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Background and Objectives: In this paper, a novel linear parameter varying (LPV) 
model of a wind turbine is developed based on a benchmark model presented by 
Aalborg University and KK-electronic a/c. The observability and validity of the 
model are investigated using real aerodynamic data. 
Methods: In addition, a robust fault detection and reconstruction method for 
linear parameter varying systems using second-order sliding mode observer is 
developed and implemented on the linear parameter varying model. The fault 
signal is reconstructed using a nonlinear term named equivalent output error 
injection during sliding motion and a proper transformation. The effect of 
uncertainties and incorrect measurements are minimized by employing an 
oriented method that requires solving a nonlinear matrix inequality. During 
numerical simulations, an actuator fault in the pitch system is considered and the 
performance of the method in fault reconstruction is investigated. 
Results: Wind speed range is considered from 14 m/s to 16 m/s and it is regarded 
as a stochastic input exerting aerodynamic torque. Fast and accurate fault 
reconstruction happens in 0.6 seconds with less than one percent error. The 
observer performance is not affected by the fault and fault is estimated in 2.5 
seconds with an error smaller than 2.48 percent. 
Conclusion: Results illustrate fast and accurate fault reconstruction and accurate 
state estimations in the presence of actuator fault. 
In this paper, a novel linear parameter varying (LPV) model of a wind turbine is 
developed based on a benchmark model presented by Aalborg University and KK-
electronic a/c. The observability and validity of the model are investigated using 
real aerodynamic data. In addition, a robust fault detection and reconstruction 
method for linear parameter varying systems using a second-order sliding mode 
observer is developed and implemented on the linear parameter-varying model. 
The fault signal is reconstructed using a nonlinear term named equivalent output 
error injection during sliding motion and a proper transformation. The effect of 
uncertainties and incorrect measurements are minimized by employing an H_∞ 
oriented method which requires solving a nonlinear matrix inequality. During 
numerical simulations, an actuator fault in the pitch system is considered, and the 
performance of the method in fault reconstruction is investigated. Wind speed 
range is considered from 14 m/s to 16 m/s and it is regarded as a stochastic input 
exerting aerodynamic torque. Fast and accurate fault reconstruction happens in 
0.6 seconds with less than one percent error. The observer performance is not 
affected by the fault and fault is estimated in 2.5 seconds with an error smaller 
than 2.48 percent results illustrate fast and accurate fault reconstruction and 
accurate state estimations in the presence of actuator fault. 
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Introduction 

The costs of wind turbines consist of two parts of 

implementation and maintenance. The maintenance of 

large wind turbines is a time-consuming process [1], and 

a costly procedure, especially in offshore wind farms. It 

requires the generator disconnection from the power 

distribution network. Therefore, designing and utilizing a 

fault detection and isolation (FDI) system to diagnose, 

isolate, and reconstruct wind turbine faults is highly 

beneficial and critical in supervisory and maintenance 

cost reduction. In addition, it increases the lifetime of the 

turbine components and enhances the power generation 

due to the fault accommodation and active fault-tolerant 

control in which a reconfigurable controller is employed 

to accommodate the effect of faults [2]-[6]. 

The faults occurring in a large wind turbine are 

classified into three categories. Sensor faults which 

include rotor speed, generator speed, generator torque, 

and pitch angle and they, appear as biased output, 

random output, fixed output, or no output as discussed in 

[7]. Component faults such as drive train deficiency [8], 

mass imbalance of the rotor [9], and the generator system  

[10] are included in the second class. The third category 

of wind turbine faults aims at the actuator faults, such as 

the pitch actuator fault, which is addressed in this paper. 

The pitch system is responsible for the adjustment of the 

pitch angle of the rotor blades for the variable-pitch wind 

turbines. Such systems are important in terms of the 

amount of wind power captured by blades. 

Two types of pitch control systems are used in 

variable-pitch wind turbines. In the first type, three 

individual electrical motors are implemented. This is 

beneficial for the fast reaction of the turbine to wind 

speed changes and power demand. The second type 

consists of three individual hydraulic pumps, which are 

slower but bear more stiffness and have smaller backlash. 

Therefore, considering large wind turbines, a hydraulic 

pitch system is suggested for higher reliability. Pitch 

actuator faults occur for three reasons such as high air 

content of oil, pump wear, and hydraulic leakage. 

Hydraulic leakage is an incipient fault and occurs faster 

compared to the other faults. Thus, it should be 

considered to reduce cost and energy consumption, 

decrease operational load, increase power harvesting, 

and avoid stalling [8], [11]-[13], [37], [38]. 

The rate of occurrence and the values of faulty and 

healthy properties are shown in the corresponding 

columns of Table 1. The state of 𝜃 = 0 represents proper 

situation and 𝜃 = 1 is fully faulty operation [7]. In the case 

of hydraulic fault incidence in each of the individual pitch 

systems, control efforts may lead to two decisions: (1) 

generator power exceeds the nominal value (2) output 

power is reduced, which results in power efficiency 

reduction. As a result of the leakage in the pitch system, 

the actuation of the pitch angle becomes slower, and 

smaller wind power is captured. As a result, fault 

detection, reconstruction, and fault accommodation are 

useful decisions to reinforce the control system in a way 

that energy-related cost functions are satisfied [2]-[6]. 

Many research projects such as the current work have 

been conducted for this issue to improve the estimation 

speed and accuracy of the observer-based fault diagnosis 

methods [2], [3], [6].  

 
Table 1 Rate of incidence and values of faulty and healthy 
properties in pitch hydraulic system 
 

 Faulty operation 
Rate of fault 

incidence 

No-fault 𝜔𝑛 = 11.11 𝑟𝑎𝑑/𝑠, 𝜁 = 0.6  

High air 

content 

𝜔𝑛 = 5.73 𝑟𝑎𝑑/𝑠, 𝜁 = 0.45 |�̇�| ≈ 1/𝑚𝑜𝑛𝑡ℎ 

Pump 

wear 

𝜔𝑛 = 7.27 𝑟𝑎𝑑/𝑠, 𝜁 = 0.75 |�̇�| ≈ 1/(20 𝑦𝑒𝑎𝑟𝑠) 

Hydraulic 

leakage 

𝜔𝑛 = 3.42 𝑟𝑎𝑑/𝑠, 𝜁 = 0.9 |�̇�| ≈ 1/(100 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) 

 

The wind turbine benchmark considered in this paper 
is developed by Aalborg University and KK-electronic a/c, 
enabling the simulation of various sensor and actuator 
faults [14]. This model is nonlinear due to the relation of 
wind and aerodynamic torque exerting on wind turbine 
blades. This kind of nonlinearity has been handled in 
different methods. Linearizing around one or several 
operating points and switching among them (gain-
scheduling control) [15] is one of these methods. In this 
method, several observers are designed in which for 
reducing switching effects, bumpless switching between 
models should be considered. Linear parameter varying 
(LPV) modelling is another method where nonlinear terms 
are turned into linear but time-varying parameters (quasi-
linear) [16]-[18]. In such methods, nonlinear terms are 
expressed in LPV form. Generally, LPV models yield higher 
accuracy for the all operating points. Using LPV models 
leads to LPV observer design; thus, the advantages of 
linear system characteristics could be utilized. 

