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Background and Objectives: Residue number system (RNS) is considered as a 
prominent candidate for high-speed arithmetic applications due to its limited carry 
propagation, fault tolerance and parallelism in “Addition”, “Subtraction”, and 
“Multiplication” operations. Whereas, “Comparison”, “Division”, “Scaling”, 
“Overflow Detection” and “Sign Detection” are considered as complicated 
operations in residue number systems, which have also received a surge of 
attention in a multitude of publications.  
Efficient realization of Comparators facilitates other hard-to-implement 
operations and extends the spectrum of RNS applications. Such comparators can 
substitute the straightforward method (i.e. converting the comparison operands 
to binary and comparing them with wide word binary comparators) to compare 
RNS numbers.  
Methods: Dynamic Range Partitioning (DRP) method has shown advantages for 
comparing unsigned RNS numbers in the 3-moduli sets {2𝑛 , 2𝑛 ± 1} and {2𝑛 , 2𝑛 −
1,2𝑛+1 − 1}, in comparison with other methods. In this paper, we employed DRP 
components and designed a unified unit that detects the sign of operands and also 
compares numbers, for the 5-moduli set 𝛾 = {22𝑛, 2𝑛 ± 1, 2𝑛 ± 3}. This unit can 
be used for comparison of signed and also unsigned RNS numbers in the moduli 
set 𝛾. 
Results: Synthesized comparison results reveal 47% (54%) speed-up, 35% (32%) 
less area consumption, 25% (24%) lower power dissipation, and 60% (65%) less 
energy for 𝑛 = 8 (16) in comparison to the straightforward signed comparator.  
Conclusion: According to the results of this study, DRP method for sign detection 
and comparison operations outperforms other methods in different moduli sets 
including 5-moduli set 𝛾 = {22𝑛 , 2𝑛 ± 1, 2𝑛 ± 3}. 
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Introduction 

Nowadays, with the increased versatility of electronic 

products, high-performance computations with low-

power consumption are of vital importance. Residue 

number system has offered the advantage of high-speed 

and low-power addition, subtraction, and multiplication 

operations, and thus it has received much attention for 

high-throughput computations, particularly in digital 

signal processing [1], data transmission [2], cryptography 

[3], steganography [4], and image processing [5].  

Residue Number System (RNS) is a number system 

with 𝑘 integer modulus {𝑚1, 𝑚2, … ,𝑚𝑘}. A number 𝑋 is 

represented as (𝑥1, 𝑥2, … , 𝑥𝑘), where 𝑥𝑖 = |𝑋|𝑚𝑖
 (i.e., the 

remainder of integer division 
𝑋

𝑚𝑖
 ). Cardinality of the 

residue number system is maximized (i.e., 𝑀 = 𝑚1 ×

…×𝑚𝑘), where the moduli are pair-wise prime. In RNS, 
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which is an unweighted number system, some arithmetic 

operations such as division, scaling, comparison and 

sign/overflow detection are difficult to implement. 

Whereas, these complicated operations are fundamental 

to develop processors with practical interest. For 

example, comparison, sign and overflow detection are 

essential for some nonlinear procedures, such as median 

and rank-order filtering [6].  

Sign detection is needed in applications dealing with 

positive and negative numbers. In such cases, dynamic 

range (i.e., 𝑀) is partitioned into two parts of [0, ⌊𝑀/2⌋) 

and [⌊𝑀/2⌋,𝑀) in order to represent positive and 

negative numbers, respectively.  The straightforward sign 

detection method in RNS is based on converting the 

operand to binary format and then comparing it with 
𝑀

2
.  

Comparison plays a crucial role in the development of 

division and overflow/sign detection units in RNS, 

therefore an efficient comparison method would be cost-

effective to implement other complicated operations [7]-

[9]. Contrary to the parallelism that residue number 

system offers to the addition and multiplication, no 

parallel RNS comparison scheme can be envisaged via 

independent modular comparator in concurrent residue 

channels. For example, in the moduli set {64,7,9,11,5}, 

44352=(0,0,0,0,2) is greater than 6=(6,6,6,6,1), which is 

not clearly apprehended from their modular 

representations.  

The RNS comparison schemes proposed so far [6], [10]-

[16] can be categorized into a conversion-based method 

[6], [10], [11], [15], parity checking technique [12], [14], 

and mapping function [13], [16]-[23] that will be 

described in second Section. For RNS unsigned number 

comparison in 3-moduli sets, Dynamic Range Partitioning 

(DRP) method [17] yields the best performance [17], [18]. 

