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Background and Objectives: Intelligent receivers, automatically detect the digital 
modulation type of the received signals for demodulation purposes where is well 
known as Automatic Modulation Classification (AMC) module. The performance 
of AMC algorithms depends on the channel conditions where for example, in 
fading channel its performance gets worse than the AWGN channel. 
Methods: We propose a new algorithm for improving the AMC classification 
accuracy in flat fading channels. The proposed algorithm consists of an optimizable 
nonlinear preprocess followed by Linear Discriminant Analysis (LDA) technique. 
Two Lemmas have been found for extracting the optimization rule. And an 
optimization algorithm has been built based on the previous Lemmas.  
Results: The simulation results show that the proposed algorithm improves the 
classification accuracy between 8-Phase Shift Keying (8PSK) and 16PSK (as an 
example of M-array PSK (MPSK) inter-class) for Signal-to-noise ratio (SNR) values 
greater than 13 dB, and between 16-quadrature amplitude shift modulation 
(16QAM) and 64QAM (as an example of M-array QAM (MQAM) inter-class) for 
SNR values greater than 4 dB. On the other hand, the classification accuracy of 
MPSK and MQAM is improved using the proposed algorithm compared with 
reference papers. Its improvement is up to 10.79% compared with the [1] and up 
to 38.552% compared with [2]. 
Conclusion: By using the proposed optimization algorithm, the AMC classification 
accuracy has been improved. Other classification problems can use this algorithm. 
And other nonlinear preprocess functions or optimization algorithms may be 
found in future work. 
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Introduction 

With the significant development of modern 

communication technology, the AMC of the received 

signal is becoming more critical. Two primary AMC 

techniques are known: Likelihood-Based (LB) and 

Feature-Based (FB). LB techniques suffer from high 

computational complexity and need to estimate the 

unknown parameters [3], [4]. On the other hand, FB 

techniques have less complexity, don’t need any 

parameter estimation [5], [6], and can work under 

different conditions like multipath fading channels [7].  

 
Various studies were done to find good discriminative 

features for modulation classification like instantaneous 

time-domain features, Fourier and wavelet transform, 

higher-order moments, and cumulants [5]-[11]. 

Comparisons between the performances of these 

features were made in [12], [13]. According to their 

results, Higher-Order Cumulants (HOCs) are the best 

features under different conditions. 

Different studies and simulations were done for AMC 

in fading channels using different HOCs. For example, in 

https://dx.doi.org/10.22061/jecei.2022.8743.550
http://jecei.sru.ac.ir/
http://creativecommons.org/licenses/by/4.0/


I. Kadoun et al. 

142  J. Electr. Comput. Eng. Innovations, 11(1): 141-152, 2023 
 

[1], the author shows that the performance accuracy of 

MPSK and MQAM classification by using HOMs and HOCs 

is 84.37%. While in [2], the author shows that the 

performance accuracy of binary phase-shift keying 

(BPSK), Quadrature Phase-Shift Keying (QPSK), 8-phase-

shift keying (8-PSK), 16-PSK, 16-quadrature amplitude 

modulation (16-QAM), 32-QAM, and 64-QAM 

classification by using cyclic cumulants is 89.8%, for SNR 

value of 15 dB.  

The most critical inter-class modulation types are 

MPSK and MQAM [1], [2]. Most of the well-known intra-

class modulation types are shown in Table 1. 

 
Table 1: Chosen types of MPSK and MQAM digital modulations 
 

Inter-class 
modulation 

Intra-class modulation 

MPSK BPSK, QPSK, 8PSK, 16PSK 

MQAM 8QAM, 16QAM, 32QAM, 64QAM 

 
Our study improves the AMC performance by 

enhancing the discrimination between some intra-class 

digital modulation types in Table 1 (like 8PSK and 16PSK, 

and like 16QAM and 64QAM) for lower SNR values. This 

improvement is made by optimizing an added nonlinear 

preprocess function. Two primary optimizable nonlinear 

functions have been developed: regularized distance-

based and nonlinear transformation. The simulation 

results show that these optimized functions could 

improve the discrimination between 8PSK and 16PSK for 

SNR values greater than 13 dB and between 16QAM and 

64QAM for SNR values greater than 4 dB. On the other 

hand, the classification accuracy of MPSK and MQAM has 

been improved using the proposed algorithm compared 

with reference papers [1], [2]. The maximum 

improvement of our proposed algorithm compared with 

the reference paper [1] is 10.79%, and the maximum 

improvement of our proposed algorithm compared with 

the reference paper [2] is 38.552%. 

System Model 

Consider the received signal in flat fading channel as: 

( ) ( ) ( )l lr n w n v n= +        (1) 

where   is the complex channel fading coefficient 

which is considered ( )0,1CN , ( )lw n  is the 

transmitted symbol which is considered an independent 

and identically distributed (i.i.d) process, and ( )v n  is the 

additive white Gaussian noise (AWGN) and is considered 

( ) ( )20, nv n CN  . 

