
 J. Electr. Comput. Eng. Innovations, 8(2): 263-272, 2020

Doi: 10.22061/JECEI.2020.7212.370 263

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Using Machine Learning Methods for Automatic Bug Assignment to
Developers

 M. Yousefi1, R. Akbari2,*, S. M. R. Moosavi3

1

E-Learning College, Shiraz University, Shiraz, Iran.
2
Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran.

3
Department of Computer Science, Engineering, and IT, Shiraz University, Shiraz, Iran.

Article Info Abstract

Article History:
Received 07 September 2019
Reviewed 04 November 2019
Revised 12 December 2019
Accepted 12 March 2020

 Background and Objectives: It is generally accepted that the highest cost in
software development is associated with the software maintenance phase. In
corrective maintenance, the main task is correcting the bugs found by the
users. These bugs are submitted by the users to a Bug Tracking System (BTS).
The bugs are evaluated by the bug triager and assigned to the developers to
correct them. To find a related developer to correct the bug, recent
developers’ activities and previous bug fixes must be examined. This paper
presents an automated method to assign bugs to developers by identifying
similarity between new bugs and previously reported bug reports.
Methods: For automatic bug assignment, four clustering techniques (i.e.
Expectation-Maximization (EM), Farthest First, Hierarchical Clustering, and
Simple Kmeans) are used where a tag is created for each cluster that
indicates an associated developer for bug correction. To evaluate the quality
of the proposed methods, the clusters generated by the methods are
compared with the labels suggested by an expert triager.
Results: To evaluate the performance of the proposed method, we use real-
world data of a large scale web-based system which is stored in the BTS of a
software company. To select the appropriate algorithm for the clustering, the
outputs of each clustering algorithm are compared to the labels suggested by
the expert triager. The algorithm with closer output to the expert opinion is
selected as the best algorithm. The results showed that EM and FarthestFirst
clustering algorithms with 3% similarity error have the most similarity with
the expert opinion.
Conclusion: the results obtained by the algorithms show that we can
successfully apply them for bug assignment in real-world software
development environments.

©2020 JECEI. All rights reserved.

Keywords:
Automatic bug assignment

Bug reports

Bug clustering

Similarity criteria

*
Corresponding Author’s Email

Address:

akbari@sutech.ac.ir

Introduction
Software systems enter into the maintenance phase

after delivery to the customer and evolve over time.

Software is constantly changing due to new changes

needed by the customer and fixing possible bugs. Much

of the cost of software development is spent on

maintenance. Since software bugs are inevitable, it is

imperative to assign the bug to a proper developer.

When a bug is reported in the software, the bug must

be triaged. Bug triage is an important process in the

software maintenance phase and has a major impact on

software quality [1]. In the triage process, the person

http://jecei.sru.ac.ir/
mailto:akbari@sutech.ac.ir

M. Yousefi et al.

264

known as the triager, examines the accuracy of the

reported bug. Valid bugs are then assigned to a

developer to be fixed. The traditional and manual triage

process is time-consuming and costly and imposing more

cost on the project [2]. In large-scale software projects,

due to a large number of developers and the possibility

that they may work parallel in various project modules,

finding the appropriate developer is a difficult task and it

is time-consuming and inaccurate to make the necessary

checks [1], [2]. For example, the large number of bug

reports or the wrong assignment of a bug slows down

the debugging process. In this case, automatic bug

assignment and clustering of bugs based on their

similarities can make the triage and bug assignment

more accurate and faster. Bugs in large software systems

are maintained in BTS [3].

In large software projects, 50 to 60 bug reports are

saved daily in the BTS [4]. As an example, for the Eclipse

project, an average of 37 bug reports is logged daily in

the BTS, which requires 3 person-hours per day for

manual bug triage [5]. According to the study reported

by Jeong et al., 44% of bugs have been assigned to the

wrong developer after the first assignment [1]. To cope

with this problem, in recent years, different types of

methods have been proposed by authors [2]- [6]. These

researchers were aimed to automate the bug triaging

process. Some of the bug triage approaches are based on

text categorization [2]. However, these methods suffer

from poor quality reporting and cause to assign bugs to

wrong developers [6], [7]. The main task in the bug

assignment is to find the appropriate developer to fix the

bug by analyzing the bug history that occurred in the

software. In this paper, an automated method for

assigning the reported bug to the developer is presented

in a closed source web-based software system. The

method use clustering techniques to cluster the bugs. An

expert opinion is used for accurate verification of the

clustering algorithm and the outputs of each algorithm

that are closest to the expert opinion are selected as the

appropriate clustering algorithm. The main contributions

of this paper are:

 Aggregating required data for bug triaging and

assignment in a Closed Source Project (CSP).

 Using the proposed method for bug triaging in a real-

world large scale web-based system.

 Adapting different machine-learning methods for data

clustering and studying their performance for real-

world data.

The remaining of this paper is organized as follows:

the next section presents the previous works on bug

triaging and bug assignment. The details of the proposed

method is presented in Section “Methodology”. Section

“Evaluation and Results” contains performance analysis

and experimental results. Finally, conclusions and future

works are given.
Related Work

In the maintenance phase, for bug triaging and bug

assignment, many researchers use different information

retrieval and machine learning methods to analyze

textual sources in software repositories. More precisely,

information retrieval and machine learning techniques

have been extensively used by researchers to improve

assigning bugs to developers. In this section, we review

some of these methods for automatic bug assignment

and bug triaging.

In [8], some bug assignment methods have been

proposed. Different data sets and different input

parameters have been used to evaluate the proposed

method. According to this article, the number of

different methods available for triage and bug correction

confuses researchers. Therefore, in this paper, the work

done to fix the bug is managed in a structured way. For

this purpose, a structured combination of bug-solving

methods is provided. Also, various aspects of bug

correction are described and 6 related research

questions in 5 dimensions are examined. To create

infrastructure and organize bug assignment methods, 60

articles have been reviewed and classified. This study

helps researchers to choose the right tools to fix the bug.

