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 Background and Objectives:The target tracking problem is an essential 
component of many engineering applications.The extended Kalman filter 
(EKF) is one of the most well-known suboptimal filter to solve target tracking. 
However, since EKF uses the first-order terms of the Taylor series nonlinear 
extension functions, it often makes large errors in the estimates of state. As a 
result, target tracking based on EKF may diverge.  
Methods: In this manuscript, an adaptive square root cubature Kalman filter 
(ASRCKF) is poposed to solve the maneuvering target tracking problem. In 
the proposed method, the covariance of process and measurement noises is 
estimated adaptively. Thus, the performance of proposed method does not 
depend on the noise statistics and its performance is robust with unknown 
prior knowledge of the noise statistics. Morover, it has a consistently 
improved numerical stability why the matrices  of covariance are guaranteed 
to remain semi- positive.  The performance of the proposed method is 
compared with EKF, and the unscented Kalman filter (UKF) for target tracking 
problem.  
Results:To evaluate the proposed method, many experiments is performed. 
The proposed method is evaluated on the non-maneuvering and 
maneuvering target tracking.  
Conclusion: The results show that the proposed method has lower 
estimation errors with faster convergence rate than other methods. The 
proposed method can track the tates of moving target effectively and 
improve the accuracy of the system. 
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Introduction 
The problem of target tracking is a basic problem in the 

fields of the civil and military. The purpose of target 

tracking problem is to estimate the velocity and position 

of a moving target from noisy measurements [1]-[2]. In 

the target tracking problem, the estimation of state is 

confronted with two problems: one is that the 

measurement and process noise cannot be accurately 

described and are usually not accurate. The second is 

that the measurement and process noise cannot be 

accurately described and are usually not accurate the 

nonlinearity of measurement and motion model [3]-[4]. 

Various nonlinear Bayesian approach are developed for 

the problem of target tracking in the literature, which 

aims to estimate the velocity and position of the target 

using measurements. 

The EKF is a widely used nonlinear filter to target 

tracking [5]-[6]. An online adaptive Kalman filter is 

proposed for target tracking with unknown noise 

statistics in [7].  

In this paper, the expectation maximization algorithm 

is employed to construct the noise can effectively 

estimate the one-step prediction mean vector, the one-

step prediction error covariance matrix. In [8], a robust 

filter is presented to shape estimation of a maneuvering 

star-convex extended target based on adaptive extended 
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Kalman filter. Basically, since EKF uses the Taylor first 

order approximation for nonlinear functions, it makes 

large errors [8]-[9]. Therefore, if it is very nonlinear, such 

as a target tracking problem, the error of estimation can 

be large or even divergent, and the filter is unstable [9]-

[10].  

To increase accuracy, UKF based on target tracking is 

introduced in literatures [11]-[14]. In this method, there 

is no need to calculate the Jacobin matrix of the 

nonlinear state and measurement equation [14]-[15]. In 

[16], target tracking based on square-root unscented 

Kalman filters is presented. This method, propagate not 

the covariance matrix itself but its singular value 

decomposition (SVD) factors instead.  

Compared to EKF, UKF has better accuracy. However, 

UKF does not use for non-Gaussian distributions [17]-

[18]. In addition, it’s the computation load is heavy for 

high-dimensional systems such as target tracking 

consequently thus, the filter can be converged slowly. 

In 2009, the cubature Kalman filter (CKF) is proposed 

[19]-[20]. 

The CKF creates cubature integral points, and these 

points are used to calculate the posterior probability of 

the system. In [21], a Gaussian-sum cubature Kalman 

filter (GSCKF) is proposed for the problem of tracking 

and it has excellent performance from the point of view 

of filter accuracy and consistency. In [22], a strong 

tracking cubature Kalman filter is proposed for target 

tracking problem. 

A limitation of target tracking based on traditional 

CKF is that statistical characteristics of noises are 

assumed to known [23]-[25].  

As a result, the development of CKF method is 

limited. To solve these problems, in this paper, the 

problem of target tracking based on ASRCKF is proposed. 

The target tracking based on ASRCKF is updated 

repeatedly by propagating square root factors of the 

mean and covariance of the state variable, which 

ensures the positive semi-definiteness and symmetry of 

the covariance matrix and thus improves numerical 

accuracy and stability.  