In this paper, fault detection and reconstruction are 
covered. An LPV model of the wind turbine is developed 
and a model-based robust second-order sliding mode 
observer is applied to the LPV wind turbine model. LPV 
model is valid in the entire operating trajectory and does 
not require linearization around one or several operating 
point(s) [19]-[24]. Once the observer gains are obtained, 
the observer and fault reconstruction formula are 
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attainable for all the wind turbine operating regions. 
Actually, LPV methods attempt to parametrize the model 
closer to real world at the cost of larger computational 
effort and complication. Model-based methods are 
preferable in fault detection and reconstruction studies 
where physical components’ parameters of the plant are 
accessible. Some surveys in model-based wind turbine FDI 
have been carried out in [22], [24]-[32]. 

The proposed observer of this paper includes an LTI 
gain for linear output error signal and an LPV gain for 
nonlinear residual signals. The reconstructed actuator 
fault is generated once the sliding motion takes place 
using a nonlinear residual signal called “equivalent output 
injection”. Observer design matrices are obtained using 
𝐻∞ concepts and solving a nonlinear matrix inequality in 
which the effect of uncertain and imperfect 
measurements is minimized.  

This paper is structured as follows. Section 2 describes 
the wind turbine benchmark model. Section 3 presents 
the development of the methodology and observer 
design procedure. Then, the pitch actuator fault 
description is presented in Section 4. Section 5 explains 
the LPV system description and Section 6 is dedicated to 
numerical results and energy analysis. Finally, Section 7 is 
the conclusion. 

Wind turbine benchmark model 

An overview of the wind turbine model in the 
benchmark developed by Aalborg University and KK-
electronic a/c [14] is illustrated in Fig. 1. The variables are 
introduced in the following subsections. 

 

Blade and pitch system

ControllerDrive train

Gear-box and Generator

ωr
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Tg
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Tmeasured
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Fig. 1: Wind turbine benchmark developed by Aalborg 
University and KK-electronic a/c (background photo [31]). 

 
Using aerodynamic principles, the correlation between 

the wind speed, rotor speed, blades’ pitch angle, and the 

aerodynamic torque exerting the blades is shown in (1). 

The mentioned correlation is derived considering two 

assumptions. 

1. The wind speed is constant all over the surface of 

the blades. 

2. The wind speed is perpendicular to the rotor plane. 

𝜌𝑎𝑖𝑟 , 𝑅, 𝛽(𝑡), 𝜔𝑟(𝑡), and 𝑉𝑤(𝑡) are air density, blade 

radius, pitch angle, rotor speed, and average wind speed, 

respectively. 𝜆(𝑡) is the tip speed ratio which is defined in 

(2). The aerodynamic torque is approximated in (1) using 

a factor named aerodynamic torque coefficient 

𝐶𝑞(𝜆(𝑡), 𝛽(𝑡)). 

        (1) 𝑇𝑎 =
𝜌𝑎𝑖𝑟  𝜋𝑅3𝐶𝑞(𝜆, 𝛽)𝑉𝑤

2

2
 

       (2) 𝜆(𝑡) =
𝑅𝜔𝑟(𝑡)

𝑉𝑤(𝑡)
 

The pitch system consists of three identical hydraulic 

pumps as the actuator for adjusting the blades’ angle by 

rotation. Three internal controllers are adopted for each 

actuator giving proper input signals to the actuators. In 

addition, a second-order transfer function is considered 

for each of the pitch actuators correlating control input 

(𝛽𝑟𝑒𝑓) to the pitch angle (𝛽). The damping ratio and 

natural frequency of this model are 𝜁(𝑡) and 𝜔𝑛(𝑡), 

respectively. These properties might be time-varying in 

the event of faults for each system. 𝛽𝑟𝑒𝑓  is pitch control 

input signal entering each pitch actuator. 

     (3) 
�̈�(𝑡) = −2𝜁(𝑡)𝜔𝑛(𝑡)�̇�(𝑡) + 𝜔𝑛

2(𝑡)𝛽𝑟𝑒𝑓

− 𝜔𝑛
2(𝑡)𝛽(𝑡) 

The drive-train of the wind turbine consists of two 

shafts as the low-speed (driver) and the high-speed shaft 

(driven). The shafts are connected using a gear-box and 

the aerodynamic power is transferred to the generator 

through a high-speed shaft. The coupled dynamic 

equations of the shafts which are considered as a mass-

spring model are expressed in  (4), (5). 

     (4) 

𝐽𝑟  �̇�𝑟(𝑡) = 𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡) − 𝐾𝑑𝑡  𝜃(𝑡)
− (𝐵𝑑𝑡 + 𝐵𝑟 )𝜔𝑟(𝑡)

+
𝐵𝑑𝑡

𝑁𝑔

𝜔𝑔(𝑡) 

     (5) 

𝐽𝑔�̇�𝑔 (𝑡) =
𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔

𝜃(𝑡) +
𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔

𝜔𝑟(𝑡)

− (
𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
2

+ 𝐵𝑔)𝜔𝑔(𝑡)

− 𝑇𝑔 

    (6) �̇�(𝑡) =  𝜔𝑟(𝑡) −
1

𝑁𝑔

𝜔𝑔(𝑡) 

where, 𝜔𝑟, 𝜔𝑔 are the rotor and generator speeds, 

respectively, 𝜃(𝑡) is the torsion angle of the drive train, 𝑇𝑔 

is generator torque, 𝐽𝑟 and 𝐽𝑔 are rotor and generator 

moments of inertia, 𝐾𝑑𝑡  and 𝐵𝑑𝑡  are torsional stiffness 
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and damping, 𝐵𝑟  and 𝐵𝑔 are the rotor and generator 

viscous friction, 𝑁𝑔 is the gear ratio and 𝜂𝑑𝑡 is the 

efficiency of drive-train. The generator and converter 

subsystem are modeled by first-order transfer functions: 

          (7) 
𝑇𝑔(𝑠)

𝑇𝑔,𝑟𝑒𝑓(𝑠)
=

𝛼𝑔𝑐

𝑠 + 𝛼𝑔𝑐

 

where, 𝛼𝑔𝑐  is the generator and converter model 

parameter and 𝑇𝑔,𝑟𝑒𝑓 is the control output signal of the 

converter. Parameter values of the benchmark are: 𝐽𝑟 =

55𝑒6 kg.m^2, 𝐾𝑑𝑡 = 2.7𝑒9 m/rad, 𝐵𝑔 = 3.034 N.m. s/

rad, 𝑁𝑔 = 95, 𝜂𝑑𝑡 = 0.92, 𝑅 = 57.5 m, 𝐽𝑔 = 390 kg.m2, 

𝜌𝑎𝑖𝑟 = 1.225 kg/m3, 𝐵𝑟 = 27.8 kNm/(rad/s), 𝐵𝑑𝑡 =

945 kN.m/(rad/s). 

