
J. Electr. Comput. Eng. Innovations, 9(1): 67-74, 2021

Doi: 10.22061/JECEI.2020.7453.393 67

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

NodeFetch: High Performance Graph Processing Using Processing in
Memory

M.A. Mosayebi, M. Dehyadegari*

Department of Computer Systems Architecture, Faculty of Computer Engineering, K. N. Toosi University of Technology,

Tehran, Iran.

Article Info Abstract

Article History:
Received 24 April 2020
Reviewed 24 June 2020
Revised 14 September 2020
Accepted 15 November 2020

 Background and Objectives: Graph processing is increasingly gaining
attention during era of big data. However graph processing applications are
highly memory intensive due to nature of graphs. Processing-in-memory
(PIM) is an old idea which revisited recently with the advent of technology
specifically the ability to manufacture 3D stacked chipsets. PIM puts forward
to enrich memory units with computational capabilities to reduce the cost of
data movement between processor and memory system.
This approach seems to be a way of dealing with large-scale graph
processing, considering recent advances in the field.
Methods: This paper explores real-world PIM technology to improve graph
processing efficiency by reducing irregular access patterns and improving
temporal locality using HMC.
We propose NodeFetch, a new method to access nodes and their neighbors
while processing a graph by adding a new command to HMC system.
Results: Results of our simulation on a set of real-world graphs point out that
the proposed idea can achieve 3.3x speed up in average and 69% reduction
of energy consumption over the baseline PIM architecture which is HMC.
Conclusion: Most of the techniques in the field of processing-in-memory,
hire methods to reduce movement of data between processor and memory.
This paper proposes a method to reduce graph processing execution time
and energy consumption by reducing cache misses while processing a graph.

©2021 JECEI. All rights reserved.

Keywords:
Graph processing

Hybrid Memory Cube (HMC)

Processing in memory

Hardware Accelerator

*Corresponding Author’s Email
Address:
dehyadegari@kntu.ac.ir

Introduction

Graph processing is increasingly gaining attention during

era of big data. While graph algorithms are varied, but

most of them have expensive memory accesses. There

are an important reason which makes graph algorithms

memory intensive. Graph structure is irregular and

therefore access to nodes are irregular and difficult to

predict which leads to poor temporal locality ‎[1]. So

Numerous techniques for large-scale graph processing

have been proposed in the literature that address the

memory bandwidth and data movement problems ‎[2]-

‎[4]. Hardware accelerators have proven successful in

achieving significant speedup and energy efficiency

in comparison to general purpose processors ‎[5]-‎[6].

Many graph accelerators hire different techniques to

decrease movement of data between memory and the

host processor to achieve noticeable performance

improvements ‎[5]-‎[10]. Processing in memory (PIM) is an

old idea which introduced few decades ago by academia.

Back then it could not gain enough attention due to

several issues such as complexity and fabrication

technology. Recently PIM has been revisited by both

industry and academia. Micron proposed Hybrid

memory cube (HMC) as one solution to hire PIM in real

word.

http://jecei.sru.ac.ir/
mailto:dehyadegari@kntu.ac.ir

M.A. Mosayebi et al.

68

HMC is one of the most promising DRAM systems

which is a true 3D stacked DRAM. HMC contains of

multiple DRAM dies on the top of a logic die. Several

reaches have been made based on HMC to improve

graph computation performance. For example, HMC-

MAC proposed a PIM architecture based on the hybrid

memory cube (HMC) that adds a MAC operation to HMC

to accelerate graph and NN applications. Enhanced

Tesseract is another example which propose an idea for

large scale graph processing based on HMC. In this

paper, we explore real-world PIM technology to improve

graph processing efficiency by reducing irregular access

patterns and improving temporal locality. We are

proposing NodeFetch, a new method to access node

neighbours while processing a graph. Our research

follows the HMC 2.1 specification ‎[11].

Background

This section contains the background knowledge on

PIM accelerators and graph processing.

A. Graph Processing

Based on nature of a graph, graph processing

applications suffer from several issues such as random

access patterns, poor locality and unbalanced

workloads [1]. Two main issues of graph processing are:

 Neighbours of a given node might be somewhere

else in memory causing cache miss.

 Accessing nodes are unpredictable and depends of

the shape of input graph and graph algorithm.

In this Paper we are aiming to clearly address these

issues and propose a novel architecture to properly fix

them.