However, we have not encountered any DRP-based RNS 

comparator for moduli sets with more than three moduli.  

In many RNS applications, domain of numbers is 

expanded. Utilizing wider moduli and increasing the 

number of moduli, are two different ways to fulfill the 

need for expanded range of numbers, while both of them 

make reverse conversion and complex operations more 

complicated. However, since the conversion process is 

not frequent, the burden of a lengthier reverse 

conversion for moduli sets with more than three moduli 

is bearable [18]. Several moduli sets with four to eight 

moduli have been reported in the literature. For example 

moduli set 𝛾= {22𝑛 , 2𝑛 ± 1, 2𝑛 ± 3} with 6𝑛-bit dynamic 

range whereas its signed/unsigned reverse converter 

have been introduced in [24], [25].  

In this paper, we focus on the realization of a DRP-

based  sign detector and comparator for the moduli set 

𝛾.   To this aim, we convert the 5-residue operands of 𝛾 to 

an equivalent 3-moduli set {22𝑛 , 22𝑛 − 1, 22𝑛 − 9}, 

where the DRP can be applied.  

For evaluation of the proposed comparator, we have not 

found any hardware realization of a comparator for 𝛾, 

thus, we compare our method with the straightforward 

comparators [24], [25] and one of the recent previous 

general comparators [24].  

We also compare the proposed sign detection method 

with the 𝛾-sign-detection unit of [25].  The proposed work 

has considerable merits on the reference works [24], [25], 

in terms of latency, area, and power, presented through 

analytical and synthesized evaluations.  

The rest of the paper is organized as follows. The 

second section reviews briefly different RNS comparison 

and sign detection methods. In the third section, the new 

sign detector and signed/unsigned comparator for 𝛾 are 

proposed, while its implementation scrutiny is discussed 

in the fourth section.  

Evaluations are found in the fifth section and finally in 

the last section we draw our conclusions. 

Background Materials and Related Works  

In this section, we describe the representation of 

signed numbers in RNS, sign identification methods, and 

then review a number of comparison methods briefly. 

In RNS, numbers are defined as positive integers in the 

range between [0, 𝑀−1], but in applications with signed 

numbers, as shown in Fig. 1, dynamic range is divided into 

two parts, positive and negative numbers. The sign of an 

RNS number 𝑋 can be detected by (1).  

Sign(𝑋)  = {
0     𝑖𝑓    0 ≤ 𝑋 < ⌊𝑀/2⌋

1     𝑖𝑓    ⌊𝑀/2⌋ ≤ 𝑋 < 𝑀
    (1) 

Sign(𝑋) usually indicates by the most significant bit 

(MSB) of 𝑋, therefore in fast and low power sign detection 

methods, before complete conversion of the operand to 

binary format via mixed radix representation (MRC) [26] 

or Chinese remainder theorem (CRT) [26], MSB of the 

operand is extracted. 

 In [27] and [28], with the usage of last MRC digit, MSB 

of the operand and consequently sign bit extracted. In 

[25] a sign detection unit and signed reverse converter is 

proposed for 𝛾, based on CRT. 

A wide variety of techniques have been proposed for 

RNS comparison in the literature [6], [9]-[23], some of 

which are summarized in Table 1. Most of the comparison 

methods compare two unsigned numbers and cannot be 

easily extended to compare signed RNS numbers due to 

the complexity of sign detection process.  

In conversion-based methods [6], [9]-[11],  [15], before 

full reverse conversion, comparison takes place. 

Comparing the corresponding MRC digits [26] or New CRT 

coefficients [29] fall into this category.  
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Fig. 1: Distribution of positive and negative numbers in dynamic range. 

In parity checking technique [12], comparison is based 

on the parity of the operands and their difference. One of 

the major drawbacks of this method is that it is applicable 

only on moduli sets which do not have even moduli, while 

in practice numerous moduli sets comprise at least a 

power-of-two modulo, owing to an efficient arithmetic 

channel realizations. 

In the mapping technique [13], a number is assigned to 

each RNS number in the dynamic range. For comparing 

two numbers 𝑋 and 𝑌, 𝐷(𝑋) and 𝐷(𝑌) are compared, 

such that 𝐷(𝑋) > 𝐷(𝑌) leads to 𝑋 > 𝑌. This method, 

similar to the CRT, is based on a large modulo 𝑆𝑄 

operation, where 𝑆𝑄 = ∑ (𝑀/𝑚𝑖)
𝑛
𝑖=1 . Since direct 

implementation of diagonal function is not efficient for 

comparing two RNS numbers, some modifications for 

diagonal function computation were proposed  [23], [30]. 