The main contribution of the paper is that proposed 

adaptive algorithm has good filtering accuracy and 

strong robustness. This method improves the tracking 

ability of the SRCKF method for a maneuvering target. 

The proposed method can prevent potential filter 

divergence and enhances the numerical stability. 

Moreover, in the proposed method, the covariance of 

process and measurement noises is estimated 

adaptively.  

Thus, the performance of proposed approach does 

not depend on the noise statistics and its performance is 

robust with unknown prior knowledge of the noise 

statistics. Simulation results show that the proposed 

method has a superior tracking performance.  

The rest of manuscript is as follows. The target 

tracking formulation is presented in the second Section. 

In the next Section, the target tracking based on ASRCKF 

is proposed.  

The results are given in the fourth Section. In the fifth 

Section, the conclusion is presented. 

Target Tracking Formulation 

The discrete-time dynamic equation of the target 

motion is as [26]-[27]: 
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where G is the input matrix, the ( , )k kx y  is position 

components, ( , )k kx y  is velocity components, T  is a 

sampling interval and kX  is as [ , , , ]Tk k k k kX x x y y= , 

k is the process noise with covariance matrices 
tQ . 

Moreover, rF  is transition matrix corresponding to 

mode r. The transition matrix for non-maneuvring target 

is as follows: 
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The coordinated turn model is the most common 

model for maneuvering targets. In this case, rF is as 

[28]-[29]: 
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where (3) 0t  , (2) 0t  are is anticlockwise and 

clockwise turn maneuver, respectively. Target 

observation model is as:  
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k kk

k

x y

Z y

x



 +
 

= + 
 
 

 

where kZ  denotes the measurement at kth instant and  

k  is measurement noise with covariance matrices tR . 
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Cubature Rule 

Calculating the Gaussian nonlinear transfer density is 

the most important step for Bayesian filtering in 

Gaussian domain [18]. It is as follows: 

( ) ( , )xI g x x P dx=   (4) 

where n x  is dimension of state x , ( , )x P is the 

Gaussian prior density of x and g is the nonlinear 

function.  

The third-degree spherical cubature rule to 

numerically calculate the integral I with 2 xn  equal 

weighted cubature points is used in CKF [30]: 

2

1

1
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2
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x j

jx

I g P x
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
=

= +  (5) 

where the cubature point j  is as: 
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where xnT

ie R  is the ith column vector of 
x xn nI  . 

Target Tracking Based ASRCKF 

Assume at time k-1, 1| 1K ks − −  is the square-root of the 

covariance matrix 1| 1K kP − − , i.e.  

1| 1 1| 1 1| 1
T

K k K k K kP s s− − − − − −= , the current state cubature 

points are computed as follows: 
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ˆ( )        1,...2i

k k k k k k xs I i x i n − − − − − −= + =  (6) 
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With  1
i

is the i-th column vector of the n n  matrix 

I. The cubature points are transmitted in state equation 

as: 

*
| 1 1| 1( )i i

k k k kf − − −=  (7) 

The predicted mean | 1
ˆ

k kx − is calculated using the 

transformed cubature points *
| 1
i

k k −  as follows: 
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where Tria(.)  is a general triangularization algorithm 

and | 1k kX −  is as: 
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When measurement is revisited, the cubature point 

set is calculated as follows: 
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k k k k k k xs I i x i n − − −= + =  (11) 

The transformed cubature points are transmitted in 

measurement equation: 
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The mean values and square-root of the covariance 

matrix of predicted measurement points are estimated: 
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where | 1K kZ − is as: 
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The cross covariance xzS between the states and 

measurements are: 

, | 1 | 1 | 1
T

xz k k k k k kS X Z− − −=  (15) 
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(16) 

The Kalman gain kK is calculated by 

, | 1 , | 1 , | 1( )T
k xz k k zz k k zz k kK S S S− − −=  (17) 

The updated state |
ˆ

k kx and the square-root of 

covariance |k kS are obtained as follows: 

| | 1 | 1
ˆ ˆ ˆ( )k k k k k k k kx x K z z− −= + −  (18) 

| | 1 | 1([ , ])k k k k k k k k kS Tria X K Y K R− −= −  (19) 

According to the equations | 1k kS − and |k kS in (9) and 

(19), respectively, it can be seen that kQ  and kR  have 

a great impact on their values. However, the noise 

statistics can change over time in the target tracking 

application.  

