for electrical energy 

(MWh), and the peak reduced for gas energy (MWh). 

The costumer's benefit ($) is the most influential variable 

of MADM techniques for its weight that found by 

Shannon entropy for both clusters with a little tolerance. 

Also, the "operational cost without DR ($)" was 

evaluated as the lowest weight in the decision matrix 

weight for both cluster centers. Besides, both cluster 

center as their origin -which is the normal PDF for 

demand as mentioned- act in weights almost the same. 

Although other variables are very important and should 

consider depending on the customer, ISO, or utility point 

of view, which here the customer considered. The user 

of this forecast model should use all of the available 

combinations in the clustering section since for more 

reliability the other combinations could consider by two 

techniques. First, re-cluster detected clusters 

combination with an adaptable approach, second using 

descriptive statistics features of evaluated cluster 

centers. Additionally, it is important to mention that 

when using the proposed models, it is necessary to 

consider seasonal, or weekend patterns which is out the 
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scope of this paper and could easily consider. So that the 

mentioned condition may have to be adapted almost 

daily depending on the conditions to avoid a 

performance defect.  

The positive effect of employing DRP in both peak 

shedding and reducing economic costs presented in both 

types. By comparing the results for, economic cost, in 

the case with EDRP, is reduced in comparison to base 

type A. Besides, type B in the case with DRP is better in 

the cost function than type A in both with and without 

EDRP.  

The inferences made of the study area showed that 

the EHED problem could consider by using cluster center 

instead of using large data in the presence of DRPs. 

By employing the MADC and using DRP of EH the 

impact on the results of energy dispatch of EHs as well as 

the operating objective function have been determined 

and discussed. Besides, the scheduling results of 

resources after the realization of the most probable 

scenario have been illustrated. In brief, the simulation 

results show: 

 In the DRP selection approach, the incentive rate has 

the most role than other elements like elasticity.  

 MADC and selected algorithm by considering proper 

index (GADB) provided reduced scenarios of 

uncertainties by evaluating the optimum number of 

scenarios which named cluster centers (automatically 

without human-deciding process). 

 The scenario finding process concentration is at the 

number of scenarios that will reduce the computation 

burden and increase the accuracy of the model. 

 The power used by gas-based and electrical-based 

devices are considerably reduced by using DRPs 

during peak period.  

 Using DRP leads to the reduction of the objective 

function alongside using optimal configuration. It 

means that motivating consumers to participate in 

DRPS can reduce the cost of EH operation. 

Finally, this study can be a basis of comparison for 

future research in the area of study. As well, it is possible 

to use different mathematical models such as nonlinear 

and compare the response variable or the predictors 

without losing main achievements. 
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Abbreviations 
/e g

t  Electric/Gas energy cost 

ee  Coefficient related to transformer 

/ch dch
tE  Charging/Discharging in time t 

/ /ge h CB  Coefficient of gas to electricity/heat/CB 

1/2,tH  Furnace output for feeding heat load/CB 

tG  Input gas energy of EH in time t 

1/2,tG  Input gas energy directions 

2,tG
 Input gas energy of the furnace 

/ /e h c
tD  Electric/Heat/Cool demand at time t 

tE  Input electric energy in time t 

1/2/3,tE  Input electricity energy directions 

/ch dch
tI  Binary value to charging/discharge state 

/c h
tI  Binary value to cool/heat state 

/ EHP
tC H  Cool/Heat generated by EHP 

ehpCOP W  The working factor of EHP 

t Sample time index 

/X YP  Input/output power matrix 

C  Coupling matrix 

maxDRP Maximum participation limitation in DRP 
/0D

tP Demand in time t 

DRP
tP The available power of DRP 

EHS Energy Hub Systems 

DR Demand Response 

MADC Metaheuristic Automatic Data Clustering 

EDRP Emergency Demand Response Program 

TOU Time of Use 

CHP Combined Heat and Power 

PDF Probability Density Function 

MCS Monte Carlo Simulation 

LHS Latin Hypercube Sampling 

DRR Demand Response Resources 

EHP Electric Heat Pump 

CB Chiller Boiler 

ESS Electricity Storage System 

Tr Transformer 

F Furnace 
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Table 11: Final selected cluster centers 

 

 

 

 

 

 

 

 

EH type  A B  A B  A B  A B  A B 

Incentive price ($) 1.00  5.00  10.00  15.00  20.00 

Eco
n

o
m

ical 

Operational cost without DR ($) 83206.00 83157.00  83206.00 83157.00 83206.00 83157.00 83206.00 83157.00 83206.00 83157.00 