In [23], 𝐷(𝑋) is computed in modulo 2𝑢, where 𝑢 =

log(𝑚𝑛 − 1)𝑆𝑄 and 𝑚𝑛 is the largest modulo in the 

moduli set. Although 2𝑢 is smaller than 𝑆𝑄, in comparison 

to other methods, [23] still needs computation in the 

large module  2𝑢. 

Efficient computations of diagonal function results in 

introducing new moduli sets that allow for efficient 

hardware implementation of 𝐷(𝑋). Some algorithms 

were introduced in [30] to generate 3- and 4- moduli sets 

in such a way that 𝑆𝑄 = 2𝑣 and 𝑆𝑄 = 2𝑣 − 1, 

respectively, for some 𝑣. In [31], similar to [30], several 

methods proposed to design moduli sets with 𝑆𝑄 forms 

2𝑛, 2𝑛 − 1 , and 2𝑛+1. 

In [16], [19], for implementing non-modular 

operations including comparison, sign detection, division, 

and scaling, the authors proposed a method to compute 

the interval evaluation of 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑘). Such 

computations are performed in limited precision of 

fractional representation of 𝑋.   

Ambiguity cases arise when 𝑋 is very small or big, in 

such cases MRC digits were used for non-modular 

operations in this method which leads to sequential 

computations.  

In [20], [21], dynamic range [0,𝑀) is divided into 𝑀𝑘 =

𝑚1 ×𝑚2. .× 𝑚𝑘−1 intervals. With a large amount of 

computations, the numerical intervals which contain 𝑋 

and 𝑌 are determined and after that, comparison can be 

done by comparing numerical intervals of 𝑋 and 𝑌.  

Minimum-range monotonic core function is proposed 

in [22] which is a modification of core function [32].  

In this solution, comparison of every two number is 

carried out through comparing their core functions. In 

[22], core function is monotonic and computed in module 

𝑀𝑘. They also show that diagonal function is a special case 

of core function. 

DRP [17], divides the dynamic range of any 3-moduli 

set into 𝑚1 partitions of size 𝑚2 ×𝑚3, where each 

partition is divided into 𝑚2 sections of size 𝑚3. For any 

moduli set {𝑚1, 𝑚2, 𝑚3}, DRP components (i.e. 𝑝1(𝑋) and 

𝑝2(𝑋)), are defined in (2), where 𝑥23 = |𝑋|𝑚2𝑚3
, 𝑥2 =

|𝑋|𝑚2
, 𝑥3 = |𝑋|𝑚3

 and 𝑀1 = 𝑚2 ×𝑚3. 𝑝1(𝑋) and 𝑝2(𝑋) 

are the number of partition and section that are 

computed for an RNS number 𝑋, respectively.  

{ 
𝑝1(𝑋) = ||𝑀1

−1|
𝑚1
(𝑥1 − 𝑥23)|

𝑚1

𝑝2(𝑋) = ||𝑚3
−1|𝑚2

(𝑥2 − 𝑥3)|𝑚2

                                 (2) 

Comparison of two numbers 𝑋 = (𝑥1, 𝑥2, 𝑥3) and 𝑌 =

(𝑦1, 𝑦2, 𝑦3) can be reduced to the comparison of [𝑝1(𝑋), 

𝑝1(𝑌)], [𝑝2(𝑋), 𝑝2(𝑌)], [𝑥3
 , 𝑦3

  ] in three different 

comparators.  

Sign detection and signed number comparison of [6] 

for the moduli set {2𝑛 − 1, 2𝑛+ 𝑥, 2𝑛 + 1} are based on an 

optimized version of the MRC. It performs the comparison 

through utilizing the sign bits of comparison operands and 

their difference. In this method, the sign of RNS numbers 

can be identified by comparing the third MRC digit with 

2𝑛+𝑘−1.  

Proposed Sign Detector and Comparator  
In this section, a new DRP-based method is derived for 

sign detection and comparing two RNS numbers 𝑋 and 𝑌. 

As mentioned earlier, DRP has been utilized in unsigned 

numbers comparison methods [17], [18]. However, in this 

paper, DRP is applied to sign identification (Theorem 1) 

and comparison for the 5-moduli set 𝛾 .  

