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Background and Objectives: Cryptographic hash functions are the linchpins of 
mobile services, blockchains, and many other technologies. Designing 
cryptographic hash functions has been approached by research communities from 
the physics, mathematics, computer science, and electrical engineering fields. The 
emergence of new hash functions, new hash constructions, and new requirements 
for application-specific hash functions, such as the ones of mobile services, have 
encouraged us to make a comparison of different hash functions and propose a 
new classification. 
Methods: Over 100 papers were surveyed and reviewed in detail. The research 
conducted in this paper has included four sections; article selection, detailed 
review of selected articles, data collection, and evaluation of results. Data were 
collected as new hash function properties, new hash function constructions, new 
hash function categories, and existing hash function attacks which are used to 
evaluate the results. 
Results: This paper surveys seven categories of hash functions including block 
cipher-based functions, algebraic-based functions, custom-designed functions, 
Memory-hard Functions (MHFs), Physical Unclonable Functions (PUFs), quantum 
hash functions and optical hash functions. To the best of our knowledge, the last 
four mentioned categories have not been sufficiently addressed in most existing 
surveys. Furthermore, this paper overviews hash-related adversaries and six hash 
construction variants. In addition, we employed the mentioned adversaries as 
evaluation criteria to illustrate how different categories of hash functions 
withstand the mentioned adversaries. Finally, the surveyed hash function 
categories were evaluated against mobile service requirements. 
Conclusion: In addition to new classification, our findings suggest using PUFs with 
polynomial-time error correction or possibly bitwise equivalents of algebraic 
structures that belongs to post-quantum cryptography as candidates to assist 
mobile service interaction requirements. 
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Introduction 
A cryptographic hash function is an integral part of a 

variety of applications such as digital signatures [1], 

authentication by static passwords, authentication by 

One-Time Passwords (OTP) [2], [3], data integrity [4], 

holographic encryption [5], Elliptic Curve Integrated 

Encryption Scheme (ECIES) [6], Merkle tree [7], WS-

Security [8], [9], data anonymization [10], Blockchain [11]-

[13], cryptocurrencies [14], [15], video similarity search 

[16], and hash chain based strong password 

authentication [17], to name a few. Nine uses of 

cryptographic hash functions have been reviewed by 
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Alkandari et al. [18] in detail.  

Hash functions were introduced in the late 1970s [19]. 

Ever since, hash function has received great interest, 

which has led to the construction of a wide variety of hash 

functions as well as attacks that attempt to invert or forge 

hash values. For example, the five-year NIST SHA-3 

competition which culminated in the selection of a 

hardware-effective algorithm, Keccak [20], [21], as the 

winner in 2012 demonstrated numerous hash functions 

and a security analysis of them. The Password Hashing 

Competition that ran from 2013 to 2015 culminated in the 

selection of an MHF algorithm, Argon2 [22], as a winner. 

To address constrained environments such as the 

continuously growing Internet of Things (IoT), NIST 

Lightweight competition was initiated in 2018 and is due 

to end in the year 2022. In March 2021, 10 lightweight 

cypher submissions were selected for the final round of 

the competition, and 3 out of the 10 finalists provide 

lightweight hashing functionalities. SM3 hash function 

[23] was introduced as a new Chinese standard in 2010. 

Streebog hash function [24] was introduced as a new 

Russian standard in 2013. In 2015, Kupyna hash function 

[25] was introduced as a new standard in Ukraine. 

Importantly, designing variants of hash functions has 

been undertaken by research communities from the fields 

of physics, mathematics, computer science, and electrical 

engineering, and this has led to the introduction of new 

categories of hash functions. Moreover, attacks based on 

physics, mathematics, computer science, and electrical 

engineering have been developed to compromise the 

security of a wide variety of hash dependent applications. 

This research surveys seven categories of hash 

functions, namely block cipher-based functions, 

algebraic-based functions, custom-designed hash 

functions, MHFs, PUFs, quantum hash functions, and 

optical hash functions. To the best of our knowledge, the 

last four mentioned categories have not been sufficiently 

addressed in most existing surveys [18], [19], [26]-[29]. 

On the other hand, with the proliferation of 

smartphones and tablets, mobile devices are introduced 

as a new computational platform for enterprise 

applications and other software systems, and are 

considered as major participants in IoT and related 

constrained environments (e.g. smart homes, smart 

cities). Although mobile devices are strong enough to 

consume and/or provide some services, they suffer from 

computational and communicational constraints on their 

resources and generally experience intermittent 

connectivity. A clear understanding of what exactly is 

needed from an application-specific hash function is an 

urgent requirement. Hence, we evaluate the surveyed 

categories against mobile software requirements. The 

remainder of this paper is structured as follows:  

I. Due to significant developments in the literature and 

the use of cryptographic hash functions, today, new 

cryptographic hash functions impose more properties 

than traditional cryptographic hash functions. These 

supplementary properties are discussed in Section II. 

II. SHA-3 competition (2007-2012) and Password 

Hashing Competition (2013-2015) fostered the design 

and analysis of processor-centric and memory-centric 

cryptographic hash functions, respectively. In turn, 

such events led to the introduction of new iterative 

and noniterative hash function constructions, six of 

which are overviewed in Section III. This section also 

reviews two hash function combiners. 

III. New categories of hash functions including PUFs, 

quantum hash functions, and optical hash functions, 

MHFs along with the Bandwidth-hard Functions (BHF) 

subcategory, and some attacks affecting each 

category are presented in Sections IV and V. Section IV 

briefs on what affecting attacks entail. Investigated 

hash functions and the proposed seven-category 

classification are presented in the Section V. The 

attacks presented in Section IV are used as evaluation 

criteria in Section V. 