The general mathematical form of the HOC is defined 

as [14], [15]: 

* *

1 1,..., , ,...,
, p q p q p

qtermsp qterms

C Cum r r r r
p q − − +

 −
 

=  
 
 

  (2) 

where * denotes the complex conjugate, p is the order of 

the cumulant, q is the complex conjugate order of the 

cumulant, and cum function is defined as [14]: 

 

1

1

1

,...,

( 1) ( 1)! ...
q

n

q

j j
j V j V

v

Cum r r

q E r E r−

 


=

  − −  
     


                   (3) 

and the summation is being performed on all partitions 

( )1 2, ,..., qV V V V=   for the set of indexes ( )1,2,...,n  . 

To cancel the effect of the power level of the received 

signal, the first type of normalization must be done [15], 

[16]: 

'

/2

21( )

pq

pq p

C
C

C
=       (4) 

The magnitude of the eighth, sixth, and fourth-order 

cumulants is greater than that of the second-order 

cumulants. As a result, we have different values for the 

other HOC orders. The second normalization can reduce 

the values range as [15], [17]: 

' 2/( ) p

pq pqC C=       (5) 

According to our simulation results for the selected 

digital modulation types in Table 1, 40 61,C C , and 80C   

(equations (6), (7), and (8)) have the most discrimination 

ability, so they have been chosen in our study [15], [18], 

[19]: 

2

40 40 203C M M= −        (6) 

2

61 61 21 40 20 41 20 215 10 30C M M M M M M M= − − +           (7) 

2

80 80 40 60 20

2 4

20 40 20

35 28

420 630

C M M M M

M M M

= − − +

−
          (8) 

where [15], [18], [19]: 

( ) ( )*p q q

pqM E r k r k
− =

 
    (9) 

is the moment of received signal r(k). 

Mathematical Preliminary 

A.  Linear Discriminant Analysis (LDA) 

This technique finds the optimum linear projection 
vector that maximizes the discrimination between digital 
modulation types [20]. We define the input features of 
the two classes for dataset i as: 
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( ) ( ) ( )40 61 80( ) ( ) ( )

, 1..,

T

i l l l
i i i

l xx

C r C r C r

r i n

 =
 

 =

x

C
  (10) 

( ) ( ) ( )40 61 80( ) ( ) ( )

, , 1,...,

T

i l l l
i i i

l y

C r C r C r

r i n

 =
 

 =

y

yC
  (11) 

These input features can be written as: 

40, 61, 80,:
i i i

T

i x x xC C C =  x   (12) 

40, 61, 80,:
i i i

T

i y y yC C C =  y   (13) 

The mean vectors of the input features can be 

calculated as [20]: 

( ) ( ) ( )40, 61, 80,

,1 ,2 ,3:

i i i

T

x x x

T

x x x

= E C E C E C

  

 
 

 =  

xμ
  (14) 

( ) ( ) ( )40, 61, 80,

,1 ,2 ,3:

i i i

T

y y y y

T

y y y

= E C E C E C

  

 
 

 =  

μ
   (15) 

By defining the projection vector u, the output features 
' ',i ix y of the first and second classes respectively can be 

calculated as [20]: 

' ',T T

i i i ix y= =x u y u     (16) 

Fisher criterion function represents the discrimination 
measurement between the output features of two 
classes as [20], [21]: 

( )' '

' 2 '2

( ) ( )
( ) :

( ) ( )

y x

x y

J
 

 
= = 

2

B

W

- S

+ S

T

T

u u u u
u

u u u u
      (17) 

where u is the projection vector, 
' '( ), ( )x y u u are the 

means of the output features for the first and the second 

classes, respectively, 
'2 '2( ), ( )x y u u  are the variances of 

the output features for the first and second classes, 

respectively. BS  And WS are defined as: 

( )( ) d d
B

S
T

y x y x
= μ - μ μ - μ        (18) 

1
( )( )

1

1
( )( )

1

x

d d

y

n

n



−

+ 
−





W
S :=

x

y

n

T

i x i x

i=1

n

T

i y i y

i=1

x - μ x - μ

y - μ y - μ

       (19) 

where ,x yn n  are the numbers of samples for the two 

classes, respectively. The optimum projection vector u 

can be calculated by solving the maximization of the 

Fisher criterion function problem of (17) for u. One of the 

solutions is using the Lagrange method as [21]: 

( -1)L = −
B W

S S
T T

u u u u   (20) 

where 𝜆 is the Lagrange multiplier. Equating the 

derivative of L to zero gives [21]: 

2 2 0
L

 


= − =  =


B W B W
S S S Su u u u

u
    (21) 

which is a generalized eigenvalue problem. One possible 

solution to the above-generalized eigenvalue problem 

can be found as [21]: 

( )eig= -1

W B
S Su   (22) 

where eig(.) denotes the eigenvector of the matrix with 

the largest eigenvalue. 