     The above DRP scheme (2) for 3-moduli RNS 

comparison can be extended to 5-moduli cases. In fact, 

the aforementioned 5-moduli set 𝛾 , can be reduced to 

the 3-moduli set 𝜏 = {22𝑛, 22𝑛 − 1, 22𝑛 − 9}, where the 

conjugate moduli 2𝑛 ± 1 and 2𝑛 ± 3, are combined to 

moduli 22𝑛 − 1 and 22𝑛 − 9 through two simple reverse 

conversion operations.  
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Table 1: Comparison of 10 previous RNS comparators 

 

Ref. Category Moduli set 
Signed / Unsigned 

numbers 
Method 

[9] Reverse conversion 
{ 2𝑛 ± 1,2𝑛, 𝑚}, 

𝑚 ∈ {2𝑛+1 ± 1,2𝑛−1 − 1} 
Unsigned New CRT 

[17] Mapping function {2𝑛 ± 1, 2𝑛} Unsigned DRP 

[18] Mapping function {2𝑛 − 1, 2𝑛, 2𝑛+1 −  1} Unsigned DRP 

[10] Reverse conversion {2𝑛 ± 1, 2𝑛} Unsigned MRC-CRT 

[11] Reverse conversion Arbitrary moduli set Unsigned New CRT 

[12] Parity checking Odd moduli set Unsigned Parity checking 

[13], [23] Mapping function Arbitrary moduli set Unsigned Diagonal mapping 

[14] Parity checking {2𝑛 ± 1, 2𝑛+1 ± 1} Unsigned parity checking 

 [16], [19] Mapping function Arbitrary moduli set Unsigned 
floating-point interval 

evaluation, MRC 

[20], [21] Mapping function Arbitrary moduli set Unsigned interval evaluation 

[22] Mapping function Arbitrary moduli set Unsigned Core function 

[6] Reverse conversion {2𝑛 − 1, 2𝑛+ 𝑥 , 2𝑛 + 1} Signed MRC 

[15] Reverse conversion {2𝑛+ 𝑘 , 2𝑛 ± 1, 2𝑛±1 − 1} Signed MRC 

Therefore the 3-moduli DRP method can be applied to 

the new 3-moduli set. Here we compute DRP components 

for the new 3-moduli set 𝜏. Prior to that, the required 

multiplicative inverses are described as 𝛽1, 𝛽2 and 𝛽3.  

Property 1: 𝛽1 = |(2
𝑛 + 3)−1|2𝑛−3 

                      = {

2𝑛−1−1

3
             𝑛 = 2𝑘 + 1

−
2𝑛−1−2

3
                 𝑛 = 2𝑘

 

Property 2: 𝛽2 = |(22𝑛 − 9)−1|22𝑛−1 = −2
2𝑛−3 

Property 3: 𝛽3 = |((2
2𝑛 − 9)(22𝑛 − 1))−1|22𝑛 

              =

{
  
 

  
 
22𝑛+3 + 1

9
                         𝑛 = 3𝑝

22𝑛+1 + 1

9
                𝑛 = 3𝑝 + 1

22𝑛−1 +
22𝑛−1 + 1

9
  𝑛 = 3𝑝 + 2

 

Let 𝑚1 = 2
2𝑛, 𝑚2 = 2

𝑛 − 1,𝑚3 = 2𝑛 + 1,𝑚4 =

2𝑛 − 3,𝑚5 = 2𝑛 + 3 and the corresponding residues of 

an operand 𝑋 for the new moduli set 𝜏 based on CRT and 

New CRT be denoted as (𝑥1, 𝑥23, 𝑥45) where 𝑥1 = |𝑋|22𝑛, 

𝑥23
 = |𝑋|22𝑛−1 = |𝑥3 + (2

𝑛 + 1)2𝑛−1(𝑥2 − 𝑥3)|22n−1  

and 𝑥45 = |𝑋|22𝑛−9 = 𝑥5 + (2
𝑛 + 3) |𝛽1(𝑥4 − 𝑥5)|2𝑛−3.  

In the following Eqns. 3 and 4, we derive 𝑝2(𝑋) and 

𝑝1(𝑋) as DRP components in moduli set 𝜏, based on Eqn. 

set 2, where 𝑥2345 = |𝑋|(22𝑛−9)(22𝑛−1) = 𝑥45 + (2
2𝑛 −

9)|(22𝑛 − 9)−1(𝑥23 − 𝑥45)|22𝑛−1. 

