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Background and Objectives: Depth from defocus and defocus deblurring from a 
single image are two challenging problems caused by the finite depth of field in 
conventional cameras. Coded aperture imaging is a branch of computational 
imaging, which is used to overcome these two problems. Up to now, different 
methods have been proposed for improving the results of either defocus 
deblurring or depth estimation. In this paper, an asymmetric coded aperture is 
proposed which improves results of depth estimation and defocus deblurring from 
a single input image. 
Methods: To this aim, a multi-objective optimization function taking into 
consideration both deblurring results and depth discrimination ability is proposed. 
Since aperture throughput affects on image quality, our optimization function is 
defined based on illumination conditions and camera specifications which yields 
an optimized throughput aperture. Because the designed pattern is asymmetric, 
defocused objects on two sides of the focal plane can be distinguished. Depth 
estimation is performed using a new algorithm, which is based on perceptual 
image quality assessment criteria and can discern blurred objects lying in front or 
behind the focal plane. Results: Extensive simulations as well as experiments on a 
variety of real scenes are conducted to compare the performance of our aperture 
with previously proposed ones. 
Conclusion: Our aperture has been designed for indoor illumination setting. 
However, the proposed method can be utilized for designing and evaluating 
appropriate aperture patterns for different imaging conditions. 
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Introduction 

When a scene is captured by a limited depth of field 

camera, objects lying at different depths are registered 

with varying degree of defocus blur. Depth from defocus 

(DFD) is a method that recovers depth information by 

estimating the amount of blur in different areas of a 

captured image. The concept of DFD was first introduced 

in [1], [2] and then various techniques were proposed, 

which are briefly reviewed in Sec. 2. 

Despite the desirable results of DFD techniques in 

conventional apertures, there are some drawbacks 

rooted in the inherent limitation of circular apertures. For 

example, single image DFD methods and even some of 

multiple image DFD methods are unable to distinguish 

between defocused objects placed before and after the 

focal plane. In addition, in single image DFD methods, the 

lower depth of field, which provides enhanced depth 

discrimination ability, is obtained at the cost of losing 

image quality.  In larger blur scales, most of image 

frequencies are lost. It makes the estimation of depth and 
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deblurring more ambiguous and vulnerable to image-

noise [3]. 

Coded aperture photography is a method used for 

modifying the defocus pattern generated by lens. The 

shape of PSF (Point Spread Function) can be changed by 

using a coded mask on lens. So far, a variety of mask 

patterns have been proposed for improving the results of 

depth estimation [3]-[5] or defocus deblurring [6]-[8]. 

However, there are a few number of techniques for 

extracting both depth and high quality deblurred image 

[9], [10]. These methods use multiple images captured by 

a single aperture [9] or multiple aperture patterns [10]. 

In this paper, we propose an asymmetric single 

pattern, which is used for capturing a single image. This 

image is processed to achieve a depth map and an all-

focus high quality deblurred image. 

To find the proposed optimal aperture pattern, a new 

multi-objective function containing two evaluation 

functions is defined. The first function determines the 

expected value of deblurring error using the correct PSF. 

The second function computes the expected value of 

deblurring error using the incorrect PSFs. Both functions 

are defined in the frequency domain. A non-dominated 

sorting-based multi-objective evolutionary algorithm [11] 

is used to find a Pareto-optimal solution. An optimal 

pattern is chosen in a way that it can also distinguish 

between defocused objects placed before and after the 

focal plane. As a result, an asymmetric pattern is 

proposed which is appropriate for depth estimation and 

deblurring in a single captured image. 

According to [12], [13], illumination conditions and 

camera specification affect the performance of coded 

aperture cameras. Therefore, our objective functions are 

formulated by considering the imaging circumstances. In 

this way, the designed mask acquires a reasonable 

throughput that ensures the acceptable signal-to-noise 

ratio (SNR) of the captured image. 

The proposed mask is compared with circular aperture, 

and a number of state-of-the-art coded aperture 

patterns. The performance comparison includes depth 

estimation accuracy and the quality of deblurring results. 

In accordance with the proposed multi-objective 

function, a depth estimation algorithm is introduced in 

which a blurred image is deblurred by a set of PSF scales. 

Then, a PSF with the best quality deblurring result is 

considered as the correct blurring kernel. The quality of 

deblurred images is measured by an aggregate measure 

of no-reference image quality assessment criteria. 

A.  Key Contributions 

 1) A new multi-objective function is proposed for 

defining a single pattern, which yields the minimum 

deblurring error with correct PSF and the maximum 

deblurring error with incorrect PSFs. 

2) The blurring problem is redefined with respect to 

the aperture throughput and imaging system conditions. 

Hence, in the design of coded aperture, the amount of 

additive noise and image brightness are taken into 

account.  

3) An aggregate no-reference image quality assessment 

measure is used for depth estimation. The quality of 

images deblurred by different PSFs is measured and the 

PSF that yields a deblurred image of the highest quality is 

chosen as the true PSF. 

4) The results of simulation on a dataset show less 

variance in correct depth/kernel estimation across the 

entire range of depths/kernel sizes compared to previous 

aperture patterns. 

B.  Scope and Limitations 

1) The image formation model is assumed to be linear.  

2) An affine noise model is used to describe the 

combined effects of signal-dependent and signal-

independent noise. Signal dependent Poisson noise is 

approximated using a Gaussian noise model. Signal 

independent noise is assumed only read-noise. 

3) The aperture pattern is designed based on the 

assumption that the exposure time and lighting condition 

is fixed. 

4) The proposed aperture pattern and depth estimation 

algorithm can be used for both grey-level and color 

imaging systems. 