The set of unknown statistical of noise needs to 

estimate with the error covariance and the state of 
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system.  

Any mismatch between real noises that affect the 

system and those that are assumed in SRCKF reduce the 

performance of SRCKF that can also have divergence. As 

a result, it is necessary to know that the kQ and 

kR matrices exactly.  

In this paper, an adaptive SRCKF is proposed method 

that solves the SRCKF problems by estimating the 

kQ and kR matrices.  Suppose the process and 

measurement noise are defined as ( )0,w kw Q  and 

( )0,k kv R . To estimate the covariance of process 

and measurement noises, the function of posteriori 

density is assumed as follows: 

 * ( , , | )k k kJ p X Q R Z=  (20) 

where  1 2 ...k kZ z z z=  is the measurement 

vector and  1 2 ...k kX x x x=  is the state vector. 

According to the properties of conditional probability, 

the *J  function can be written as: 
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k

P Z X Q R P X Q R p Q R
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P Z
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where ( , )k kp Q R is depend on with the priori 

information, which can be considered as constant value. 

As ( )kp Z  is not involved in the problem of 

optimization. As a result, the function of *J  can be 

written as follows: 
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the term ( , )k kp Q R is a constant value why it calculates 

based on a priori information. The term ( | , )k k kp X Q R  

in (22) can be calculated using the multiplicative theorem 
of conditional probability as follows. 
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where 1 1 22
0|0

1

(2 )n
M

P
= is a constant, n is the 

process dimension. Also, the term ( | , , )k k k kp Z X Q R  

can be calculated as follows. 
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where m represents the  measurement dimension, and 

2 2

1

(2 )mk
M


= is a constant. By considering (23) and 

(24), the problem of estimation can be reformulated as 
an optimization problem  with the cost function J: 
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As the logarithm operation for both sides of (25) 

cannot change the extreme points of the cast function J, 

to find the maximized parameter of coast function J, 

firstly, take a logarithm from both sides of (25): 

1 1
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Using the derivative of J relative to kQ  and kR , the 

noise covariance values are calculated as: 

ˆ ˆ
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k k k k
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= =

 
= =
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Consequently, covariance values kQ  and kR can be 

calculated as: 
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The terms 1
ˆ( )jf x −  and ˆ( )jh x can be calculated 

from the SRCKF as follows: 
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By substituting (30) and (31) into (28)-(29), the ˆ
kQ  

and ˆkR  is obtained as follows: 
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Results and Discussion 

The proposed method is evaluated on the non-
maneuvering and maneuvering target tracking. In 
simulations, the total number of Monte Carlo runs is 
100, the initial state of the target 

is  0 0 1 0 0.5
T

x = − , and the corresponding 

covariance is  0 ( 0.1 0.1 0.1 0.1 )P diag=  the process 

noise covariance is 

 ( 0.001 0.001 0.001 0.001 )kQ diag= , and the 

covariance of measurement noise is  ( 1 1 )kR diag=
.
 

Non-Maneuvering Target 

For a non-maneuvering target, its course and velocity, 

both of which are assumed to remain constant 

throughout the observation duration. In Non-

maneuvering target, the target moves with velocity 

(1m/s, -0.5m/s) starting from the (0m, 0m). T sampling 

period is T=0.26, The proposed method is compared with 

that of other methods under different conditional. 

Scenario 1: Performance with known statistics noise 

First, the proposed method is evaluated under effect 

of a noise with known statistics and the performance of 

it is compared with EKF and UKF.  

Fig. 1 shows results by EKF, UKF and the proposed 

method, and Fig. 2 shows the tracking performances of 

the methods on X and Y. Obviously, the tracking 

performance of the proposed method is better than that 

of EKF and UKF. Fig. 1 depicts that EKF and UKF lose the 

target overtime, and the error of estimation increased 

mainly. 

 
Fig. 1: Results of trajectory. 

 

 

 

Fig. 2: True states and estimated states values. 

 

Moreover, although EKF and UKF keep the tracking, 

the error of estimation is large and non-convergent. 

However, the proposed method follows the target with 

small estimation error.  

Then, in order to more evaluate, the root-mean 

square error (RMSE) is calculated.  