Limsettho et al. [9] presented a method for

categorizing bug reports using topic modeling and two

clustering algorithms. The proposed method has three

phases. In the first phase, the bug reports are

preprocessed and converted to topic vectors. These

vectors are clustered in the second phase. Finally, each

category of bugs is labeled. Alenezi et al. proposed a

method to reduce the bug triage time and automatic bug

assignment to a related developer. They used Naive

Bayes (NB) classifier to build a predictive model that can

be used to assign a new bug report to a developer in the

future. Five selection methods (LOR, X2, TFRF, MI, and

DFS) have been used to reduce the size of the

dimensions of terms and improve accuracy. This

approach has two main steps. 1) A classification model is

created using reduced terms to predict an experienced

developer to fix newly reported problems. 2)

Redistribute the load of overloaded developers. The

evaluation was performed using four reported bugs from

actual projects. Precision, recall, and F-score criteria

were used to evaluate the performance of the

classification [10]. The implementation of a

recommendation system that was parallel and scalable

and based on deep learning has been presented by

Florea et al. [11]. Two deep learning categories have

been used: Convolutional and Recurrent Neural

Networks (CNN and RNN). The main theme of this article

is not about running time, but about the scalability of the

system on a cluster. This is measured using the speed

Using Machine Learning Methods for Automatic Bug Assignment to Developers

265

criterion (the ratio of the sequential execution time to

the parallel execution time) and the parallel evaluation

(speedup divided by the number of

processors/cores) [11]. Shokripour proposed a method

that uses textual information of the reported bugs in the

bug repository to assign a new bug report to a developer.

This method uses the term frequency-inverse document

frequency (TF-IDF) term weighting technique. By using

time metadata as an effective parameter in term

weighting in term frequency-inverse document

frequency, an attempt has been made to improve the

automatic attribution of bug. The last time the term is

used by the developer is used in the assignment [12].

In another work, Shokripour et al. presented a

method based on Information Extraction (IE) techniques

for bug assignment in large scale open source projects

(OSP) [13]. The proposed method applied on three

projects and more than 41% accuracies obtained.

Guo et al. presented a method based on convolution

neural network (CNN) and developer activities for bug

triaging [14]. They used CNN along with batch

normalization and pooling to learn from the vectors

generated by Word2vec. The performance of their

method was evaluated on three open-source projects

(OSPs). The bug assignment problem has been

considered in [15] by employing programming keywords

in the bug description as well as the recent expertise of

developers. The authors applied their method on 93k

bug‐report assignments from 13 popular GitHub projects.

Zhang and Lee have proposed a method based on the

combination of an experienced model and a probability

model. First, a fixed bug that similar to new bug reports

are extracted using the Smooth Unigram Model (SUM).

Then an experienced model and a probability model

based on similar bug reports are created. To create a

probability model, social networking techniques are used

to determine the relationship between developers from

comments in the bug reports. The experience model is

then created based on a series of project activity factors

in the project such as the number of bugs which is fixed

by the developer. Eventually, two models are combined

and a developer rating is extracted that is used for new

bug reports [16]. In other work, a machine learning-

based approach was proposed that uses the nearest-

neighbor algorithm to classify bug reports. The method

consists of two components. The first component uses

the VSM method with TF-IDF weighting to convert the

fixed bug report text to the term vector space and

determine the similarity of bug reports to new bug

reports. The second component uses social network

metrics to rank developers so that a ranking list is

created based on the records of developer participation

in discussing similar bug reports [17].

Kashiwa used mathematical programming for bug

assignment [18]. He presented an optimization method

called Release Aware and Prioritized Bug Fixing Task

Assignment Optimization (RAPTOR). The purpose of this

method is to mitigate the task concentration and

increasing the number of bugs that developers can fix.

The application of ensemble methods has been

studied by Goyal and Sardana in [19]. They used five

ensemble methods called Bagging, Boosting, Majority

Voting, Average Voting, and Stacking. For designing these

ensembles, 25 different machine learning classifiers have

been used by the authors. They applied these ensembles

on three OSPs. Their results showed that the ensemble

methods provide better performances in comparison

with the base classifiers. In [20], an algorithm based on

the Developer's Expertise Score (DES) for Bug Tossing

Length (BTL) has been provided. The strategy is done in

two steps: The first step is an offline process for

obtaining a DES, which is calculated based on priority,

adaptability, and average fixed time in developer

activities. The online system process involves finding

capable developers using three similarity calculation

criteria (feature-based, cosine similarity, and Jacquard).

The second step in the online process is to create points.

Hit-ratio and reassignment accuracy are used to evaluate

performance. In this method, the system is compared

with ML-based debugging methods using three types of

classification algorithms: Navies Bayes, Support Vector

Machine (SVM), and C4.5 paradigms. By testing 41622

bug reports related to Mozilla, Eclipse, Netbeans, Firefox,

and Freedesktop projects, the proposed method has an

average accuracy of 89.49%, the precision is 89.53%, the

recall rate is 89.42% and the F-score is 89.49%, which

reduces BTL to 88.5%, which shows 20% improvement

over existing technologies [20].

In [21], the main goal is to create a classifier to classify

the reported bugs into two predefined classes: corrective

report (defect fixing) and perfective report (major

maintenance). This allows the maintainers to understand

the bug more quickly when new bugs are reported and

to provide the resources needed to fix the bug. For this

purpose, the proposed method is based on a set of

specific features that are based on the occurrence of

specific keywords. This set is fed to some classification

algorithms to create a classification model. The results of

the proposed method are based on 3 different open

source projects with an average accuracy of 93.1% with

classification using the SVM classification algorithm [21].

The bug assignment problem in a CSP has been

considered in [22], the goal was to reduce the bug

assignment time to a developer with a related specialty

that is reduced by tossing length. The development of

such a technique is especially challenging for closed

source projects. In this paper, a score is created to

identify and rank an expert developer independent of

M. Yousefi et al.

266

the nature of the project. Two criteria are presented

based on developer expertise and bug importance score.