IV. Mobile services suffer from computational and 

communicational problems. Hence, lightweight but 

not less secure cryptographic hash functions which 

secure interactions of resource constrained devices is 

an urgent need. Requirements which influence mobile 

services to choose some variants of cryptographic 

hash functions are presented in Section VI. In addition, 

Section VI discusses how each hash function category 

fits the mobile service requirements and why this 

research suggests PUFs with some enhancements and 

possibly bitwise equivalents of algebraic structures for 

mobile service consumption. 

V. Section VII discusses the selection of appropriate 

hash functions for four application scenarios. 

VI. Finally, in Section VIII the paper is summed up and 

conclusions are provided. 

Definition 

A hash function maps an input message of arbitrary 

length to a fixed length output which is called “hash,” 

“hash value,” or “message digest.” A hash function with 

n-bit output length is called an n-bit hash function. A good 

hash function produces random and uniform outputs. An 

output sequence resulted from applying a hash function 

in succession is called a “has chain” [2]. 

In addition to message, some hash functions may 

either accept a salt or a secret key. The former is called a 

salted hash function. Salts are randomly generated for 

each input message and are used for password hashing. 

The latter is usually used to build message authentication 

codes (MACs) and is called a keyed hash function. In other 

words, it serves as a checksum. In contrast to salts, keys 

are secrets and are not supposed to vary for different 
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messages. 

Depending on the application, a hash function h may 

need to support some or all of the following properties: 

I. It maps arbitrary length input x to h(x) efficiently. An 

efficient implementation may be achieved in software 

or hardware or both.   

II. One-way property or pre-image resistant property: 

For any given 𝑦 in the image of ℎ, it is not 

computationally feasible to find a message 𝑥 such that 

𝑦 = ℎ(𝑥).  

III. Second pre-image resistant property: For any given 

message 𝑥, it is not computationally feasible to find a 

message 𝑥′ such that 𝑥 ≠ 𝑥′ and ℎ(𝑥) = ℎ(𝑥′). 

IV. Collision resistant property: It is not computationally 

feasible to find a pair 𝑥 and 𝑥′ such that 𝑥 ≠ 𝑥′ and 

ℎ(𝑥) = ℎ(𝑥′). 

V. Second collision resistant property: An attacker 

should not be able to use a given collision ℎ(𝑥1) =

ℎ(𝑥1
′ ) to find another collision ℎ(𝑥2) = ℎ(𝑥2

′ ).                              

VI. Hiding property: Given ℎ(𝑟||𝑥) so that 𝑟 is chosen 

from a high min‐entropy probability distribution and 

|| denotes concatenation of values, it is not 

computationally feasible to find 𝑥 [30]. This property 

is a variant of one-way property and originates from 

blockchain terminology. 

VII. Puzzle friendliness property: Given 𝑟 and ℎ(𝑟||𝑥) so 

that 𝑟 comes from a spread‐out set and ℎ is an n-bit 

hash function, it is computationally infeasible to find 𝑥 

in time significantly less than 2𝑛 [30]. Bitcoin mining is 

a race to solve such a computational puzzle. 

VIII. Chosen-Target-Forced-Prefix (CTFP) preimage 

resistance property: Committing a hash value ℎ, 

without knowing the prefix of the message that will be 

hashed should be difficult [31],  [32].  

IX. Chosen-Target-Forced-Midfix (CTFM) preimage 

resistance property: Committing a hash value ℎ, 

without knowing any part of the message that will be 

hashed should be difficult [33].   

X. Application-Specific Integrated Circuit (ASIC) 

resistance property: It should not be easy to compute 

on ASIC machines [34].  

XI. Robustness property, aka robust video hashing 

property: For a given pair 𝑥 and 𝑥′ such that 𝑥 ≠ 𝑥′, 

ℎ(𝑥) = ℎ(𝑥′) as long as 𝑥 and 𝑥′ represent the same 

video content 𝑠, even though they represent it in 

different manners. In plain English, a hash function ℎ 

used for video hashing should be robust against 

content-preserving changes such as encoding and 

blurring [16], [35].    

The first four properties are mentioned in many 

references, but the rest are more or less new. Property I 

emphasizes that a hash function may be used by 

resource-constrained devices or to provide a fingerprint 

for a possibly very large file. An example of this property 

is a parameter provided by SHA-3 hash function to trade-

off security and performance [20], [21]. As another 

example, some hash functions such as MD-6 provide 

parallel implementation to speed up hashing a long 

message on multicore processors [36]. 

A hash function that supports Properties I and II is 

called a one-way hash function [1], [37]. A cryptographic 

hash function is a one-way hash function that provides 

second pre-image and collision resistant properties. 

Since the introduction of cryptographic hash functions 

in the late 1970s, lots of hash functions have emerged 

that support pre-image resistance and second pre-image 

resistance properties; providing collision resistance, 

however, is more challenging. Fortunately, while few of 

hash function applications, such as digital signature, rely 

on collision resistance, for others providing pre-image 

resistance and second pre-image resistance properties is 

sufficient [2], [19]. Incidentally, there are collision-free 

hash functions as well, such as the lattice-based hash 

function proposed by Goldreich et al. [38]. 

Regarding the special ways that hash functions are 

employed in blockchain, hiding and puzzle friendliness 

properties are defined. Properties VI and VII harden 

bitcoin mining by reducing its surface of vulnerability, but 

as bitcoin lacks Property X, there are ASIC machines which 

speed up mining with reduced cost per bitcoin mined. 

Properties VIII and IX are preventive criteria to resist 

against herding attack (Section IV-A-4). Finally, Property XI 

focuses video hashing design on semantic content 

changes [16], [35] extracted from segmented video 

structural elements such as video shots [39]. Illustrated 

with UML class diagram, Fig. 1 depicts how hash 

functions, one-way hash functions, and cryptographic 

hash functions are subsequently extended (denoted by 

UML Generalization relationship) by adding pre-image 

property and both second pre-image and collision 

resistant properties, respectively. Fig. 1 further shows 

how application-specific hash functions, such as 

blockchain specific and video hash functions, enrich the 

required properties to satisfy application-specific 

requirements. 