B. Processing in Memory

Processing in memory (PIM) is an old idea. With the

advent of big data computing and also recent advances

in memory technologies, such as emerging nonvolatile

memories, die stacking, and high-bandwidth memory

interfacing, PIM has been revisited recently by both

academia and industry.

Processing-in-memory proposes to move

computational components to the memory units to

alleviate the high cost of data movement in big data

processing.

Hybrid memory cube (HMC) proposed and

manufactured by Mircron company in 2011 trying to

reach high memory bandwidth using PIM idea. They put

several 3D-stacked DRAM dies on a logic layer to

increase available bandwidth while providing high

performance near memory processing. Using trough

silicon Vias (TSVs) inside a memory cube, several DRAM

layers are connected to the logic layer at the bottom of

the cube.

A single memory cube consists of 32 vertical slices

Based on Hybrid Memory Cube Specification 2.1 ‎[11].

Each of these slices called a vault. Each vault benefits

from 10GBps of memory bandwidth, therefore a single

cube has total of 320GBps of bandwidth.

Motivation and Innovation

Graph processing suffers from random access

patterns, poor locality and unbalanced workloads ‎[1].

Therefore accessing each neighbour may lead to a cache

miss. Upon a cache miss, processor should bring

necessary data block from memory into each level of the

cache and then use that data to continue the application

process, which degrades system performance. This can

happen to each and every neighbor of each node of

graph without a proper prediction. Repeating cache

misses makes the cache useless. Several techniques has

been hired to solve this problem such as graph mapping

and custom prefetchers. These methods try to solve

proposed issue indirectly and could gain noticeable

performance increase in some cases. But if one solution

can resolve the problem directly, huge performance

increase can be achieved. One solution that may come

to mind is to use GPUs and many cores such as ‎[12], to

tackles these issues. GPUs are being used to accelerate

various applications through parallelism such as Neural

network algorithms. As said earlier, the main challenge

of graph processing is their random memory accesses

and irregularity of their algorithms.

One possible way to accelerate graph processing is to

hire GPUs.

GPU is a highly structured SIMT architecture and it is

not suitable for graph applications ‎[1].

The performance of graph processing on GPU is still

limited by memory latency despite of many efforts spent

of accelerating graph applications using them ‎[1]. The

whole concept of processing in memory (PIM) is to

overcome an important issue which is memory

bandwidth wall. On one hand, GPU can’t be used

properly to generally accelerate graph processing due to

memory latency.

On the other processing in memory is a solution to

overcome memory latency and memory bandwidth wall.

Therefore processing in memory is selected as a baseline

technique to directly solve issues tied with graph

processing.

Several other researches in the field of processing in

memory has been done to use internal bandwidth of

memory to help with processing graphs. Some of them

added logic into or near conventional memory units such

as GraphR ‎[13] and which used ReRAM or Graphi-

cionado ‎[15], But others used HMC to achieve their

desired goal. Graph processing acceleration can be done

by moving computations into the logic layer of HMC to

exploit High in-memory bandwidth. Among those who

used HMC as their baseline, there are two main

categories.

NodeFetch: High Performance Graph Processing Using Processing in Memory

69

 Hiring Network of several memory cubes with a

specific topology ‎[14]-‎[16]. Tesseract [17] achieved a

significant performance improvement. Several

researches tried to improve performance in a

Tesseract-based system such as GraphH [9],

GraphP [8] and Enhanced Tesseract.

 Implementing on a single cube which is extendable

to be used in any network of multiple cubes. For

example HMC-MAC [18] tried to add a MAC

operation to a HMC device.

In-memory graph processing have to address several

issues such as random access patterns, poor locality and

unbalanced workloads. This paper proposes a novel PIM

accelerator called NodeFetch based on a single HMC to

accelerate graph processing by reducing random

accesses and poor locality.

Related Work

Sseveral recent related works and ideas in graph

processing acceleration with he help of the HMC have

been reviewed in this section. Various techniques have

been proposed to accelerate graph processing such as

Graphicionado ‎[5], Tesseract ‎[17], GraphH ‎[9],

GraphP ‎[8], Enhanced Tesseract ‎[7] and Centaur ‎[19].

