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 Background and Objectives: Dielectric Barrier discharge (DBD) is a suitable 
method to generating Non-thermal plasma at atmospheric pressure, which 
utilizes Pulsed power supplies as exciters. Increasing pulse voltage range and 
frequency and compactness are important issues that should be taking into 
consideration.  
Methods: The high voltage pulse generators which are introduced in the 
literature have some disadvantages and complexities such as need of additional 
winding to reset the transformer core and operating under hard switching which 
increases electromagnetic noise and loss. The leakage inductance of the high 
voltage transformer increases the rise time of the pulse which is undesirable for 
DBD applications. The energy stored in the leakage inductance causes the 
voltage spike across the switch, witch necessitates the use of snubber circuits. 
The main contribution of this paper is a new high voltage pulse generator with 
the following characteristics, 1) a capacitor is paralleled with the main switch to 
reset the transformer core and to provide the soft switching condition for the 
switch. 2) The resonant charging technique is used which doubles the secondary 
winding voltage which reduces the turns ratio of high voltage transformer for a 
certain output pulse peak. 3) The sharpening circuit using magnetic switch 
produces a sharp high voltage pulse.  
Results: The proposed high voltage pulse generator is designed and simulated 
using Pspice software. To verify the theoretical results,  a prototype with the 
input voltage 48 V, the output voltage pulse 1.5 kV, and the rise time of the 
output pulse 50 ns is constructed and tested. 
Conclusion: This paper proposes a new pulse generator (PG). The proposed PG 
uses three techniques named forward, resonant charging, and magnetic switch 
to produce a high-voltage nanosecond pulse. The resonant charging double the 
secondary voltage of the pulse transformer, which causes reduction in turn ratio 
of the pulse transformer and decreases the weigh, volume, and price of the PT. 
The magnetic switch section finally produces a nanosecond high-voltage pulse. 
The magnitude of the output pulse can be varied using the input source voltage, 
the MS reset current and the duty cycle. The core of the pulse transformer 
resets by using a capacitor paralleled with the switch and the PG does not need 
any additional reset winding like the conventional DC-DC forward converter. 
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Introduction 

Dielectric barrier Discharge (DBD) is an applicable 

technology for generating Non-thermal plasma at 

 

atmospheric pressure.  

Non-thermal plasma has various industrial 

applications such as ozone formation, exhaust gas 
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treatment, surface modification of materials, engine 

ignition systems and so on [1]-[10]. At first, high voltage 

ac power supplies were used to excite DBD reactors. But 

DBD generated by an AC source of periodic sine waves 

has a relatively low energy input [11], [12]. With the 

development of semiconductor devices, high voltage 

pulsed power supplies replaced by ac power supplies for 

DBD excitation [13]-[16]. Many studies have shown that 

output pulse parameters of pulsed power supplies like 

voltage amplitude, rise time and pulse width affect 

significantly the quality of plasma generated by DBD 

[17]-[19]. The pulse amplitude is in order of KV, 

depending on the load requirements.  As the pulse rise 

time decreases, electric field intensity increases in a 

short time in air gap and produces the higher energy 

electron to excite and ionize gas molecules [20]. 

In [21]-[23], three non-isolated solid state pulse 

generators (PGs) are presented with the combination of 

pulse forming network (PFN) and boost converter using 

many MOSFETs switches, capacitors, and inductors. The 

boost converters provide the initial voltage conditions 

for the PFNs capacitors. A non-isolated pulse generator 

is proposed in [24] to produce the high-voltage square 

waveform. The peaking switch is a serried combination 

of the low voltage switches. Moreover, the proposed 

converter needs a high voltage power supply at the input 

side. A non-isolated solid state pulse generators is 

presented in [25] using buck-boost technique to provide 

unipolar and bipolar high-voltage output pulses. The 

significant mentioned merit of the proposed PG is that 

the peaking switch tolerates the half of the output pulse 

voltage magnitude. A combination of a solid-state Marx 

generator along with the MPC network is proposed in 

[26] with six IGBTs, three diodes, and two magnetic 

switches. A boost inverter non-isolated based pulse 

generator is presented in [25] to produce the bipolar 

high-voltage pulses. Generally, the non-isolated solid 

state pulse generators need too many solid-sate 

switches to control the maximum voltage stress across 

the switches, which increases complexity and cost and 

decreases reliability.  