The rest of this paper is organized as follows: In Sec. 2, 

related works are briefly reviewed. In Sec. 3, the blurring 

problem is formulated and pattern evaluation functions 

are introduced. Section 4 describes the optimization 

method used to find the optimal pattern. The proposed 

aperture is analyzed in accordance with spectral 

properties and depth sensitivity in Sec. 5. Our depth 

estimation algorithm is presented in Sec.6. Experimental 

results in both synthetic and real scenes are presented in 

Sec. 7. Finally, conclusions are drawn in Sec. 8. 

Previous Works 

The concept of DFD was first introduced in [1], [2] and 

then a variety of techniques were proposed that used a 

single image [14]-[19] or multiple images [20]-[24]. 

Single image DFDs usually estimate the blur scale 

either by assuming some prior information about PSF 

[14], [18], texture [16], color information [17] or by using 

learning methods [19]. However, multiple image DFDs are 

more variant and use various techniques to extract depth 

information. Some methods capture two or more images 

from a single viewpoint under different focus settings or 

various sizes of aperture [1], [2], [22], [24], [25]. Other 

methods use two or more images from different 

viewpoints such as stereo vision with identical focus 

setting [26] or different focal settings [9]. 

As mentioned in Sec.1, DFD with conventional 

apertures suffers from some drawbacks. In the past 
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decades, coded aperture photography has been used to 

resolve these problems. Here, some of the proposed 

apertures and DFD methods are briefly reviewed. 

Hiura et al. [27] use multiple images taken by a single 

aperture pattern from a single viewpoint under different 

focus settings. Zhou et al. [10] propose a pair of aperture 

masks. Two blurred images are taken from a single 

viewpoint with a similar focus setting and two different 

asymmetric aperture patterns. In real applications, a 

programmable aperture is needed to ensure that the 

viewpoint of the two captured images remain unchanged. 

Otherwise, images should be first registered, and then 

depth estimation algorithm be applied. Takeda et al. [9] 

use stereo imaging with a single aperture pattern, yet 

different focal settings to improve the results of depth 

estimation presented in [10]. 

Levin et al. [4] design a single symmetric pattern with 

the aim of increasing the depth discrimination ability. 

Kullback-Leibler divergence between different sizes of 

blur is used to rank aperture patterns. The optimal 

symmetric pattern is achieved through a full-search of all 

binary masks. An efficient deblurring algorithm is also 

used to create high quality deblurred results. Since the 

proposed mask is symmetric, before and after focal plane 

cannot be differentiated. 

Sellent et al. [5] define a function in the spatial domain 

for the aperture pattern evaluation. A parametric 

maximization problem is defined to find a pattern that 

produce the most possible difference among images 

blurred of different PSF scales. By solving this problem, 

non-binary patterns are obtained that can be pruned to 

binary forms. This technique is then used to find 

asymmetric patterns suitable to discriminate the front 

and back of the focal plane [3]. 

Aperture Evaluation 

In this section, first the blurring problem is briefly 

reviewed and then our criteria for evaluating aperture 

patterns are introduced. Based on the proposed criteria, 

a multi-objective function is defined, which is capable to 

compare aperture patterns with varying throughputs.  

A.  Problem Formulation 

Image degradation due to out of focus blurring and 

noise can be modeled by convolution of a PSF or kernel 

function (kd) with the sharp image (fs) and then adding 

noise (ω): 

𝑓 = 𝑘𝑑⨂𝑓𝑠 +  𝜔,       ∑𝑘𝑑
𝑖

𝑖

= 1           (1) 

the subscript d indicates that kernel size is a function of 

depth of scene. The sum of kernel elements (i.e. 𝑘𝑑
𝑖 ) 

equals 1, meaning that the image brightness does not 

change by blurring. 

When we use a binary-coded aperture, the shape and 

throughput of the aperture are determined by this mask. 

As noted in [12], [13]  an aperture pattern must be 

evaluated by consideration of both shape and 

throughput. Therefore, we redefine the well-known 

defocus problem in terms of these factors. 

A binary coded mask with n open cells can be 

considered as a grid of size N×N, where n holes distributed 

over the grid are kept open [5], [12]. The pattern of open 

holes determines the shape of PSF, and their number 

specifies the mask throughput. 

For a simple fronto-parallel object at depth d, 

defocusing is redefined as the convolution of a defocus 

kernel (𝑘𝑑) with a sharp image(𝑓𝑛) that generates spatial 

invariant blur: 

   (2) 

𝑓 = 𝑘𝑑⨂𝑓𝑛 + 𝜔𝑛 , 

   𝜔𝑛 ~𝑁(0, 𝜎𝑛
2),         ∑𝑘𝑑

𝑖

𝑖

= 1 

The subscript n shows that the brightness of sharp 

image (fn) and the amount of added noise (ωn) depend on 

the aperture throughput (n). Due to the additive 

properties of light, in a constant definite exposure time, 

the brightness of sharp image (fn) is increased linearly 

with an increase in the number of open holes. The value 

of ωn also changes with the number of holes. In this study, 

the growth of ωn is investigated by considering the 

number of holes, imaging system’s specifications and 

scene illumination. As mentioned earlier, the sum of 

kernel elements (i.e. 𝑘𝑑
𝑖 ) equals 1, meaning that the 

image brightness does not change by blurring. As we see 

in Sec. 3. B, the added noise is modeled by normal 

distribution, which its variance depends of the aperture 

throughput.  

Equivalently, if the Fourier transforms of each variable 

is shown by its corresponding capital letter, the spatially 

invariant blur in the frequency domain is defined as 

follows: 

  (3)    𝐹 = 𝐾𝑑  . 𝐹𝑛 + 𝛺𝑛   

where the convolution operation in the Fourier domain is 

changed to a simple point-by-point multiplication. The 
subscripts d and n indicate the depth of scene and 

aperture throughput, respectively.  