One may wonder whether a practical hash function 

without one-way property exists. Murmur hash [40] is an 

example of a hash function which is not designed for one-

wayness. Non-cryptographic hash functions (NCHFs) [41] 

provide fast lookup capability. This paper concentrates on 

cryptographic hash functions, referred to hereafter as 

hash functions. 

Constructions and Combiners 

Designing a hash function entails making important 

decision on how to mix input message bits all together. 

While a large number of hash functions exists, they all 

have been designed based on a handful of constructions.  
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Hash function constructions are important in 

combining all bits of arbitrary-length messages in a way 

that holds properties such as collision resistance. These 

constructions split an arbitrary-length message into 

equal-sized blocks and iterate through the blocks to 

combine block bits all together. Some constructions 

combine block bits themselves, while others apply a 

compression function on each block and combine the 

results.  

A compression function is a one-way function which 

takes a fixed length block of message along with a 

chaining variable as input, mixes the bits of input with 

each other, and returns a shorter, fixed-length output. 

The way that a hash function construction combines 

the results of its underlying compression function is called 

domain extension [42]. For some domain extensions, if the 

underling compression function has a security property 

such as collision resistance, that domain extension can 

produce hash functions that retain that property. For 

example, it is proven that hash functions based on the 

Merkle-Damgård construction (Section III-B-1) which use 

a fixed initial value along with an appropriate padding are 

collision resistant as long as their corresponding 

compression function is collision resistant.  

Moreover, some other domain extensions such as the 

Zipper hash construction [43] (Section III-B-3) produce 

hash functions which hold properties such as collision 

resistance regardless of their underlying compression 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section reviews four iterative and two 

noniterative hash function constructions. The former 

includes most common constructions such as Merkle-

Damgård and Sponge, while the latter includes tree style 

and graph-based hash function constructions. Other 

rarely used hash function constructions, such as Wide-

pipe and the Hash Iterated Framework, are not included 

in this survey. Both of the omitted constructions aim to 

solve internal collision problems. The former uses output 

transformation, while the latter uses a salt and a counter 

to achieve this goal [44]. 

 Finally, this section reviews two hash function 

combiners (simply combiner henceforth). A combiner 

combines the output of two hash functions or the output 

of the compression functions of two hash functions [45]. 

As an example, bitcoin uses double SHA-256 (i.e. SHA-

256(SHA-256(message))) and a combination of RIPEMD-

160 and SHA-256 (i.e. RIPEMD-160(SHA-256(message))) 

that are examples of combining hash functions in a 

sequential order. As another example, a combination of 

MD-5 and SHA-1 was used by SSL/TLS [46]. Concatenation 

combiners and XOR combiners are also used [45]. Merkle 

tree and Zipper hash combiners are reviewed in this 

section. The former combines the outputs of a hash 

function in tree style, while the latter combines the 

outputs of two different compression functions in reverse 

order. 

A. Noniterative Constructions 

This section first reviews Merkle tree and then 

 

Fig. 1: Hierarhy of hash functions. 
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discusses tree- and graph-based constructions. These 

constructions map arbitrary-length input to tree leaves or 

graph walks and process the resulting tree or graph. 

1. Merkle Tree: Merkle tree [7] is a combiner and uses 

a binary tree structure to allow the integrity of large data 

sets to be verified quickly. One of its recent applications 

is bitcoin. Fig. 2 depicts an example of a Merkle tree [14]. 

The tree’s leaves are data blocks we want to hash. The 

hash of each leaf node is stored in its immediate parent 

node. Then, the hash of each pair of nodes is 

concatenated and hashed together, until there is one root 

hash known as the Merkle root [14]. Data integrity of a 

block is verified by checking hashes from that block to the 

root node (Fig. 3 [14], [30]). A tree consisting of 𝑛 nodes 

requires verifying about log 𝑛 items [30], including 

verifying hash of that data block and its sibling-node (if it 

exists), and then proceeds upward until it reaches the top. 

2. MD-6 Tree style construction: MD-6 [36] uses a 4-ary 

tree structure to achieve parallelism along with 

alternative sequential mode. As a source of parallelism, 

each  round   of    its    compression    function    uses    16 

parallelizable loops. Moreover, it parallelizes a quaternary 

Merkle tree-like structure with a height adjustment 

parameter (L). Regarding L, there are three modes of 

operation: 

• L = 64 as the default and means fully tree-based mode. 

• L = 0 means sequential mode and uses a Merkle-

Damgård construction. 

• Specifying a number greater than 0 and less than 64 

means hybrid mode. First using L level tree, and then 

sequential mode.  

Fig. 4 shows an example of an MD-6 tree [36]. MD-6 

uses a 4-to-1 compression function at each internal node 

of the tree. Tree leaves store blocks of data to be hashed, 

and internal nodes store the results of applying 

compression function on the concatenated data of four 

child nodes. The compression function at the root node is 

flagged to return truncated result as a MD-6 hash value. 

MD-6 was submitted to the SHA-3 competition, but 

due to an error found in its security proof against 

differential attacks [19], it did not proceed to the second 

round of that competition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: An example of a Merkle tree construction [14]. 

 

 
 

Fig. 3: Verifying hashes from a block to the root node [14], [30]. 
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3. Graph based constructions: There are a number of 

hash functions defined based on Cayley graphs which are 

expanders too. A Cayley graph is one that encodes a group 

based on its generator set. An expander graph is a sparse 

but highly connected graph, so that each small set of 

vertices has many neighbors. Cayley graphs which map 

non-Abelian finite groups and are expanders were used to 

design hash functions. An example is the elliptic curves-

based graph hash function defined by Charles et al. [47]. 