Operational cost with DR ($)  82982.00 82933.00  82778.00 82729.00  82522.00 82473.00  82266.00 82217.00  82011.00 81961.00 

Customer bill ($)  82978.80 82929.80  82698.08 82649.08  82202.34 82153.34  81546.76 81497.76  80732.30 80682.30 

Total paid incentive ($)  3.20 3.20  79.92 79.92  319.66 319.66  719.24 719.24  1278.70 1278.70 

Operational decreased cost ($)  224.00 224.00  428.00 428.00  684.00 684.00  940.00 940.00  1195.00 1196.00 

Costumer benefit ($)  227.20 227.20  507.92 507.92  1003.66 1003.66  1659.24 1659.24  2473.70 2474.70 

O
p

e
ratio

n
al 

Total E usage no DR (MWh)  1778.30 1775.00  1778.30 1775.00  1778.30 1775.00  1778.30 1775.00  1778.30 1775.00 

Total E usage with DR (MWh)  1772.635 1769.274  1769.082 1765.733  1764.64 1761.313  1760.196 1756.886  1755.757 1752.463 

Total reduced E (MWh)  5.68 5.68  9.24 9.22  13.68 13.64  18.12 18.07  22.56 22.49 

Total G usage without DR (MWh)  2967.00 2967.00  2967.00 2967.00  2967.00 2967.00  2967.00 2967.00  2967.00 2967.00 

Total G usage with DR (MWh)  2966.047 2966.047  2962.234 2962.234  2957.464 2957.464  2952.695 2952.695  2947.927 2947.927 

Total reduced G (MWh)  0.96 0.96  4.77 4.77  9.54 9.54  14.31 14.31  19.08 19.08 

Peak E usage without DR (MWh)  380.13 391.69  380.13 391.69  380.13 391.69  380.13 391.69  380.13 391.69 

Peak E usage with DR (MWh)  377.70 389.23  373.31 384.71  367.83 379.06  362.34 373.40  356.86 367.75 

Peak reduced E (MWh)  2.42 2.46  6.81 6.98  12.30 12.63  17.78 18.29  23.27 23.94 

Peak G usage without DR (MWh)  654.57 654.57  654.57 654.57  654.57 654.57  654.57 654.57  654.57 654.57 

Peak G usage with DR (MWh)  652.68 652.68  645.09 645.09  635.61 635.61  626.14 626.14  616.66 616.66 

Peak reduced G (MWh)  1.90 1.90  9.48 9.48  18.96 18.96  28.44 28.44  37.92 37.92 

T  

(hours) 

1st cluster center  2nd cluster center  Dh probabilistic features  De probabilistic features  Dc probabilistic features 

Dh (MW) De (MW) Dc (MW)  Dh (MW) De (MW) Dc (MW)  Mean Std.Err Std.Dev Vari.  Mean Std.Err Std.Dev Vari.  Mean Std.Err Std.Dev Vari. 

t1 23.7403 61.1934 12.0094  19.9127 46.5628 10.7536  21.83 1.35 1.91 3.66  53.88 5.17 7.32 53.51  11.38 0.44 0.63 0.39 

t2 23.0667 60.5554 14.8005  23.2298 70.2743 12.2131  23.15 0.06 0.08 0.01  65.41 3.44 4.86 23.61  13.51 0.91 1.29 1.67 

t3 29.2458 63.9393 14.4938  24.6736 79.5224 17.7252  26.96 1.62 2.29 5.23  71.73 5.51 7.79 60.71  16.11 1.14 1.62 2.61 

t4 29.1081 78.4733 21.0230  25.3252 78.5930 22.5588  27.22 1.34 1.89 3.58  78.53 0.04 0.06 0.00  21.79 0.54 0.77 0.59 

t5 23.7909 114.5180 21.4103  26.4597 124.9144 22.7427  25.13 0.94 1.33 1.78  119.72 3.68 5.20 27.02  22.08 0.47 0.67 0.44 

t6 25.2912 91.5484 30.3805  27.0332 77.9971 31.4265  26.16 0.62 0.87 0.76  84.77 4.79 6.78 45.91  30.90 0.37 0.52 0.27 

t7 42.2813 111.5222 38.0266  38.2310 109.8509 40.1385  40.26 1.43 2.03 4.10  110.69 0.59 0.84 0.70  39.08 0.75 1.06 1.12 

t8 49.4742 122.5844 45.9311  45.9051 125.9513 48.2725  47.69 1.26 1.78 3.18  124.27 1.19 1.68 2.83  47.10 0.83 1.17 1.37 