In the following Sections, the LDA algorithm is called 

the classical LDA. 

B.  Discrimination measurement 

One of the well-known statistical distance 

measurements between two random variables is 

Mahalanobis Distance (MD). Suppose xv and yv are 

random variables. The MD distance between them can be 

calculated as [22]: 

( ) ( ) ( ) ( )x y x y x yd = 
x y

S + S
T -1

v ,v μ - μ μ - μ    (23) 

where x yμ , μ  are mean vectors and x yS ,S are the 

covariance matrices of the random variables x yv ,v , 

respectively. 

This study uses the MD as a discrimination 

measurement between two random variables. 

Conventional Classical LDA-based AMC Problem  

The values of the selected HOCs in Section 2, i.e. 

40 61 80, ,C C C , are shown in Fig. 1, for the selected digital 

modulations in Table 1, and SNR rang [-5:25] dB. 

 
 

 

(a) 40C  
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(b) 61C  

 

(c) 80C  

Fig.  1: Values of 40C , 61C , and 80C  cumulants respectively. 

From Fig. 1, some modulations can be classified easily 

(like BPSK, QPSK, 8QAM, and 32QAM). In contrast, the 

others are close to each other (like 8PSK and 16PSK, and 

like 16QAM and 64QAM). This situation would be worse 

for lower SNR values.  

We define two different problems:  

- 8PSK and 16PSK classification as problem p1. 

- 16QAM and 64QAM classification as problem p2. 

Our work aims to find a new algorithm that separately 

improves the classification accuracy for the two 

problems, p1 and p2. 

Start with classical LDA to solve the mentioned 

problems p1 and p2. Calculation of the classification 

accuracy (ACC) for the problems p1 and p2 using the 

selected HOCs in Section 2 and the classical LDA algorithm 

have been done as shown in Fig. 2. As shown in Fig. 2, 

classical LDA doesn’t improve the performance accuracy 

of 8PSK and 16PSK classification (problem p1) and 16QAM 

and 64QAM classification (problem p2). As shown in the 

next section, we propose modifying the classical LDA 

algorithm by adding an optimizable nonlinear preprocess.  
 

 
Fig.  2: Classification accuracy using the selected HOCs and the 

classical LDA for the problems p1 and p2. 
 

Proposed Preprocess LDA Algorithm 

The proposed preprocess LDA algorithm consists of an 

optimizable nonlinear preprocess, followed by the LDA 

algorithm. 

A.  The Proposed Mathematical Problem 

The selected HOCs can be rewritten as: ,1 40,:
i ix xC C=  , 

,2 61,:
i ix xC C= , ,3 80,:

i ix xC C= for the first class Cx , the input 

features vector becomes ,1 ,2 ,3i i i

T

x x xC C C 
  , and 

,1 40,:
i iy yC C= , ,2 61,:

i iy yC C= , ,3 80,:
i iy yC C= for the second 

class Cy, , the input features vector becomes 

,1 ,2 ,3i i i

T

y y yC C C 
  . 

As shown in Section 4, the classical LDA algorithm 

needs adjustment to improve the discrimination between 

8PSK and 16PSK, and between 16QAM and 64QAM 

modulations for low SNR values. An example of this 

adjustment is the addition of nonlinear function as 

follows: 1 ,1 ,1( )
i ix yf C or C , 2 ,2 ,2( )

i ix yf C or C , and 

3 ,3 ,3( )
i ix yf C or C  of the selected HOCs in Section 2 as 

shown in Fig. 3. 

LDA

u

Nonlinear function 3

Nonlinear function 2

Nonlinear function 1

'

ixC

'

iyC

,1ixC

,1iyC

,2ixC

,2iyC

,3ixC

,3iyC

1 ,1( )
ixf C

1 ,1( )
iyf C

2 ,2( )
ixf C

2 ,2( )
iyf C

3 ,3( )
ixf C

3 ,3( )
iyf C

 
 

Fig.  3: Block diagram of the proposed nonlinear preprocess 
LDA algorithm. 

where ' ',
i ix yC C  are the output features of the first and 

second classes, respectively. These output features can 

be calculated as: 
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'

1 1 ,1 2 2 ,2 3 3 ,3( ) ( ) ( )
i i i i ix x x xC u f C u f C u f C= + + = T

x
u f         (24) 

'

1 1 ,1 2 2 ,2 3 3 ,3( ) ( ) ( )
i i i i iy y y yC u f C u f C u f C= + + = T

y
u f    (25) 

where  1 2 3, ,
T

u u u=u  is the projection vector, 

1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( ) ( ) ( ) :
i i i i i i i

T T

x x x x x xf C f C f C f f f   = =   x
f  

is the vector of the values of the nonlinear functions for 

the first class, and: 

1 ,1 2 ,2 3 ,3 ,1 ,2 ,3( ) ( ) ( ) : )
i i i i i i i

T T

y y y y y yf C f C f C f f f   = =   y
f  

is the vector of the values of the nonlinear functions for 
the second class.  