 

𝑝2(𝑋) = |𝛽2(𝑥23 − 𝑥45)|22𝑛−1 

            = |22𝑛−3(−𝑥23 + 𝑥45)|22𝑛−1                       (3) 

𝑝1(𝑋) = |((22𝑛 − 9)(22𝑛 − 1))−1(𝑥1 − 𝑥2345)|22𝑛  

            = |𝛽3(𝑥1 − 𝑥45 + 9𝑝2(𝑋))|22𝑛                (4) 

Theorem 1: 𝑋 in the moduli set 𝛾 is negative if and only if 

MSB(𝑝1(𝑋)) = 1. 

Proof: Based on the DRP method [8], in the moduli set 𝜏 

we have 𝑋 = 𝑝1(𝑋)𝑀1 + 𝑥23 = 𝑝1(𝑋)(2
2𝑛 − 1)(22𝑛 −

9) + 𝑥23 and 𝑝1(𝑋) < 22𝑛. With consideration of 
𝑀

2
=

22𝑛−1(22𝑛 − 1)(22𝑛 − 9), our proof consists of two parts 

as follows:  

a. (MSB(𝑝1(𝑋)) = 1) ⟹ 𝑋 ≥
𝑀

2
 

If 𝑀𝑆𝐵(𝑝1(𝑋)) = 1 ⟹ 𝑝1(𝑋) ≥ 2
2𝑛−1 ⟹ 𝑋 ≥

22𝑛−1(22𝑛 − 1)(22𝑛 − 9) ⟹ 𝑋 is negative.  

b. 𝑋 ≥
𝑀

2
 ⟹ (MSB(𝑝1(𝑋)) = 1) 

let 𝑥23 = 2
2𝑛 − 2 to find the minimum value of 𝑝1(𝑋), 

where 𝑋 is negative. The following condition must hold: 

𝑝1(𝑋)(2
2𝑛 − 1)(22𝑛 − 9) + 22𝑛 − 2

≥ 22𝑛−1(22𝑛 − 1)(22𝑛 − 9) 
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which leads to 𝑝1(𝑋) ≥ 22𝑛−1 and 𝑀𝑆𝐵(𝑝1(𝑋)) = 1. ∎  

Therefore by implementing one of the DRP 

components (i.e., 𝑝1(𝑋)), the sign of an RNS number ( i.e., 

𝑠𝑖𝑔𝑛(𝑋)) in the moduli set 𝛾 is identified. For comparing 

two signed RNS numbers, which belong to the same range 

and both have the same sign (positive or negative), 

comparing them without considering their signs 

determines the result. Therefore, for comparing two RNS 

numbers 𝑋 and 𝑌, first the signs of operands are 

identified. If only one of them is positive, the result of 

comparison is clear, whereas both of them are positive or 

negative, comparison is undertaken via DRP components 

(i.e. 𝑝1(𝑋), 𝑝1(𝑌), 𝑝2(𝑋) and 𝑝2(𝑌)). Comparison can be 

reduced to the comparison of 𝑝1(𝑋) and 𝑝1(𝑌). In the 

case of 𝑝1(𝑋) = 𝑝1(𝑌), 𝑝2(𝑋) and 𝑝2(𝑌) are compared. If 

𝑝1(𝑋) = 𝑝1(𝑌) and 𝑝2(𝑋) = 𝑝2(𝑌), comparison of 𝑥45 

and 𝑦45 yields the final result. Flowchart of the proposed 

comparator is illustrated in Fig. 2. 
 

Sign (X) = Sign (Y)

Sign(X)=0

No

Yes𝒑𝟏(𝑿) > 𝒑𝟏(𝒀) 

𝒑𝟏(𝑿) < 𝒑𝟏(𝒀) 𝑿 > 𝒀 

𝑿 < 𝒀 

𝑿 = 𝒀 

No

Yes

No
Yes

Yes

𝒑𝟐(𝑿) < 𝒑𝟐(𝒀) 

𝒑𝟐(𝑿) > 𝒑𝟐(𝒀) 

No

Yes

No

𝒙𝟒𝟓 < 𝒚𝟒𝟓 

𝒙𝟒𝟓 > 𝒚𝟒𝟓 

Yes
Yes

Yes

No

No

No

Inputs :

Output :

Output :

Output :

𝒀: (𝒚𝟏,𝒚𝟐,𝒚𝟑,𝒚𝟒,𝒚𝟓) 

 

𝑿: (𝒙𝟏,𝒙𝟐,𝒙𝟑,𝒙𝟒,𝒙𝟓) 

 

Fig. 2: Algorithm of the proposed comparator. 