Regarding the hardness of finding cycles in an expander 

graph, this graph hash function used the input message to 

walk around an expander graph and defined collision-

resistancy as equivalent to finding a cycle in such a highly 

connected graph.  

In addition, the preimage resistance of some graph 

hash functions depends on the hardness of the 

Factorization problem in non-Abelian groups [48]. 

B. Iterative Constructions 

These constructions iterate through an arbitrary-

length input to compute bitwise operations such as XOR  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Shoup construction: The Shoup construction aims to 

achieve pre-image resistance and is depicted in Fig. 6  

[53], [54]. It is similar to the Merkle-Damgård 

construction along with some mask bits that are XORed 

with the results of the compression function at each 

iteration [53], [54]. Bitwise XOR operations are 

represented by the ⊕ symbol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

on fixed-length blocks of that input. Each iteration mixes 

an input block with either an initial value or the output of 

its previous iteration. The input message will be padded if 

its length is not an integer multiple of the block size. Hash 

functions based on such constructions are known as 

iterated cryptographic hash functions [49]. 

1. Merkle-Damgård construction: Merkle-Damgård 

construction [50], [51] was used by known hash functions 

MD-5, SHA-1, and SHA-2. It allows the construction of 

collision-resistant hash functions from collision-resistant 

compression functions when fixed initial values are used 

and the length of the input message is appended to it [19]. 

The same, however, is not true about pre-image 

resistance and second pre-image resistance properties 

[52]. Fig. 5 represents this construction [28]; Mi labelled 

boxes represent message blocks, F labelled trapezoids 

represent compression functions, solid lines represent 

dataflows, and other symbols intuitively represent initial 

value and output digest. This notation is common in 

cryptography literature with some exceptions that are 

considered irrelevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Zipper hash construction: Zipper hash combines the 

results of two different compression functions in reverse 

order. Hence, it is a hash function combiner and a hash 

function construction as well. Regarding the second 

collision-resistant property, this construction aims to 

prevent the use of a successful attack on a compression 

function to attack a hash function which applies it. It 

 
 

Fig. 4: An example of an MD-6 tree construction [36]. 

 
 

Fig. 5: Merkle-Damgård construction [28]. 
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employs two compression functions, f0 and f1, which 

process input blocks in the reverse order [43].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is depicted in Fig. 7 [43] and includes the follow 

steps: 

Step 1: Pad input message 𝑀 so that the length of 

padded message 𝑃(𝑀) is a multiple of block size (i.e. 

input size of compression functions 𝑓0 and 𝑓1). Say 

blocks 𝑀1, 𝑀2, … , 𝑀𝑡 . 

Step 2: Compute ℎ1 as 𝑓0(𝑀1, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒), and 

ℎ2, … , ℎ𝑡  as ℎ𝑖 = 𝑓0(𝑀𝑖 , ℎ𝑖−1). 

Step 3: Compute ℎ1
′   as 𝑓1(𝑀𝑡 , ℎ𝑡), and ℎ2

′ , … , ℎ𝑡
′  as 

ℎ𝑖
′ = 𝑓1(𝑀𝑡−𝑖+1, ℎ𝑖−1

′ ). 

Step 4: Compute output transformation function g(ℎ𝑡
′ ) 

as hash value of input message.  

The output transformation function is represented by a g 

labelled trapezoid. 

A second pre-image attack on Zipper hash was 

introduced [42], although the time complexity of this 

attack was not much better than the time complexity of 

the brute force attack (i.e. O (2n)). In addition, Herding 

attack (Section IV.A.4) was extended to attack the Zipper 

hash and other hash function constructions which process 

each message block more than once [55]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4: Sponge construction: The Sponge construction [20], 

[21] is used by the Keccak hash function which won the 

SHA-3 competition. This construction takes the padding 

algorithm as input and adds zero initiated bits which are 

called capacity (c) to the processing bits of each iteration 

which are called bit-rate (r). The ratio of capacity bits to 

bit-rate determines the balance between security and 

performance [21].  

Fig. 8(a) shows how an input message is padded and 

processed by appending capacity bits to each block in 

each iteration [21]. Accomplishing such iteration through 

all blocks is called the absorbing phase which processes 

b= r + c bits at each iteration. In addition, the Sponge 

construction allows users to customize the output size. If 

the length of required output (l) is not greater than b, then 

the first l bit of b is returned as output; if l>b, however, 

then the squeezing phase begins, so that the first r bit of 

the output of all squeezing iterations are concatenated 

and returned as output. Fig. 8(b) shows the squeezing 

phase [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Zipper hash construction [43]. 

 
 

Fig. 6: Shoup construction [53], [54]. 
 
 
 
 
 
 
 
 

 
Fig. 7: Zipper hash construction [43]. 
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Fig. 8: Sponge construction, (a) input padding (b) squeezing 

output [21]. 

 

Attacks and Adversaries 

How a hash function resists different attacks is the 

most important criterion for gaining wide acceptance. 

Loosely speaking, there are four categories of approaches 

to make an attack on a hash function: generic attacks, 

cryptanalysis attacks, quantum adversaries, and 

implementation specific adversaries. This section briefly 

describes these categories, and Table 1 depicts the target, 

method, and complexity of each attack category. The 

parameter n used in the last column of Table 1 denotes 

the length of input message which will be hashed. 