These two criterion are calculated using information

obtained from the components and content of the bug

report. To validate the proposed method, the bugs that

have been reported in a CSP developed by XYZ, pvt. Ltd

has been used. The result obtained for the proposed

method on the selected data set has been predicted with

an accuracy of 88.9% .

In [23], a method for simultaneous bug triage was

proposed for the developer and the development team

using two-output neural network structure (called Dual

DNN). This simultaneous is used using assignments made

to the developer by team classes. A multi-label

classification method has been used for two outputs for

learning. A combination of exploratory labels that

become a function of probability has been used. First, a

two-step learning plan is used, in the first step of

learning a part of the team is trained, and then the

communication training between the team-developer

and the developer-bug is done. The scheme is designed

to encode team and developer relationships based on an

organizational chart, which reinforces this model of

organizational change because it can be adapted to role

changes in an organization. A method called KSAP (K-

nearest-neighbor search and heterogeneous proximity)

was proposed by Zhang et al. to automatically assign a

bug to the developer using historical bug reports and a

heterogeneous network of bug repository [24]. When a

new bug is reported, the bug is assigned to the developer

in two phases. The first phase is to find similar bug

reports to the new bug using the K-nearest-neighbor

(KNN) method, and the second phase is to find

developers who have participated in similar bugs using

Heterogeneous proximity. An experiment on the Mozilla,

Eclipse, Apache Ant, and ApacheTomcat 6 projects

concluded that the KSAP method could improve the bug

assignment recall between 7.5% and 32.25% compared

to similar new methods [25].

Lee et al. reported that most previous studies focused

only on OSPs and did not consider deep-learning

techniques [25]. The Convolutional Neural Network

(CNN) from the machine learning branch and Word2Vec

from the word embedding branch has been used for

automatic bug triage. The results obtained from the

proposed method on the industrial project and open-

source show the advantages of the approach. In fact, by

using deep learning, the automatic assignment of a bug is

performed on an industrial project. The performance

advantages of the proposed method have been

measured in comparison with human triage in terms of

accuracy and simultaneous overhead. According to bug

reports for industrial projects, we simulate the situations

in which the proposed system is used and confirmed the

effectiveness of the proposed system [25].

A two-phase method that used the Association Rule

Mining (ARM) and X-Menas algorithm was proposed by

Sharma and Singh for bug triaging [26]. In the first phase,

the Apriori algorithm was used to predict the assignment

of new bugs. The second phase used X-Means clustering

along with ARM in each cluster. The performance of the

proposed method was studied on some open source

projects.

Mahendran proposed an approach that uses chart

databases to calculate points for engineers and assign

bugs to them [27]. This method is preferred over

machine learning methods because there is no need to

process of extracting, analyzing, or synchronizing data.

The whole database for bug management can be in the

graph database, and the method can be implemented

directly on bug management tools. The proposed

method controls the automatic assignment of errors

along with workload balancing for engineers. Graph

databases manage data internally as graphs and make

relationships available as ready-made graphs in the

database. It is possible to identify suitable maintenance

engineers with queries without any specialized tools or

extraction process. Lee et al. proposed a two-phase

method for cost-aware clustering of bug reports by

employing the Genetic Algorithm (GA) [28] as an

optimization algorithm. In the first phase of their

method, a set of groups is created based on the

similarities between bugs. The second phase constructs

the clusters by grouping similar reports. The method was

examined on the bug reports of Mozila’s Firefox project.

A short survey of the previous methods is presented

in Table 1. The second column shows the method used

by the authors mentioned in column one. The third and

fourth columns show the name and type of dataset used

to evaluate the proposed methods.

As can be seen from Table 1, in most of the studies,

data of OSPs have been used by researchers and there

are a few works that have considered CSP data sets. The

main OSPs that have been used in these studies are

Eclipse, NetBeans, and Mozilla. Therefore, working on

real-world data (or CSPs) and studying the applicability of

the machine learning methods in this domain helps us to

know if these methods are successful in CSPs or not. This

fact encouraged us to study the bug-assignment problem

in real-world environments. Also, previous works showed

that in recent years different methods ranging from

machine to deep learning, text mining and optimization

have been used to cope with the bug assignment

problem. It should be noted that in this article the

emphasis is not on improving machine learning methods

or other methods, but the main emphasis is on using

these methods in the real world. Hence, some clustering

algorithms have been used in their classical form.

Using Machine Learning Methods for Automatic Bug Assignment to Developers

267

Table 1: A survey on previous work, used methods and datasets

Ref. Method Dataset Dataset type

Limsettho et al. (2016) [9] Topic Modeling, EM, X-Means HTTPClient, and JCR OSP

Alenezi et al. (2013) [10] Naive Bayes Eclipse-SWT, Eclipse-UI, NetBeans,

Maemo

OSP

Florea et al. (2017) [11] CNN and RNN Netbeans, Eclipse and Mozilla OSP

Shokripour et al. (2015) [12] ABA-Time-tf-idf Eclipse, NetBeans, ArgoUML OSP

Shokripour et al. (2012) [13] IE methods Eclipse, Mozilla, and Gnome OSP

Guo et al. (2020) [14] CNN Eclipse, Mozilla and NetBeans OSP

Sajedi‐Badashian, and Stroulia

(2020) [15]

Vocabulary and Time-aware

Bug-Assignment (VTBA)

13 popular GitHub projects OSP

Zhang, and Lee (2013) [16] Unigram Model (UM) Jboss, and Eclipse OSP

Wu et al. (2011) [17] KNN, expertise ranking Mozilla Firefox OSP

Kashiwa, Y. (2019) [18] Mathematical programming Mozilla Firefox, Eclipse, and

GNU compiler collection (GCC)

