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 Background and Objectives: Designing a terminal sliding mode observer 
(TSMO) in order to estimate the potential faults in a wind turbine with a 
doubly fed induction generator (DFIG) has been studied in previous research 
works. In this paper, a method for fault detection of a permanent magnet 
synchronous generator (PMSG) wind turbine using a TSMO is developed. 
Methods: The wind turbine (WT) dynamic model including, blades, drive 
train, 3kw PMSG, maximum power capture controller, and pitch controller is 

linearized around its equilibrium point and is simulated in MATLAB Simulink. 
A PID controller is designed for capturing the maximum power from wind. 
Also, a PI controller is designed in order to control the pitch angle. In this 
research, the blade imbalance fault (BIF), which is due to the difference 
between turbine blades’ mass distribution, is investigated. This fault may 
happen over time and causes rotor mass imbalance that leads to vibrations in 
the generator’s shaft rotating speed. A fault detection system (FDS) is 
proposed using a terminal sliding mode observer in order to diagnose the BIF.  
Results: Using the designed TSMO, the estimation errors of not only 
measured states but also unmeasured states converge to zero in finite time. 
This leads to the fast action of the FDS before a failure happens. Using the 
proposed FDS, the states and fault are estimated such that the estimation 
errors of states and the fault converge to zero in 0.033 seconds. 
Conclusion: The convergence of state estimation errors to zero in finite time, 
which is verified by simulation results, satisfies the authors’ expectation that 
using TSMO, the estimation errors of both output and non-output states 
converge to zero in finite time. 
 

©2021 JECEI. All rights reserved. 

 

Keywords: 
Wind energy conversion system 
(WECS) 

Fault diagnosis of wind turbine 

Permanent magnet 
synchronous generator (PMSG) 
wind turbine 

Blade imbalance fault (BIF) 

Terminal sliding mode observer 
(TSMO) 

 

 

 

*
Corresponding Author’s Email 

Address:  

m.ayati@ut.ac.ir 

 

 

 

Introduction 
Wind turbine, which is a type of renewable energy 

systems, is excited by a random wind profile. Among 

characteristics of this system are nonlinear dynamics, 

operation in an uncertain environment, and the 

dependence of the wind turbine power on geographical 

and weather conditions [1], [2]. Installation errors, 

manufacturing deficiencies or aging effects, and 

challenging environmental conditions are common 

reasons for the shut-down condition [3].  

Overall, a wind turbine is in shut-down condition for 

0.595% to 2.705% of a year. Wind turbines are mostly 

located in remote areas. In addition, performing 

inspection and maintenance work on WTs is problematic 

due to the height of the turbine. Therefore, WTs 

requiring less maintenance are desirable. Moreover, 

because of complications of a WT system and also due to 

variations of wind speed, the fault occurrence 

probability of this system is high. Hence, minimization of 

the adverse economic effects of the faults is a 
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challenging problem [4], [5]. Concerning the probability 

of failure occurrence in a wind energy conversion system 

(WECS) such as the fraction of gear, drive train, and 

bearing, condition monitoring and fault detection have 

an essential role in reducing maintenance costs [6]. For a 

turbine with more than 20 years of operation, the 

operation and maintenance (OM) and components costs 

are estimated to be around 10-15% of the total wind 

farm income. Although larger turbines have fewer OM 

costs per unit of power, failure costs are higher for these 

turbines. Therefore, condition monitoring and fault 

diagnosis are profitable [7]. Furthermore, fault detection 

in primitive levels and repairing faulty parts in a timely 

manner is essential for maintenance costs, component 

costs, downtime reduction, and preventing catastrophic 

damages [8]. Fault detection in fault-tolerant systems is 

vital because it provides the required information for 

fault isolation and system reconfiguration [9]. Modern 

wind turbines that take advantage of fault diagnosis and 

fault-tolerant schemes are highly reliable. They operate 

efficiently and produce economic electrical energy [10]. 

Due to simple mechanical structures, light weight, high 

power density, high efficiency, and high reliability of 

PMSGs, these types of generators are often installed on 

wind turbines [11], [12]. Moreover, other desired 

features of PMSGs are their fast dynamical response and 

low noise [13]. Using an observer for state estimation 

and fault detection is one of the most useful approaches 

in wind turbine FDS. 