A. Generic Attacks 

Generic attacks are slow, but they apply to all hash 

functions, regardless of their algorithms and 

corresponding implementations. Thus, these attacks 

define a lower band for the output length of secure hash 

functions [56]. These attacks call a hash function or its 

compression function a number of times and seek 

relationships between the results. As a generic attack 

uses the black box model, it may cause exponential time 

complexity in the form of 𝜃(2(𝑛−𝑘)/𝑎), where n is output 

length of hash function, a indicates the possible order 

reduction by statistical methods (e.g., birthday attack  

and herding attack), and k is the order reduction achieved 

in the cost of 𝜃(2𝑘) space (herding attack and rainbow 

tables). See Table 2.  

1: Brute force attacks: A brute force attack on an n-bit 

hash function evaluates that function on 𝜃(2𝑛) distinct 

input values to find (second) pre-images; considering 

multiple targets, say 𝜃(2𝑡) targets, the cost can be 

reduced to 𝜃(2𝑛−𝑡), while this degradation can be 

answered by parameterization of the hash function [19]. 

Furthermore, in some cases such as password hashing, 

rainbow tables, which are cached tables of precomputed 

hash values, may accelerate these attacks and trade 

increased space usage with decreased time. But random 

salting [57] and automatic padding [58] prevent such 

lookup table creations.  

A brute force attack shows the worst case to find a pre-

image or second pre-image on an n-bit hash function. It 

determines a lower bound for the output length of hash 

function to resist pre-image and second pre-image 

attacks (Similarly, birthday attack defines a lower bound 

for the output length of hash function to resist against 

collision attacks). For example, 224 bits is the lower 

bound used by SHA-2 and SHA-3 hash functions.  

2: Birthday attacks: These algorithms find a collision 

based on the so-called birthday paradox in the cost of 

𝜃(2𝑛/2) with a probability greater than ½.  

Seemingly unintuitive, the birthday paradox states that 

23 people are sufficient to have a shared birthday 

occurrence with ½ probability, i.e. the probability of 

finding a shared birthday (i.e. collision) for 𝑡 people whose 

birthdays are independently distributed among the n = 

365 days of a non-leap year is 𝜃(𝑡2/𝑛) if 𝑡 < 𝑛1/2  and is a 

constant value otherwise [56]; the exact value is 

computed by the possibility that each investigated person 

does not share their birthday with previously investigated 

persons and subtracting that product value from 1 [1]; 

this probability is denoted in (1). 

𝑝 = 1 − ∏ (365 − 𝑖)/365𝑡−1
𝑖=0 .                                           (1) 

This attack stores 𝑂(2𝑛/2) values, and it may be 

possible to trade off required time against memory as 

described by Katz and Lindell [56].   



Brand New Categories of Cryptographic Hash Functions: A Survey 

J. Electr. Comput. Eng. Innovations, 11(2): 335-354, 2023                                                                         343 
 

 

To counter this attack, one may use Universal One-

Way Hash Functions (UOWHF), which are a class of hash 

functions that are indexed by a parameter (key) and select 

function instance based on selected challenge input [2]. 

3: Meet-in-the-middle attacks: These attacks apply to 

multiple encryption schemes such as double DES and find 

matches between encrypted values of one scheme and 

decrypted values of another scheme [59]. Derived from 

encryption, these attacks were applied for finding pre-

images of reduced variants of common hash functions 

such as MD4 [60], [61], MD-5 [61], SHA-1 [62], [63] and 

SHA-2 [60], [64]. For example, Aoki et al. [64] divided the 

steps of the compression function and used a pre-image 

of the compression function to gain a pre-image of the 

hash function. As another example, Knellwolf and 

Khovratovich [62] employed the meet-in-the-middle 

technique along with differential cryptanalysis 

(differential cryptanalysis is discussed in section IV-B-3) to 

attack SHA-1. 

4: Herding attack: A herding attack, aka the 

Nostradamus attack, finds (second) pre-images on a hash 

function by searching collisions among precomputed  

 

compression functions. 

It uses the birthday paradox to find the mentioned 

collisions and constitutes a diamond-shaped network of 

these collisions to determine a hash value that can be 

declared as a commitment to some predictions about the 

future.  

At a point in the future, a second pre-image of that 

value which includes some happened events will be 

published as evidence to support that assertion [65], [66]. 

This attack finds a suffix that can be appended to a 

message, so that the concatenated message results in a 

hash value which is equal to the hash value claimed by 

attacker.  

Mennink [32] improved the flexibility of the attack by 

adjusting trade-off between the speed of attack and the 

length of the (second) pre-image.  

The herding attack was designed to target hash 

functions based on the Merkle–Damgard construction. 

Moreover, Andreeva et al. [55] showed the success of 

herding attacks on four other hash function 

constructions, namely concatenated, zipper, hash-twice, 

and tree hash constructions. constructions. 

Table 1: Categories of Attacks on Hash Functions; Targets and Methods.  n, a, k, b, c, d and e present output length of hash function, 

possible order reduction by statistical methods, order reduction achieved in the cost of 𝜃(2𝑘) space, polynomial time constant 
value, polynomial time constant value, polynomial time constant value, sub-exponential time constant value, and , polynomial time 
constant value respectively 
 

Category Target Method Elements Time Complexity 

Generic attacks The output of hash function (hash value) 

or the output of compression function  

Statistical methods and 

probability theory 
𝜃(2(𝑛−𝑘)/𝑎); where k 

and a are constant 

values 

Cryptanalysis Steps of algorithm Detecting no random 

behavior in parts of a hash 

algorithm 

From 𝜃(𝑛𝑏) to 𝜃(2𝑛), 

where b is a constant 

value 

Quantum adversaries Steps of algorithm Quantum solution for 

classically non-polynomial 

steps of algorithm, such as 

Integer Factorization and 

Discrete Logarithm.  

From 𝜃(𝑛𝑐) to 𝜃(2𝑛/𝑑), 

where c is a constant 

value 

Implementation 

specific attacks 

Physical 

security attacks 

Dependency of Time 

and power 

consumption to 

executed operations 

and processed data. 