OSP

Goyal, and Sardana (2019) [19] Bagging, Boosting, Majority

Voting, Average Voting, and

Stacking

Mozilla Firefox, Open Office, and

GNOME

OSP

Yadav et al. (2019) [20] DES based online system Mozilla, Eclipse, Netbeans, Firefox,

and Freedesktop

OSP

Otoom et al. (2019) [21] SVM AspectJ, Tomcat, SWT OSP

Yadav et al. (2018) [22] A metric based method XYZ, pvt. Ltd. India CSP

Choquette-Choo et al. (2019) [23] Dual DNN Google Chromium project OSP

Zhang et al. (2015) [24] KSAP Mozilla, Eclipse, Apache Ant, and

ApacheTomcat 6

OSP

Lee, Sun-Ro, et al. (2017) [25] CNN, Word Embedding JDT, Platform, Firfox /A,B,C,D OSP/CSP

Sharma and Singh (2016). [26] ARM, X-Means Thunderbird, Add-on SDK, and

Bugzilla

OSP

Satish, and Mahendran (2018) [27] Page ranking and graph

databases

QT Framework OSP

Lee et al. (2019) [28] GA Mozilla’s Firefox OSP

Methodology

This section presents the proposed method in detail.

The proposed method is aimed to triage the bug report

and assign it to an appropriate developer with

acceptable speed when a bug is reported in a CSP. The

proposed method uses clustering techniques to classify

similar bug reports. To select the appropriate clustering

algorithm, they are evaluated and the most appropriate

algorithm is selected. Determining the similarity between

bug reports is done by analyzing their context. Before

discussing the proposed method more accurate, some of

its advantages are as follows:

 In the real world, we usually face a lot of errors, and it
is possible that many of the reported errors are of the
same type and go into the fixed state without being
checked and no assignment is made to them. The
proposed method help the triager to mitigate this

problem.

 The speed and accuracy of the bug assigned to the
developer increases and developers who have to do
the debugging are more accurately identified.

 We can manage all the bugs that affect a specific
business or a particular software feature in a single
cluster and get enough information from them.

 All bugs in the bug repository are categorized and
grouped, making it easy to access and manage as well
as reporting.
In software companies, the bug assignment is done by

the bug triager manually. She/he checks the reported

bugs and select the appropriate developer(s) to fix them.

In the proposed method, we use the assignments

proposed by the experts as our reference. Hence, the

clustering algorithm that suggests the assignments that

are closer to the assignments of the experts is preferred.

M. Yousefi et al.

268

A. Description of the real-world case study

The proposed method is aimed to process the real

data of a web-based system developed (we call it

xyzSystem) in a software company. The data used here

are the bug reports that have been stored in the BTS of

the software company. The BTS maintains the bug

reports of three software projects. These projects belong

to a larger project. Three software work together to

achieve a common business goal. One of the software

mentioned as the main software receives online services

from the other two software. The purpose of this web-

based software is to manage corporate purchases.

B. Data Gathering

The users of the xyzSystem can report the bugs during

working with the system. For this purpose, they log in to

the ticketing system and send the bug report directly to

the BTS. The BTS records are processed by the change

control board and after validating the bug report, the

appropriate developer is selected to fix the bug. This

process is done manually. So, it is a time-consuming task.

Automating this task helps the maintenance team to

save time and cost and user satisfaction increases.

To apply the proposed method, the bug reports

submitted by the users through a ticketing system is

used. The bug reports are maintained in the BTS

repository.

For this purpose, the bug reports are extracted from the

BTS using a wrapper, converted to the appropriate

format, and arranged in an Excel file. The steps for

preparing data can be seen in Fig. 1.

C. Overview of the Method

The steps of the proposed method can be seen in Fig.

1. Bug reports in software bug tracking systems are the

information needed to start the proposed method. At

the start of the process, the bug reports extracted from

the bug tracking system repository are used as the input

of the process. Next, the preprocessing step is applied

By applying the preprocessing steps to the bug

reports, each bug report is converted to a term vector.

After creating the term vector, the similarity between

each vector is calculated. By creating the similarity

matrix, we are ready to apply clustering algorithms.

Finally, we apply tagging on the clusters.

D. Pre-Processing steps

As shown in Fig. 1, the description and summary of

each bug report are extracted and used as the input of

the preprocessing step. The steps of the pre-processing

phase convert raw data into the useful data.

The content of a bug report (which is a bug summary

and description) contains information such as time the

bug occurred, the location of the bug, and the cause of

the bug. At first, the tokenization operation is applied to

Pre-processing module

Calculate similarity

Similarity Matrix

Clustering algorithm

Tagging

S
u

m
m

ary

T
o
k

en
izatio

n

R
em

o
v
e S

to
p

-w
o
rd

s

S
tem

m
in

g

Bug Reports

Clusters

Ticketing System

Bug Tracking System

Wrapper

Users

Fig. 1: Schematic diagram of the proposed method.

Using Machine Learning Methods for Automatic Bug Assignment to Developers

269

the extracted text of the bug report. In this way, the

textual content of the bug report is converted to tokens.

After that, Stop words are removed. The stemming

(convert the word to base form) operation is performed

on tokens. As an example of the operations in the

preprocessing phase, Fig. 2 shows a sample bug report

related to the xyzSystem, and the output of the pre-

processing steps on the bug reports is shown in Fig. 3.

__

2019-04-08 10:13:36

Exception in

org.xyzSystem.dominant.dao.core.nonPlanAllocation.INonPlanAllocatio

nRepository.getAllGrid()

with cause = 'org.hibernate.exception.SQLGrammarException:

could not extract ResultSet' and exception = 'could not extract

ResultSet;

__

Fig. 2: Summary of a bug report.

__

2019, 04, 08, 10, 13, 36, exception, org, xyzSystem, dominant,

dao, core, nonplanallocation, inonplanallocationrepository,

getallgrid, cause, org, hibernate, exception,

sqlgrammarexception, could, extract, resultset, exception,

could, extract, resultset

__

Fig. 3: Result of pre-processing steps.