Blades are of weakest parts of a wind turbine. Some 

faults may occur directly on blades such as hub or blade 

corrosion/crack and rotor imbalance [6]. Blade bending 

moment sensor fault, blade root bending sensor fault, 

and pitch actuator fault are examples of faults that occur 

in blade sensors and actuators [14]. Pitch dynamic that 

has hydraulic nature may change because of pressure 

drop, which occurs in the hydraulic supply system or 

additional air in the oil [15]. 

The imbalance fault of the generator shaft causes an 

additional force in the shaft. The blade imbalance fault in 

which the mass distribution of one blade is different 

from other blades causes rotor mass imbalance, which 

leads to vibrations in the generator’s shaft rotating 

speed [16]. Blade imbalance mainly occurs due to the 

construction or manufacturing errors, icing condition, 

and degradation as a result of aging [17]. A fault 

detection method based on adaptive fuzzy Q-learning 

(FQL) for PMSG WT blade imbalance fault detection, 

which is proposed in [18], has 99.9% classification 

accuracy and uses 3999 samples of generator’s current 

signals. The advantage of this method is that it needs no 

prior knowledge of the system for fault detection 

however, it is limited to the working condition of the 

sampled signals. Blade imbalance fault detection using 

gene expression programming (GEP) based classifier and 

empirical mode decomposition (EMD) has been studied 

in [19]. 

In this study, blade imbalance fault detection within a 

PMSG wind turbine is studied. For this purpose, a 

terminal sliding mode observer (TSMO) is designed for 

the wind turbine system including blades, drive train, 

and PMSG with nonlinear dynamics, which estimates 

both output and non-output states in a finite time. 

Therefore, TSMO estimates all states and BIF in a finite 

time. 

In the next section, the complete dynamic model of 

the WECS is explained. In third section, the TSMO’s 

equations, the linearized state-space equations of WECS, 

and the fault estimation method are described. The 

complete WECS model including wind turbine, PMSG, 

controller, and fault models is simulated in MATLAB 

Simulink and the simulation results are represented in 

the next section. Finally, last section concludes the 

research. 

Wind Turbine Dynamic Model 

The WECS includes a wind turbine, a PMSG, and two 

controllers. In order to detect the WT’s faults, it is 

necessary to obtain the dynamic equations of the entire 

system including the WT, the PMSG, the controllers, and 

the fault. In the following subsection, the dynamic model 

of the entire WECS is explained. 

A.  System’s Dynamic Model 

In this section, the WECS dynamic model including 

dynamic equations of the wind turbine, the PMSG, the 

controllers, and BIF is explained. The WECS has four 

states, two inputs, and one output. The state variables 

vector is 1 2 3 4[ ] [ ]T T

d q gx x x x x i i    . The 

dynamical equations of 
di , 

qi , 
g , and   are 

presented based on Boulouma et al. [20] and Tong and 

Zhao studies [21]. The input control signals vector is: 
T

L refu R     and output is 
gy  .  

The state-space equations are given in (1). In this 

equation, di  and 
qi  are the stator current’s /d q  

components. dL  and qL  are inductances of the stator. 

sR  is the stator resistance . m  is the linkage flux . P  is 

the number of pole pairs. g  is the generator speed. 

The power electronics and load with highly fast dynamic 

in comparison to other parts are represented by an 

equivalent load with constant inductance LL  and the 

adjustable resistance LR .   is the pitch actuator’s time 

constant.   is the pitch angle. ref  is the pitch 

reference angle which is also the pitch controller’s 

output and also the second control input of the wind 

turbine system.   is the gearbox efficiency.   is the air 
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density. The radius of the rotor swept area is 

represented by R . v is the wind speed.  ,TC    is 

the torque coefficient. 
gN  is the gear ratio. The 

equivalent inertia transformed into the generator side is 

represented by hJ .   is the tip speed ratio (TSR). 
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B.  WT Closed-loop System 

In this system, two controllers including a maximum 

power capture controller and a pitch controller are 

designed separately, as shown in Fig. 1. In the maximum 

power capture controller design, the first, second, and 

fourth states have participated. The third state is 

considered in the pitch controller design. 