The terms ' '( ), ( )x y u u  of the Fisher criterion function 

(17) are the means of the output features. They are 

calculated using (24) and (25) as: 

' ( )x E = T

x
u f       (26) 

' ( )y E = T

y
u f       (27) 

The terms ' 2 '2

1 2( ), ( ) u u  of the Fisher criterion 

function (17) are the variances of the output features. 

They are calculated as: 

' 2( ) ( )x cov = T

x
u f u        (28) 

' 2( ) ( )y cov = T

y
u f u        (29) 

By using (26), (27), (28), and (29), the Fisher criterion 

(17) can be written as: 

( ( ) ( ))
( )

( ) ( )

( ) ( ) ( ) ( )
:

( ) ( )

J

E E E E

cov cov

= =

      
=

  

B

W

S

S

' ' 2

y x

'2 '2

y x

T
T T

y x y x

TT

x y

μ u - μ u
u

σ u + σ u

u f - f f - f u u u

u uu f + f u

  (30) 

where : ( ) ( ) ( ) ( )E E E E   =    B
S

T

y x y x
f - f f - f  and 

: ( ) ( )cov cov =  W
S

x y
f + f . 

The nonlinear preprocess function allows us to control

B WS ,S , which affects the discrimination performance. 

The task is to find the rules that maximize the 

discrimination between two classes (Fisher criterion (30)) 

using the nonlinear preprocesses. 

B.  Necessary Lemmas 

Lemma 1. For J, B WS ,S which are defined in (30) and 

(17), we find that: 

max( ) trace( )J = -1

w B
S S        (31) 

Proof: Here, we mention some mathematical analyzes 

and results: 

- The maximum value of the Fisher criterion function 

(17) is equal to the maximum value of eigenvalues of 

the matrix -1

w B
S S [23]: 

maxmax( ) ( )J = -1

w B
S S     (32) 

- The summation of eigenvalues of a matrix is equal to 

the trace of the matrix [24]: 

trace( ) i=-1

w B
S S        (33) 

- The production of eigenvalues of a matrix is equal to 

the determinant of the matrix [24]: 

det( ) i=
-1

w B
S S        (34) 

- By noticing BS  calculation in (18), we find that

det( )BS  is equal to zero. 

- det( ) det( )det( ) 0= =-1 -1

w B w B
S S S S , which means (34) is 

no longer helpful for calculating i . 

- According to [21], the rank of -1

W B
S S  can be 

calculated as: 

rank( ) min( , 1, 1)T n L= − −-1

W B
S S        (35) 

where n is the size of the dataset in each class, L is the 

number of classes, and T is the number of features. In our 

case, L=2, T=3, and n>>L, T. We find that the ( )rank -1

W B
S S  

value is equal to 1. Which means we have one nonzero 

eigenvalue. By using (33) we find that: 

trace( ) 0= -1

w B
S S         (36) 

- Finally, by using (32) and (36), we find that

max( ) trace( )J = -1

w B
S S .                                                     

Lemma 2:  Maximization of the Fisher criterion (30) is 

equivalent to maximization of the Mahalanobis distance 

between the values of the nonlinear functions for each 

feature, i.e Fig. 3. 

Proof: According to Lemma 1, maximization of the Fisher 

criterion function means maximization of trace( )-1

W B
S S . 

So, we have to study the effect of BS  and WS  elements 

on the Fisher criterion function. To simplify it, we study 

two-class cases where 2 2
B W

S ,S : 

1

2

2

1 2 2 2

2

1 2


   

   = − − =          
B

S
T

y x y x
μ μ μ μ      (37) 

where 1 ,1 ,1-y x  =  is the difference between the 

means of the two classes for the first feature and 

2 ,2 ,2-y x  =  is the difference between the means of 

the two classes for the second feature.  

and:  
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( )

( )

( )

( )

,1 ,1 ,2,1 ,1 ,2

,1 ,2 ,2 ,1 ,2 ,2

cov( ) cov( )

22

y y y yx x x x

2 2

x x x x y y y y

2 2

1 1 x 1 2 y 1 2

2 2

x 1 2 y 1 2 2 2

= + =

σ ρ σ σσ ρ σ σ
+

ρ σ σ σ ρ σ σ σ

g +h ρ g g + ρ h h
=

ρ g g + ρ h h g +h

  
  
  
    

 
 
  