Observer Design 

Nowadays, condition monitoring is attracting more 

attention in technology advancements. It is implemented 

to prevent serious failures by detecting faults. Condition 

monitoring in advanced engineering instruments analyses 

the deviations from normal conditions and detects the 

existence of faults and failures. On the other hand, Fault 

reconstruction is an online fault detection method that 

offers additional information about the size, location, and 

severity of faults. Such data are useful in the choice of 

proper action during faulty conditions. Moreover, control 

efforts are configured considering reconstructed fault 

data (fault accommodation) to provide better 

performances during faulty conditions. 

A.  LPV System Description 

An uncertain LPV plant that is subjected to actuator 

faults is described by 

       (8) 

�̇�(𝑡) = 𝐴(𝝆)𝑥(𝑡) + 𝐵(𝝆)𝑢(𝑡) + 𝑀(𝝆)𝑓𝑖(𝑡)
+ 𝑄𝜉(𝝆, 𝑥, 𝑡)  

   𝑦(𝑡) =  𝐶𝑥(𝑡) + 𝜗(𝑡) 

where, 𝐴(𝝆) ∈ 𝑹𝑛×𝑛, 𝐵(𝝆) ∈ 𝑹𝑛×𝑚, 𝑀(𝝆) ∈ 𝑹𝑛×𝑠  are 

the linear parameter varying matrices of the model. 

𝑥(𝑡) ∈ 𝑹𝑛, (𝑡) ∈ 𝑹𝑚 , 𝑓𝑖(𝑡) ∈ 𝑹𝑠,  𝜉(𝝆, 𝑥, 𝑡) ∈ 𝑹𝑘,  and 

𝑦(𝑡), 𝜗(𝑡) ∈ 𝑹𝑝, are model states, control input signal, 

faults of actuators, model uncertainty, and measurement 

noises, respectively. 𝑠 and 𝑝 are the lengths of fault and 

output signal. It is supposed that 𝑠 is smaller than 𝑝 (𝑠 <

𝑝). 𝝆 is the varying parameter vector and is measured or 

estimated. 𝐶 is an LTI and full-rank matrix. Also, for 

Lyapunov stability [32], 𝜉(𝝆, 𝑥, 𝑡) and 𝜉̇(𝝆, 𝑥, 𝑡) are 

assumed to be bounded. 

Assumption 1. The actuator fault matrix might be 

parameter varying (𝑀(𝝆)). It is assumed 𝑀(𝝆) is made up 

of a parameter invariant matrix (𝑀𝑖𝑛𝑣) multiplied by a 

nonsingular parameter varying matrix (𝑀𝑣𝑎𝑟(𝝆)) in a way 

that 

      (9) 𝑀(𝝆) = 𝑀𝑖𝑛𝑣𝑀𝑣𝑎𝑟(𝝆) 

where, 𝑀𝑖𝑛𝑣 ∈ 𝑹𝑛×𝑠 and 𝑀𝑣𝑎𝑟(𝝆) ∈ 𝑹𝑠×𝑠. Defining a new 

variable 𝜎(𝝆, 𝑡) = 𝑀𝑣𝑎𝑟(𝝆)𝑓𝑖(𝑡), (8) is rewritten in the 

form of  

(10) 

�̇�(𝑡) = 𝐴(𝝆)𝑥(𝑡) + 𝐵(𝝆)𝑢(𝑡)
+ 𝑀𝑖𝑛𝑣 𝜎(𝝆, 𝑡)
+ 𝑄𝜉(𝝆, 𝑥, 𝑡) 

  𝑦(𝑡) =  𝐶𝑥(𝑡) + 𝜗(𝑡) 

𝜎(𝝆, 𝑡) is the new fault vector which will be converted to 

the actual fault vector (𝑓𝑖(𝑡)) after being estimated. The 

new fault signal is bounded due to the Lyapunov stability 

proof [32]. 

Assumption 2. 𝜗(𝑡) presents the corruption of sensor 

measurements and is assumed 

   (11) 𝜗(𝑠) = 𝐷(𝑠)𝜑(𝑠) 

   (12) 𝐷(𝑠) =
𝑎𝑓

𝑠 + 𝑎𝑓

 

𝐷(𝑠) is a stable transfer function and 𝜑(𝑡) is an unknown 

but bounded signal [30]. Using this assumption, the effect 

of output noises on estimations is optimized (this will be 

discussed later). Then, substituting (11) into (12) yields 

    (13) �̇�(𝑡) = −𝑎𝑓𝜗(𝑡) + 𝑎𝑓𝜑(𝑡) 

Assumption 3. 𝑟𝑎𝑛𝑘(𝐶𝑀) = 𝑠. This condition determines 

whether the effect of the fault signal is observable in 

outputs or not. This is a necessary condition for the fault 

estimation method presented by Tan and Edwards [33]. 

B.  Second-order LPV Sliding Mode Observer 

The LPV sliding mode observer is in the form of 

    (14) 

�̇̂�(𝑡) = 𝐴(𝝆)�̂�(𝑡) + 𝐵(𝝆)𝑢(𝑡)
+ 𝐻𝑒𝑞(𝝆)𝑒𝑦(𝑡)

+ 𝐻𝑠𝑤𝑤(𝑡) 

   �̂�(𝑡) =  𝐶�̂�(𝑡) 

where, 𝐻𝑒𝑞(𝝆) and 𝐻𝑠𝑤  are observer design matrices and 

𝑤(𝑡) represents discontinuous output error injection to 

induce a sliding motion [33]. 𝑒(𝑡) and 𝑒𝑦(𝑡) as state 

estimation error and output estimation error are 

expressed as  

   (15) 𝑒(𝑡) = �̂�(𝑡) − 𝑥(𝑡) 

   (16) 𝑒𝑦(𝑡) = �̂�(𝑡) − 𝑦(𝑡) = 𝐶𝑒(𝑡) − 𝜗(𝑡) 

The design steps are expressed in the following. First, 

the system is transformed in a way that the states are 

classified into measured states (outputs) and unmeasured 

states [34]. It is proved that the measured states are 

estimated in a finite time defining the sliding surface as 

𝑆 = {𝑒(𝑡) ∈ 𝑅𝑛: 𝑒𝑦(𝑡) = 0} [34]. Then, with the 

appropriate choice of parameters, unmeasured states are 

estimated asymptotically. Finally, the faults are 

reconstructed using 𝑤(𝑡). 
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As stated before, sliding mode observer gains are 

divided into an equivalent gain for linear terms and 

switching motion gain for nonlinear terms. The equivalent 

gain (𝐻𝑒𝑞(𝝆)) and its corresponding linear signal are 

existed to force the incidence of the sliding motion. Such 

an action is called the reaching phase [27].  

Furthermore, the switching gain (𝐻𝑠𝑤) and its 

corresponding nonlinear signal (𝑤(𝑡)) are responsible for 

the maintenance of sliding motion which is called the 

sliding phase. 

There exists a coordinate-transformation 𝑥𝑓(𝑡) →

𝑇𝑓𝑥(𝑡) which changes the output matrix to the form of  

𝐶𝑓 = [0𝑝×(𝑛−𝑝)  𝑇𝑝×𝑝] in which 𝑇 is an orthogonal 

nonsingular matrix.  