 

 

Moreover, the magnitude of the output pulse voltage 

is limited because the voltage stress across the switches 

is comparable with the peak of the output pulse voltage. 

The pulse transformer applied with solid state pulse 

generators has several merits such as establishing the 

galvanic isolation between the input and output lines, 

reduction of the maximum voltage stress across the 

switches, using the low voltage source at the input line, 

and makes the switch gate driver simpler. In [27], a 

modular isolated pulse generators is proposed using full 

bridge multilevel technique. In addition, another 

modular solid state pulse generators is presented in [28] 

with the buck chopper technique. In the modular 

strategies, each module is independent in terms of 

power supply and pulse generation; therefore, too many 

components are required. These modular pulse 

generators are reasonable in the view of the price and 

complexity for high power application. A compact 

unipolar nanosecond pulse generator is presented in 

[29] for DBD applications with two inductors, three 

capacitors, a pulse transformer and magnetic switch. An 

isolated PG is presented in [30] with the parallel 

resonant technique using a transformer, four switches, 

two capacitors, and a magnetic switch. 

This paper proposes a PG with forward technique. 

The conventional DC-DC forward converter needs an 

additional winding with complexity to reset the 

transformer. The proposed PG employs a capacitor 

paralleled with the switch to reset the transformer. The 

high-voltage pulsed capacitor is resonantly charged using 

the leakage inductance of the pulse transformer 

maximum to twice the secondary winding voltage, which 

decreases the turn ratio of the pulse transformer, 

volume and weight, also the efficiency increases. The 

energy stored in the leakage inductance of the 

transformer is lost in the resistor-capacitor-diode (RCD) 

clamp circuit in [15], [16] but the proposed PG employs it 

beneficially. Moreover, the switch of the PG operates 

under the low voltage condition. 

Modes Analysis of the Proposed PG

 

Fig. 1: The Proposed high voltage pulse generator 
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Fig. 1 shows the structure of the proposed forward 

pulse generator. As shown, the proposed PG includes a 

pulse transformer (PT) modeled by the magnetizing 

inductance Lm and ideal transformer by the turns ratio 

1:N and the leakage inductance Llk, the switch S1, the 

capacitor CS1 for resetting the PT, the high-voltage diode 

D, the high-voltage capacitor CS2, the magnetic switch 

(MS), and the resistor R used to stabilize the output 

waveform. When the switch S1 is turned on, the low 

voltage Vi is stepped up by the pulse transformer and the 

capacitor CS2 is resonantly charged maximum to twice 

the peak voltage of VS. After the capacitor CS2 is fully 

charged, the magnetic switch is opened and the output 

pulse voltage with the fast rise time is established. Two 

main modes is identified for the proposed PG, which is 

analyzed in details, and the key waveforms are 

considered.   

A.  Capacitor Charging (CS2) Mode 

This mode begins when the switch S1 is tuned on. At 

the low voltage side, the voltage Vi is placed on the 

primary winding of PT and as shown in Fig. 2 the 

magnetic inductance Lm is charged as the following 

equation:  

  ( )    (  )  
  
  
(    ) (1) 

At the high voltage side, the voltage Vi is converted to 

the high voltage Vs through the PT. The model of this 

mode to analysis the high voltage section is shown in Fig. 

3. During this mode, as shown in Fig. 2, the high voltage 

capacitor CS2 is charged resonantly as follows:  

    ( )    (      ( (    )) (2) 

where   is the resonant frequency of the resonant 

charging and is obtained as follows:  

  
 

√      
    (3) 

Moreover, the current iS flowing the resonant circuit 

is achieved as follows: 

  ( )    √
   
   
    ( (    )) (4) 

From (4) and Fig. 2 the maximum peak current 

following the diode D is given as follows: 

      √
   

   
                       (5)                      

The charge time of the capacitor CS2 as shown in Fig. 2 

is obtained as follows:  

     √       (6) 
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Fig. 2: The proposed PG key waveforms. (a) Capacitor charging 
(CS2). (b) Pulse generation. 

 

 
Fig. 3: The model for analyzing of the proposed forward 

PG in capacitor charging (CS2) mode. 
 