t9 55.0574 146.1714 52.0197  50.7099 143.1384 49.6187  52.88 1.54 2.17 4.73  144.65 1.07 1.52 2.30  50.82 0.85 1.20 1.44 

t10 53.3959 150.8836 47.2973  46.8306 148.8455 51.0791  50.11 2.32 3.28 10.78  149.86 0.72 1.02 1.04  49.19 1.34 1.89 3.58 

t11 66.1378 147.0003 35.2708  70.9739 158.2464 33.4281  68.56 1.71 2.42 5.85  152.62 3.98 5.62 31.62  34.35 0.65 0.92 0.85 

t12 59.3973 140.5613 31.2797  63.2679 150.6599 34.7454  61.33 1.37 1.94 3.75  145.61 3.57 5.05 25.50  33.01 1.23 1.73 3.00 

t13 70.4422 194.5400 28.3029  66.8692 204.1284 26.7481  68.66 1.26 1.79 3.19  199.33 3.39 4.79 22.98  27.53 0.55 0.78 0.60 

t14 64.8269 181.3103 30.5516  70.3487 168.7717 33.5958  67.59 1.95 2.76 7.62  175.04 4.43 6.27 39.30  32.07 1.08 1.52 2.32 

t15 59.2759 167.4717 34.5643  54.7006 182.2651 31.4916  56.99 1.62 2.29 5.23  174.87 5.23 7.40 54.71  33.03 1.09 1.54 2.36 

t16 39.7297 134.8847 32.6926  41.3220 137.2725 36.3781  40.53 0.56 0.80 0.63  136.08 0.84 1.19 1.43  34.54 1.30 1.84 3.40 

t17 40.5114 101.2534 41.8246  35.3257 112.9727 38.8061  37.92 1.83 2.59 6.72  107.11 4.14 5.86 34.34  40.32 1.07 1.51 2.28 

t18 23.1794 90.9065 42.3504  25.9229 100.2231 45.4505  24.55 0.97 1.37 1.88  95.56 3.29 4.66 21.70  43.90 1.10 1.55 2.40 

t19 28.6135 94.8067 51.6883  24.7605 85.6357 50.7225  26.69 1.36 1.93 3.71  90.22 3.24 4.59 21.03  51.21 0.34 0.48 0.23 

t20 20.0601 78.6907 44.0028  23.0952 84.2897 41.6982  21.58 1.07 1.52 2.30  81.49 1.98 2.80 7.84  42.85 0.81 1.15 1.33 

t21 20.0697 73.6350 36.5549  22.5983 78.8553 36.7498  21.33 0.89 1.26 1.60  76.25 1.85 2.61 6.81  36.65 0.07 0.10 0.01 

t22 27.2648 69.7386 26.7349  22.4152 65.5656 29.2986  24.84 1.71 2.42 5.88  67.65 1.48 2.09 4.35  28.02 0.91 1.28 1.64 

t23 21.7120 54.3546 18.8858  23.3281 41.9632 19.7832  22.52 0.57 0.81 0.65  48.16 4.38 6.20 38.39  19.33 0.32 0.45 0.20 

t24 18.5066 71.9952 11.8792  24.6555 60.2725 9.5242  21.58 2.17 3.07 9.45  66.13 4.14 5.86 34.36  10.70 0.83 1.18 1.39 

Table 10: The DRP operation for both types with different incentive prices 
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Table 12: The different scenarios of 1
st

 cluster center for selected configuration (Type B) 
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#01 12 31.65 20 ×1 86390 85384 769.88 1775.80 26.87 37.66 

#02 Var. Var. 10 ×1 81451 81136 498.54 812.88 10.54 18.83 

#03 Var. Var. 20 ×1 80952 79695 997.03 2254.40 21.08 37.66 

#04 Var. Var. 40 ×1 79955 74925 1994.10 7023.60 42.17 75.31 

#05 Var. Var. 20 ×0.8 81151 80145 797.72 1803.60 16.87 30.13 

#06 Var. Var. 20 ×1.2 80753 79244 1196.50 2705.40 25.30 45.19 

 

Table 13: The different scenarios of 2
nd

 cluster center for selected configuration (Type B) 
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#01 12 31.6 20 ×1 87707 86674 816.97 1850.20 28.47 37.67 

#02 Var. Var. 10 ×1 83392 83069 520.69 843.59 11.92 18.84 

#03 Var. Var. 20 ×1 82871 81580 1041.40 2333.00 23.84 37.67 

#04 Var. Var. 40 ×1 81830 76664 2082.90 7249.20 47.68 75.34 

#05 Var. Var. 20 ×0.8 83080 82046 833.15 1866.40 19.07 30.14 

#06 Var. Var. 20 ×1.2 82663 81113 1249.70 2799.50 28.61 45.21 

 