 

 
 

Fig. 1:  Block diagram of WECS with maximum power capture 
controller, pitch controller, and TSMO. 

 

refg is calculated in order that TSR is maintained 

close or equal to its optimal value to capture maximum 

power. ref  and LR  are the control inputs. 

B.1: Maximum Power Capture Controller 

A PID controller is considered for maximum power 

capturing as follows: 
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In the above equation, P  is the proportional term, I  

is considered as the integral coefficient, the derivative 

coefficient is represented by D , and N is the filter 

coefficient. 

B.2: Pitch Controller 

The pitch controller is implemented in the third state 

equation of (1). The difference between actual power 

and maximum allowable power is being used to calculate 

the required pitch angle [22]. In order to control the 

pitch angle, a PI controller, a rate limiter, and a 

saturation function are used. The equation of the 

controller is as follows: 
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ref  is the pitch reference angle, r  is the rotor 

speed, 
refr  is the reference rotor speed, 

pk  and ik  

are the PI controller proportional and integral 

coefficients, respectively. 

C.  Model Linearization 

For the sake of simplicity, the state-space equation’s 

coefficients are defined as: 
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Computing Jacobian matrix, the linearized state-space 

is: 

(4) 
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where 0 10 20 30 40

T
x x x x x    is the equilibrium 

point, which is determined by solving the following set of 

equations: 

(5) 

10 20 40

20 10 40 40

30

30 40 20

0

0

0

( , ) 0

s s

s s s

s

s T s

a x b x x

d x f x x g x

p x

m C x x n x

 


  



  

 

D.  Blade Imbalance Fault Dynamic Model 

When blade imbalance fault occurs, the frequency 

rf  (1P frequency) of the turbine shaft torque variates. 

Therefore, the turbine shaft torque in the existence of 

blade imbalance fault equals to: 

(6) 0( ) cos(2 )v rT t T T f t   

T is the turbine shaft torque, 0T  is the torque due to 

the wind power, and vT is the amplitude of the shaft 

torque variations as a consequence of blade imbalance 

fault [23]. Hence, when blade imbalance fault exists, the 

state-space equations of (4) are changed as follows: 
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Substituting (6) into state-space equations of (1) and 

(4), BIFf is obtained as follows: 

(8) cos(2 )BIF v r

g h

f T f t
N J


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Terminal Sliding Mode Observer (TSMO) Design 

Classical sliding mode observers are widely used for 

output and state estimations of linear/nonlinear systems 

in practical researches because of their intrinsic 

robustness to the uncertainties. The output estimation 

errors’ convergences in a finite time are guaranteed by 

classical sliding mode observers, while non-output errors 

converge to zero asymptotically. This means states not 

directly affected by the output converge to the actual 

values in infinite time. Hence, terminal sliding mode 

observers are developed, which guarantee convergence 

of both output (measured) and non-output 

(unmeasured) state estimation errors in a finite time 

[24]. 

A.  TSMO Implementation on WECS 

In this section, TSMO is implemented on the 

linearized system [24], [25]. Primarily, the linearized 

system model is considered and conditions for state and 

fault estimation are mentioned. Then, the coordinate is 

transformed and system and observer equations in the 

new coordinate system are obtained and design 

parameters are introduced. Finally, the observer 

equation is obtained in the original coordinate and fault 

is estimated. 

A.1: Linearized State Model 

Consider the time-invariant linear system as follows: 

(9) 
( ) ( ) ( ) ( , )

( ) ( )

L a ax t A x t Bu t F f x t

y t Cx t

   
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In this system n  is the number of states, m  is the 

number of control inputs, p  is the number of outputs, 

and q  is the number of faults. af  is the fault vector and 

aF  is the fault intensity matrix. It is supposed that 

af   and the system is observable. The Matrices C  

and 
aF  must be full-rank. Also, the following 

assumptions must be held. 
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The transformation matrix LT  has the structure: 
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1T  and 2T  must be chosen such that the following 

inequality holds: 

(12) 
2

11 21

1

0
T

a a
T

   

In the above equation, 11a  and 21a  are the first and 

second elements of the first column of the matrix 
LA . 