Electromagnetic 

fields which are 

emitted by 

processors. 

Time measurements to 

verify the correlation 

between a partial key 

value and the expected 

running time, power 

traces, and also measuring 

near- and far- field of 

processors 

𝜃(𝑛𝑒), where e is a 

constant value – few 

declared time 

complexities. 

Software 

implementation 

attacks 

Steps of algorithm 

implemented in a 

vulnerable 

programming 

language or in a 

vulnerable manner. 

For example, buffer 

overflow for algorithms 

implemented in C 

language without 

boundary checking 
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B. Cryptanalysis 

Cryptanalysis exploits logical weaknesses in a hash 

algorithm to invert or forge hash values [67].  

These attacks are generally more efficient than generic 

attacks, but their applicability is limited to either a specific 

hash function or a specific implementation of a hash 

function.  

This section overviews four attacks in this category: 

length extension attack, algebraic cryptanalysis, 

differential cryptanalysis, and rebound attack.  

The first exploits the lack of output transformations, 

and the second breaks codes by solving equivalent 

equations. The others detect primitives that hold 

properties leading to a non-random behavior through a 

number of rounds. Some cryptanalysis attacks operate in 

polynomial time (e.g., length extension attack and 

differential cryptanalysis), while others operate in 

exponential time and space complexity (e.g., rebound 

attack). See Table 2. 

1: Length Extension Attack: Some hash function 

constructions, such as the known Merkle–Damgård one, 

process subsequent blocks, mix the results subsequently, 

and provide the internal state of the processed blocks as 

a hash value.  

Exposure of the internal state makes the hash function 

vulnerable to length extension attack.  

Message authentication is an example of an application 

which is susceptible to length extension attack. 

Applications may authenticate messages by prepending a 

secret value to the message and computing the hash of 

the concatenated message at both sides (i.e. sender and 

receiver) [67].  

Such applications are susceptible to length extension 

attack if they use a vulnerable hash algorithm and the 

attacker has access to the message and its hash value, and 

they know or guess the length of the secret, although they 

do not know the secret itself. 

This attack is implemented by initiating the hash 

algorithm with a given internal state, which is the hash 

value of a secret prepended to a message, and appending 

attacker data as subsequent blocks by subsequently 

feeding the algorithm.  

Next, the attacker will submit the computed hash value 

along with a concatenated message that involves the 

original message, padding of the original algorithm, and 

attacker data to the receiver.  

Output transformation is a solution to resist length 

extension attack [19] that is employed by hash functions 

such as Modular Arithmetic Secure Hash (MASH) [2] and 

MD-6 [36].  

2: Algebraic Cryptanalysis: Algebraic cryptanalysis is a 

method for attacking hash functions by solving 

polynomial systems of equations [68]. Some hash 

functions are reduced to instances of a satisfiability 

problem [69]. Such encoding of cryptographic algorithms 

and the subsequent reasoning is called logical 

cryptanalysis [70]. There are many examples of this type 

of attack to find second pre-images on round reduced 

variants of MD-4 [71], MD-5 [71] and SHA-1 [71], pre-

images on a round reduced variant of MD-4 [72], and 

Keccak [73], [74]. 

3: Differential Cryptanalysis: Differential cryptanalysis 

seeks the relation between input differences and 

corresponding output differences. It is quite common to 

see eXclusive OR (XOR) as the difference operator. In 

addition, operators such as modular subtraction have 

been used to successfully attack MD-5 [75] and SHA-1 [76] 

hash functions.  

C. Quantum Adversaries 

This section discusses quantum adversaries. 

Companies such as IBM, Google, D-Wave, and Microsoft 

have developed quantum computers using various types 

of qubits.  

D-Wave practical quantum devices have attracted 

research interest [77]. While up to eight trapped-ion 

qubits, about ten nuclear magnetic resonance qubits, and 

about ten optic qubits were considered as the maximum 

number of qubits in 2010 [78], in 2017, D-Wave 

announced and shipped its new commercial quantum 

computer equipped with 2000 qubits [79] (D-Wave uses 

Adiabatic quantum computation instead of gate-based 

quantum computation).  

In 2019, D-Wave announced a new 5000 qubit device 

too. 

Moreover, Microsoft announced that the company is 

going to offer a full-fledged topological quantum 

computing system which includes hardware, software, 

and programming languages, so that a free preview of the 

programming language which supports simulation of up 

to 30 logical qubits on personal computers (or up to 40 

logical qubits on Azure) would be released by the end of 

the 2017 [80]. Microsoft Quantum Development Kit 

including Q# programming language is a released part of 

this stack.  

Moreover, programming languages and software 

development kits (SDKs) such as Google qsim [81], IBM 

Qiskit [82], D-Wave Ocean [83], Scaffold [84], Quipper 

[85], and Microsoft LIQUi|> [86] facilitate the transition 

from high-level quantum algorithms to low-level gate 

representation, different architectures, error correction, 

and so on. 

The emergence of these commercial quantum 

computers (D-Wave and in future Microsoft) connoted 

the existence of both opportunity of quantum 

cryptography schemes and threat of quantum 

adversaries.  

Tackling the latter is referred to as post-quantum 

cryptography.  
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Table 2: Categories of Hash Functions – Analysis and applicability of attacks 
 

Category Algorithm  Advantages Disadvantages Applicable attacks 

H
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fu
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ct
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b
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a 

b
lo

ck
 

ci
p

h
er

 

A block cypher 
algorithm strengthened 
with one-wayness. 