The RMSE of position and velocity for N times 

simulation is as: 

2 2

1

1
ˆ ˆ( ) (( ) ( ) )

N
i i i i

pos k k k k

i

RMSE k x x y y
N

=

= − + −          (34)
 

where N is the total number of Monte Carlo simulation, 

k is the k-th discrete 

time point of the total simulation time, ( , )t tx y  and 

ˆ ˆ( , )t tx y  are the true and estimated positions. Similarly, 

to the RMSE of position, the formulation of RMSE of 

velocity is as follows:
 

2 2

1

1 ˆ ˆ( ) (( ) ( ) )

N
i i i i

vel k k k k

i

RMSE k x x y y
N

=

= − + −           (35)
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where ( , )t tx y  and ˆ ˆ( , )t tx y  are the true and estimated 

velocities. 

 

 

Fig. 3: RMSE over time with known noise statistics. 

 

 

 

Fig. 4: RMSE of algorithms with known noise statistics. 

The RMSE of estimations over time is shown in Fig. 3. 

Fig. 3 clearly shows that the RMSE of the proposed 

algorithm are smaller than that of other methods. To 

further quantify the performance of the methods, the 

mean and variance of the RMSE algorithms are 

investigated in Fig. 4. It can be seen that the RMSE in 

target tracking based on the proposed method is lower 

than that of EKF and UKF.  

Scenario 2: Performance with unknown statistics noise 

In this subsection, to illustrate the further benefits of 

the proposed method, it is assumed that statistics noises 

are unknown. Assume the initial values of the noise 

statistics are  ( 0.001 0.001 0.001 0.001 )kQ diag=  

and  ( 0.1 0.1 )kR diag= , which are different from the 

true noise covariances. The comparison of methods is 

shown in Figs. 5-7. The tracking results by EKF, UKF and 

the proposed method are shown if Fig. 5 and the 

tracking performances of the methods on X and Y is 

depicted in Fig. 6. The RMSE of estimation is shown in 

Fig. 7. It can be observed that the performance of 

proposed method is almost close to the previous case, 

while the performance of EKF and UKF is worse than the 

performance of EKF and UKF in the previous case. The 

better performance of the proposed method is because 

that it can estimate the covariance of noises, whereas 

the other methods depend on the fixed prior knowledge 

about the process noises.  

 

 

Fig. 5: Results of trajectory.  

 
Fig. 6: True states and estimated states values. 
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Fig.7: RMSE over time with unknown noise statistics. 
 

Maneuvring Target 

The performance of the proposed method is 

evaluated for tracking of the maneuver target. In 

maneuvring target, the target moves at an even 

acceleration and the target motion state will varies, 

which has to account for the variation of acceleration. In 

simulations, it is assumed that the target is (0, 0) and the 

sampling period is T=0.26.  

For 100 s, the target starts to make a turn rate of 5°/s. 

Then it turns for 200s with -8 °/s.  

 

 
 

Fig. 8: Results of trajectory.  

 

 
Fig. 9: True states and estimated states values. 

 

 

 
Fig. 10: RMSE of over time with known noise statistics. 

 

Scenario 1: Performance with known statistics noise 

In this scenario, first, the performance of the 

proposed method under the influence of a noise with 

known statistics is evaluated and compared with 

performance of UKF and EKF. The estimated trajectories 

of methods are shown in Fig. 8 and the tracking results 

by various methods on Y and X are shown in Fig. 9. It 

observed that tracking accuracy of the proposed method 

is better than that of EKF and UKF and converges faster. 

In fact, the estimate value of proposed method is the 

closest with the true value. The EKF and UKF lose the 

target and the error of tracking mainly increases. 
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However, the proposed method traces the target in the 

whole scenario with small error of estimation. The RMSE 

of methods are respectively shown in Figs. 10-11. 

Obviously, the result indicated that the proposed 

algorithm has better performance in accuracy of 

estimation compared to EKF and UKF.  

 

 

Fig. 11: RMSE of with known noise statistics. 

 
Fig. 12: Results of trajectory.  

Scenario 2: Performance with unknown statistics noise 

In this sub scenario, the robustness and adaptively of 

the proposed method is tested when statistics noises are 

considered wrongly. Figs. 12-14 show the results. Similar 

to Non-maneuvering case, it observes that the 

performance of other methods is worse than the 

performance of them in the previous case, while the 

performance of proposed algorithm is almost similar to 

that of the previous case. The RMSE of the position and 

velocity of the proposed method, UKF and the EKF are 

shown in Fig. 14.  