 

As shown from Fig. 2, the maximum voltage of the 

capacitor CS2 is equal to 2VS, therefore the turns ratio of 

the PT can be reduced. This event can save the copper 

and reduce the volume and weight of the PT. The 

equivalent circuit of this mode is illustrated in Fig. 4a. 

B.  Pulse Generation Mode 

When the charge of the capacitor CS2 begins at t0, by 

neglecting the leakage current of the MS, the whole 

voltage of VCS2 is placed across the MS. The flux density 

of the MS core changes as follows: 

   ( )     (  )  
 

      
∫     ( )  
      

  

 (7) 
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where NMS and AMS are the turns ratio and the cross 

section of the MS respectively as shown in Fig. 6a. In this 

circuit a reset circuit can be used to adjust the term 

   (  ). The integral term of (7) is equal to the below 

area of the voltage VCS2 from t0 to t1, as shown in Fig. 2.  

At the end of the previous mode, the flux density of 

the MS reaches to the saturation flux density and the MS 

is saturated. The value of this inductance is small and the 

circuit model of this mode at the high voltage side is 

shown in Fig. 4b. 

The differential equation of the current iMS is obtained 

as follows using KVL inside the circuit shown in Fig. 4b: 

     
   

 
 

  

    
  

 
 

   
           (8)  

The damping factor (DF) of (8) is defined as follows: 

  
 

 
√
   
  

 (9) 

Based on the value of the DF, there are three answer 

categories for the equation (8). The following equations 

are related to the over damped condition (   ): 

       
        

     (10) 

     (  √ 
   ) (11) 

     (  √ 
   ) (12) 

   
 

     

  
  
           (13) 

The equations related to the critically damped 

condition (   ) are given as follows: 

    (      ) 
          (14) 

 

 
Fig. 4: The equivalent circuit for each operating mode of the 
proposed forward PG. (a) Capacitor charging (CS2) mode, (b) 

Pulse generation mode. 

 

Fig. 5: The waveform of the voltage VR versus time with  
Vo=2kV, Ls=1uH, and R=300 ohms, based on the various 

damping factor (DF). 
 

 
 

Fig. 6: (a) The image of the magnetic switch, (b) The 
equivalent circuit of the magnetic switch section. 

 

 

   
  

  
                (15) 

The following equations are related to the 

underdamped condition (   ): 

       
       (   )     

       (   )      (16) 

   
  
    

                 √   
       (17)    

Figure 5 shows the voltage VR corresponding to the 

various DF using (10), (14), and (16). As shown, when the 

DF increases for a certain VR, LS, and R, the peak value of 

the output pulse VR increases at the cost of increasing 

the fall time of the VR.  

Moreover, by decreasing the DF, the oscillations 

appears on the VR waveform. The magnetic switch in the 

critical damping has a fast fall time without any 
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oscillation. Based on the load requirements, the DF can 

be adjusted. 

At the low voltage side, the magnetizing inductance 

Lm establishes a resonant circuit with the input voltage 

Vi and CS1.  

The following equations are determined for both ii 

and VCS1. 

    ( )    (     (  (    )))

 
  
     

   (  (    ))) (18) 

        (
  
     

   (  (    ))

      (  (    ))) 
(19) 

where Im is the current of ii at t0 and the    is given as 

follows:  

   
 

√     
         (20)    

During this mode, the current of Im is reversed, from 

(1) the following equation is determined as follows: 

   
     
   

          (21) 

During this mode, the PT core becomes reset using 

CS1. The conventional forward DC-DC converters employ 

an additional winding to reset the transformer, which 

makes the circuit complex. 

Design Procedure of the Proposed PG 

By considering the roles of the magnetic pulse 

compression, resonant charging circuit and the PT, the 

turns ratio of the PT is designed as follows: 

  
    
   

               (22) 

where from Figure 2, VP is the peak of the output voltage 

pulse, and K1 is defined as follows: 

   
    
  

 (23) 

The K1 coefficient is related to the magnetic pulse 

compression and is dependent on the DF. For example, 

for the over damping condition the value of K1 is one.  