 

Since sign detection is performed with 𝑝1(𝑋), and it is 

also required for comparison, with eliminating first step 

of Fig. 2 (comparing sign(X) and sign (Y)), it can be used 

for unsigned comparison. The overall architecture for 

signed/unsigned comparator is visualized by Fig. 3 where 

𝐸 and 𝐶 show that 𝑋 = 𝑌 and 𝑋 > 𝑌 respectively. 

Example 1. Consider 𝛾 = {256, 15, 17, 13,19} with 𝑛 =

4. Let 𝑋 = 1 = (1,1,1,1,1) and 𝑌 = 1000000 =

(64,10,9,1,11) be two RNS numbers to be compared. The 

equivalents of 𝑋 and 𝑌 in the corresponding moduli set 

𝜏 = {256, 255, 247} are (1,1,1) and (64,145,144) 

respectively. Based on Eqns. 3 and 4, 𝑝1(𝑋) = 𝑝2(𝑋) = 0 

, 𝑝1(𝑌) = 15 and 𝑝2(𝑌) = 223. According to the 

Theorem 1 and Fig. 2, both 𝑋 and 𝑌 are positive and 

𝑝1(𝑌) > 𝑝1(𝑋) so 𝑌 > 𝑋. 

Implementation 

Sign detection and comparator units in the proposed 

work are based on DRP components, therefore, in this 

section, we provide the implementation details of 𝑝1(𝑋) 

and 𝑝2(𝑋) generators. Here with the assumption of 𝑛 =

3𝑝 + 1 and usage of the properties 1-3, we investigate 

implementation-friendly equations for 𝑝1(𝑋) and 𝑝2(𝑋). 

Computation and implementation of DRP components 

with 𝑛 ≠ 3𝑝 + 1 are quite similar. 

𝑝1(𝑋) 

= |
22𝑛+1 + 1

9
(
−(2𝑛 + 3) |

2𝑛−1 − 1

3
(𝑥4 − 𝑥5)|

2𝑛−3

+𝑥1 − 𝑥5 + 9 𝑝2(𝑋))

)|

22𝑛

 

(5) 

𝑝2(𝑋) = |2
2𝑛−3 (

(2𝑛 + 3) |
2𝑛−1 − 1

3
(𝑥4 − 𝑥5)|

2𝑛−3

𝑥5 − 𝑥3 − (2
𝑛 + 1)2𝑛−1(𝑥2 − 𝑥3)

)|

22𝑛−1

 

(6) 

Replacing −𝑥3 = 𝑥3 − 2
𝑛+1 + 1, −𝑥2 = 𝑥2 − 2

𝑛 + 1, 

−𝑥5 = 𝑥5 − 2
𝑛+1 + 1, 𝑈 = |

2𝑛−1−1

3
(𝑥4 − 𝑥5)|

2𝑛−3
=

|∑ 22𝑖
𝑖=
𝑛−3

2
𝑖=0

(𝑥4 + 𝑥5) − 5 ×
2𝑛−1−1

3
|
2𝑛−3

and −𝑈 = 𝑈 −

2𝑛 + 1 in (5) and (6) result (7) and (8), respectively. 

𝑝1(𝑋) = |

22𝑛+1 + 1

9
(𝑥1 + 𝑥5 + (2

𝑛 + 3)𝑈

−2𝑛+2 + 4) + 𝑝2(𝑋)

|

22𝑛

    

𝑝2(X) = |
22𝑛−3𝑥5 + (2

𝑛−3 + 3 × 22𝑛−3) 𝑈 + 2
2𝑛−3𝑥3 +

22𝑛−3 − 2𝑛−2 + (22𝑛−4 + 2𝑛−4)(𝑥3 + 𝑥2)
|
22𝑛−1

 

(8) 

One (𝑛 − 1, 2𝑛 − 3) multi operand modular adder 

(MOMA) [33] followed by an 𝑛-bit modular adder is 

required to generate 𝑈 expression. Based on (8), after 

computation of 𝑈, 𝑝2(𝑋) is obtained with a two-level CSA 

followed by a 2𝑛-bit modular adder. In parallel with 𝑝2(𝑋) 

, 
22𝑛+1+1

9
(𝑥1 + 𝑥5 + (2

𝑛 + 3)𝑈 − 3 × 2𝑛 + 4) is being 

obtained through a (2𝑛 − 4 ,22𝑛) MOMA. The required 

architecture for generation of 𝑝1(𝑋) and 𝑝2(𝑋) is 

depicted in Fig. 4. 