E. Calculate Similarity

After applying the pre-processing step to the bug

reports, the term vector of each report is calculated. The

number of repetitions per term in each bug report is the

term vector of that bug report. After calculating the term

vector of bug reports, the similarity between the term

vectors is calculated using Pearson's correlation

coefficient. This is one of the most frequently used

methods for calculating the data dependencies [29].

This coefficient is between 1 and ‐1 and is zero if no

relationship exists between the two variables. The

formula for calculating Pearson's correlation coefficient

is as follows:

 (∑) (∑)(∑)

√[∑ (∑)] [∑ (∑)]

 (1)

In Pearson's formula, the values of x and y represent

two vectors and the value of n represents the number of

terms involved in calculating the term vector of bug

reports. The similarity of each pairs of bug reports is

calculated and the similarity matrix is generated

between bug reporting vectors. As an example, Table 2

shows the similarity matrix of four typical bug reports in

xyzSystem. According to Table 2, the values in the cells

of the matrix indicate the similarity between bug reports

in the related row and column.

Table 2: Similarity Matrix

 Bug1 Bug2 Bug3 Bug4

Bug1 1 -0.18786 0.099853 0.948872

Bug2 -0.18786 1 0.546667 -0.13032

Bug3 0.099853 0.546667 1 0.099853

Bug4 0.948872 -0.13032 0.099853 1

According to the permissible values of the correlation

coefficient, if the similarity value obtained is near to 1

indicates the similarity and if is near to -1 indicates the

non-similarity of the bug reports. According to the values

in Table 2, reporting bug 1 and 4 with similarity values

close to one are more similar, and error reporting 1 and

2 with similarity values near negative are non-similar. If

we set the number of clusters to three by default, two

bug reports 1 and 4 falls into one cluster and two other

bug reports fall into separate clusters.

F. Clustering

The similarity matrix generated in the previous step is

used as the input to the clustering algorithms. Clustering

algorithms cluster the error reports in the matrix based

on their similarity values. The clustering procedure in the

proposed method detects related bug reports. Similar

bug reports fall into a cluster. The clustering algorithms

used here are: 1) EM, 2) Farthest First, 3) Hierarchical

Clustering, and 4) Simple K-Means. The clustering

algorithms implemented in Weka version 3.6.9 are used

here.

G. Tagging

The purpose of clustering is to assign tags to objects

that represent each object's membership in the cluster.

These tags are keywords that indicate the identity of the

content of the cluster.

After clustering, the bug reports should be tagged on

the clusters. Usually, the suggestions for selecting a tag

can be based on the number of repetitions of the term in

the bug reports and the term that is most frequently

repeated in the bug reports is selected as the cluster tag.

In the proposed method, depending on the clustering

issue associated with clustering bug reports and

selecting the appropriate developer to fix the bug, each

cluster is tagged with the developer specification that

has fixed the bug.

Now, when a new bug report occurs in the xyzSystem,

the steps of the proposed method are applied on it. First

the pre-processing step is performed on the new bug

report and finally based on the calculated similarity

criteria for the new bug report against the clustered

bugs, it is added to the most similar cluster. The new bug

is assigned to the developer whose name is tagged on

the target cluster. Also, the bug status is changed to

“assigned”. The next section presents the test results in

detail.

M. Yousefi et al.

270

Evaluation and Results
It seems that the proposed method provides an

efficient way for automating the bug triage process. In

this section, the proposed method is tested with real

dataset and the performance of the clustering

algorithms is investigated.

A. Dataset

In order to evaluate the proposed method and to

understand it more accurately and to verify the validity

of the proposed method, experiments were performed

on the real dataset of the CSP. The dataset used is the

content of bugs that occurred within a given period in

the xyzSystem and were fixed by developers with

relevant knowledge. The content of the bugs is in a text

format. The text file contains a summary of the error

description with the exact date and time of the error,

and the full address description of the class in which the

error occurred, and the reason for the error in the

summary of the error description. Fig. 2 shows an

example of a brief description of a bug that contains the

date and time the bug occurred, the location of the bug,

and the cause of the bug. The bug text also contains

complete bug descriptions that provide complete

information about the bug occurring, and lists the

classes inheriting from the original bug class, as well as

the list of classes from which the bug class inherits.

These items are used in the proposed method to extract

the required features for clustering. Bugs that occur at

different times on the system are stored in the software

bug tracking system and from the time the bug was

assigned to the developer until the bug is resolved, the

history is stored in the system. All bugs resolved by a

developer are considered as items in a cluster and that

developer characteristic is tagged on the cluster. As an

expert opinion, having a thorough knowledge of the

system and the operating process of the system, five

clusters were extracted from the bug tracking system.

These five clusters containing 100, 50, 50, 50, 50 errors,

respectively. So, we have 300 system bugs that were

reviewed and resolved by five developers. The bugs are

clustered by thoroughly examining the bug text, and

each cluster is identified by a developer. That is, on each

cluster, the name of the developer that should fix the

bugs within that cluster is tagged.

B. Expert Opinion

In this work, we use the tags proposed by the expert

triager for each bug report as our reference. According

to the expert opinion, the tested dataset is extracted

from the bug tracking system, with a total of 300 bugs

reported during a specific period. A total of 100 bug fixes

have been resolved by one developer, which is

considered as a cluster, and the rest of the bugs have

been evaluated in four 50-batch clusters by four other

developers. Details of the bug reports of the xyzSystem

suggested based on the opinions of the expert bug

triager are shown in Table 3.

Table 3: Expert opinion specifications about the dataset and

tag of each bug report

of developers 5

of clusters 5

items in cluster 50, 100,50,50,50

bug reports 300

C. Evaluation

After determining the optimal clusters based on the

expert opinion, we are ready to evaluate the

performance of the clustering methods. The accuracy of

the existing clustering algorithms are measured and the

algorithm with the near output to the expert opinion is

determined. After that, the selected algorithm is used

for clustering the new bug reports. Table 4 shows the

output of four clustering algorithms. The second column

shows the number of clusters. We set this number at 5,

because we have 5 active developer in our case study.