Graphicionado ‎[5] accelerates graph processing by

the use of parallelism and. They proposed a domain-

specific hardware accelerator. HMC is not being used in

their sub-system. They could achieve a better

performance than a state-of-the-art software graph

processing framework being executed on a 16-core

Haswell Xeon processor. Tesseract ‎[17] is a large-scale

graph processing architecture which uses a network of

modified HMCs towards graph processing acceleration.

Altough They could gain a remarkable performance, but

the main problem is very long waiting times in

processors. Apparantly Tesseract spends 59% of

execution time waiting for synchronization barriers ‎[17].

Several researches tried to improve performance in a

Tesseract-based system such as GraphH ‎[9], GraphP ‎[8]

and Enhanced Tesseract ‎[7].

GraphP considers data organization as a first-order

design consideration to improve Tesseract-base system.

Therefore they could provide a better performance in

comparison to Tesseract by designing a

hardware/software co-designed graph processing.

GraphH on the other hand is a PIM architecture for

graph processing on the Hybrid Memory Cube array. It

integrates SRAM-based on-chip vertex buffers to

eliminate local bandwidth degradation.

Enhanced Tesseract ‎[7] targets the main problem of

Tesseract which is low utilization due to synchronization

barriers. They modified each HMC device in a way to

manage and accelerate message queues and could

reduce execution time by 40% in average.

 Centaur ‎[19] tries to divide graph processes into two

parts. One part that can be processed in off-chip

memory and the other part which should be processed

in on-chip memory to accelerate graph processing.

Processes related to each vertex can be done in an on-

chip of off-chip memory based on the intensity of

process related to that particular vertex.

Architecture

To solve the irregular data access pattern while

processing a graph, we are proposing NodeFetch.

NodeFetch consists of a hardware and software co-

design.

From processor perspective, NodeFetch is a new

command which is supported by memory subsystem.

Processor can use this command to bring neighbors of a

given node from memory into host processor cache.

Therefore reducing cache miss rate while access to

irregular neighbors of that node during executing a

graph application.

Presented hardware is able to collect neighbors of a

given node, inside memory and send them back to host

processor as a response.

The process of finding a node and its neighbors inside

memory and putting them together as a block, happens

inside memory.

Therefore this is a case of using processing in

memory.

To avoid building from ground up, Presented

hardware placed inside logic layer of a HMC device by

providing a new command inside HMC device. Figure 1

shows the flow of data between software and hardware

in presented architecture.

1. Processor sends a NodeFetch command to memory,

requesting to fetch a node and its neighbours using

NodeFetch hardware inside the memory.

2. NodeFetch hardware receives the request and starts

to gather requested node itself, and neighbors of

the node, inside a buffer. The buffer size equals to a

normal memory response.

3. After collecting node neighbors and the node itself,

memory returns node data and its neighbors to

processor. As of now, software running on processor

knows that all neighbors are in adjacent addresses

in memory. Therefore Upon each software request

to access any of neighbors, neighbor data is already

inside cache.

NodeFetch only finds level one neighbors which

means the response does not contain neighbors of

neighbors and so on. Figure 2 shows logic layer of a HMC

device. NodeFetch hardware placed between crossbar

switch and vault controllers. NodeFetch hardware

consists of several components. Figure 3 shows block

diagram of a NodeFetch unit.

M.A. Mosayebi et al.

70

Fig. 1: Flow of data between software and hardware.

Activation Register is used to enable or disable the

whole unit. If NodeFetch unit is not activated, then

memory packets will pass around the unit.

Vertex Address Register keeps data address of

requested node.

Offset Register holds the offset of neighbors to fetch

them. Processor sends this variable with the memory

request. When fetching neighbours of a node, there

might not be enough space in a memory response to fit

all neighbors. Therefore processor can request for the

remaining neighbors of a node by properly setting the

Offset Register.

Neighbor Prefetcher checks Activation register to

determine whether to start the process or not. First,

Finds address of node data and sets the Vertex Address

Register with that address. Then fetch node neighbors

and put them inside Block Buffer.

Neighbor Address Buffer keeps address of neighbors

during the actual process.

Block Buffer keeps final memory response. Figure 4

shows more details of a NodeFetch unit. After activation,

NP checks the request type to find out whether it's a

read request or a write request.

If the request type is of type read, Finds address of

given node and write it into vertex address register

(VAR).

Also write given offset from request into offset

register (OR).