B.  Noise Model 

The imaging noise can be modeled as the sum of two 

distinct factors: read noise and photon noise [12]. Read 

noise, which is independent of the measured signal, is 

commonly modeled by a zero mean Gaussian random 

variable r with variance 𝜎𝑟
2. Photon noise is a signal 

dependent noise with Poisson distribution. When the 

mean value of photon noise is large enough, it can be 

approximated by a random Gaussian variable with 

variance 𝜎𝑝
2 = 𝐽𝑛[12], [28]. 𝐽𝑛 refers to the mean number 

of photons received by a single pixel in a camera with an 
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n open-hole aperture. 

As noted in [12],  the total noise variance is computed 

as follows: 

   (4)   𝜎𝑛
2 = 𝜎𝑟

2 + 𝜎𝑝
2 = 𝜎𝑟

2 + 𝐽𝑛 = 𝜎𝑟
2 + 𝑛. 𝐽 

In this study, the mean signal value in photoelectrons 

(J) of a single-hole aperture is computed by [12]: 

      (5)   𝐽 =  1015.
1

𝐹#2
. 𝑅. 𝐼. 𝑞. ∆2. 𝑡 

where F#, R, and I refer to camera f-number, average 

scene reflectivity that varies in range 0 to 1, and amount 

of scene illumination ( measured in lux),  respectively. q is 

the quantum efficacy of the image sensor, which 

measures the effectiveness of an imaging device to 

convert incident photons into photoelectrons. ∆ is the 

size of a pixel in an image sensor and t refers to the 

exposure time. In our experiments, the assumption about 

scene and imaging system parameters, which represent 

the typical settings in consumer photography, are as 

follows:  
 

q = 0.5 (typically CMOS sensors) 

R = 0.5,  t  = 10ms, F# = 18 

∆2 = 5.1×5.1μm  (SLR camera, typically  Canon 1100D) 

      I  = 300lux (typically office light level) 
 

In the following section, first our criteria regarding the 

intensity level of images are proposed. Then, the 

proposed formula in terms of photoelectron are 

redefined so that masks with different throughputs can 

be compared. 

C.  Mask Search Criteria 

Suppose an image Fn is blurred with an unknown 

Kernel K1 (3). If it is deblurred with a typical kernel K2 and 

Wiener filter is used for deconvolution, then the total 

error of deblurring (en) is computed as (6): 

𝑒𝑛 = 𝐹𝑛 − 𝐹̂𝑛 = 𝐹𝑛 −  
𝐾2
∗𝐹

|𝐾2|
2 + |𝐶𝑛|

2
 

= 𝐹𝑛 −  
𝐾2
∗(𝐾1𝐹𝑛 + 𝛺𝑛)

|𝐾2|
2 + |𝐶𝑛|

2

= 
𝐹𝑛𝐾2

∗(𝐾2 − 𝐾1)

|𝐾2|
2 + |𝐶𝑛|

2⏟        

𝑒𝑛
(1)

+ 
𝐹𝑛|𝐶𝑛|

2 − 𝐾2
∗𝛺𝑛

|𝐾2|
2 + |𝐶𝑛|

2⏟          

𝑒𝑛
(2)

 

= 𝑒𝑛
(1) + 𝑒𝑛

(2)                                                             

where |𝐶𝑛|
2 is defined as the matrix of expected value for 

noise to signal power ratios (NSR) of natural images. (i.e.  

|𝐶|2 =
𝜎2

A
  where A is the expected power spectrum of 

natural images and σ2 is the variance of additive noise [7].) 

According to (6), the total error consists of two parts: 

    𝑒𝑛
(1)
=
𝐹𝑛𝐾2

∗(𝐾2 − 𝐾1)

|𝐾2|
2 + |𝐶𝑛|

2  error of wrong kernel estimation    (7) 

    𝑒𝑛
(2)
=
𝐹𝑛|𝐶𝑛|

2 − 𝐾2
∗Ωn

|𝐾2|
2 + |𝐶𝑛|

2  deblurring error                                  (8) 

If an accurate PSF is used for deblurring (i.e. K1 = K2), 

then the only term that determines the total error of 

deblurring will be 𝑒𝑛
(2)

 (i.e.  𝑒𝑛
(1)
= 0). On the other hand, 

if a wrong kernel is used as PSF (K1 ≠ K2), both 𝑒𝑛
(1)

 and 

𝑒𝑛
(2)

will generate errors in the deblurring result. As will 

shown in sec. 4.A, the values of 𝑒𝑛
(1)

 are much greater than 

𝑒𝑛
(2)

 (See Fig. 2). Therefore, when K1 ≠ K2, the main 

determinant of the total error will be 𝑒𝑛
(1)

. Hence, 

consistent with our objective, a suitable pattern is defined 

as a pattern that minimizes the norm of 𝑒𝑛
(2)

 and 

maximizes the norm of 𝑒𝑛
(1)

. The norm of  𝑒𝑛
(2)

 is computed 

as follows: 

 

 

     (9) 

‖𝑒𝑛
(1)
‖
2

2
= (

𝐹𝑛𝐾2
∗(𝐾2 − 𝐾1)

|𝐾2|
2 + |𝐶𝑛|

2
)

∗

(
𝐹𝑛𝐾2

∗(𝐾2 − 𝐾1)

|𝐾2|
2 + |𝐶𝑛|

2
)