  Table 14: Weight of attributes matrix for selected configuration (Type B) 

 

Sele
ctio

n
 

m
atrix 

Shannon entropy weight selection matrix of 1st cluster center  Shannon entropy weight selection matrix of 2nd cluster center 

element 

1 

element 

2 

element  

3 

element  

4 

element 

5 

element 

6 

 element 

1 

element 

2 

element 

3 

element 

4 

element 

5 

element 

6 

-0.3058 -0.3070 -0.2578 -0.2409 -0.3143 -0.2879  -0.3049 -0.3061 -0.2597 -0.2418 -0.3075 -0.2879 

-0.2981 -0.3003 -0.2016 -0.1490 -0.1923 -0.1973  -0.2983 -0.3005 -0.2013 -0.1493 -0.1937 -0.1973 

-0.2972 -0.2979 -0.2927 -0.2729 -0.2824 -0.2879  -0.2974 -0.2981 -0.2924 -0.2730 -0.2840 -0.2879 

-0.2956 -0.2897 -0.3644 -0.3630 -0.3601 -0.3626  -0.2958 -0.2899 -0.3643 -0.3632 -0.3609 -0.3626 

-0.2976 -0.2987 -0.2626 -0.2429 -0.2522 -0.2578  -0.2978 -0.2989 -0.2623 -0.2430 -0.2538 -0.2578 

-0.2969 -0.2972 -0.3164 -0.2974 -0.3065 -0.3119  -0.2971 -0.2974 -0.3161 -0.2974 -0.3081 -0.3119 

ej1 0.9998 0.9995 0.9464 0.8742 0.9533 0.9519  0.9998 0.9996 0.94684 0.8750 0.9533 0.9519 

dj1=1-

ej1 

0.0001 0.0004 0.0535 0.1257 0.0466 0.0480  0.0001 0.0003 0.05315 0.1249 0.0466 0.0480 

Wj1 0.00067 0.00150 0.19506 0.45782 0.16996 0.17499  0.00052 0.00133 0.19453 0.45715 0.17058 0.17588 

Improv

ed 

weight 

0.0007 0.0015 0.1951 0.4578 0.1700 0.1750 

 

0.0005 0.0013 0.1945 0.4571 0.1706 0.1759 

 

Table 15: Decision-making matrix of cluster centers for selected configuration (Type B) 

 
Decision-making matrix of 1st cluster center  Decision-making matrix of 2nd cluster center 

Sj1+ Sj1- Pj1 Rank Scenario S2+ Sj2- Pj2 Rank Scenario 

0.310661 0.077685 0.200040 4 #01 0.309590 0.076148 0.197409 4 #01 

0.379267 0.000050 0.000132 6 #02 0.378545 0.000044 0.000116 6 #02 

0.284599 0.096208 0.252643 3 #03 0.283844 0.096238 0.253203 3 #03 

0.000000 0.379267 1.000000 1 #04 0.000000 0.378545 1.000000 1 #04 

0.316010 0.063591 0.167520 5 #05 0.315329 0.063550 0.167732 5 #05 

0.253568 0.129019 0.337228 2 #06 0.252761 0.129099 0.338078 2 #06 
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Table 16: TOU and TOU+EDRP scheme for 1
st

 cluster center in selected configuration (Type B) 

 
 1st cluster center (2×electricity price in peak)  1st cluster center (2×electricity price and 2× gas price in peak) 

 
E total: TOU 

(MW) 

G total: TOU 

(MW) 

E total: TOU+EDRP 

(MW) 

G total: TOU+EDRP 

(MW) 

 
E total: TOU 

(MW) 

G total: TOU 

(MW) 

E total: TOU+EDRP 

(MW) 

G total: 