Here, the index ‘f’ refers to the system of 𝑥𝑓(𝑡). Also, 

for an invertible square matrix 𝑀0, the fault matrix 

becomes in the form of (17). 

    (17) 𝑀𝑖𝑛𝑣,𝑓 = [

0(𝑛−𝑝)×𝑠

0(𝑝−𝑠)×𝑠

𝑀0𝑠×𝑠

] 

Then, the following structure is obtained after the first 

transformation. 

    (18) 𝑦𝑓(𝑡) = [0   𝑇] [
𝑥1,𝑓

𝑥2,𝑓
] + 𝜗(𝑡) 

    (19) 𝐴𝑓(𝝆) = [
𝐴11,𝑓 𝐴12,𝑓

𝐴21,𝑓 𝐴22,𝑓
] 

   (20) 𝑄𝑓 = [
𝑄1,𝑓

𝑄2,𝑓
] 

Rewriting (8) and using the structures of (17)-(20) 
yields 

      (21) 

[
�̇�1,𝑓

�̇�2,𝑓
] = 𝐴𝑓 [

𝑒1,𝑓

𝑒2,𝑓
] − 𝑄𝑓𝜉(𝝆, 𝑥, 𝑡)

− 𝐻𝑒𝑞,𝑓(𝝆)𝑒𝑦(𝑡)

+ 𝐻𝑠𝑤,𝑓𝑤(𝑡)

− [
0(𝑛−𝑠)×𝑠

𝑀0𝑠×𝑠

] 𝜎(𝝆, 𝑡) 

Using (8) and (21) 

𝑒𝑦(𝑡) = 𝑇𝑒2,𝑓 − 𝜗(𝑡) 

Thus, if the sliding motion takes place, from the 

definition 𝑒𝑦(𝑡) = 0 and then 𝑇𝑒2,𝑓 = 𝜗(𝑡) . Using (21) 

and regarding 𝑇 as an orthogonal matrix gives: 

    (22) 

�̇�1,𝑓(𝑡) = 𝐴11,𝑓 + 𝐴12,𝑓𝑇
𝑇𝜗(𝑡) − 𝐿𝑇𝑇𝑤𝑒𝑞(𝑡)

− 𝑄1,𝑓𝜉(𝝆, 𝑥, 𝑡) 

   0 = 𝑇𝐴21𝑒1,𝑓(𝑡) − 𝑇𝑄2,𝑓𝜉(𝝆, 𝑥, 𝑡)

+ 𝑇𝐴22𝑇
𝑇𝜗(𝑡) − �̇�(𝑡) 

(23) +𝑤𝑒𝑞(𝑡) − 𝑇 [
0(𝑝−𝑠)×𝑠

𝑀0𝑠×𝑠

] 𝜎(𝝆, 𝑡) 

 

𝑤𝑒𝑞(𝑡) is the equivalent output error injection i.e. the 

same as 𝑤(𝑡) after the sliding motion. As a definition, for 

a design matrix 𝑌 ∈ 𝑹𝑠×(𝑝−𝑠) and the structure of 𝑊 =
[Y 𝑀0

−1] the new fault signal is reconstructed as 

      (24) �̂�(𝝆, 𝑡) = 𝑊𝑇𝑇𝑤𝑒𝑞(𝑡) 

In the system of (21), the LTI observer gain is 

considered in the form of 

      (25) 𝐻𝑠𝑤,𝑓 = [−𝐿𝑇𝑇

𝑇𝑇 ] 

𝐿 is the design matrix and is of the form 

 (26) 𝐿 = [𝑍   0(𝑛−𝑝)×𝑠] and 𝑍 ∈ 𝑹(𝑛−𝑝)×(𝑝−𝑠) 

𝑍 improves the sliding motion incidence and is 

synthesized by solving some matrix inequalities (it will be 

discussed later). Joining measurement noises signal and 

𝑒1,𝑓(𝑡) together as a new state vector, an assembled 

state-space is obtained. 

    (27) 
𝑒𝑎(𝑡) = 𝐴𝑎(𝝆)𝑒𝑎(𝑡) + 𝐵𝑎(𝝆)𝜉𝑎(𝑡) 

�̂�(𝝆, 𝑡) − 𝜎(𝝆, 𝑡) = 𝐶𝑎𝑒𝑎(𝑡) + 𝐹𝑎𝜉𝑎(𝑡) 

where, 

    (28) 

𝑒𝑎
𝑇(𝑡) = [𝑇𝑇𝜗(𝑡) 𝑒1,𝑓(𝑡)]

𝑇
, 

𝜉𝑎
𝑇(𝑡) = [𝜉(𝑡) 𝑇𝑇𝜑(𝑡)]𝑇 

𝐴𝑎(𝝆)

= [
−𝑎𝑓𝐼𝑝 0𝑝×(𝑛−𝑝)

𝐴12(𝝆) + 𝐿𝐴22(𝝆) + 𝑎𝑓𝐿 𝐴11 + 𝐿𝐴21(𝝆)
] 

   (29) 𝐵𝑎(𝝆) = [
0𝑝×(𝑛−𝑝) −𝑎𝑓𝐼𝑝

−𝑄1,𝑓 − 𝐿𝑄2,𝑓 −𝑎𝑓𝐿
] 

     (30) 
𝐶𝑎(𝝆)
= [−(𝑊𝐴22(𝝆) + 𝑎𝑓𝑊) −𝑊𝐴21(𝝆)] 

    (31) 𝐹𝑎 = [𝑊𝑄2,𝑓 𝑎𝑓𝑊] 

The effect of uncertainty and measurement noises are 

minimized if there exist positive definite and symmetric 

matrices 𝑃𝑎𝑓𝑝×𝑝
 and 𝑃11(𝑛−𝑝)×(𝑛−𝑝)

 such that the 

following matrix inequalities hold 

(32) 𝑿(𝝆) = [
𝑃1𝐴𝑎 + 𝐴𝑎

𝑇𝑃1 𝑃1𝐵𝑎∆ 𝐶𝑎
𝑇

(𝐵𝑎)
𝑇𝑃1 −𝛾𝐼 (𝐹𝑎)

𝑇

𝐶𝑎 𝐹𝑎∆ −𝛾𝐼

] < 0 

(33) 𝑃1 = [
𝑃11 0
0 𝑃𝑎𝑓

] > 0 
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where, Γ > 0 means Γ is a positive definite matrix; then, 

using bounded real lemma ‖�̂�(𝝆, 𝑡) − 𝜎(𝝆, 𝑡)‖ <

𝛾‖𝜉𝑎(𝝆, 𝑡)‖. Also, 

Remark 1. It should be mentioned that there exist 
parameter varying terms in the matrix inequality (32)  
which make it confusing to solve the matrix inequality to 
determine a unique minimized 𝛾. Therefore, we are 
unable to obtain the second transformation and the 
design matrices and the range of variation of 𝝆 has to be 
considered. As a result, the effects of uncertainty and 
measurement noises are almost minimized. 