Fig. 2: HMC Logic layer including NodeFetch hardware.

After that, fetches address of neighbors from memory

and writes them in neighbor address buffer (NAB). Offset

Flag (OF) become activated if there isn't enough space to

fit all neighbors inside NAB. Following that, iterates

through NAB and fetch neighbor data into block buffer

(BB).

After all a memory response emerges from BB and

which goes to processor. This response contains node

itself, neighbors and offset flag. On the other hand if the

request is of type write, repeats previous steps, only

instead of fetching neighbors data, update them inside

memory.

NodeFetch is not a programmable unit and therefore

only can work with a standard form graph storage inside

memory. In this standard, there is an array for graph

nodes.

Each key in array, refers to a node and the value for

that key, contains a pointer to node data and a list of

neighbors connected to that node. As a result finding

address of node data and neighbors only takes up to

O(1).

Fig. 3: NodeFetch block diagram.

NodeFetch: High Performance Graph Processing Using Processing in Memory

71

Fig. 4: Nodefetch detail.

Evaluation Methodology

A. Simulation Configuration

We evaluate the proposed system using an in-house

cycle accurate simulator. Table 1 shows simulation

configuration:

Table 1: Simulation configuration of Nodefetch

Memory
1 HMC module with 8GB of memory capacity

and a NodeFetch unit

Processor
2 cores of 2GHz ARM Cortex A15 with 64KB of

level 1 cache for data and instruction

Figure 5 illustrates block diagram of the simulator.

Input graph and graph algorithm are inputs of the

simulator. Dispatcher stores input graph of HMC

memory.

Programmer puts graph algorithm in processor.

Processor starts working on input graph based on given

algorithm. After all, generates several reports such as

timings and power consumption.

This simulator developed in a way to use the help of

modified HMCSim.

B. Workloads

For evaluation, we implement five different graph

algorithms, namely Page Rank (PR), Single-Source

Shortest Paths (SSSP), Connected Components (CC),

Triangle Counting (TC) and Betweenness Centrality (BC).

PR computes importance nodes in graph. This is

commonly used in search engines.

PR algorithm assign a number to each node of graph

which indicates importance of that node. SSSP computes

shortest path between two nodes of graph. SSSP has

various applications in networks and also used to find

critical path.

SP used in results as a shorter form for SSSP. CC finds

connected components in a graph which has several

applications in image processing. TC counts triangles in a

graph. TC is used in social networks. BC finds the most

important node between two given nodes.

BC has various applications in social networks and

computer networks. There are a few benchmark suites

such as GAP [20] or CRONO [21].

These suits are known to researchers and are being

used to evaluate their architectures and ideas.

These benchmark suits include similar applications

such as SSSP, BC and PR to process graphs.

We chose GAP [20] benchmark suite as a baseline for

graph algorithms. We simulate well-known real-world

workloads from Stanford large network dataset

(SNAP) [22].

Results and Discussion

This section provides the results of simulations.

A. Execution Time

Figure 6 shows speedup of the chosen workloads

normalized to the baseline HMC. Due to better

management of poor graph locality, the proposed

architecture could reach a better execution time for all

Fig. 5: Block diagram of the simulator.

M.A. Mosayebi et al.

72

of the benchmark graph applications. The simulation

results indicate an average speed up of 3.3x in

comparison to the baseline.

Fig. 6: NodeFetch Speedup in comparison to baseline.

B. Power and Energy Consumption

Improving the execution time and offloading parts of

computation from the processor to HMC, results in

reduction of energy consumption, indeed at the cost of

energy overheads caused by the additional hardware.

Simulation results shows that the system energy

overheads are significantly less than energy savings. As a

result, the overall system energy is decreased. Figure 7

shows the system energy of the NodeFetch normalized

to the baseline HMC.

An average of 69% energy reduction is obtained for

the evaluated workloads.

Table 2 shows area and power consumption

overheads of NodeFetch, Tesseract [17] and Enhanced

Tesseract [7] relative to one HMC device. It

demonstrates the proposed idea leads to a very low

power and area overhead.

Table 2: Area and power overhead NodeFetch, Tesseract and
Enhanced Tesseract relative to HMC

Relative to Logic

layer of One HMC
Tesseract

 [17]

Enhanced

Tesseract [7]
NodeFetch

Area Overhead 9.6% 9.73% 0.1%

Power Overhead 40% 42% 4.5%

Table 3 shows area power density of NodeFetch,

Tesseract and Enhanced Tesseract.