W
S x y

  
(38) 

where 1 ,1xg = and 2 ,2xg = are the variances of the first 

and second features for the first class, 1 ,1yh = and 

2 ,2yh =  are the variances of the first and second 

features for the second class. x And y  are the 

correlations between the features of the first class and 

second class, respectively. By using (37) and (38), the 

trace of -1

w B
S S  can be calculated as: 

( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( )( )
( )
( )( )

1 2

1 2

2 2 2 2 2 2

2 2 1 1 1 2 1 2 1 2

2
2 2 2 2

1 1 2 2 1 2 1 2

2 2 2 2 2 2

2 2 1 1 1 2 1 2 1 2

2

1 2 1 22 2 2 2

1 1 2 2 2 2 2 2

1 1 2 2

( )

2

2

1

0

x y

x y

x y

x y

tr trace

g h g h g g h h

g h g h g g h h

g h g h g g h h

g g h h
g h g h

g h g h

 

 

 

 



= =

 + +  + −   +

+ + − +

 + +  + −   +
=

 +
 + + −
 + +
 

= 

-1

w B
S S

 

                                                                                               (39) 

Discussion: Starting with BS , since 1  and 2 are the 

differences between the means of the first and second 

features for the two classes, respectively, we find from 

(39) that: 

1 2

lim( ) , lim( )tr tr
 →   → 

= + = +       (39) 

which means, by increasing the absolute values of the 

variables 1  and 2 , the Fisher criterion function value 

(17) will increase and vice versa. 

To study the effect of WS  elements on the Fisher criterion 

function, by noticing that 1 1,g h are the variances of the 

first feature for the two classes, we find from (39) that: 

1

1

1 1

1 1 1 1

0
0

Since : 0 , 0

When : 0 0 0

Thus : lim( )
g
h

g h

g h g and h

tr
→
→

 

+ →  → →

= +

  
      (40) 

In the same way for 2 2,g h , we find from (39) that: 

2

2

2 2

2 2 2 2

0
0

Since : 0 , 0

When : 0 0 0

Thus : lim( )
g
h

g h

g h g and h

tr
→
→

 

+ →  → →

= +

  
    (41) 

which means, by decreasing the values of the variables 

1 1g h+ and 2 2g h+ , the Fisher criterion function value (17) 

will increase and vice versa. 

From (40), (41), and (42), we find that to maximize the 

Fisher criterion function, we have to maximize 1 2,   of 

the matrix BS , and minimize 1 1g h+ , 2 2g h+  of the matrix

WS . The same thing must have been done for 
BS  and

WS  

in (30). 

By defining the means and variances of functions 

values of features as follows: ( ), , ,:f x i x iE f = ,

( ), , ,:f y i y iE f = , ( ) ( ), , ,: var
2

f x i x iσ f= , ( ) ( ), , ,: var
2

f y i y iσ f= . 

Maximizing the elements of the matrix
BS  means finding 

the optimum nonlinear transformation which satisfies: 

( ) ( )( )

( )

, ,

, , , ,

argmax

argmax

i

i

2

i y i x i
f

2

f y i f x i
f

f = E f - E f =

, i = 1,2,3 −
   (42) 

Minimizing the elements of the matrix WS  means 

finding the optimum nonlinear transformation which 

satisfies: 

( ) ( )( )

( ) ( )( )

, ,

, , , ,

argmin var var

argmin

i

i

x i y ii
f

2 2

f x i f y i
f

f = f f

= σ + σ , i = 1,2,3

+

        (43) 

By combining (43) and (44) we find: 

( )

( ) ( )( )
, , , ,

, , , ,

argmax
optimum

argmini

2

f y i f x i

i 2 2
fi=1,2,3

f x i f y i

f
σ + σ

  −
 

=  
 
 

      (44) 

By noticing (23), for each feature i=1,2,3, we find that 

maximizing the MD is equivalent to the condition (45) as:  

, ,argmax( ( ) )
i

x i y ii
f

f = MD f , f , i = 1,2,3           (45) 

which is the same as the condition denoted in lemma 2. 

C.  The Solution to The Proposed Mathematical Problem 
 

Nonlinear function

Initial parameters, initial maxdistance is
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Fig.  4: Optimization of nonlinear preprocess. 
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Lemma 2 means, to maximize the Fisher criterion, we 

have to choose the optimum parameters that satisfy (46) 

for each feature. We propose a simple search algorithm 

to find these optimum parameters for each selected HOC 

in Section 2. The proposed algorithm is depicted in Fig. 4. 

The proposed optimal nonlinear preprocess LDA 

algorithm of Fig. 4 consists of two stages where each 

stage consists of two steps (see Fig. 5): 

a- Training stage: 
Step 1:  

In this step, we calculate the parameters of the nonlinear 

preprocess (47), (49), and (50): 

- Calculate the parameters of the nonlinear preprocess

1( )f  for feature1 as ,1 ,1,
i ix yC C . 

- Calculate the parameters of the nonlinear preprocess 

2( )f for feature2 as ,2 ,2,
i ix yC C . 