= |𝐹𝑛|
2|𝐾2|

2
|𝐾2 − 𝐾1|

2

||𝐾2|
2 + |𝐶𝑛|

2|2
 

Since the power spectra of all natural images follow a 

certain distribution, the expectation of ‖𝑒𝑛
(1)
‖
2

2
 can be 

computed with respect to Fn. According to 1/f law of 

natural images [29], the expectation of |Fn|2 is computed 

as 𝐴𝑛(𝜉) =  ∫ |𝐹𝑛(𝜉)|
2

𝐹𝑛
𝑑𝜇(𝐹𝑛) where ξ is the frequency 

and 𝜇(𝐹𝑛) is the measure of sample 𝐹𝑛 in the image space 

[7]. Accordingly, the expectation of ‖𝑒𝑛
(1)
‖
2

2
 is computed 

as (10):  

(10) 

 𝐷𝑛(𝐾2, 𝐾1) =  𝔼𝐹𝑛{‖𝑒𝑛
(1)‖

2

2
 

                   = ∑
𝐴𝑛𝜉|K2|𝜉

2

(|𝐾2|𝜉
2 + |𝐶𝑛|𝜉

2)2
𝜉

|𝐾2 − 𝐾1|𝜉
2 

This measure can be considered as a distance criterion 

between two kernels. It can also help distinguish between 

defocus points lying in front or back of the focal plane. It 

should be noted that the defocus PSF in front of the focal 

plane is the flipped version of the defocus PSF at the back 

of the focal plane (See Fig. 1. a), meaning that these PSFs 

have an identical spectral response but different phase 

properties. Equation (10) includes the term K2-K1, which 

can compute both spectral and phase differences of two 

kernels. Hence, by having an asymmetric aperture, the 

deblurring with the flipped version of a PSF generates 𝑒𝑛
(1)

 

error and helps distinguish sides of the focal plane (See 

Fig. 1. b) 

The expected value of ‖𝑒𝑛
(2)
‖
2

2
 can be computed in a 

similar manner. (Details are found in [7]): 

𝑅𝑛(𝐾1) =  ‖𝑒𝑛
(2)
‖
2

2
=∑

𝜎𝑛
2

|𝐾1|𝜉
2 + |𝐶𝑛|𝜉

2

𝜉

  (11) 

This value has been used by Zhou et al. [7] as a criterion 

to find aperture patterns with least errors in deblurring 

results. However, it has been redefined here to allow 

(6) 
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studying patterns with different throughputs. 

Additionally, we search for a pattern that is suitable for 

both depth estimation and deblurring. 

 

 
(a) 

 

 
(b) 

 
Fig. 1: (a) the defocus PSF in front of the focal plane is the 

flipped version of the defocus PSF at the back of focal plane. 
(b) If an asymmetric pattern is used for imaging, then 

deblurring with the flipped PSF yields more errors in the 
deblurred image (see (10)). 

 

If the camera response function [30] is assumed linear, 

then relations (10) and (11) can be stated in terms of 

photon as follows: 

{
 
 
 

 
 
 𝐷𝑛(𝐾2, 𝐾1) =  ∑

𝐽𝑛
2 . 𝐴1𝜉|K2|𝜉

2

(|𝐾2|𝜉
2 +

𝜎𝑟
2 + 𝐽𝑛
𝐽𝑛
2. 𝐴1𝜉

)2𝜉

|𝐾2 − 𝐾1|𝜉
2   

𝑅𝑛(𝐾1) =  ∑
𝜎𝑟
2 + 𝐽𝑛

|𝐾1|𝜉
2 +

𝜎𝑟
2 + 𝐽𝑛
𝐽𝑛
2. 𝐴1𝜉

𝜉

                                    

 (12) 

where A1 refers to the expected power spectra of natural 

images taken by a single hole aperture. Since we assume 

the aperture has n holes and the camera has a linear 

response function, the number of absorbed 

photoelectrons in an n hole aperture, is n times of a single 

hole aperture (i.e. Jn = n. J). We also assume 𝜎𝑛
2 = 𝜎𝑟

2 + 𝐽𝑛 

based on what was described in Sec.3.B (See (4)). 

The values of Rn and Dn grow with n. So, the range of 

these values is different for apertures with a different 

number of open holes. If we desire to study patterns with 

different throughputs, then Dn and Rn must be 

normalized. Hence, our multi-objective function is 

defined as follows: 

{
 
 

 
 𝑚𝑖𝑛   𝑅(𝐾𝑠1) =

1

𝑛2
. 𝑅𝑛(𝐾𝑠1)                                                   

                                                   , 𝑠1, 𝑠2  ∈ 𝑆 𝑎𝑛𝑑 𝑛 ∈ [1. . 𝑁
2]

𝑚𝑎𝑥  𝐷( 𝐾𝑠1 , 𝐾𝑠2) =   
1

𝑛2
𝐷𝑛(𝐾𝑠1 , 𝐾𝑠2),   𝑠1 ≠ 𝑠2                    

 

  𝑠. 𝑡𝑜:         0 ≤ |𝐾𝑠(𝜉)| ≤ 1 ,    𝑠 ∈ 𝑆                                       (13) 

where S refers to a limited range of blur scales and N is 

the mask resolution. 

Aperture Pattern Design 

In this study, the mask resolution (N) is determined in 

a way that each single hole provides the least possible 

diffraction. According to the formula proposed in [31], a 

7×7 mask is appropriate for an imaging system with an 

aperture-diameter of 20mm and pixel-size of 5.1μm. Based 

on the camera specifications used in our experiments, this 

resolution is selected for our mask, and thus the number 

of open holes (n) will be in the range of [1-49]. 