By considering the fixed values for the load resistance 

R and the saturation inductance Ls, for a certain DF, the 

capacitor CS2 is determined as follows: 

    (
  

 
)              (24) 

According to Fig. 2, and using equations (2) and (7), 

the following equation is given for the magnetic switch: 

       
     
   

 
      
   

 (25) 

By choosing a core with a certain cross section, the 

turns of the MS is obtained. The flux density of the MS 

core can be adjusted using a reset circuit.  

The current stress of the switch S1 and diode D are 

achieved from (4) as follows: 

        √
   
   

 (26) 

          √
   
   

 (27) 

The voltage stress of the diode D and the switch S1 is 

given as follows: 

          (28) 

           (    ) (29) 

From (21), for a given Im, the magnetizing inductance 

is calculated.  

For a given Im, and a maximum voltage for CS1 from 

(18) the capacitance CS1 is calculated. The switch S1 is 

selected based on maximum voltage and current across 

the switch. The equations (27) and (29) present the 

maximum current and voltage of the switch S1, 

respectively. 

Simulation Results 

The proposed SSPG with the following specifications: 

Vi= 48 V, fs=1kHz, VP=2kV, Ls= 1uH, N=21, Lm=50uH, 

CS1=100nF, CS2=10nF,     , Q=.03, NMS=30, AMS=1 cm
2
, 

and Ferrite material for the core of the PT is designed 

based on the previous section and is simulated using the 

Pspice software. Figure 7a shows the waveform of the 

voltages VCS2 and VR. As shown, the capacitor CS2 is 

charged resonantly to twice of the voltage VS. When the 

charge of the capacitor CS2 is ended, the MS opens and 

the output pulse is generated. Figure 7b illustrates the 

waveform of the input current ii and the voltage of the 

switch S1. Due to the resonant charging performance, 

the input current is half a sinusoidal waveform. 

Moreover, the voltage across the switch S1 is low due to 

the PT and the resonance between the magnetizing 

inductance and the capacitor CS1. 
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Fig. 7: The key waveforms of the proposed PG. (a) The voltage 
of the capacitor CS2 and the voltage VR. (b) The input current 

and the voltage across the switch S1. 
 

Experimental results 

According to the design section, aii prototype 

constructed to verify the theoretical results. Figure 8 

illustrates the experimental proposed PG.  

 

CS1
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D
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Command 
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Fig. 8: The prototype configuration and construction of the 
proposed PG. 

Table 1 shows the circuit specifications of the 

prototype. The input voltage of the proposed PG is 48 V 

and the peak of the output pulse is chosen 1.5 kV. At 

first, the PT converts the input voltage 48V to 750V and 

then the resonance charging stage doubles the voltage 

750V to 1.5 kV. Designing the turn ratio 50 for the MS 

guarantees that the output pulse is produced at the end 

of the resonance charging operation.  
 

Table 1: The circuit specification of the prototype 
 

Symbol Parameters Value 

Vi Input voltage 48 V 

VP The output pulse peak 1.5 kV 

VCS2 The voltage peak of the 

capacitor CS2 

1.5 kV 

VS The secondary voltage of PT 750 V 

N The turns ratio of the PT 16 

N1:N2 Primary turns: Secondary turns 10:160 

Lm The magnetizing inductance  77 uH 

Llk The leakage inductance 270 uH 

S1 The switch part number IXTK120N20P 

CS1 The CS1 capacitance  100 nF 

CS2 The CS2 capacitance 9.4 nF 

PT The Ferrite core  E 58/11/38 

MS The turns ratio  50 

D The four diodes are serried  MUR 860 

R The load resistance  300 ohms 

 
Table 2: The proposed PG and the counterparts 
 

Refs 

Switch/ 

Inductor 

Num 

Cap/MS 

Num 

PT 

Num 

RCD 

Losses 

Switch 

Voltage 

stress 

[9] 13/4 4/None None Yes High 

[10] 15/4 4/None None Yes High 

[11] 14/4 4/None None Yes High 

[12] 
Many/ 

None 
1/None One No Moderate 

[13] 5/2 1/None None No High 

[14] 6/None 4/2 None No Moderate 

[15] 2/2 2/None None No High 

[16] 
Many/ 

Many 

Many/ 

None 
Many No Low 

[17] 
Many/ 

Many 

Many/ 

None 
Many No Low 

[18] 1/1 3/1 One Yes Low 

[19] 4/None 2/1 One No Low 

propos

ed PG 
1/None 2/1 One None Low 
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Figure 9 shows the experimental results of the 

proposed PG. Figure 9a illustrates the voltage waveform 

of VCS2 without the MS stage. As expected, the voltage of 

the capacitor CS2 is charged to the twice the secondary 

voltage VS during the time 5us. As explained at previous 

sections, the time interval 5us is obtained from the 

resonance between the capacitor CS2 and the leakage 

inductance Llk.  