The third column shows the distribution of bugs in five

clusters. For example, in EM algorithm we can see that

the first and second cluster contains 49 and 101 bug

reports respectively. Each of the three remaining clusters

contains 50 bug reports. The fourth column shows the

error rate of the corresponding algorithm. The error rate

represent the number of bug reports that are incorrectly

clustered.

Table 4: Evaluation of the clustering algorithms in terms of

error rate and distribution of bug reports in clusters.

Algorithm # of cluster Cluster
Instances

Error
rate

EM 5 49 (16%)
101 (34%)
50 (17%)
50 (17%)
50 (17%)

0.3%

Farthest
First

5 49 (16%)
101 (34%)
50 (17%)
50 (17%)
50 (17%)

0.3%

Hierarchic
al Cluster

5 100 (33%)
100 (33%)
50 (17%)
49 (16%)

1 (0%)

17%

Simple
Kmeans

5 7 (2%)
0 (17%)

43 (14%)
101 (34%)
99 (33%)

19%

As can be seen from Table 4, the EM and FarthestFirst

algorithms with 3% error rate are the most suitable

algorithms for clustering. In EM and Farthest First

algorithms, only one bug report is clustered incorrectly.

It seems that one bug report from the first cluster is

Using Machine Learning Methods for Automatic Bug Assignment to Developers

271

determined as a member of the second cluster

incorrectly. The Hierarchical Cluster and Simple Kmeans

algorithms with 17%, and 19%, respectively obtain the

next ranks. In hierarchical clustering, most of the bug

reports that belong to the fifth cluster are incorrectly

assigned to the first cluster. In simple Kmeans, we can

see a different behavior where most of the members of

the first cluster and all the members of the second

cluster are recognized as the members of the fourth and

fifth clusters. In general, all the algorithms examined in

this work on real data have more that 80% accuracy.

However, the EM and FarthestFirst algorithms have

similar results, consistent with our expert opinion, and

have competitive results. So we can use either of these

two algorithms to cluster the bugs. The results of the

two Hierarchical Cluster and Simple Kmeans placed at

the third and fourth ranks respectively.

D. Applicability and limitations

The results showed that the proposed method based

on the clustering techniques has the ability to generate

good results for the xyzSystem. It seems that the

proposed method is applicable to triage bugs in other

CSPs. Usually, similar scenario is used by software

companies to receive bug reports in the maintenance

phase and triage the reported bugs. In this study, we

have extracted 300 bug reports from the BTS to generate

clustering models. However, several thousand bug

reports available for large-scale OCPs such as Mozilla,

Eclipse, etc. that have been used by authors in previous

works. Hence, larger datasets in CSPs is recommended to

be used in order to study the behavior of the clustering

algorithm in such situations. Because the expert opinion

is used for measuring the correctness of algorithms,

there are factors that may have a negative impact on the

algorithm. There must be assurance of the correctness of

the expert opinion during different periods of time.

Certainly, one of the limitations and challenges will be

the inability to confirm the current evolution of expert

opinion over time due to changes in the structure of

projects and the updates of the development

technologies. Another challenge is that past errors may

not bear any resemblance to new errors. This is occurred

due to possible changes in the project or the

organization's focus on new projects and lack of

investment in the support and development of past

software systems. Another challenge is the change of the

structure of the developer teams that can be a weakness

in the assignment system because labels on clusters may

be the names of developers who are blocked and no

longer have a role in developing and supporting systems.
Conclusion

Identifying previously bug reports can reduce the cost

of maintaining software. This paper proposed a method

for clustering similar bug reports based on the similarity

of the contextual content of the reported bugs. For each

cluster, the corresponding developer's name is tagged.

The calculation of similarity between bug reports is

performed using Pearson's correlation coefficient. Four

clustering algorithms have been evaluated by the

considering the expert opinion. The appropriate

algorithm with 3% error is selected for clustering. It

seems that the proposed method and similar works can

play an important role in maintenance phase to reduce

the cost and speed up the bug fixing process. They can

be used as an assistance for the bug triager or change

control board in software development companies.

However, more studies are needed to investigate

different aspects of applying automation methods for

bug triaging in CSPs.
Author Contributions

M. Yousefi collected the data and designed the

experiments. A. Akbari carried out the data analysis. S.

M. R. Moosavi and R. Akbari validated the results and

wrote the manuscript.
Acknowledgment

The authors would like to thank Computer

Engineering and IT Department of Shiraz University of

Technology and Computer Science, Engineering, and IT

Department of Shiraz University.
Conflict of Interest

The author declares that there is no conflict of

interests regarding the publication of this manuscript. In

addition, the ethical issues, including plagiarism,

informed consent, misconduct, data fabrication and/or

falsification, double publication and/or submission, and

redundancy have been completely observed by the

authors.
Abbreviations

There is no abbreviations.

References
[1] G. Jeong et al., “Improving bug triage with bug tossing graphs,” in

Proc. 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering: 111–120, 2009.

[2] J. Anvik, L. Hiew, G. Murphy, “Who should fix this bug?,” in Proc.
28th International Conference on Software Engineering: 361–370,
2006.

[3] D. Cubranic, C. Murphy, “Automatic bug triage using text
categorization,” in Proc. Sixteenth International Conference on
Software Engineering, Citeseer:92–97, 2004.

[4] H. Hu, H. Zhang, J. Xuan, W. Sun, “Effective bug triage based on
historical bug-fix information,” in Proc. 25th International
Symposium on Software Reliability Engineering: 122–132, 2014.

[5] J. Anvik, “Automating bug report assignment,” in Proc. 28th
International Conference on Software Engineering, ACM: 937–
940, 2006.

[6] J. Xuan, H. Jiang, Z. Ren, J. Yan, Z. Luo, “Automatic bug triage
using semi-supervised text classification,” in Proc. Intl. Conf.
Software Engineering & Knowledge Engineering: 209–214, 2010.