Once 𝐿 is obtained, the observer gain 𝐻𝑠𝑤,𝑓 is 

calculated and reverted to a system of (10) using 

    (34) 𝐻𝑠𝑤 = 𝑇𝑓
−1 × 𝐻𝑠𝑤,𝑓 

After obtaining the design matrix 𝐿, a second 

transformation is applied to the system of (21) where 𝐶𝑓 

is reformed into 𝐶𝑠 = [0𝑝×(𝑛−𝑝)  𝐼𝑝]. ‘s’ represents second 

coordinate transformation. 

   (35) 

[
𝑥1,𝑠

𝑥2,𝑠
] = 𝑇𝑠 [

𝑥1,𝑓

𝑥2,𝑓
]  

where 𝑇𝑠 = [
𝐼(𝑛−𝑝)×(𝑛−𝑝) 𝐿

0𝑝×(𝑛−𝑝) 𝑇
] 

   (36) 𝐴𝑠(𝝆) = [
𝐴11,𝑠 𝐴12,𝑠

𝐴21,𝑠 𝐴22,𝑠
] 

𝐻𝑒𝑞(𝝆) in the second coordination is obtained online 

after the calculation of 𝐿 in a parameter varying structure 

of  

    (37)   𝐻𝑒𝑞,𝑠(𝝆) = [
𝐴12,𝑠(𝝆)

𝐴22,𝑠(𝝆) + 𝑘2𝐼𝑝
] 

𝐻𝑒𝑞,𝑠(𝝆) is reverted to the main coordinates (14) by 

       (38) 𝐻𝑒𝑞(𝝆) = 𝑇𝑓
−1 × 𝑇𝑠

−1 × 𝐻𝑒𝑞,𝑠(𝝆) 

The notation of j’th component of a vector �⃗�  is defined 

as an index, e.g. 𝑉𝑗. Then, the equivalent output injection 

signal is calculated cell by cell separately in  

    (39) 𝑤𝑗(𝑡) = −𝑘1𝑠𝑖𝑔𝑛 (𝑒𝑦,𝑗(𝑡)) |𝑒𝑦,𝑗(𝑡)|
1
2

+ 𝑧𝑗(𝑡) 

   (40) 𝑧�̇�(𝑡) = −𝑘3𝑠𝑖𝑔𝑛 (𝑒𝑦,𝑗(𝑡)) − 𝑘4𝑒𝑦,𝑗(𝑡)  

for  j=1,2,...,p  

𝑘1, 𝑘2, 𝑘3, 𝑘4 are design parameters in satisfying 

inequalities below. By choosing proper values of scalars 

𝑘1, 𝑘2, 𝑘3, 𝑘4, second-order sliding motion takes place in 

a finite time and the fault reconstruction process begins 

where proof by the Lyapunov method is explained in [35]. 

   (41)  
        𝑘𝑘22 >> 00 

 𝑘3 > 𝜖 

𝑘4 >
𝑘2

2[(𝑘1)
3 + 1.25(𝑘1)

2 + 2.5(𝑘3 − 𝜖)]

𝑘1(𝑘3 − 𝜖)
 

𝜖 is the bound of fault incidence rate or |𝑓�̇�(𝑡)| < 𝜖. 

Substituting (40) into (39), the output injection signal is 

obtained by  

      (42) 

𝑤𝑗(𝑡) = −𝑘1𝑠𝑖𝑔𝑛 (𝑒𝑦,𝑗(𝑡)) |𝑒𝑦,𝑗(𝑡)|
1
2

+ ∫[−𝑘3𝑠𝑖𝑔𝑛 (𝑒𝑦,𝑗(𝑠))

− 𝑘4𝑒𝑦,𝑗(𝑠)] 𝑑𝑠 

By substituting (9) into (24), the fault estimation signal 
becomes 

   (43) 
𝑓�̂�(𝑡) = 𝑀𝑣𝑎𝑟

−1 (𝝆)�̂�(𝝆, 𝑡)
= 𝑀𝑣𝑎𝑟

−1 (𝝆)𝑊𝑇𝑇𝑤(𝑡) 

It should be mentioned that fault reconstruction in (43) 

is obtainable if only the sliding motion takes place. 

Remark 2. The estimation of the new fault signal is 

enhanced by exploiting a low-pass filter in the form of 

       (44) 𝐹(𝑠) =
𝑏

𝑠 + 𝑏
                          

Such a filter lowers the high frequency of 

measurement noises to enhance the new fault estimation 

signal. Filter reduces the amplitude of noises and results 

in a smoother estimation signal. 

Remark 3. The method explained in Section 3 does not 

require any redundant instruments. Usually, wind turbine 

sensors consist of three pitch angles, generator and rotor 

speed, generator torque, and effective wind speed [16]. 

Using the filtered sensors’ data and a microcomputer, the 

proposed FDI algorithm could be implemented and states 

and pitch faults are calculated. 

Observability of the wind turbine model is inspected 

which is baffling due to the LPV description of wind 

turbine plant (Section 5) [36], where using Simulink, we 

watched the rank of LPV observability matrix online. For 

all the wind turbine operating regions 𝑟𝑎𝑛𝑘(𝑶𝐿𝑃𝑉) = 6; 

therefore, the system is observable and the states can be 

estimated utilizing a proper observer. 

Pitch Actuator Fault Model 

It is assumed that an identical performance and fault 

occur in all the pitch systems, and we only look through 

one system.  

A second-order transfer function is assumed for each 

of the pitch actuators. Thus, the pitch angle and pitch rate 

are regarded as the system states.  

The matching condition mentioned in assumption 3 

does not hold unless a change of variables in dynamic 

equations of the pitch system is performed. 
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       (45) [
𝛽(𝑡)

𝛽′̇ (𝑡)
] → �̅� [

𝛽(𝑡)

�̇�(𝑡)
] 

 

where, �̅� = [
1 0

0
1

𝜔𝑛
2 (𝑡)

] and the pitch system equations 

are transformed to 

  (46)   [
�̇�(𝑡)

𝛽′̈ (𝑡)
] = [

0 𝜔𝑛
2(𝑡)

−1 −2𝜁(𝑡)𝜔𝑛(𝑡)
] [

𝛽(𝑡)

𝛽′ ̇ (𝑡)
] 

Therefore, the assumption of 𝑟𝑎𝑛𝑘(𝐶𝑀𝑖𝑛𝑣) = 1 =

𝑠 ≤ 𝑝 = 1 still holds. 

Hydraulic leakage affects the pitch actuator properties 

such as the natural frequency and damping ratio of each 

actuator. The system properties are 𝜔𝑛,ℎ and 𝜁ℎ  as 

healthy and 𝜔𝑛,𝑓 and 𝜁𝑓  as a faulty situation. Then, 

considering the fault as changing properties in a linear 

fraction of both healthy and faulty mode, the incidence of 

the fault is modeled using two varying parameters 𝜃1and 

𝜃2. 𝜃1 = 𝜃2 = 0 means no fault in the system and 𝜃1 =

𝜃2 = 1 indicates a totally faulty situation. 