The highest power density of the logic die across all

workloads in our design is 14mW/mm2 which is by far

below the maximum power density that does not

require faster DRAM refresh using a passive heat sink

(i.e. 133mW/mm2 [23]).

Table 3: Power density and area comparison

 Tesseract [17]
Enhanced

Tesseract [7]
NodeFetch

Max Power

Density
94 mW/mm

2 96

mW/mm
2

14

mW/mm
2

Area Overhead

per HMC
21.75 mm

2
 22 mm

2
 0.07 mm

2

The total area of a NodeFetch unit is 0.07mm
2
 which

solely account for 0.1% area overhead. Our approach

increases the average power consumption by 4.5% in

comparison to HMC, which may lead a negative impact

on device temperature. However according to recent

measurements in industrial research on thermal

feasibility of 3D-stacked PIM [23], the power

consumption should be within the power budget.

Therefore, proposed idea is thermally feasible.

Fig. 7: Relative system energy consumption of the proposed

architecture normalized to the baseline architecture.

Conclusion

This paper proposed an optimization to PIM-based

graph processing with the help of HMC. Most of the

techniques in the field of processing-in-memory, hire

methods to reduce movement of data between

processor and memory.

This paper proposed a method to reduce graph

processing execution time and energy consumption by

reducing cache misses while processing a graph.

Proposed idea which named NodeFetch, adds a

command to HMC for that purpose.

NodeFetch helps graph processing to have a better

performance by increasing locality and decreasing

irregularity.

Simulation results shows that NodeFetch in average is

3.3x faster than HMC itself, and reduces energy

consumption by 69% in average.

NodeFetch: High Performance Graph Processing Using Processing in Memory

73

Author Contributions

M.A. Mosayebi, and M. Dehyadegari contributed to

the design and implementation of the research, to the

analysis of the results and to the writing of the

manuscript

Acknowledgment

We thank the editor and all anonymous reviewers.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

References

[1] X. Chen, "GraphCage: Cache Aware Graph Processing on GPUs,"

arXiv preprint arXiv:1904.02241, 2019.

[2] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, "Powergraph:

Distributed graph-parallel computation on natural graphs," in
Proc. the 10th Symposium on Operating Systems Design and

Implementation (OSDI): 17-30, 2012.

[3] A. Fidel, N.M. Amato, L. Rauchwerger, "Kla: A new algorithmic
paradigm for parallel graph computations," in Proc. 23rd

International Conference on Parallel Architecture and

Compilation Techniques (PACT): 27-38, 2014.

[4] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, "Green-Marl: a DSL for
easy and efficient graph analysis," in Proc. Seventeenth

International Conference on Architectural Support for

Programming Languages and Operating Systems: 349-362, 2012.

[5] T.J. Ham, L. Wu, N. Sundaram, N. Satish, M. Martonosi,
"Graphicionado: A high-performance and energy-efficient

accelerator for graph analytics," in Proc. 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO): 1-13, 2016.

[6] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, O. Mutlu,

"Enabling the adoption of processing-in-memory: Challenges,

mechanisms, future research directions," arXiv preprint

arXiv:1802.00320, 2018.

[7] M.A. Mosayebi, A.M. Hasani, M. Dehyadegari, "Enhanced graph

processing in PIM accelerators with improved queue

management," Microelectron. J., 94: 104637, 2019.

[8] M. Zhang et al., "GraphP: Reducing communication for PIM-based
graph processing with efficient data partition," in Proc. 2018 IEEE

International Symposium on High Performance Computer

Architecture (HPCA): 544-557, 2018.

[9] G. Dai et al., "Graphh: A processing-in-memory architecture for
large-scale graph processing," IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst., 38(4): 640-653, 2018.

[10] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, H. Kim, "Graphpim:
enabling instruction-level pim offloading in graph computing

frameworks," in Proc. 2017 IEEE International symposium on high

performance computer architecture (HPCA): 457-468, 2017.

[11] H.M.C. Specification, "2.1, Nov. 2015, Hybrid Memory Cube

Consortium," Tech. Rep.