(7) 
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Unsigned Comparator

Binary Comparator Binary ComparatorBinary Comparator

         and                  Generator 

 

Fig. 3: The proposed signed/unsigned 𝜸 −comparator.  

 

Evaluation 

In this section, we present the performance evaluation 

of the proposed design and compare it with previous 

related works.  

The proposed design consists of sign detection module 

and comparator. In the literature, two reverse converters 

[24], [25] and one sign identifier [25] designed for moduli 

set 𝛾.  

In [25], a  𝛾 − signed reverse converter proposed 

wherein the sign of operand is extracted in the middle of 

conversion. In the case of negative sign, the output of 

reverse converter should be added to 2’s complement of 

𝑀. 

In [24] a 𝛾 −reverse converter proposed which is 

based on New CRT [27] and the output is positive number 

in the range [0 𝑀).  

We evaluate the proposed comparator against a 

straightforward comparator which consists of two 

reverse converters for converting the operands to binary 

format and a binary comparator for comparing two 

operands. Moreover, we evaluate unsigned general 

comparators of [16], [19]-[23], which are based on 

mapping function that has recently received attentions in 

literature.   

In addition, we evaluate the proposed sign detection 

method with sign detection module of [25] and 

straightforward sign detection method of [24] (i.e., 

Conversion of operand to binary format and comparing it 

with 
𝑀

2
 ). 

The delay and cost measures of the proposed 

comparator and sign detector are compiled in Tables 2 

and 3, based on the unit gate model [34].  

In our analytical evaluations, the cost and delay of one 

simple 2-input logic gate (e.g., AND, OR, NAND, NOR) are 

considered as 1 unit of cost (#𝐺) and delay (Δ𝐺). For 

example, delay and cost of an 𝑛-bit carry ripple adder is 

assumed to be 2𝑛Δ𝐺  and 7𝑛#𝐺 respectively. The 

comparators of [28], [29] have less delay in return of extra 

cost.  

Between general comparators described in Tables 2 

and 3 (i.e.,  [16], [19]-[23]), the comparators proposed in 

[22] and [27] have reasonable delay and cost.  

So as to find better insight into merits of the proposed 

design, we have synthesized the proposed comparator 

and 𝛾 −comparators of [24], [25], and comparator of [22] 

in case of 𝑛 = 8 and 𝑛 = 16, with the TSMC 90nm CMOS 

standard logic cell library by Synopsys Design Compiler. 

Synthesized results are compiled in Table 4 which approve 

superiority of the proposed comparator in comparison 

with the reference designs, in terms of delay, area, power 

and energy.  

Based on the results of Table 4, the ratios of delay and 

power (𝑛 = 8) of straightforward signed comparator are 

higher than other methods. 
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Sign(X)
 

Fig. 4: 𝑝1(𝑋) and 𝑝2(𝑋) generator and sign detection circuit. 

 

Table 2: Analytical delay comparison 

 

Operation Method 

Adder 

CSA 

Comparator 

Total Delay 𝑛 -

bit 

2𝑛-

bit 

4𝑛-

bit 

6𝑛-

bit 

7𝑛- 

bit 

𝑛-

bit 

2𝑛-

bit 

6𝑛-

bit 

7𝑛- 

bit 

Sign 

Detection 

[24]  3 1   3 log 𝑛 + 1   1  
(32𝑛 + 12 log 𝑛

+ 4)Δ𝐺 

[25] 1 4 1 1  log 𝑛 + 5     
(38𝑛 + 4 log 𝑛

+ 20)Δ𝐺 

proposed 1 2    

log 2𝑛

+ log 𝑛 

+3 

    
(10𝑛 + 8 log 𝑛

+ 16)Δ𝐺 

Comparison 

[24]  3 1   3 log 𝑛 + 1   1  
(32𝑛 + 12 log 𝑛

+ 4)Δ𝐺 

[25] 1 4 1 1  log 𝑛 + 5   1  
(50𝑛 + 4 log 𝑛

+ 20)Δ𝐺 

proposed 1 2    

log 2𝑛

+ log 𝑛 

+3 

 1   
(14𝑛 + 8 log 𝑛

+ 16)Δ𝐺 

[23]     1 log 2𝑛    1 (28𝑛 + 8 log 𝑛)Δ𝐺 

[16], [19] 4 1    12 log 𝑛 1 1   (18𝑛 + 48 log 𝑛)Δ𝐺 

[22]   1   log 𝑛  2   (16𝑛 + 4 log 𝑛)Δ𝐺 

[20], [21]  2    log 𝑛  1   (12𝑛 + 4 log 𝑛)Δ𝐺 



Z. Torabi et al. 

48  J. Electr. Comput. Eng. Innovations, 11(1): 41-50, 2023 
 

Table 3: Analytical cost comparison 

 