- Calculate the parameters of the nonlinear preprocess 

3( )f  for feature3 as ,3 ,3,
i ix yC C . 

Step 2: 

- Calculate the linear projection vector u by solving the 

Eigenvalue problem (22) for 
BS  and 

WS where is 

presented in (30). 

b- Testing stage: 
Step 1: 

In this step, we apply the nonlinear preprocess (47), 

(49), and (50) using the calculated parameters in the 

previous stage as: 

- Apply the nonlinear preprocess 1( )f  for the feature1, 

i.e.
,1x or yC , using their calculated parameters. 

- Apply the nonlinear preprocess 2( )f  for the feature2, 

i.e. 
,2x or yC , using their calculated parameters. 

- Apply the optimized nonlinear preprocess 3( )f for 

the feature3, i.e. 
,3x or yC , using their calculated 

parameters. 

Nonlinear preprocess1

L
D

A

u

Nonlinear preprocess2

Nonlinear preprocess3

Nonlinear preprocess1

Nonlinear preprocess2

Nonlinear preprocess3

u

p
ro

je
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Fig.  5: Optimal nonlinear preprocess LDA-based algorithm.

Step 2: 
- Apply the linear projection as (16) using the 

calculated projection vector in the previous stage. 

Two general optimal nonlinear preprocesses have 

been studied here: regularized distance-based and 

optimized nonlinear transformation preprocesses. 

D.  Regularized Distance-Based Preprocess 

To improve the discrimination between the classes, 

the distance between these features and the total mean 

is added to them as: 

( )

( )

1

, , , ,

1

, , , ,

( ) ( )

; 1... , 1..

( ) ( )

; 1... , 1..

i i i i

i i i i

j x j x j x j j x j j

j y j y j y j j y j j

f C C C

i n j d

f C C C

i n j d

 

 

−

−

= +  + −

= =

= +  + −

= =

      (46) 

where  

is the distance between the feature j (j=1, 2, or 3) and the 

 

total mean of the two classes 𝜇𝑗 =
𝜇𝑥,𝑗+𝜇𝑦,𝑗

2
 of the 

feature j, 𝐶𝑥𝑖,𝑗 is the input feature j of the first class,𝐶𝑦𝑖,𝑗 

is the input feature j of the second class,  𝑓𝑗(𝐶𝑥𝑖,𝑗) is the 

regularized distance-based feature value of the first 

digital modulation type, 𝑓𝑗(𝐶𝑦𝑖,𝑗) is the regularized 

distance-based feature value of the second class, and
j  

is the regularizer of the feature j. This regularizer aims to 

optimize this nonlinear transformation according to (46). 

We call it the proposed-dist LDA algorithm. 

E.  optimized nonlinear transformation 

Another way to find an optimal nonlinear preprocess 

that satisfies (46), is to add some parameters (here we 

add two parameters like 1 2,L L ) to some known nonlinear 

transformations. Two nonlinear transformations are 

used, Box-Cox [25] and tangent hyperbolic (tanh) 

transformations a [26]: 

Box-Cox transformation is defined as [25]: 

2 2

, , , ,( ) , ( )
i i i ix j x j j y j y j jC C  = −  = −       (47) 
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= 
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      (48) 

We call it the proposed-Box LDA algorithm. 

Tangent hyperbolic (tanh) transformation can be 

defined as [26]: 

, 1 2 1 , 2

, 1 2 1 , 2

( , , ) tanh( ( ))

( , , ) tanh( ( ))

i i

i i

j x j x j

j y j y j

f C L L L C L

f C L L L C L

= +

= +
       (49) 

We call it the proposed-Tanh LDA algorithm. 

The value of parameter 2L  for each feature is close to 

the total mean of feature 𝜇𝑗 =
𝜇𝑥,𝑗+𝜇𝑦,𝑗

2
. This parameter 

can be determined quickly using the search algorithm in 

Fig. 4. While the value of 1L  depends on the feature 

values and the transformation function, it can be 

determined by using the search algorithm in Fig. 4. Still, it 

takes more time than itself for 2L determination. 

Time and Space Complexities 

Here, we analyze the time and space complexities of 

the LDA and the proposed algorithms for the training and 

test stages. Then we compare them. 