A.  Optimization 

Multi-objective optimization is usually described in 

terms of minimizing a set of functions. Therefore, we 

rewrite our objective functions as follows: 

min   { 𝑅(𝐾𝑠1) , −𝐷( 𝐾𝑠1 , 𝐾𝑠2)  },     

      𝑓𝑜𝑟  𝑠1, 𝑠2  ∈ [1. .10]  𝑎𝑛𝑑  𝑠1 ≠ 𝑠2 

 

(14) 

These evaluation functions are clear and concise, but 

their solution in the frequency domain is challenging. 

Since we search for a binary pattern with specific 

resolution, the objective function must also be able to 

satisfy some other physical constraints in the spatial 

domain. It is difficult to derive an optimal solution that 

satisfies all constraints in both frequency and spatial 

domains. Therefore, a heuristic search method is used to 

solve the problem. In evaluating each pattern, R and D 

values are computed for 10 different scales of kernels 

(See (14)). Then, the maximum value of R and minimum 

value of D are used to evaluate the pattern.  

The main goal of a multi-objective optimization 

problem is to find the best Pareto optimal set of solutions 

[11]. In this study, NSGA-II [32], which is an appropriate 

method for solving multi-objective optimization 

problems, is used to optimize our objective functions. A 

generation of binary patterns with a population size of 

1500 is created. A pattern is defined by a vector of 49 

binary elements. According to [33], this population size is 

sufficient to converge to a proper solution. Other 

parameters are set by default values adjusted in the 

prepared software. Fig. 2 shows the values of objective 
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functions in the Pareto-front. The values of proposed 

objective functions are also computed for some other 

apertures and then added to the figure. 

 
 

Fig. 2: D values vs. R values of final patterns in the Pareto 
optimal solution (blue), Open circular aperture (black), 

conventional aperture (red), pinhole aperture(magenta), 
patterns proposed in [3] (green) and [4] (cyan). Final selected 

pattern has been highlighted by the blue border. 
 

According to Fig. 2, in the Pareto optimal solution, with 

an increase in the symmetry of patterns, the deblurring 

error (R) and the error of using a wrong scale kernel (D) 

rises. However, it does not mean that any symmetric 

pattern outperforms all other asymmetric patterns in 

terms of discrimination ability (D). For example, objective 

functions were also computed for the pinhole aperture, 

open circular aperture and circular aperture with a 

throughput equal to the selected coded pattern 

(highlighted by the blue border)1 as well as the symmetric 

pattern proposed by Levin et al. [4]. Although these 

patterns are symmetric, the provided D values are not 

essentially greater than all asymmetric patterns. On the 

other hand, R values provided by asymmetric patterns are 

not essentially smaller than any symmetric ones. In fact, 

R and D values depend on several factors such as mask 

throughput and spectral properties. 

As noted earlier, NSGA-II provides a set of solutions. 

Since just one pattern has to be selected, we compute 

𝐷𝑟 = 𝐷(𝐾𝑠1, 𝑟𝑜𝑡(𝐾𝑠1, 180)) for all patterns derived from 

the Pareto optimal solution. In a similar manner, this 

value is computed for asymmetric patterns proposed in 

[3]. Fig. 3 shows the computed values. 

As shown in Fig. 3, with an increase in symmetry, Dr 

declines. Given the significance of criterion Dr, the pattern 

highlighted by the blue border is selected as a sample of 

the derived patterns. 

                                                           
1 In the rest of text, the circular aperture with the same 
throughput of selected coded pattern is called conventional 
aperture. 

 
Fig. 3: D value of wrong scale kernels vs. Dr value of the flipped 
correct scale for the patterns obtained by NSGA-II (blue) and 

asymmetric patterns proposed in [3] (green). 

 

It must be mentioned that the selected pattern is not 

the best option under all conditions. However, since it 

provides appropriate values of D, R and Dr, it is selected 

as the final pattern. Indeed, the final pattern should 

provide a minimum value for the weighted sum of all 

criteria, which each weight representing the importance 

of the associated criterion. This study adopts NSGA-II, 

which does not use the weighted sum for optimization. 

Aperture Pattern Analysis 

In this section, a brief analysis of the proposed pattern 

is presented. The transmission rate (compared to the 

open circular aperture) of our optimized aperture is 

0.265, which is almost equal to the Levin’s pattern [4]. 

Hence, the SNR of images captured by this aperture is 

about 14.4dB2, which is in the range of [10..40], meaning 

that the captured images have an acceptable (not ideal) 

SNR [34]. In the following; the aperture pattern is 

examined with respect to its spectral properties and 

depth sensitivity. 

A.  Spectral analysis 

At the first step, an analogy is drawn between the 

spectral properties of the selected pattern and the 

conventional aperture. It should be noted that both 

apertures have similar throughput so under different 

imaging conditions; the same amount of additive noise is 

added to the captured images. In this situation, the 

spectral properties of apertures determine the results. 

Fig. 4 shows 1D slices of spectral response for each 

aperture at five different blur scales. According to [4], 

2 SNRcapture = 10 log10(𝐽𝑛/𝜎𝑛) 
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when a pattern has various frequency responses in each 

scale, it is more convenient to distinguish blur scales. As 

shown in Fig. 4, in the conventional aperture, the zero 

amplitude obtained from different scales overlaps in 

some frequencies, making it difficult to distinguish 

between blur scales. However, the coded pattern has 

diverse spectral responses in different scales. 

  

 
Fig. 4: The 1D slide of spectral response at 5 different blur 

scales for conventional and coded aperture. 

 

The spectral response of these two apertures is also 

compared at 4 different scales. As shown in Fig. 5, the 

minimum spectral response of our pattern is greater than 

the conventional aperture, especially in larger blur scales. 

Therefore, in the proposed pattern, attenuation of 

frequencies in the captured image is reduced and thus 

deblurring results are improved. 
 

  

  
Fig. 5: 1D slices of Fourier transforms for conventional aperture 

(red) and the proposed pattern (blue) at 4 different scales. 
 