Reuse of existing block 
cypher effort and benefit 
from compact 
implementation due to the 
cypher reuse  

Each function of these category 
maps an invertible block cypher 
algorithm to a noninvertible hash 
function. The second vulnerability 
map is between 64- and 128-bit 
block length of block cyphers and 
224- to 1024-bit length of hash 
values required for securing 
against generic attacks.  
Furthermore, any vulnerability on 
the underlying block cypher may 
lead to a vulnerability on the 
associated hash function.    

There are successful known side 
channel attacks for block cyphers 
such as DES and AES. These attacks 
are candidates for attacking the 
corresponding hash functions.  

H
as

h
 

fu
n

ct
io

n
s 

b
as

ed
 

o
n

 

al
ge

b
ra

ic
 s

tr
u

ct
u

re
s 

Reduction of pre-image 
resistance, second pre-
image resistance, and 
collision search to 
computationally hard 
problems such as 
Integer Factorization 
and square root.  

Provable security Computation of these hash 
functions includes operations such 
as modular multiplication that are 
time-consuming and impose 
dependency between processed 
data and consumed time and 
power. Hence, many of the hash 
functions in this category are slow 
and are prone to side channel 
attacks.  

Firstly, some computationally hard 
problems such as Integer 
Factorization which belong to BQP 
computational complexity class 
have known attacks for specific 
values of parameters. Secondly, 
due to the use of data dependent 
operations such as modular 
multiplication, these hash 
functions are prone to side channel 
attacks.  

C
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h
as

h
 f

u
n

ct
io

n
s 

Designed from scratch 
and usually use bitwise 
operations to cause 
confusion and diffusion. 

Usually have better 
performance than 
algebraic-based hash 
functions   

The lack of provable security is 
commonplace in these hash 
functions.  

The use of bitwise operations (e.g., 
XOR, AND, and circular shifts) 
improves their performance and 
reduces their vulnerability against 
side channel attacks. In different 
categories, however, successful 
attacks on these hash functions are 
reported.  

P
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Instead of explicit 
algorithms, they benefit 
from intrinsic 
randomness resulted 
from manufacturing 
variations. 

The absence of any explicit 
algorithms makes 
cryptanalysis and quantum 
adversaries inapplicable. 
In addition, PUFs are 
tamper resistant. Hence, 
active physical attacks are 
inapplicable, too. 

The use of PUFs requires skill in 
hardware description languages 
such as VHDL. In essence, PUFs 
map fixed length inputs to fixed 
length outputs, while arbitrary 
length input is desired. Moreover, 
they require error correction 
enhancements. 

Some variants of side channel 
attacks (i.e. power analysis and 
timing attacks) enhanced by 
machine learning are used to read 
the output of these functions.  

Q
u

an
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m
 

h
as

h
 

fu
n

ct
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n
s 

Problems that are zero-
knowledge against 
general quantum 
attacks are 
implemented by either 
a classical or a quantum 
algorithm. 

Security is proved by 
reduction to 
computationally hard 
problems which belong to 
NP-BQP. That is, they 
belong to NP 
computational complexity 
class but not BQP.  

Problems such as Approximate 
Closest Lattice Vector require 
considerable computational 
resources even for the 
computation of a hash value.   

Being new, there are no reported 
attacks on these hash functions, 
and there is no evident proof of 
their strength against 
cryptanalysis.  

M
em

o
ry

 h
ar

d
 f

u
n

ct
io

n
s 

Algorithms with huge 
amounts of memory 
usage and memory 
considerations 
including input-
independent memory 
addressing, input-
dependent memory 
addressing, and 
planned number of 
passes over the 
memory 

Increasing the cost of ASIC-
based attacks in terms of 
memory usage and energy 
consumption   

As they intentionally lack the 
efficient input-to-output mapping 
property (Property I in Section 2), 
many resource constrained 
devices cannot afford to use these 
functions.  

Cryptanalysis attacks which employ 
time-memory trade–off may target 
MHFs with input-independent 
memory addressing. Furthermore, 
side channel attacks may target 
MHFs with input-dependent 
memory addressing. 

O
p

ti
ca

l 
h

as
h

 

fu
n

ct
io

n
s 

Use “confusion” and 
“diffusion” of 
modulated light instead 
of computation of a 
compression function 

Low processing amounts 
due to taking advantage of 
natural randomness 
instead of computation 

Complexity of setting up an 
optoelectronic system in a noisy 
environment   

Being new, there are no reported 
attacks on these hash functions, 
and although there is no explicit 
algorithm, there is no evident proof 
of their strength against 
cryptanalysis. 
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In brief, quantum computing upsides include: 

I. Significant speedup: There are quantum algorithms 

for some computationally hard problems such as 

Factoring and Ground State Estimation that are 

exponentially faster than the best classical algorithms 

for those problems [87]. Such problems belong to the 

Bounded-error Quantum Polynomial (BQP) 

computational complexity class which can be solved 

efficiently on a quantum computer with a bounded 

probability of error [88]. 

Their disadvantages include: 

I. Error correction: Resisting communication channel 

noise errors such as bit-flip errors and phase errors, 

and tolerating computational faults such as faulty 

logic gates are necessary and are achieved through 

error correction techniques such as employing 

redundant qubits [88]. 

II. Scalability problems: Existence of noise and 

entanglement phenomena cause scalability problems 

[89].  

Shor [90] introduced polynomial time algorithms for 

Factorization and Discrete Logarithms on quantum 

computers. Grover’s quantum searching algorithm [91], 

[92] can find a 256-bit AES key in about 2128 quantum 

operations [93] and is used to find hash pre-images [94]. 

Furthermore, there are quantum attacks to find hash 

collisions [95]. 