[12] B. Soltani Farani, H. Dorosti, M. Salehi, S. M. Fakhraie, "Ultra-low-

energy dsp processor design for many-core parallel applications,"

JECEI,” J. Electr. Comput. Eng. Innovations (JECEI), 8(1): 71-84,
2019.

[13] L. Song, Y. Zhuo, X. Qian, H. Li, Y. Chen, "GraphR: Accelerating

graph processing using ReRAM," in Proc. 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA):
531-543, 2018.

[14] G. Kim, J. Kim, J. H. Ahn, J. Kim, "Memory-centric system

interconnect design with hybrid memory cubes," in Proc. the

22nd international conference on Parallel architectures and
compilation techniques: 145-155, 2013.

[15] J. Kim, W. Dally, S. Scott, D. Abts, "Cost-efficient dragonfly

topology for large-scale systems," IEEE micro, 29(1): 33-40, 2009.

[16] J. Kim, W. J. Dally, D. Abts, "Flattened butterfly: a cost-efficient
topology for high-radix networks," in Proc. 34th Annual

International Symposium on Computer Architecture: 126-137,

2007.

[17] J. Ahn, S. Hong, S. Yoo, O. Mutlu, K. Choi, "A scalable processing-
in-memory accelerator for parallel graph processing," in Proc.

42nd Annual International Symposium on Computer Architecture:

105-117, 2015.

[18] D.-I. Jeon, K.-B. Park, K.-S. Chung, "HMC-MAC: Processing-in

memory architecture for multiply-accumulate operations with

hybrid memory cube," IEEE Comput. Archit. Lett., 17(1): 5-8,

2017.

[19] A. Addisie, V. Bertacco, "Centaur: Hybrid processing in on/off-chip

memory architecture for graph analytics," in Proc. 57th ACM/IEEE

Design Automation Conference (DAC): 1-6, 2020.

[20] S. Beamer, K. Asanovid, D. Patterson, "The GAP benchmark suite,"
arXiv preprint arXiv:1508.03619, 2015.

[21] M. Ahmad, F. Hijaz, Q. Shi, O. Khan, "Crono: A benchmark suite

for multithreaded graph algorithms executing on futuristic

multicores," in Proc. EEE International Symposium on Workload
Characterization: 44-55, 2015.

[22] J. Leskovec, A. Krevl, "SNAP Datasets: Stanford large network

dataset collection," ed, 2014.

[23] Y. Eckert, N. Jayasena, and G. H. Loh, "Thermal feasibility of die-

stacked processing in memory," 2014.

Biographies

Mohammad Amin Mosayebi received his MSc.
Degree from K. N. Toosi University in 2019 in
computer engineering. He is currently a Ph.D.
student at Shahid Beheshti University
researching on bio inspired hardware designs
and bio-medical signal processing.

Masoud Dehyadegari received his Ph.D. degree
from University of Tehran, Tehran, IRAN, in 2013
in computer engineering. He is currently an
Assistant Professor of school of computer
engineering with the K. N. Toosi University of
Technology. His research interests include Low-
power system design, Network-on-chips, and
Multi-Processor System-on-chip.