TOU+EDRP 

(MW) 

t1 151.296 81.876 151.731 83.014  151.296 81.876 151.731 83.014 

t2 31.529 83.215 31.967 84.372  31.529 83.215 31.967 84.372 

t3 146.875 100.511 147.249 101.909  146.875 100.511 147.249 101.909 

t4 161.886 107.754 162.469 109.252  161.886 107.754 162.469 109.252 

t5 138.976 93.015 140.167 94.308  138.976 93.015 140.167 94.308 

t6 180.236 107.793 181.073 109.292  180.236 107.793 181.073 109.292 

t7 58.327 165.279 59.138 167.577  58.327 165.279 59.138 167.577 

t8 60.178 195.076 61.015 197.787  60.178 195.076 61.015 197.787 

t9 76.922 218.148 47.385 221.181  76.922 218.148 77.991 221.181 

t10 83.910 207.878 85.465 211.732  83.91 207.878 85.465 211.732 

t11 13.533 230.218 0 234.485  13.533 230.218 0 234.485 

t12 65.503 206.291 66.718 210.115  65.503 206.291 66.718 210.115 

t13 117.414 201.263 119.591 204.994  117.414 201.263 119.591 204.994 

t14 0 220.953 0 195.355  12.221 185.22 10.805 163.762 

t15 0 209.786 0 185.482  13.826 169.36 12.224 149.739 

t16 0 151.75 0 134.17  13.077 113.513 11.562 100.363 

t17 0 164.665 0 145.588  16.73 115.747 14.792 61.604 

t18 0 115.759 0 102.348  16.94 66.227 14.978 58.554 

t19 79.877 81.753 81.358 83.268  79.877 81.753 81.358 83.268 

t20 71.58 57.315 72.907 58.377  71.58 57.315 72.907 58.377 

t21 63.429 57.342 64.605 58.405  63.429 57.342 64.605 58.405 

t22 46.086 77.899 46.94 79.343  46.086 77.899 46.94 79.343 

t23 34.533 62.034 35.173 63.184  34.533 62.034 35.173 63.184 

t24 80.867 13.894 82.366 14.151  80.867 13.894 82.366 14.151 

 Operational cost No DR Operational cost with DR  Operational cost No DR Operational cost with DR 

69878.896 $ 67893.945 $  78917.521 $ 76397.990 $ 

 

Table 17: TOU and TOU+EDRP scheme for 2
nd

 cluster center in selected configuration (Type B) 

 
 2nd cluster center (2×electricity price in peak)  2nd cluster center (2×electricity price and 2× gas price in peak) 

 
E total: TOU 

(MW) 
G total: TOU 

(MW) 
E total: 

TOU+EDRP (MW) 
G total: 

TOU+EDRP (MW) 

 
E total: TOU 

(MW) 
G total: TOU 

(MW) 
E total: 

TOU+EDRP (MW) 

G total: 
TOU+EDRP 

(MW) 

t1 141.389 69.471 141.686 70.436  141.389 69.471 141.686 70.436 

t2 41.232 80.655 41.805 81.776  41.232 80.655 41.805 81.776 

t3 168.775 91.227 169.453 92.495  168.775 91.227 169.453 92.495 

t4 166.971 98.742 167.624 100.115  166.971 98.742 167.624 100.115 

t5 146.083 102.199 147.373 103.62  146.083 102.199 147.373 103.62 

t6 164.123 113.994 164.736 115.579  164.123 113.994 164.736 115.579 

t7 61.935 156.177 62.797 158.348  61.935 156.177 62.797 158.348 

t8 68.296 187.616 69.246 190.225  68.296 187.616 69.246 190.225 

t9 79.531 202.919 78.311 205.74  79.531 202.919 80.636 205.74 

t10 90.444 193.543 92.12 197.131  90.444 193.543 92.12 197.131 

t11 44.74 241.88 0 246.363  44.74 241.88 0 246.363 

t12 70.73 221.403 72.041 225.507  70.73 221.403 72.041 225.507 

t13 131.264 191.055 133.697 194.596  131.264 191.055 133.697 194.596 

t14 0 240.29 0 212.452  13.438 200.996 11.881 177.711 

t15 0 193.12 0 170.746  12.597 156.287 11.137 138.181 

t16 0 160.61 0 142.003  14.551 118.063 12.865 104.385 

t17 0 146.318 0 129.367  15.522 100.931 13.724 86.142 

t18 0 127.224 0 112.485  18.18 74.065 16.074 65.485 

t19 75.188 70.744 76.582 72.055  75.188 70.744 76.582 72.055 

t20 72.389 65.986 73.731 67.209  72.389 65.986 73.731 67.209 

t21 65.517 64.566 66.731 65.763  65.517 64.566 66.731 65.763 

t22 49.215 64.043 50.128 65.23  49.215 64.043 50.128 65.23 

t23 20.127 66.652 20.501 67.887  20.127 66.652 20.501 67.887 

t24 71.365 11.139 72.688 11.346  71.365 11.139 72.688 11.346 

 Operational cost No DR Operational cost with DR  Operational cost No DR Operational cost with DR 

 72379.940 $ 70230.950 $  81471.210 $ 78307.862 $ 
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