Using the transformation matrix LT , changing of 

coordinate is done and the new state matrices are 

obtained as follows: 
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where: 
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2C  is a full-rank matrix. 31A  is full-rank because the 

system is observable. Hence, the system state equations 

are transformed as follows: 
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where, 1z  and 2z  are non-output and output states 

vectors in the new coordinate system respectively. 
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A.2: Observer Design 

In this section, a TSMO is designed for the linearized 

system using [24]. The observer state equations are 

defined as follows: 
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  and   are odd integers (  ). The observer’s 

coefficients are obtained as follows: 
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1e  and 2e  are non-output and output variables 

estimation errors. The convergence of 1e  and 2e  to zero 

in a finite time is proved using the Lyapunov functions 

2

1 1 1V p e  and 2 2 2

1

2

TV e e  [24]. 1e  is defined as 

1 31 1e A e . 

Using an inverse coordinate transformation, the 

observer’s equations in the original coordinate system 

are as follows: 
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i  is a small positive constant, which is considered in 

order to prevent zero denominators. The observer’s 

coefficients are: 
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l l
R T R T R T

l l

       
       

   
 

Considering the Lyapunov function 2V , the following 

inequality holds [24]: 

(23) 2 1 2V e   

1  is a positive design scalar. 2V  can be written as 

2

2 2

1

2
V e . Therefore, using (23): 

(24) 
2 1

22 2

dV
dt

V


   

Defining 2t  as the 2e  convergence time to zero and 

integrating (24), the convergence time of output states 

estimation errors to zero is calculated as the below 

equation: 

(25) 
2

2

1

2 (0)V
t


  

In time duration of 2t  seconds, 2V  will become zero 

and sliding motion will occur on 2 0e  . 

Using 1V , the following equation is obtained [24]: 

(26)  2 2
1 1 1 12V p e

  
 



   

Integrating (26), the convergence time of non-output 

states estimation errors to zero is calculated as the 

below equation: 

(27) 2
1 1 1 (0)t V

  

 


 







 

After convergence of 2e  to zero, in time duration of 
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1t ,  1 1V t  will become zero and sliding motion will occur 

on 1 2 0e e  . Therefore, 1(0)V  is the initial value of 1V , 

after convergence of 2e  to zero. 

A.3: Fault Estimation 

The fault is estimated as follows: 

(28) 
2

ˆ
a eqf F    

eq  is equivalent injection switching term to establish 

sliding motion on 0e  , which is calculated using (21) 

and  
1

2 2 2 2

T TF F F F


 
.
 

Results and Discussion 

In this section, wind turbine controllers and TSMO are 

implemented in order that the control objectives are 

achieved and also output estimation errors converge to 

zero in finite time. 

A.  Wind Turbine, Controllers, and TSMO Simulation 

The 3kW  PMSG wind turbine, which is introduced in 

section 2, the controllers, and the observer are 

simulated. The system’s state-space equations, 

maximum power capture controller (2), pitch controller 

(3), and TSMO are simulated in Simulink. Then, the 

states, outputs, and fault are estimated. The optimum 

value of the power coefficient of the WT proportional to 

the optimum TSR * 7.14   is 
max

0.439PC   [26]. 

Karman spectrum model with a mean wind speed of 8 

meters per second is considered as the wind model. 

Wind rated speed equals to 10.5m
s

 and simulation is 

implemented in the low-speed region for 10 seconds. 

The parameters of the wind turbine are given in  Table 1. 
 

 

Table 1: 3kW PMSG wind turbine parameters [27]  
 

Drive train and rotor PMSG 

Gear ratio: 7gN   

Moment of inertia:

0.5042hJ 
2kg.m  

Efficiency: 1   

Blade length: 2.5R  m  

3p  , 3.3sR  Ω

0.4382m  Wb  

41.56dL  mH   

41.56qL  mH  

ln 80R  Ω , 380VsV   

1.25 
3kg m  

 

The inductance of the equivalent load equals to 

0.08LL  H [28]. The control accuracy of pitch angle 

equals to 0.3  degrees [29]. Pitch rate is between 2  and 

18  degrees per second practically [30]. In this 

research, the maximum value of the pitch rate is 

considered as 15  degrees per second. Using (1), the 

pitch actuator’s time constant equals to 

0.3 15 0.02   . 