[7] N. Bettenburg, S. Just, A. Schro¨ter, C. Weiss, R. Premraj, T.
Zimmermann, “What makes a good bug report?,” in Proc. 16th
ACM SIGSOFT International Symposium on Foundations of
software Engineering, ACM:308–318, 2008.

https://dl.acm.org/doi/abs/10.1145/1595696.1595715
https://dl.acm.org/doi/abs/10.1145/1595696.1595715
https://dl.acm.org/doi/abs/10.1145/1595696.1595715
https://dl.acm.org/doi/abs/10.1145/1595696.1595715
https://dl.acm.org/doi/abs/10.1145/1134285.1134336
https://dl.acm.org/doi/abs/10.1145/1134285.1134336
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6144
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6144
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.6144
https://ieeexplore.ieee.org/abstract/document/6982620
https://ieeexplore.ieee.org/abstract/document/6982620
https://ieeexplore.ieee.org/abstract/document/6982620
https://dl.acm.org/doi/abs/10.1145/1134285.1134457
https://dl.acm.org/doi/abs/10.1145/1134285.1134457
https://dl.acm.org/doi/abs/10.1145/1134285.1134457
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=E59EF5DA4648073F6A85607B4F2FBD40?doi=10.1.1.472.8958
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=E59EF5DA4648073F6A85607B4F2FBD40?doi=10.1.1.472.8958
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=E59EF5DA4648073F6A85607B4F2FBD40?doi=10.1.1.472.8958
https://dl.acm.org/doi/abs/10.1145/1453101.1453146
https://dl.acm.org/doi/abs/10.1145/1453101.1453146
https://dl.acm.org/doi/abs/10.1145/1453101.1453146
https://dl.acm.org/doi/abs/10.1145/1453101.1453146

M. Yousefi et al.

272

[8] A. Goyal, N. Sardana, “Analytical study on bug triaging practices,”
Jaypee Institute of Information Technology, Department of
Computer Science and Engineering, Noida, UP, India, 2020.

[9] N. Limsettho, H. Hata, A. Monden, K. Matsumoto, “Unsupervised
bug report categorization using clustering and labeling
algorithm,” International Journal of Software Engineering and
Knowledge Engineering, 26(07): 1027-1053, 2016.

[10] M. Alenezi, M. Kenneth, S. Banitaan, “Efficient bug triaging using
text mining journal of software,” 8(9): 2185–2190, 2013.

[11] A.-C. Florea, J. Anvik, R. Andonie, “Parallel implementation of a
bug report assignment recommender using deep learning,”
Conference Paper inLecture Notes in Computer Science, 2017.

[12] R. Shokripour, “A time-based approach to automatic bug report
assignment,” Journal of Systems and Software, 102: 109-122,
2015.

[13] R. Shokripour, Z.M. Kasirun, S. Zamani, J. Anvik, “Automatic bug
assignment using information extraction methods,” in Proc.
International Conference on Advanced Computer Science
Application and Technologies (ACSAT): 1-7, 2012.

[14] S. Guo et al., “Developer activity motivated bug triaging: via
convolutional neural network,” Neural Processing Letters, 51:
2589-2606, 2020.

[15] A. Sajedi‐Badashian, E. Stroulia, “Vocabulary and time based bug‐
assignment: A recommender system for open‐source projects,”
Software: Practice and Experience, 50(8): 1539- 1564, 2020.

[16] T. Zhang, B. Lee, “A hybrid bug triage algorithm for developer
recommendation. Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC’13, ACM, NewYork, NY,
USA: 1088–1094, 2013.

[17] W. Wu et al. “Drex:developer recommendation with k-nearest-
neighbor search and expertise ranking,” in Proc. the 2011 18th
Asia-Pacific Software Engineering Conference, APSEC: 389, 2011.

[18] Y. Kashiwa, “RAPTOR: Release-aware and prioritized bug-fixing
task assignment optimization,” in Proc. 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME):
629-633, 2019.

[19] A. Goyal, N. Sardana, “Empirical analysis of ensemble machine
learning techniques for bug triaging,” in Proc. 2019 Twelfth
International Conference on Contemporary Computing (IC3): 1-6,
2019.

[20] A. Yadav , S. Singh, J. Su, “Ranking of Software developers based
on expertise score for bug triaging,” Information and Software
Technology, 112: 1-17, 2019.

[21] A. Otoom et al."Automated classification of software bug
reports,” in Proc. the 9th International Conference on
Information Communication and Management: 17–21, 2019.

[22] A. Yadav, D. Singh, “An information-theoretic approach for bug
triaging,” 8th International Conference on Cloud Computing, Data
Science & Engineering (Confluence), 2018.

A.

[23] C. Choquette-Choo et al. “A multi-label, dual-output deep neural
network for automated bug triaging,” 18th IEEE International
Conference On Machine Learning and Applications (ICMLA), 2019.

[24] W. Zhang, S. Wang , Q. Wang, KSAP:An approach to bug report
assignment using KNN search and heterogeneous proximity.
Article in Information and Software Technology, 70: 68-84,
2015.

[25] S.-R. Lee, et al., “Applying deep learning based automatic bug
triager to industrial projects,” ESEC/FSE 2017: in Proc. the 2017
11th Joint Meeting on Foundations of Software Engineering, 926–
931, 2017.

[26] M. Sharma, V.B. Singh, “Clustering-based association rule mining
for bug assignee prediction,” International Journal of Business
Intelligence and Data Mining, 11(2): 130-150, 2016.

[27] S. C J, A. Mahendran, “Automated bug assignment in software

maintenance using graph databases,” International Journal of

Intelligent Systems and Applications, 2: 27-36, 2018.

[28] J. Lee, D. Kim, W. Jung, “Cost-Aware clustering of bug reports by
using a genetic algorithm,” J. Inf. Sci. Eng., 35(1): 175-200, 2019.