B.  Depth Sensitivity  

Another advantage of the proposed pattern is its high 

sensitivity to the depth variation. It is known that DoF 

declines with an increase in the aperture diameter. In the 

proposed pattern, open holes are located in the margin of 

the mask. Hence, this aperture pattern is more sensitive 

to depth variations than the conventional aperture. To 

examine the depth sensitivity difference in these 

apertures, the blur size is computed in a limited range of 

depth (before and after the focal point) for a typical lens 

(EF 50mm f/1.8 II). 

The  blur size (s) is computed based on thin lens 

formula [35]: 

𝑠 =
𝐷𝑎(𝑣 − 𝑣0)

𝑣0
 ,    𝑣0 =

𝐹𝑢0
𝑢0 − 𝐹

,    𝑣 =
𝐹𝑢

𝑢 − 𝐹
 (15) 

The parameters used in (15) were introduced in Fig.  

1(a).  The aperture diameter (Da) is assumed 20mm and 

8.21mm for coded and conventional patterns respectively. 

As shown in Fig. 6, the proposed pattern is more sensitive 

to depth variation. Therefore, depth estimation is easier 

in images captured by the coded pattern. On the other 

hand, according to Fig. 5, coded mask gives a higher 

spectral response, and is thus expected to obtain better 

results in both deblurring and depth estimation in real 

imaging. 

 

 
 

Fig. 6: Blur size vs. depth for conventional (red) and coded 
(blue) apertures (focus length (u) = 1200mm, v = 50mm). Code 

aperture is more sensitive to depth variation. 

Depth Estimation 

Depth estimation is performed using an algorithm 

described here. The method is based on the proposed 

objective function (13) and can be used for detecting both 

the scale and the orientation of PSF. The main idea is that 

deblurring with inaccurate kernels, whether in scale or 

direction, produces low-quality images while deblurring 

with correct kernel yields high quality images (See Fig. 7). 

For depth estimation, the blurred image is deblurred with 

a limited set of blurring kernels. The quality of each 

deblurred image is measured using an aggregate no-

reference image quality measure. A PSF, which generates 

a deblurred image of the highest quality, is selected as the 

true kernel. As stated earlier, if the aperture pattern is 

asymmetric, this method can be used for detecting both 

size and direction of the PSF (Fig. 1). 

Several no-reference image quality measures have 

been proposed in the literature. In one of the most 

comprehensive studies [36] a weighted sum of 8 different 

criteria is used for evaluating the image quality (Recent 
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studies show that using an aggregate measure of  image 

quality assessment criteria is more precise [8], [36], [37] 

Although this measure can be used for depth estimation, 

it is more complicated than it is necessary. In our 

application, a comparison is drawn between the qualities 

of deblurred versions of the same image.   
 

  

  

 

  
Fig. 7: Deblurring results with different radii of the kernel 

(r=1..5) in imaging with conventional aperture. Deblurring with 
smaller kernels results in blurry images and deblurring with 
larger PSFs yields images with artifacts. The quality of each 
image is evaluated by the no-reference quality assessment 
measure proposed in [36]. A larger Q-value indicates higher 

quality. 
 

In fact, here the quality measure is more of a relative 

measure not a strict one. Therefore, measures of lower 

complexity can be applied for quality assessment. The 

speed of depth estimation algorithm is improved by 

reducing the number of criteria. In this study, the quality 

of deblurred images is evaluated by an aggregated 

measure containing four criteria: Norm-Sparsity-Measure 

[38], Sparsity-Prior [4], Sharpness-Index [39] and Pyramid-

Ring [36], which are well-suited for our application. These 

criteria are sensitive to blur or artifact or both of them. 

The no-reference aggregate image quality measure is 

defined in (16), where higher values indicate greater 

quality. The process of computing this measure has been 

described in our previous work [40]. 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = −12.65 ∗ 𝑛𝑜𝑟𝑚𝑆𝑝𝑠 +   
                        0.073 ∗ 𝑠ℎ𝑎𝑟𝑝𝐼𝑛𝑑𝑒𝑥 − 
                        0.289 ∗ 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 − 9.86 ∗ 𝑝𝑦𝑟𝑅𝑖𝑛𝑔 

 

 

(16) 

A similar measure has been used in [3] to find only the 

direction of PSF. Sellent et al. [3] use a depth estimation 

algorithm [35]  to determine the scale of PSF. Then, a 

quality assessment measure is used to find the direction 

of PSF. Our proposed method is almost similar to [3], but 

no prepared database is used for PSF estimation here. We 

use the proposed measure to evaluate the quality of 

deblurred images (or patch of images) derived by 

different PSFs. A PSF, which yields a deblurred image with 

the best quality, is chosen as true PSF. This method is used 

for detecting both size and direction of PSF. 

A.  Handling Depth Variations 

In real world scenes, there are depth variations. 

Therefore, each part of an image might be blurred with a 

different kernel. A common method of depth estimation 

in these images involves using fairly small patches in 

which the depth is assumed to be constant. The blur 

kernel is estimated for the patch, and this estimation is 

assigned to its central pixel.  By repeating this stage for all 

pixels of the image, a raw depth map is obtained. Then, a 

coherent map labeling is performed using the raw depth 

map, image derivative information and some smoothness 

priors [4], [17].  

In this study, first two blur scales that generate 

deblurred patches of the highest quality are considered as 

the possible true scales of the central pixel. The 

probability of each scale is computed based on its relative 

quality. Higher quality increases probability and the sum 

of two probability values are equal to 1. At the end of this 

stage, a three-dimensional matrix is obtained. In other 

words, for a H×W image and S possible depths, matrix 

𝐷𝑅𝜖ℝ
𝐻×𝑊×𝑆 includes the raw depth map in which 

DR(h,w,s) represents the probability of depth 𝑠 ∈ 𝑆 in 

pixel (h,w). 