B.  Linearized Systems, Controllers, and Observer 

Simulation 

Using the system of equations of (5) the equilibrium 

point is: 

(29)  0 1.38 4.66 0 8.46
T

x    

The stability of this equilibrium point is investigated 

using the matrix LA . Since all eigenvalues of the matrix 

LA  lie in the left half plane, this equilibrium point is 

stable. According to the condition 2A  in (10), it is 

necessary to increase the number of sensors in order 

that the observer can estimate the states and the fault. 

Hence, the number of measurable outputs are increased 

to three. Therefore, two sensors must be added to the 

wind turbine system in order to measure the first and 

second outputs. It is not required to add an additional 

sensor to measure the generator speed, which is the 

third output, because it is already measured in the wind 

turbine systems. 

2 : 2A p n q           2 : 2 3 4 1A     

Hence, C  matrix changes as below: 

 (30) 

0 1 0 0

0 0 1 0

0 0 0 1

C

 
 


 
  

 

The following maximum power controller is used in 

the simulations: 

(31) 
1 130.843

( ) 2.542 2.319 0.178
1

1 130.843
CMPG s

s

s

  



 

The pitch angle controller (3) is designed as follows: 

(32) 
0.05

( ) 2CPG s
s

   

According to (11) the coordinate transformation 

matrix LT  is: 

(33) 

10 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

LT

 
 
 
 
 
 

 

The value of other parameters of the observer are 

chosen as below: 

(34) 

 

1 2 3

1 1

4

1000

3, 5

1, 1

1, 2, 3

0.01

s

i

p q

A diag

  

 



  

 

 

   



 

The convergence time of output and non-output 
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states equals to: 

(35) 3

2

0.076
5.51 10 s

50
t     

 

(36) 
3 4

5 10
1

5
1000 (2.538 0.15) 0.027s

2
t



    

The simulation results are presented in Figs. 2 to 8: 

 

 
 

Fig. 2: Generator’s reference speed, generator’s speed, 
generator’s speed tracking error, and wind speed. 

 

 

According to Fig. 2, the generator speed converges to 

the desired output after 3 seconds using a PID controller. 

Using TSMO, state estimation errors converge to zero 

in finite time as represented in Figs 3 and 4. 

 

 
 

Fig. 3: Actual and estimated states. 

 
Fig. 4: State estimation errors (zoomed). 

 

 
Fig. 5: Power and control inputs. 

 

 
Fig. 6: Pitch angle, reference pitch angle, and pitch angle error 

with respect to reference pitch angle. 
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According to Figs. 5 and 6, the wind turbine’s power is 

variable between 2 and 4 kW. In addition, in order for 

the desired control objective, which is maximum power 

capturing, to be achieved, LR  should variate between 

65  and 90  and ref  should be between 0 and 1 

deg. 

 
Fig. 7: Actual and estimated fault. 

 

As it is presented in Fig. 7, the WT fault is detected 

and the actual fault and estimated fault diagrams 

approximately coincide. 

 

 
 

Fig. 8: Power coefficient and TSR. 
 

According to Fig. 8, after a time duration of 3 seconds, 

in which the system’s output traces the desired output, 

the power coefficient and TSR have variations in the 

ranges close to their optimum values, which are 0.439 

and 7.14, respectively. Therefore, the maximum power is 

captured. 

Furthermore, both measured and unmeasured states 

and BIF are estimated in a finite time.  

Conclusion 

According to simulation results, which are presented 

in the previous section, using TSMO, BIF is detected and 

the states are estimated. BIF is modeled as a sinusoidal 

function with a frequency equal to the rotating 

frequency of the wind turbine shaft. The frequency of 

BIF is time-varying because of the time-varying nature of 

wind speed.  

Using the designed observer, the sinusoidal function 

of BIF with variable frequency is estimated as well. 

TSMO’s advantage in comparison to sliding mode 

observer (SMO) is that using TSMO not only output 

estimation errors, but also non-output estimation errors 

converge to zero in finite time. 

In future research works, a TSMO could be designed 

in order to estimate the states and detect the fault 

considering nonlinear state-space equations of the 

PMSG wind turbine. 
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