    (47) 

𝜔𝑛
2(𝑡) = 𝜃1(𝑡)𝜔𝑛,𝑓

2 + (1 − 𝜃1(𝑡))𝜔𝑛,ℎ
2

= 𝜔𝑛,ℎ
2

+ 𝜃1(𝑡)[𝜔𝑛,𝑓
2 − 𝜔𝑛,ℎ

2 ] 

 

 (48) 

−2𝜁(𝑡)𝜔𝑛(𝑡) = −2𝜁𝑓𝜔𝑛,𝑓𝜃2(𝑡)

+ (1 − 𝜃2(𝑡))(−2𝜁ℎ𝜔𝑛,ℎ)

= −2𝜁ℎ𝜔𝑛,ℎ

+ 𝜃2(𝑡)[−2𝜁𝑓𝜔𝑛,𝑓

+ 2𝜁ℎ𝜔𝑛,ℎ] 
 

It is assumed that the set of {𝜔𝑛,ℎ, 𝜁ℎ} or the set of 

{𝜔𝑛,𝑓 , 𝜁𝑓} occur, simultaneously. When the pitch system 

performance is normal, its properties are in a healthy 

situation. Malfunctioning of the pitch system means a 

faulty situation for both properties. Thus, 𝜃1(𝑡) ≈ 𝜃2(𝑡). 

Substituting (47) and (48) into (46), yields 

      (49) 

 [
0 𝜔𝑛

2(𝑡)

−1 −2𝜁(𝑡)𝜔𝑛(𝑡)
]

= [
0 𝜔𝑛,ℎ

2 + 𝜃1(𝑡)(𝜔𝑛,𝑓
2 − 𝜔𝑛,ℎ

2 )

−1 −2𝜁ℎ𝜔𝑛,ℎ + 𝜃1(𝑡)(−2𝜁𝑓𝜔𝑛,𝑓 + 2𝜁ℎ𝜔𝑛,ℎ)
]

= [
0 𝜔𝑛,ℎ

2

−1 −2𝜁ℎ𝜔𝑛,ℎ
]

+ [
0 𝜃1(𝑡)(𝜔𝑛,𝑓

2 − 𝜔𝑛,ℎ
2 )

0 𝜃1(𝑡)(−2𝜁𝑓𝜔𝑛,𝑓 + 2𝜁ℎ𝜔𝑛,ℎ)
] 

Multiplying (50) with the states gives, 

      (50) 

[
0 𝜃1(𝑡)(𝜔𝑛,𝑓

2 − 𝜔𝑛,ℎ
2 )

0 𝜃1(𝑡)(−2𝜁𝑓𝜔𝑛,𝑓 + 2𝜁ℎ𝜔𝑛,ℎ)
] [

𝛽(𝑡)

𝛽′̇ (𝑡)
]

= [
𝜔𝑛,𝑓

2 − 𝜔𝑛,ℎ
2

−2𝜁𝑓𝜔𝑛,𝑓 + 2𝜁ℎ𝜔𝑛,ℎ
] 𝛽′̇ (𝑡)𝜃1(𝑡)

= 𝑀𝑖𝑛𝑣𝑀𝑣𝑎𝑟(𝝆)𝑓𝑖(𝑡) 

where, 𝑀𝑖𝑛𝑣 = [
𝜔𝑛,𝑓

2 − 𝜔𝑛,ℎ
2

−2𝜁𝑓𝜔𝑛,𝑓 + 2𝜁ℎ𝜔𝑛,ℎ
] and 𝑀𝑣𝑎𝑟(𝝆) =

𝜌4, 𝑓𝑖(𝑡) = 𝜃1(𝑡). Therefore, the process fault is modeled 

as an actuator additive fault in (50). 

Wind Turbine LPV Description 

Tables may place within the texts or just before the 

figures. All quantities in tables should be accompanied by 

their units. Table footnotes should be indicated by letters 

a, b, c, etc. The states of the wind turbine model are rotor 

rotational speed, generator speed, torsion angle of the 

drive-train, generator torque, pitch angle, and pitch angle 

rate. One of the purposes of the first transformation is 

reshaping the output matrix. Therefore, we rearrange the 

order of the states in a way that the specific structure 

takes place. The state vector is defined as 

  (51) 
𝑥(𝑡)

= [𝛽′ ̇ (𝑡) 𝜃(𝑡) 𝜔𝑟(𝑡) 𝜔𝑔(𝑡) 𝑇𝑔(𝑡) 𝛽(𝑡)]
𝑇

 

Among the considered states in the model, the drive-

train equation is severely nonlinear. Such a nonlinear 

differential equation can be linearized and expressed in a 

linear parameter varying manner where the model 

matrices change with a varying parameter. The drive-train 

equation is shown in (52). 

      (52) 

𝜔�̇�(𝑡) =
1

𝐽𝑟
𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡) −

𝐾𝑑𝑡

𝐽𝑟
𝜃(𝑡)

−
𝐵𝑑𝑡 + 𝐵𝑟

𝐽𝑟
𝜔𝑟(𝑡)

+
𝐵𝑑𝑡

𝐽𝑟
𝜔𝑔(𝑡) 

The nonlinear term is 𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡) which is the 

aerodynamic torque exerted by the wind turbine and 

estimated in the form 𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡) =
1

2
𝜌𝑎𝑖𝑟𝜋𝑅3𝐶𝑞(𝜔𝑟 , 𝛽, 𝑉𝑤)𝑉𝑤

2. 𝐶𝑞 is a torque coefficient table 

and consists of aerodynamic experimental data. Using 

surface fitting by the well-known software MATLAB, a 

fifth-degree (quintic) polynomial is derived in which 

𝜔𝑟 , 𝛽, 𝑉𝑤  are the variables. The interpolated form of  
1

𝐽𝑟
𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡) becomes 

      (53) 

𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡)/𝐽𝑟 = 𝑝1𝑉𝑤𝜔𝑟 + 𝑝2𝜔𝑟
2

+ 𝑝3

𝜔𝑟
3

𝑉𝑤
+ 𝑝4

𝜔𝑟
4

𝑉𝑤
2
+ 𝑝5

𝜔𝑟
5

𝑉𝑤
3

+ 𝑝6𝑉𝑤𝜔𝑟𝛽 + 𝑝7𝑉𝑤𝜔𝑟𝛽
2

+ 𝑝8𝑉𝑤𝜔𝑟𝛽
3 + 𝑝9𝑉𝑤𝜔𝑟𝛽

4

+ 𝑝10𝑉𝑤
2𝛽 + 𝑝11𝜔𝑟

2𝛽

+ 𝑝12𝑉𝑤
2𝛽2 + 𝑝13𝑉𝑤

2𝛽3

+ 𝑝14𝑉𝑤
2𝛽4 + 𝑝15𝑉𝑤

2𝛽5

+ 𝑝16𝜔𝑟
2𝛽2 + 𝑝17𝜔𝑟

2𝛽3

+ 𝑝18

𝜔𝑟
3𝛽

𝑉𝑤
+ 𝑝19

𝜔𝑟
3𝛽2

𝑉𝑤

+ 𝑝20

𝜔𝑟
3𝛽

𝑉𝑤
+ 𝑝21𝑉𝑤

2 
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To validate the accuracy of the model, the parameters 

of the benchmark and presented model are compared. 