There may be some errors in the depth estimation of 

the raw depth map, especially in depth discontinuities. 

Therefore, in the second step, a coherent blur map is 

obtained by minimizing an energy function defined as 

follows [17]: 

𝑀𝑖𝑛 𝐸(𝐷𝑐) =  ∑𝐷𝑝(𝑠𝑝)

𝑝

+ ∑ 𝜆𝑝,q𝑉(𝑠𝑝 , 𝑠𝑞) 

(𝑝,𝑞)∈𝑁

 (17) 

where p and q refer to image pixels. The first term  𝐷𝑝(𝑠𝑝)  

indicates fidelity to the previous probability blur scale (s) 

estimation at position p. The second term 𝑉(𝑠𝑝 , 𝑠𝑞) is a 

Sharp Image, Q = -8.9466 Blured with r = 3, Q = -12.1615

Deblured with r = 1, Q = -11.8376 Deblured with r = 2, Q = -11.412

Deblured with r = 3, Q = -9.6944

Deblured with r = 4, Q = -10.2133 Deblured with r = 5, Q = -12.503
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smoothness term, which guarantees that neighbor pixels 

of similar gray levels have identical blur scales. Dc denotes 

a solution for coherent data map with minimum energy 

(E).  A coherent map with min(Dc) is estimated by a  

method proposed in [17]. 

To assign a penalty to depth change in Dp, the early 

probabilities of blur scale (𝑝𝑝(𝑠)) are convolved with a 

Gaussian filter (N(0,0.1)) to reach the smoothed 

probabilities (𝑝̂𝑝(𝑠)). Then −log (𝑝̂𝑝(𝑠)) is used as 𝐷𝑝(𝑠). 

(See [17]). This function could also be used for cases in 

which one or more probabilities are assigned to the initial 

blur scale.  

The smoothness term 𝑉(𝑠𝑝 , 𝑠𝑞) examines depth 

discontinuity in neighboring pixels. For each pixel p, depth 

similarity is investigated with its eight surrounding pixels 

with  𝑉(𝑠𝑝 , 𝑠𝑞) = |𝑠𝑝 − 𝑠𝑞|.The relative significance of 

the difference between depths of two adjacent pixels is 

determined by the difference of their gray level (gp and 

gq). Hence, 𝜆𝑝,q is defined as λ𝑝,𝑞 = 𝜆0𝑒
−(
‖𝑔𝑝−𝑔𝑞‖

2

𝜎𝜆
2 )

[17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our experiment, parameters are set to λ0=1000 and 

σλ=0.006. Finally, α-expansion is used to minimize the 

energy function [41]. 

Experiment 

The proposed mask and depth estimation method are 

validated in several experiments. The mask is compared 

with circular aperture, conventional aperture and two 

other masks designed for depth estimation [3], [4] (It 

must be mentioned that our study does not include 

aperture patterns proposed for deblurring, which assume 

to have sufficient information about blurring kernel and 

only focus on deblurring results). Among the masks 

proposed by Sellent et al. [3], we choose the 7×7 mask, 

which is the best according to our evaluating criteria (see 

Fig. 2 and 3). Our study contains synthetic and real 

experiments. It is expected that the designed mask 

increases the accuracy of PSF estimation and provides 

desirable deblurring results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) A few number of patches used in the experiments. (b) Average of depth estimation error of blur scales (s = 1:14). 

 

Our mask Sellent et al.[3] Levin et al.[4] Conv. Open Circ. 

     

     

     
 

(c) The average and variance of estimated blur scale (vertical axis) in comparison with ground truth scale (horizontal axis). Red 

diagonal represents the ideal estimation. 

Fig. 8: Results of depth estimation for five apertures at 3 noise levels (σ=0.001, 0.005, 0.01) and 14 blur sizes (s = 1:14). 
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A.  Synthetic Experiments 

    I)  Depth Estimation Accuracy 
In the first experiment, a number of various images are 

blurred uniformly with various blur scales (s=1:14). Then, 

50 patches of these images are randomly selected and 

their depth is estimated by the method described in Sec.6. 

Fig. 8(a) shows some of the selected patches. In each 

scale, the mean and variance of estimated size of PSFs are 

computed over all patches.  

This experiment is repeated for different aperture 

patterns at three levels of noise (σ = 0.001, 0.005, 0.01).  

Based on the results shown in Fig. 8(c), the depth 

estimation accuracy is reduced by increasing noise. 

However, results are satisfactory especially in our mask 

and the mask proposed by Sellent et al. [3]. It must be 

mentioned that since both symmetric and asymmetric 

patterns are studied in this experiment, only one side of 

the focal plane is considered.  

For better comparison of studied aperture patterns, in 

each scale, the norm of difference between the ground 

truth blur scale (𝑠𝑔𝑡) and the estimated blur scale (𝑠𝑒𝑠) is 

computed over all patches (i.e.∑  (𝑠𝑔𝑡
𝑝
− 𝑠𝑒𝑠

𝑝
)
250

𝑝=1 ). Then, 

this value is averaged over all studied blur scales. Fig. 8(b) 

shows the mean square error (MSE) of depth estimation 

for different apertures at three noise levels. It shows that 

under equal circumstances, where all imaging conditions 

(including throughput) are the same, coded pattern has 

greater performance than its corresponding conventional 

aperture.  