A.  The Classical LDA Algorithm’s Time and Space 
Complexities 

To calculate time and space complexities, we suppose 

that the number of samples is 
jn n=  for all classes c (c=2 

in our case), and d is the number of features (d=3 in our 

case). Starting with training complexity, we find [20], [27]-

[29]: 

Table 2: Time and space complexities for training the classical 
LDA algorithm 

Operation Time complexity Space complexity 

   
1 1
,

n n

i ii i= =
x y  0 ncd=6n 

,x yμ μ  cd(n+1)= 6(n+1) cd=6 

μ  ncd+d=6n+3 d=3 

BS  cd2+cd=24 2d2=18 

WS  ncd2+ncd=24n 2d2=18 

-1

W
S  O(d3)=27 [29]  O(d2)=9 [28]  

-1

W B
S S  O(d3)=27 [29]  d2=9 

( )eig=
-1

W B
u S S  O(d3)=27 [20]  O(d2)=9 [30]  

Final complexity 36n+114 6n+72 

Our case 

100n  
36n 6n 

This result is similar to the result in [27] and for testing 

complexity, we find: 

Table 3: Time and Space complexities for testing the classical 
LDA algorithm 
 

Operation 
Time 

complexity 
Space 

complexity 

 0 6n 

LDA projection 12n 2n 

Final complexity 12n 8n 
 

B.  The Proposed Algorithm’s Time and Space 
Complexities 

Similar to the previous Section, we must calculate the 

training and testing complexities. According to the 

proposed nonlinear functions, the maximum number of 

optimizable variables is two. Suppose a and b are the 

number of loops for the first and second variables. 

Starting with training complexity, we find: 

Table 4: Time and Space complexities for training the proposed 
algorithm 

Operation Time complexity 
Space 

complexity 

Apply nonlinear 
preprocess 

2n 2n 

,x y   6(n+1) 6 

WS  18n 6 

Calculate MD using 

,  12 3 

Total complexity of 
one-time preprocess 

10n+6 2n+15 

Repeat for the first 
variable a times 

a(26n+18)  2n+6 

Repeat for the second 
variable b times 

ab(26n+18) 2n+6 

Apply LDA 36n 6n 

Final complexity ab(26n+18)+36n 8n+6 

Our case 

100n  
26abn+36n 8n 

and for testing complexity, we find: 

Table 5: Time and Space complexities for testing the proposed 
algorithm 

Operation 
Time 

complexity 
Space 

complexity 

 0 2n 

Apply nonlinear 
preprocess 

2n 2n 

LDA projection 12n 8n 

Final complexity 14n 12n 

   
1 1
,

n n

i ii i= =
x y

,x y  WS

   
1 1
,

n n

i ii i= =
x y
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C.  A Comparison Between the Complexities of the 
Classical LDA and the Proposed Algorithm 

Calculating the ratio of the proposed algorithm's 

complexity over the classical LDA algorithm's complexity 

is done to compare their complexities, as shown in Table 

6. 

Table 6: The ratio of the complexity of the proposed algorithm 
over the complexity of the classical LDA algorithm 

stage 
Ratio of time 
complexity 

Ration of space 
complexity 

training ≈ab+1 1.25 

testing 1.17 1.5 

 

As shown in Table 6, the time complexity of training 

the proposed algorithm is higher than the time 

complexity of the classical LDA algorithm due to the 

optimization process. Otherwise, they are almost similar. 

Simulation Results 

A.  Simulation of the Proposed Algorithm 

Three steps for complete simulation: 

I. Optimize the proposed-dist LDA, proposed-Box, and 

proposed-Tanh algorithms for each selected HOC in 

Section 2, as shown in Fig. 4. 

II. Calculate of the linear projection vector u as shown in 

Fig. 5. 

III. Calculate the Number of Misclassified Datasets 

(NoMD) for the two mentioned problems: problem 

p1 in Section 4, the classification between 8PSK and 

16PSK, and problem p2, which is the classification 

between 16QAM and 64QAM. 

B.  The Proposed-Dist LDA Algorithm 

Fig. 6 shows the simulation results of the normalized 

NoMD values of the classical LDA (16) and the proposed-

dist LDA algorithms for the problems p1 and p2, and SNR 

values [-5: 20] dB.  

3.92 dB

2.64 dB

NoMD 0.04=

 

Fig.  6: Normalized NoMD values of the classical LDA and the 
proposed-dist LDA algorithms for the problems p1 and p2. 

As shown in Fig. 6, the proposed-dist LDA algorithm 

could improve the discrimination between 8PSK and 

16PSK for SNR values greater than 13 dB and between 

16QAM and 64QAM for SNR values greater than 4 dB and 

for the normalized NoMD value of 0.04 (as an example), 

the improvement by using the proposed-dist LDA 

algorithm compared to the classical LDA algorithm is 2.64 

dB for the problem p1 and 3.92 dB for the problem p2.  

C.  The Proposed-Box LDA Algorithm 

Fig. 7 shows the simulation results of the normalized 

NoMD values of the classical LDA and the proposed-Box 

LDA algorithms for problems p1 and p2, and SNR values [-

5: 20] dB. 

3.72 dB

2.4 dB

NoMD 0.04=

 

Fig.  7: Normalized NoMD values of the classical LDA and the 
proposed-Box LDA algorithms for the problems p1 and p2. 