The proposed method shows the best performance 

and the range of error is even lower than the UKF and 

EKF for the RMSE in velocity and position.  

The proposed method with noise statistic estimator 

has very well performance in the complicated 

conditions, which shows a good adaptability and 

robustness. 

 

 

Fig. 13: True states and estimated states values. 

 

 

Fig. 14: RMSE of over time with unknown noise statistics. 
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Table 1 shows the RMSE algorithms. From Table 1, It 

can be seen that the performance of the proposed 

method is superior to other methods. 

 
Table 1: Performance of algorithms 

 

Helicopter Tracking 

For further investigation, the proposed method in 

tracking the purpose of video sequences is examined.  

 

 
Frame 232 

 
Frame 499 

 
Fig. 15: Tracking by the proposed method. 

 
Frame 232 

 
Frame 499 

 
Fig. 16: Tracking by UKF. 

 

  
Frame 232 

 
Frame 499 

 
Fig. 17: Tracking by EKF. 

 

The results are shown can be seen in Figs. 15-17. The 

Statistics 
noise 

Method RMSE of 
Position 

RMSE of velocity 

Unknown 

Proposed 
Method 

0.38 0.02 

CKF 1.6 0.05 

UKF 1.71 0.06 

EKF 2.56 0.13 

know 

Proposed 
Method 

0.27 0.015 

CKF 0.45 0.21 

UKF 0.52 0.025 

EKF 1 0.045 
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results show the superior performance of proposed 

method. From the video in Figs. 15-16, it was observed 

that EKF and UKF can initially successfully track the 

target. However, when the helicopter moves in front of 

the leaves, the trackers miss the target. While in the 

proposed method, the target is successfully tracked 

during the video. 

Conclusion 

In this paper, the target tracking based on adaptive 

square root cubature Kalman filter is proposed. The 

proposed method does not need to know the statistics of 

noises, while other traditional cubature Kalman filters 

need the noise statistics. Moreover, the proposed 

method has better numerical characteristics and 

guaranteed positive semi-definiteness of error 

covariance matrix.  

Instead of decomposing Cholesky at each step, the 

proposed method updates and propagates square-root 

of the covariance of error. It has a consistently improved 

numerical stability. The effectiveness and feasibility of 

the proposed method is evaluated by the Monte Carlo 

simulations in different scenarios.  

The RMSE of the position and velocity have been 

evaluated using the UKF, EKF, and proposed method. It 

has been observed that the RMSE of position and 

velocity are less in the proposed method compared to 

the EKF and the UKF.  

The results imply the superiority of the proposed 

method compared to the EKF and the UKF. The proposed 

method provides better performance in tracking 

accuracy than other methods. 
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k  
Process noise 

tQ
 

Process noise covariance 

rF  Transition matrix corresponding to 
mode r 

kZ
 Measurement at kth instant 

k  
Measurement noise 

tR  Measurement noise covariance 

xP
 Square-root factor of xP  

*
| 1
i

k k −  
Transformed cubature points 

| 1k kS −  
Square root of the covariance matrix 

kX
 

State vector 

xzS  Cross covariance between the states 
and measurements 

*J  
Function of posteriori density 

n Process dimension 

A
 

Determinant of a square matrix A 

0x
 

Initial state of the target 

0P
 

Initial covariance 

( , )k kx y  Position components 

( , )k kx y  Velocity components 

T  Sampling interval 

(3)
t  

Anticlockwise turn maneuver 

(2)
t  

Clockwise turn maneuver 

( , )x P  Guassian prior density of x 

g
 Nonlinear function 

xn
 

State dimension 

j  
Cubature point 

T

ie
 

The ith column vector of 
x xn nI 

 

Tria(.)  General triangularization algorithm 

|
ˆ

k kx
 

The updated state 

N Total number of Monte Carlo 
simulation 
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G  Input matrix 

| 1
ˆ

k kx −  
Predicted mean 

kK
 

Kalman gain 

ˆ ˆ( , )t tx y  Estimated positions 

posRMSE
 

RMSE of position 

velRMSE
 

RMSE of velocity 
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