The depth estimation experiment is repeated for 

asymmetric patterns with blur sizes in the range of -12:12 

pixel. Since a blur size of 0 is meaningless and ±1 indicates 

a sharp image, 23 different sizes of blur are indeed 

examined. According to Fig. 9, our method provides 

favorable results at σ = (0.001, 0.005) with the depth 

estimation error (MSE) of the proposed aperture being 

less than the pattern in [3].

 

    II)  Deblurring Results 

In the second experiment, deblurring results of 

aperture patterns are examined. For different scales of 

blur, each blurred patch is deblurred with a correct scale 

of PSF. Then, the Root Mean Square Error (RMSE) of the 

difference between original sharp image and its deblurred 

version is computed. The average of RMSE is calculated 

over all patches.  

As shown in Fig. 10, our pattern provides the least 

error, especially in large blur scales, while the 

conventional aperture is the best aperture in lower blur 

scales. 

A sample of deblurring result for Circular Zone Plate 

(CZP) chart is shown in Fig. 11. In all experiments, images 

are deblurred by the sparse deconvolution algorithm 

proposed by Levin et al. [4]. 

 

  

                              (a) Our mask     

  

(b) Mask proposed by Sellent et al. [3]. 

Fig. 9: The average and variance of estimated blur scale 
(vertical axis) compared to ground truth scale (horizontal axis) 
at 2 noise levels (σ=0.001, 0.005) in the depth range of -12:12. 

Red diagonal represents the ideal estimation. 

 

 

 

 

   

Fig. 10: Deblurring error of five apertures at 3 noise levels (σ=0.001, 0.005, and 0.01) for 14 blur sizes (s = 1:14). 
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Focused Image (Ground Truth) Open Circ. 
Conv. 

   

Levin et al.[4] Sellent et al.[3] Our mask 

  
 

 
Fig. 11: Comparison of deblurring results derived from different aperture patterns (blur size = 13, σ=0.005). 

B.  Real Scene 

For real experiments, the proposed pattern is printed 

on a single photomask sheet. It is cut out of the 

photomask sheet and inserted into a camera lens. In our 

experiment, a Canon EOS 1100D camera with an EF 50mm 

f/1.8 II lens is used. The disassembled lens and the one 

assembled with the proposed mask are shown in Fig. 12(a, 

b).  
  

 

 

(a) (b) 

  

(c) 

  

(d) 
 

Fig.12: (a) lens assembled with the proposed mask, (b) 

disassembled lens. (c), (d) calibrated PSFs of evaluated pattern. 

 

A very thin LED is used to calibrate the true PSF. The 

LED is mounted behind a pierced black cardboard to make 

a point light source. Since the position of focal point may 

be changed in each experiment, the camera focus is set to 

a sample point. Then, the camera is moved back and forth 

up to 60cm in 5cm increments and an image is captured 

at each depth. Each image is cropped according to the 

surface in which the point light spreads. Afterward, using 

some threshold values, the residual light is cleared and 

the result is normalized. In some rare cases, there is a 

jump in the PSF scale in consecutive measured PSFs. 

Under these conditions, other PSF scales are generated 

synthetically from the obtained PSFs. In this way, a bank 

of PSFs is generated that covers all possible sizes of PSF in 

the range [-19:+19]. The camera is set to F# = 2 and the 

illumination is set to office room lighting condition (i.e. 

300 lux). Fig. 12(c, d) shows some calibrated PSFs in 

forward and backward points of focus. 

In the first experiment, the focal point is set to the 

farthest point and all objects are placed in front of it. The 

captured images and results are shown in Fig. 13(a). The 

index number in the color-bar shows relative distance to 

the camera so that in each figure, the closer object is 

colored with smaller index. 

Although the results are acceptable, there are some 

errors of depth estimation on the floor of the scene that 

should be corrected by the user or other segmentation 

techniques, which may not be so sensitive to intensity 

similarity. 
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In the second experiment, three objects are placed in 

the back of, over and in front of the focus point.  

Fig. 13(b) shows the captured image along with the 

depth map.  In the third experiment, the focal point is set 

to the nearest object with all other objects being placed 

behind that.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

In this paper, a new method of aperture mask 

evaluation was proposed, which could reduce estimation 

error in both depth map and deblurring results. 

Asymmetric apertures make different PSFs in the back 

and front of the focal point. This feature could help 

discriminate blurred objects on two sides of the focal 

plane. The aperture pattern was designed for a specific 

imaging condition. Our future work will be concerned 

with defining an objective function in which the exposure 

time is also considered as an unknown variable of the 

problem and the SNR of captured images determines the 

lower bound of the mask throughput. Our proposed mask 

was intended for indoor illumination setting. 

According to Fig. 13(c) our method can achieve 

acceptable results in this case. 

Each depth-map is slightly corrected and then 

deblurring [4] is performed with the modified depth map. 

Fig. 13(c) shows all-focus images derived from deblurring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since aperture evaluation functions were formulated 

by considering the aperture throughput and imaging 

conditions, an exact evaluation of masks with different 

throughput could be done.  Analytical and experimental 

results showed that our proposed mask could estimate an 

appropriate depth map of objects captured in one image 

regardless of the side of the focal plane. This was achieved 

with the help of a new depth estimation algorithm 

proposed in this article. According to the proposed 

algorithm, the deblurring result of correct PSF has the 

highest quality, which helps PSF estimation. Although the 

proposed no-reference quality measure yielded desirable 

results in depth estimation, more studies are required to 

obtain better measures which can reduce depth 

estimation error in both conventional and coded aperture 

imaging. 

 (I) Captured image (II) Depth Map (III) Deblurring Result 

(a) 

  
 

(b) 

  
 

(c) 

  
 

 
Fig. 13: Depth map estimation of depth varying scenes: (a) in front of the focal plane, (b) both sides of the focal plane, (c) at 

the back of the focal plane. 
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