As shown in Fig. 7, the proposed-Box LDA algorithm 

could improve the discrimination between 8PSK and 

16PSK for SNR values greater than 13 dB and between 

16QAM and 64QAM for SNR values greater than 4 dB and 

for the normalized NoMD value of 0.04 (as an example), 

the improvement by using the proposed-Box LDA 

algorithm compared to the classical LDA algorithm is 2.4 

dB for the problem p1 and 3.72 for the problem p2.  

D.  The Proposed-Tanh LDA Algorithm 

Fig. 8 shows the simulation results of the normalized 

NoMD values of the classical LDA and the proposed-Tanh 

LDA algorithms for problems p1 and p2, and SNR values [-

5: 20] dB.  

As shown in Fig. 8, the proposed-Tanh LDA algorithm 

could improve the discrimination between 8PSK and 

16PSK for SNR values greater than 13 dB and between 

16QAM and 64QAM for SNR values greater than 4 dB and 

for the normalized NoMD value of 0.04 (as an example), 

the improvement by using the proposed-Tanh LDA 

algorithm compared to the classical LDA algorithm is 2.48 

dB for the problem p1 and 4 dB for the problem p2. 
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4 dB

2.48 dB

NoMD 0.04=

 

Fig.  8: Normalized NoMD values of the classical LDA and the 
proposed-Tanh LDA algorithms for the problems p1 and p2. 

E.  Classification Accuracy Improvement Compared with 
Reference Papers [1], [2]  

MPSK and MQAM have been classified in reference 

papers [1], [2].  

In [1], the author calculated the classification accuracy 

of MPSK and MQAM over a flat fading channel for SNR 

values of 10 dB and 0 dB. The classification accuracy of 

MPSK and MQAM is calculated using our optimized 

nonlinear LDA algorithm, i.e., the regularized distance-

based LDA algorithm. The improvement of our proposed 

nonlinear LDA algorithm is calculated by subtracting the 

classification accuracy of the reference paper [1] from the 

classification accuracy of our proposed algorithm, as 

shown in Table 7. 

Table 7: Comparison between the performance of the reference 
paper [1] and our proposed algorithm 

SNR (dB) 0 dB 10 dB 

Classification accuracy in 
Reference paper [1] 

76.8% 84.37% 

Classification accuracy of our 
proposed algorithm 

78.25% 95.16% 

The improvement of our proposed 
algorithm 

1.45% 10.79% 

 

As shown in Table 7, the classification accuracy of our 

proposed algorithm is improved compared with the 

reference paper [1]. The maximum improvement of our 

proposed algorithm compared with the reference paper 

[1] is 10.79%. 

In [2], the author calculated the classification accuracy 

of MPSK and MQAM over a flat fading channel for SNR 

range [0: 20] dB. The improvement of our proposed 

nonlinear LDA algorithm is calculated by subtracting the 

classification accuracy of the reference paper [2] from the 

classification accuracy of our proposed algorithm, as 

shown in Fig. 9. 

 

Fig.  9: Comparison between the performance of the reference 
aper [2] and our proposed algorithm. 

As shown in Fig. 9, the classification accuracy of our 

proposed algorithm is improved compared with the 

reference paper [2]. The maximum improvement of our 

proposed algorithm compared with the reference paper 

[2] is 38.552%. 

Conclusion 

To improve the classification, an optimized nonlinear 

preprocess LDA algorithm has been developed. Three 

optimized functions have been used. These functions 

have similar performances.  

According to Figs. 6, 7, and 8, the proposed preprocess 

LDA algorithms improve the classification between 8PSK 

and 16PSK for SNR values greater than 13 dB and between 

16QAM and 64QAM for SNR values greater than 4 dB. The 

proposed-dist LDA algorithm has the best performance 

for classification between 8PSK and 16PSK. In contrast, 

the proposed-Tanh LDA algorithm has the best 

performance for classification between 16QAM and 

64QAM. On the other hand, according to Table 7 and Fig. 

9, the classification accuracy of our proposed algorithm is 

improved compared with the reference papers [1], [2]. 

The maximum improvement of our proposed algorithm 

compared with the reference paper [1] is 10.79%, and the 

maximum improvement of our proposed algorithm 

compared with the reference paper [2] is 38.552%. 

By using the proposed optimization algorithm, the 

AMC classification accuracy has been improved.  Other 

classification problems can use this algorithm. And other 

nonlinear preprocess functions or optimization 

algorithms may be found in future work. 
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Abbreviations  

AMC Automatic Modulation Classification 

SNR Signal-to-Noise Ratio 

LDA Linear Discriminant Analysis 

HOCs Higher-Order Cumulants 

MD Mahalanobis Distance 

MPSK M-array Phase Shift Keying 

MQAM M-array Quadrature Amplitude shift 

Modulation 

LB Likelihood-Based 

FB Feature-Based 

i.i.d Independent and identically 

distributed 

ACC Classification accuracy 
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