The voltages VCS2 and VR are shown at the Fig. 9b. As 

shown, at the end of charge of the capacitor CS2, the MS 

is opened and the output voltage pulse is established 

due to the convenient turn ratio of the MS. 

The peak of the output pulse VP can be adjusted using 

the duty cycle, the input voltage Vi, and the current of 

the reset circuit of the MS.  

As shown in Fig. 9c, under the constant voltage of Vi, 

 

the capacitor CS2 is fully charged but the pulse 

generation is delayed using the change of the MS core 

reset current. The voltage drop of CS2 is related to the 

leakage current of the MS when it is off. As shown in Fig. 

9d, by decreasing the voltage of the input source from 

the nominal voltage, the capacitor CS2 is charged less 

than nominal; therefore, the peak of the output voltage 

is reduced. 

By changing the turn-on time of the switch S1, also the 

charge of the capacitor CS2 and consequently the peak 

voltage of the output pulse are varied. 

The rise time of the output pulse voltage is 

approximately 50 ns as shown in Fig. 9e. The rise time of 

the output pulse voltage is related to the DF and the MS 

core material.  

Figure 9f illustrates the voltage across the switch S1 

 

Fig. 9: The experimental results of the PG. (a) The voltage of the capacitor CS2 without the MS stage. (b) The output pulse 
voltage VR and the output of the resonant charging stage VCS2 at the nominal input voltage (48 V). (c) The voltages VR and VCS2 
under reducing the reset circuit current at nominal input voltage (48 V). (d) The voltages VR and VCS2 under reducing the input 
voltage (32V). (e) The rise time of the output pulse voltage. (f) The voltage of the switch S1 and the current of the input source 

current. 
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and the input source current. As predicted, the input 

current is the half sinusoidal waveform due to the 

resonant charging performance.  

As seen, the switch S1 can be turned off softly which 

reduces the switching losses. Moreover, the voltage 

across the switch S1 starts from zero due to the 

resonance between the magnetizing inductance Lm and 

the capacitor CS1. 

As shown, the proposed PG needs a low voltage 

switch to produce a high-voltage pulse. From the current 

ii, it is seen the magnetizing current is reversed when 

switch is turned off, therefore the PT does not need any 

additional reset winding.  

Figure 10 illustrates the experimental output pulse 

when the resistance R changes. As expected from the 

section two, when R increases, the rise time is constant, 

but the pulse duration increases due to increasing 

damping factor. 
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Fig. 10: The experimental output pulse amplitude versus the 
resistance R. 

 
Conclusion 

This paper proposes a novel pulse generator for DBD 

applications. The proposed PG uses three techniques 

named forward, resonant charging, and magnetic switch 

to produce a high-voltage nanosecond pulse. The 

resonant charging double the secondary voltage of the 

pulse transformer, this event reduces the turn ratio of 

the pulse transformer which decreases the weigh, 

volume, and price of the PT.  

The magnetic switch section finally produces a 

nanosecond high-voltage pulse. The magnitude of the 

output pulse can be varied using the input source 

voltage, the MS reset circuit current and the switch duty 

cycle.  

In the proposed PG, a low-voltage switch is needed to 

produce the high-voltage pulses. At the input source, 

using a capacitor paralleled with the switch can reset the 

core of the pulse transformer and the PG does not need 

any additional reset winding like the conventional DC-DC 

forward converter. The proposed PG is fully analyzed 

and the theoretical results are verified by the 

experimental results. 
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    PT               Pulse Transformer 

    MS              Magnetic Switch 

    MPC           Magnetic Pulse Compression 

    PG              Pulse Generator 

    PFN            Pulse Forming Network 

    DBD           Dielectric Barrier Discharge 
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