[29] M.C. Abounaima et al., “The pearson correlation coefficient
applied to compare multi-criteria methods: case the ranking
problematic,” in Proc. 2020 1st International Conference on
Innovative Research in Applied Science, Engineering and
Technology (IRASET): 1-6, 2020.

Biographies
Mehran Yousefi received his BSc from Isfahan
University of Technology. Also, he received his
MSc from Shiraz University. His research interests
are software engineering, program analysis,
software security, reliability of software, AI
systems, and Big data. He also has experience in
developing software using python, java, php, and
groovy.

Reza Akbari has a PhD in software engineering
from Shiraz University. Currently, he is an
associate professor at department of Computer
Engineering and Information Technology of Shiraz
University of Technology. His special fields of
interest include software engineering in general,
machine and deep learning, and optimization
algorithms.

Mohammad Reza Moosavi received M.S. and
Ph.D. in Software Engineering from Shiraz
University, where he is currently an assistant
professor. His research interests are Data Mining,
Statistical Pattern Recognition and Distributed
Systems. He also has teaching experiences
especially in field of graph mining, formal
methods and distributed systems.

Copyrights

©2020 The author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
M. Yousefi, R. Akbari S.M.R. Moosavi, “Using machine learning methods for automatic
bug assignment to developers,” Journal of Electrical and Computer Engineering
Innovations, 8(2): 263-272, 2020.

DOI: 10.22061/JECEI.2020.7212.370

URL: http://jecei.sru.ac.ir/article_1471.html

https://www.igi-global.com/chapter/analytical-study-on-bug-triaging-practices/252107
https://www.igi-global.com/chapter/analytical-study-on-bug-triaging-practices/252107
https://www.igi-global.com/chapter/analytical-study-on-bug-triaging-practices/252107
https://www.worldscientific.com/doi/abs/10.1142/S0218194016500352
https://www.worldscientific.com/doi/abs/10.1142/S0218194016500352
https://www.worldscientific.com/doi/abs/10.1142/S0218194016500352
https://www.worldscientific.com/doi/abs/10.1142/S0218194016500352
http://www.jsoftware.us/vol8/jsw0809-12.pdf
http://www.jsoftware.us/vol8/jsw0809-12.pdf
https://link.springer.com/chapter/10.1007/978-3-319-68612-7_8
https://link.springer.com/chapter/10.1007/978-3-319-68612-7_8
https://link.springer.com/chapter/10.1007/978-3-319-68612-7_8
https://www.sciencedirect.com/science/article/abs/pii/S0164121214002933
https://www.sciencedirect.com/science/article/abs/pii/S0164121214002933
https://ieeexplore.ieee.org/abstract/document/6516342
https://ieeexplore.ieee.org/abstract/document/6516342
https://ieeexplore.ieee.org/abstract/document/6516342
https://ieeexplore.ieee.org/abstract/document/6516342
https://link.springer.com/article/10.1007%2Fs11063-020-10213-y
https://link.springer.com/article/10.1007%2Fs11063-020-10213-y
https://link.springer.com/article/10.1007%2Fs11063-020-10213-y
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2830
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2830
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2830
https://dl.acm.org/doi/abs/10.1145/2480362.2480568
https://dl.acm.org/doi/abs/10.1145/2480362.2480568
https://dl.acm.org/doi/abs/10.1145/2480362.2480568
https://dl.acm.org/doi/abs/10.1145/2480362.2480568
https://ieeexplore.ieee.org/abstract/document/6130646
https://ieeexplore.ieee.org/abstract/document/6130646
https://ieeexplore.ieee.org/abstract/document/6130646
https://ieeexplore.ieee.org/abstract/document/8919238
https://ieeexplore.ieee.org/abstract/document/8919238
https://ieeexplore.ieee.org/abstract/document/8919238
https://ieeexplore.ieee.org/abstract/document/8919238
https://ieeexplore.ieee.org/abstract/document/8844876
https://ieeexplore.ieee.org/abstract/document/8844876
https://ieeexplore.ieee.org/abstract/document/8844876
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300709
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300709
https://www.sciencedirect.com/science/article/abs/pii/S0950584919300709
https://dl.acm.org/doi/abs/10.1145/3357419.3357424
https://dl.acm.org/doi/abs/10.1145/3357419.3357424
https://dl.acm.org/doi/abs/10.1145/3357419.3357424
https://ieeexplore.ieee.org/abstract/document/8442506
https://ieeexplore.ieee.org/abstract/document/8442506
https://ieeexplore.ieee.org/abstract/document/8442506
https://ieeexplore.ieee.org/abstract/document/8999101
https://ieeexplore.ieee.org/abstract/document/8999101
https://ieeexplore.ieee.org/abstract/document/8999101
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001706
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001706
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001706
https://dl.acm.org/doi/abs/10.1145/3106237.3117776
https://dl.acm.org/doi/abs/10.1145/3106237.3117776
https://dl.acm.org/doi/abs/10.1145/3106237.3117776
https://dl.acm.org/doi/abs/10.1145/3106237.3117776
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIDM.2016.081606
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIDM.2016.081606
https://www.inderscienceonline.com/doi/abs/10.1504/IJBIDM.2016.081606
http://www.mecs-press.org/ijisa/ijisa-v10-n2/IJISA-V10-N2-3.pdf
http://www.mecs-press.org/ijisa/ijisa-v10-n2/IJISA-V10-N2-3.pdf
http://www.mecs-press.org/ijisa/ijisa-v10-n2/IJISA-V10-N2-3.pdf
http://54.149.13.235/papers/JISE2018.pdf
http://54.149.13.235/papers/JISE2018.pdf
https://ieeexplore.ieee.org/document/9092242
https://ieeexplore.ieee.org/document/9092242
https://ieeexplore.ieee.org/document/9092242
https://ieeexplore.ieee.org/document/9092242
https://ieeexplore.ieee.org/document/9092242
http://jecei.sru.ac.ir/article_1471.html