Fig. 2 demonstrates real data points (colored surface) and 

some sampled data from the LPV model (black points). 

 
 

Fig. 2: Torque aerodynamic coefficient (10) (colored surface) 
and sample points from the proposed model (black points). 

 

The black points approximately coincide with the real 

data surface showing the validity of the model. The 

varying parameters are capsulated in 𝝆 =

[𝑉𝑤 , 𝜔𝑟 , 𝛽, 𝛽′ ̇ ]
𝑇

. Then, a new structure is obtained by 

rearranging (53). Table 2 consists of the LPV coefficients. 
 

Table 2: Coefficients of the wind turbine LPV model 
 

𝑝1 = 2.13𝑒 − 5 𝑝2 = −8.18𝑒 − 3 𝑝3 = −3.92𝑒 − 5 

𝑝4 = 2.89e − 1 𝑝5 = −3.70𝑒 − 7 𝑝6 = 2.17𝑒 − 10 

𝑝7 = −1.10𝑒 − 11 𝑝8 = 2.47𝑒 − 13 𝑝9 = −2.63 

𝑝10 = 9.26 𝑝11 = −11.42 𝑝12 = −1.27𝑒 − 4 

𝑝13 = 8.89𝑒 − 7 𝑝14 = 1.44𝑒 − 2 𝑝15 = −3.34𝑒 − 2 

𝑝16 = −3.15𝑒 − 4 𝑝17 = 1.31𝑒 − 5 𝑝18 = −2.36𝑒 − 7 

𝑝19 = 1.53e − 7 𝑝20 = −1.2𝑒 − 9  

 

𝑇𝑎(𝜔𝑟 , 𝛽, 𝑉𝑤 , 𝑡)/𝐽𝑟

= [𝑝1𝜌1 + 𝑝2𝜌2 + 𝑝3

𝜌2
2

𝜌1

+ 𝑝4

𝜌2
3

𝜌1
2

+ 𝑝5

𝜌2
4

𝜌1
3 + 𝑝6𝜌1𝜌3 + 𝑝7𝜌1𝜌3

2

+ 𝑝8𝜌1𝜌3
3 + 𝑝9𝜌1𝜌3

4] 𝜔𝑟

+ [𝑝10𝑉𝑤
2𝛽 + 𝑝11𝜌2

2 + 𝑝12𝜌1
2𝜌3

+ 𝑝13𝜌1
2𝜌3

2 + 𝑝14𝜌1
2𝜌3

3 + 𝑝15𝜌1
2𝜌3

4

+ 𝑝16𝜌2
2𝜌3

 + 𝑝17𝜌2
2𝜌3

2 + 𝑝18

𝜌2
3

𝜌1

+ 𝑝19

𝜌2
3𝜌3

𝜌1

+ 𝑝20

𝜌2
3

𝜌1

] 𝛽 + 𝑝21𝑉𝑤
2

= ∆𝐴3,3𝜔𝑟 + ∆𝐴3,6𝛽 + 𝑝21𝑉𝑤
2 

Substituting into (52) results in 

(55) 

�̇�𝑟(𝑡) = −
𝐾𝑑𝑡

𝐽𝑟
𝜃(𝑡) −

𝐵𝑑𝑡 + 𝐵𝑟

𝐽𝑟
𝜔𝑟(𝑡)

+
𝐵𝑑𝑡

𝐽𝑟
𝜔𝑔(𝑡)

+ ∆𝐴3,3(𝝆)𝜔𝑟(𝑡)

+ ∆𝐴3,6(𝝆)𝛽(𝑡) + 𝑝21𝑉𝑤
2 

We are unable to merge the last term of the (55) in the 

system matrix and it is considered as model uncertainty. 

The LPV description of the model is expressed in 
 

𝐴(𝝆)

=

[
 
 
 
 
 
 
 
 
 
 
−2𝜁ℎ𝜔𝑛,ℎ 0 0 0 0 −1

0 0 1 −
1

𝑁𝑔

0 0

0 −
𝐾𝑑𝑡

𝐽𝑟
𝑎33(𝝆)

𝐵𝑑𝑡

𝑁𝑔𝐽𝑟
0 𝑎36(𝝆)

0
𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔𝐽𝑔

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔𝐽𝑔
𝑎44 −

1

𝐽𝑔
0

0 0 0 0 −𝛼𝑔𝑐 0

𝜔𝑛,ℎ
2 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 

 

𝐵 = [
0 0 0 0 𝛼𝑔𝑐 0

1 0 0 0 0 0
]
𝑇

, 

𝐶 = [

0 0 1 0 0 0
0 0 0 1 0 0
0
0

0
0

0 0 1 0
0 0 0 1

], 

𝑄 = [0 0 1 0 0 0]𝑇,  

𝑀𝑖𝑛𝑣 = [𝑚1 0 0 0 0 𝑚6]
𝑇, 

   𝑀𝑣𝑎𝑟(𝝆) = 𝜌4,  𝑢(𝑡) = [𝜏𝑔,𝑟(𝑡) 𝛽𝑟(𝑡)]𝑇, 𝑓𝑖(𝑡) = 𝜃1(𝑡) 

(56) 
 

A summary of the wind turbine fault reconstruction 

and observation is illustrated in Fig. 3.  

 
 

Fig. 3: Design algorithm flowchart for wind turbine fault 
reconstruction. 

(54) 
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Results and Discussion 

In this section, reconstruction of pitch actuator fault is 

investigated. The observability of the proposed model has 

been checked in Section 3.3. The observability matrix (51) 

is full-rank during the operation which means the model 

is observable even by the time-varying nature of 𝝆. 

Considering the structure in (17), 𝑇 = 𝐼4 and  

𝑇𝑓 =

[
 
 
 
 
 
46.7 0 0 0 0 3
15.6 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

Then, solving matrix inequality (32) gives 𝑃𝑓, 𝑃11, 𝐿 and 

𝑊. Once 𝐿 is calculated, the first observer gain 𝐻𝑒𝑞(𝝆) is 

built in the structure of (41). The second transformation 

is then possible substituting 𝐿 in (39). The fault is 

reconstructed substituting 𝑊 and 𝑇 in (47). 

𝑃𝑎𝑓

= [

3.41 −0.0019
−7.854 −4.31𝑒 − 10

3.35 1.61𝑒 − 8
3.35 −10.82

3.35 3.35
1.61𝑒 − 8 −2.88𝑒 − 2

5.12𝑒 − 4 −2.88𝑒 − 2
−7.44𝑒 − 9 7.11

] 

𝐿 = [
0.0011 −1.86𝑒 − 5 5.22𝑒 − 24 0

−0.0075 −2.48𝑒 − 5 3.26𝑒 − 24 0
] 

𝑊 = [8.81𝑒 − 5 −1.06𝑒 − 7 0 −8.95𝑒 − 3] 

𝑃11 = [
17.2 −35.9

−35.9 112.8
] 

𝑘1 = 10, 𝑘2 = 1, 𝑘3 = 50, 𝑘4 = 100, 𝑎𝑓 = 50 

Wind speed, as stochastic input data, has been 

manipulated using a stochastic input profile gathered 

from the actual wind speed measurements of a wind park 

[37] An average of 15 m/s has been chosen for wind speed 

which is included in region 3 of operation regions. 