Operation Method 

Adder  
CSA 

𝑛-bit 

Comparator 

Total Cost 𝑛 

-bit 

2𝑛-

bit 

4𝑛-

bit 

6𝑛-

bit 

7𝑛 

-bit 

𝑛 

-bit 

2𝑛 -

bit 

6𝑛-

bit 

7𝑛 -

bit 

Sign 

Detection 

[24] 1 5 1   8𝑛 + 6   1  
(56𝑛2

+ 273𝑛)#𝐺 

[25] 1 4 1   5𝑛 + 42     
(35𝑛2

+ 141𝑛)#𝐺 

proposed 1 2    5𝑛 + 14     
(35𝑛2

+ 133𝑛)#𝐺 

Comparis

on 

[24] 1 5 1   8𝑛 + 6   3  
(56𝑛2

+ 357𝑛)#𝐺 

[25] 1 4 1 2  5𝑛 + 42   1  
(35𝑛2

+ 267𝑛)#𝐺 

proposed 1 2    5𝑛 + 14  3   
(35𝑛2

+ 175𝑛)#𝐺 

[23]     1 10𝑛    1 (70𝑛2 + 98𝑛)#𝐺 

[16], [19] 4 1 1   10𝑛 4 3   
(70𝑛2

+ 140𝑛)#𝐺 

[22]   1   6𝑛  4   (42𝑛2 + 84𝑛)#𝐺 

[20], [21] 

4(22𝑛

− 1)(22𝑛

− 9)

+ 5 

    

(22𝑛 − 1) 

(22𝑛

− 9)𝑛 

4(22𝑛

− 1)(22𝑛

− 9) 

   
(22𝑛 − 1)(22𝑛

− 9)(14𝑛)#𝐺 

 

Table 4: Synthesis based comparison results 

  

Ratio 
Energy 

(pJ) 
Ratio 

Power 

(𝑚𝑊) 
Ratio 

Area 

(µ𝑚2) 
Ratio 

Delay 

(𝑛𝑠) 
𝑛 Design 

3.31 720.79 2.21 69.74 2.22 84075.61 1.56 10.80 8 [24] 

2.55 556.38 1.33 42.15 1.56 58972.18 1.91 13.20 8 [25] 

6.46 1407.79 3.51 110.85 5.62 212472.50 1.84 12.70 8 [22] 

1.00 217.62 1.00 31.54 1.00 37800.76 1.00 6.90 8 proposed 

1.98 3116.88 1.25 191.22 1.32 189451.71 1.58 16.30 16 [24] 

2.88 4540.68 1.31 200.03 1.47 210462.79 2.20 22.70 16 [25] 

1.67 2640.76 1.16 178.43 2.45 350311.09 1.43 14.8 16 [22] 

1.00 1573.94 1.00 152.81 1.00 142929.73 1.00 10.30 16 proposed 

 

Conclusion 

In residue number systems, one of the most 

complicated operations are sign detection and 

comparison which also play a prominent role in the 

development of division and overflow detection 

components in RNS. The 5-moduli set 𝛾 =  {22𝑛 , 2𝑛 ±

1, 2𝑛 ± 3}, has been shown to have efficient RNS 

arithmetic circuits as well as efficient reverse converter. 

To extend applicability of this moduli set, we provided the 

first efficient signed/unsigned RNS comparator circuit in 

this work.  

In the proposed comparator, with the advantage of 

dynamic range partitioning technique, sign of the 

operands are identified and then comparison performed 

effectively. Synthesis-based results confirmed analytical 
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evaluation and revealed 47% (54%), 35% (32%), 25% 

(24%)  and 60% (65%)  delay, area, power, and energy 

improvements, respectively, for the new signed RNS 

number comparator in comparison with the reference 

design.  

As regards the relevant future work, we plan to apply 

DRP method to other 4- and 5-moduli sets, to improve 

comparison operation and so other complicated 

operations.  
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