https://arxiv.org/abs/1904.02241
https://arxiv.org/abs/1904.02241
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://ieeexplore.ieee.org/abstract/document/7855886
https://ieeexplore.ieee.org/abstract/document/7855886
https://ieeexplore.ieee.org/abstract/document/7855886
https://ieeexplore.ieee.org/abstract/document/7855886
https://dl.acm.org/doi/abs/10.1145/2150976.2151013
https://dl.acm.org/doi/abs/10.1145/2150976.2151013
https://dl.acm.org/doi/abs/10.1145/2150976.2151013
https://dl.acm.org/doi/abs/10.1145/2150976.2151013
https://ieeexplore.ieee.org/abstract/document/7783759
https://ieeexplore.ieee.org/abstract/document/7783759
https://ieeexplore.ieee.org/abstract/document/7783759
https://ieeexplore.ieee.org/abstract/document/7783759
https://ieeexplore.ieee.org/abstract/document/7783759
https://arxiv.org/abs/1802.00320
https://arxiv.org/abs/1802.00320
https://arxiv.org/abs/1802.00320
https://arxiv.org/abs/1802.00320
https://www.sciencedirect.com/science/article/abs/pii/S0026269218306177
https://www.sciencedirect.com/science/article/abs/pii/S0026269218306177
https://www.sciencedirect.com/science/article/abs/pii/S0026269218306177
https://ieeexplore.ieee.org/abstract/document/8327036
https://ieeexplore.ieee.org/abstract/document/8327036
https://ieeexplore.ieee.org/abstract/document/8327036
https://ieeexplore.ieee.org/abstract/document/8327036
https://ieeexplore.ieee.org/abstract/document/8328836
https://ieeexplore.ieee.org/abstract/document/8328836
https://ieeexplore.ieee.org/abstract/document/8328836
https://ieeexplore.ieee.org/abstract/document/7920847
https://ieeexplore.ieee.org/abstract/document/7920847
https://ieeexplore.ieee.org/abstract/document/7920847
https://ieeexplore.ieee.org/abstract/document/7920847
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiz46rsu8rtAhW0RxUIHRsECRIQFjAAegQIAhAC&url=https%3A%2F%2Fwww.nuvation.com%2Fsites%2Fdefault%2Ffiles%2FNuvation-Engineering-Images%2FArticles%2FFPGAs-and-HMC%2FHMC-30G-VSR_HMCC_Specification.pdf&usg=AOvVaw1UKgHibpuUCM74-nRHRwXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiz46rsu8rtAhW0RxUIHRsECRIQFjAAegQIAhAC&url=https%3A%2F%2Fwww.nuvation.com%2Fsites%2Fdefault%2Ffiles%2FNuvation-Engineering-Images%2FArticles%2FFPGAs-and-HMC%2FHMC-30G-VSR_HMCC_Specification.pdf&usg=AOvVaw1UKgHibpuUCM74-nRHRwXY
http://jecei.sru.ac.ir/article_1424.html
http://jecei.sru.ac.ir/article_1424.html
http://jecei.sru.ac.ir/article_1424.html
http://jecei.sru.ac.ir/article_1424.html
https://ieeexplore.ieee.org/abstract/document/8327035
https://ieeexplore.ieee.org/abstract/document/8327035
https://ieeexplore.ieee.org/abstract/document/8327035
https://ieeexplore.ieee.org/abstract/document/8327035
https://ieeexplore.ieee.org/abstract/document/6618812
https://ieeexplore.ieee.org/abstract/document/6618812
https://ieeexplore.ieee.org/abstract/document/6618812
https://ieeexplore.ieee.org/abstract/document/6618812
https://ieeexplore.ieee.org/abstract/document/4796167
https://ieeexplore.ieee.org/abstract/document/4796167
https://dl.acm.org/doi/abs/10.1145/1250662.1250679
https://dl.acm.org/doi/abs/10.1145/1250662.1250679
https://dl.acm.org/doi/abs/10.1145/1250662.1250679
https://dl.acm.org/doi/abs/10.1145/2749469.2750386
https://dl.acm.org/doi/abs/10.1145/2749469.2750386
https://dl.acm.org/doi/abs/10.1145/2749469.2750386
https://dl.acm.org/doi/abs/10.1145/2749469.2750386
https://ieeexplore.ieee.org/abstract/document/7917248
https://ieeexplore.ieee.org/abstract/document/7917248
https://ieeexplore.ieee.org/abstract/document/7917248
https://ieeexplore.ieee.org/abstract/document/7917248
https://ieeexplore.ieee.org/abstract/document/9218624
https://ieeexplore.ieee.org/abstract/document/9218624
https://ieeexplore.ieee.org/abstract/document/9218624
https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1508.03619
https://ieeexplore.ieee.org/abstract/document/7314146
https://ieeexplore.ieee.org/abstract/document/7314146
https://ieeexplore.ieee.org/abstract/document/7314146
https://ieeexplore.ieee.org/abstract/document/7314146
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.705.9293
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.705.9293

M.A. Mosayebi et al.

74

Copyrights

©2021 The auor(s). This is an open access article distributed under the terms of the
Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution,
and reproduction in any medium, as long as the original authors and source are cited. No
permission is required from the authors or the publishers.

How to cite this paper:
M.A. Mosayebi, M. Dehyadegari, “NodeFetch: High performance graph processing using
processing in memory,” J. Electr. Comput. Eng. Innovations, 9(1): 67-74, 2021.

DOI: 10.22061/JECEI.2020.7453.393

URL: http://jecei.sru.ac.ir/article_1486.html

http://jecei.sru.ac.ir/article_1486.html