A high-slope ramp (nearly unit step) between 8th to 

14th seconds is considered as an actuator fault in the 

pitch system caused by hydraulic leakage. Hydraulic 

leakage is an incipient and fast decaying fault [7]. The 

range and the rate of such a fault are illustrated in Table 

1. To emphasize the paper methodology i.e. robust LPV 

fault reconstruction using second-order sliding mode 

observers, a different fault scenario is inspected. To 

exhibit the rapid and precise fault recognition and 

reconstruction, it is supposed that an abrupt fault takes 

place faster than 1/(100 seconds) (according to Table 1) 

in the simulation. 

Fig. 4 shows the reconstruction of the LPV fault 

indicator in the presence of model uncertainty and 

measurement noise during 6 seconds. A step is 

considered as the fault indicator 𝜃1. Also, the estimation 

of pitch system properties (natural frequency and 

damping ratio) are illustrated in Fig. 4. 

As shown in Fig. 4, once an actuator fault occurs, it is 

reconstructed accurately and immediately. The effects of 

noises and uncertainty have been minimized in (32) . 

However, the fault estimation signal conveys noise 

between the 8th to 14th seconds. The estimation of the 

new fault signal in (24) is enhanced by exploiting a low-

pass filter in the form of 

(60) 𝐹(𝑠) =
10

𝑠 + 10
 

As mentioned, the new fault signal in (10) is passed 

through a low-pass filter 𝐹(𝑠) in order to become 

smoother in (44). The measurement noise in all of the 

sensors appears as fluctuations. The measurement 

noises’ powers are chosen as ‖𝜑𝜔𝑟
‖ = 10−5, ‖𝜑𝜔𝑔

‖ =

10−1, ‖𝜑𝜏𝑔
‖ = 10+3, and ‖𝜑𝛽‖ = 10−4. It should be 

noted that the robustness of the proposed observer is not 

disturbed by the amplitude of the noises with known 

bounds. In addition, all the measurements could be 

properly filtered to avoid the harmful effects of the noises 

in state estimation. 

Figs. 5 & 6 illustrate the performance of second-order 

sliding mode observers in the presence of pitch actuator 

fault. The estimation signals converge to the system 

states in at most 2.5 seconds with less than 2.48 percent 

estimation error in generator speed. 

Rahnavard et al. [22] used an LTI first-order sliding 

mode observer to reconstruct wind turbine faults. 

Compared with this paper, both methods are fast and 

accurate and also overcome the output noises’ effects. 

But, the proposed LPV method covers all the wind turbine 

operating regions and no linearization approximations are 

required at the cost of heavier computations. While in 

[22], the nonlinear equations are linearized around an 

operating point. It requires gain-scheduling and switching 

among the models which reduces the robustness and 

model-accuracy of the method. 

Sloth et al. [17], used robust theory for LPV active-

fault-tolerant control of a benchmark model, similar to 

this paper. The LPV model in [17], contains linearizing the 

aerodynamic torque around a floating trajectory. The LPV 

model of the current paper uses a quintic multi-variable 

polynomial instead of linearization which improves the 

accuracy. 

A time-invariant sliding mode observer (with the same 

procedure for designing observer gains) is carried out for 

a nonlinear model in which the aerodynamic torque is 

regarded as the uncertainty (𝜉𝑁𝐿 = 𝑇𝑎/𝐽𝑟). It should be 

mentioned that 𝜉𝐿𝑃𝑉 = 𝑝21𝑉𝑤
2 from (55) is considered as 

the uncertainty signal, exerting the proposed LPV model. 

Fig. 7 illustrates the comparison between the fault 

reconstruction performance of the nonlinear model (in 

which the aerodynamic torque is regarded as an 

uncertainty) and the LPV model of a wind turbine from 

Section 5. As expected, the LPV model provides a more 
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accurate estimation of the actuator faults using the same 

filters (60).   

As an average value, the amplitude of fluctuations of 

fault reconstruction in the nonlinear model is 

approximately 11.5 times larger than fluctuations of fault 

reconstruction in the LPV model.  

In addition, the mean value of fault reconstruction of 

the nonlinear model is biased about 3 percent before 

fault occurrence which demonstrates the weaker 

performance of the observer, affected by large 

uncertainty (𝜉𝑁𝐿 = 𝑇𝑎/𝐽𝑟).  

It arises from the severe nonlinearity of aerodynamic 

torque which is handled using LPV methods. In this case, 

the magnitude of uncertainty in (58) is much less than 

that in the nonlinear model i.e. ‖𝜉𝐿𝑃𝑉‖ = 0.0288 𝑟𝑎𝑑/

𝑠2 in comparison with ‖𝜉𝑁𝐿‖ = 0.8979 𝑟𝑎𝑑/𝑠2. In 

addition, the observer LPV gain is calculated in an 

adaptive manner (38). 

Conclusion 

The application of SMO on a wind turbine system that 

contains a parameter varying model is investigated. The 

results of this paper show that the sliding mode fault 

reconstruction method is applicable for LPV systems. It is 

interesting to note that the severity of the pitch hydraulic 

pump is estimated while the model parameters are 

varying, sensors are faulty, and some parameters are 

uncertain.  

The LPV model of a wind turbine is derived by surface 

interpolation and fitting a quintic polynomial for the 

aerodynamic torque coefficient. The LPV model predicts 

the real behavior of the system with the highest error of 

3.2 percent.  

The robustness of the estimation and reconstruction 

scheme is another merit of the proposed SMO as shown 

in the results. Wind speed range is considered from 14 

m/s to 16 m/s and it is regarded as a stochastic input 

exerting aerodynamic torque. Fast and accurate fault 

reconstruction happens in 0.6 seconds with less than one 

percent error.  

Compared to the previous works, the proposed 

observer performance is less affected by the pitch 

actuator fault, and the fault severity is estimated in 2.5 

seconds with an error smaller than 2.48 percent. The LPV 

observer presented in this work covers both of the wind 

turbine operating regions which are more appropriate for 

large-scale applications.  

As a prospective, the proposed method will be applied 

to a real large wind turbine to assess its performance. In 

addition, the tuning mechanism of the design parameters 

of the proposed observer can be determined by using 

optimization methods such as genetic algorithm which 

results in better performance and smaller errors. 

 
 

Fig. 4: Fault indicator, natural frequency, and damping ratio of 
pitch actuator. The Blue (dashed) line is the actual signal and 

the red (solid) line is the estimation. 

 

 
 

Fig. 5: Measured state estimation (output estimation) using 
second-order SMO in the presence of pitch actuator. 
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Fig. 6: Unmeasured state estimation using second-order SMO 

in the presence of pitch actuator fault. 

 
 

Fig. 7: Comparison of fault reconstruction results in nonlinear 
model and LPV model. 
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