In contrast to problems such as Factorization and 

Discrete Logarithms which have polynomial time 

quantum algorithms [90], post-quantum cryptography 

[96] tends to introduce problems that cannot be solved 

by quantum computers in polynomial time. Watrous [97] 

proved that problems such as Graph Isomorphism and 

Graph 3-coloring are zero-knowledge against general 

quantum attacks. Kashefi and Kerenidis [98] defined 

several quantum one-way functions such as Graph Non-

Isomorphism, Approximate Closest Lattice Vector, and 

Group Non-Membership and generalize their results for 

any hard instance of Circuit Quantum Sampling problem 

as a candidate quantum one-way function. 

 D. Physical Security: Side Channel Attacks 

Classical cryptanalysis views steps of algorithms as 

transformation of inputs to outputs. Conversely, physical 

security views specific characteristics imposed by an 

implementation of those steps which are running on a 

specific processor in a specific environment. Physical 

attacks may or may not depackage the chip; such 

situations are called invasive or noninvasive attacks, 

respectively. In addition, physical attacks may or may not 

try to tamper with the proper functioning of the device 

and are called active or passive attacks, respectively [2]. 

Side-channel attacks, or environmental attacks, exploit 

dependency of information such as running time, power 

consumption, and electromagnetic emissions of operated 

data and performing instructions to (statistically) learn 

about an algorithm’s internal state [2], [99] or expose the 

device’s secrets. The SHA-3 finalists were evaluated 

against three variants of side channel attack: timing 

attack, power analysis, and electromagnetic analysis. The 

evaluation declared the sufficient security margin of all 

finalists and found collisions on the round reduced variant 

of Keccak [99]. Cryptographic algorithms prevent such 

attacks by avoiding the use of data-dependent or power-

dependent operations such as multiplications, data-

dependent rotations, and table lookups. 

PUFs (See Section V-D) are tamper resistant variants of 

hash functions, but there are polynomial time side 

channel attacks on PUFs [100] that enable the attacker to 

read the generated output value. 

In addition to physical security, there are adversaries 

which consider an implementation of a security primitive 

from the viewpoint of software and programming 

language flaws. The buffer overflow found on the C 

language implementation of MD-6 is an instance of such 

software implementation attacks [19]. 

Hash Function Categories 

This section describes cryptographic hash functions in 

seven categories and analyses the strengths and 

vulnerabilities of each category (See Table 2). The 

proposed seven-category classification includes hash 

functions based on a block cipher, hash functions based 

on algebraic structures, custom-designed hash functions, 

PUFs, quantum hash functions, MHFs, and optical hash 

functions. To the best of our knowledge, the last four 

mentioned categories have not been sufficiently 

addressed in most existing surveys [18], [19], [26]-[29]. 

A. Hash Functions Based on Block Ciphers 

Developed mostly based on DES and AES, these hash 

functions reuse underlying block ciphers to achieve a 

compact implementation. The main challenges of these 

hash functions lie in designing a noninvertible 

construction based on an invertible block cipher. The 

SHA-3 finalist BLAKE [101] and Russian standard hash 

Streebog [24] are two known hash functions of this 

category. 

B. Hash Functions Based on Algebraic Structures 

Most hash functions in this category use 

computationally hard problems such as Factorization, 

Discrete Logarithm, Knapsack, Lattice Problems, and 

Elliptic Curves and prove their security by reduction [102]. 

Some of these hash functions, though, allow the insertion 

of trapdoors to construct collisions by the person who 

chooses the design parameters [2]. The functions based 

on modular arithmetic suffer from being slow. There are 

many attacks for specific instances of hard problems, such 

as RSA [103]. As an example, collision resistancy of Very 

Smooth Hash (VHA) [104] is reduced to find nontrivial 
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modular square roots, but this function is not pre-image 

resistant [105]. Modular Arithmetic Secure Hash (MASH) 

was published as an International Organization for 

Standardization (ISO) standard on December 1998 and 

was reviewed and re-confirmed as current version of 

standard in 2022 [106]. It has strong output 

transformation but its security is not supported by a 

mathematical proof. Finite field is used to define some 

hash functions [107]. A recent survey on hash functions 

based on computational problems defined on lattices was 

provided by Mishra et al [108].  Furthermore, hash 

functions based on Cellular Automata [109] are newly 

introduced members of this category. 

Finally, another important family of hash functions 

comprises chaos-based hash functions. A chaotic system 

behaves in an unpredictable but deterministic manner 

and is highly sensitive to initial conditions, so a very small 

change in its initial state may have a large effect on its 

later state. A chaotic map is a mathematical function 

which states such a chaotic behavior in one- or multi-

dimensions. As an example, Teh et al. [110] presented a 

compression function based on a one-dimensional 

chaotic map and used Merkle–Damgard construction to 

process arbitrary-length messages. 

C. Custom-Designed Hash Functions 

Known cryptographic hash functions including MD-2, 

MD-4, SHA-1, SHA-2, and SHA-3 (Keccak) are instances of 

this category. These algorithms are designed independent 

from other security primitives. Although these hash 

functions do not provide provable security and their 

security depends on confusion and diffusion, the use of 

bitwise operations such as XOR, AND, and circular shifts 

leads to low processing time and partial security against 

side channel attacks, even though there are some reports 

of such attacks [111]. 

D. Physical Unclonable Functions (PUFs) 

PUFs are hardware based security primitives and 

provide challenge response behavior based on 

manufacturing variations that occur on a small scale. 

Their intrinsic unpredictablity stems from random 

elements (e.g., various gate delay) in their manufacturing 

process [112], [2]. Depending on the usage, this challenge 

response behavior may be provided in an invertible or 

non-invertible manner [113]. An individual PUF device, 

however, cannot be practically cloned or copied, even 

with access to the exact manufacturing process that 

produced it in the first place. This intrinsic randomness 

reduces computational costs, thus making PUFs a 

candidate for the security of resource-constrained 

devices such as embedded systems [114], and IoT [113].  

There are two notable PUF types: Weak PUFs and 

Strong PUFs; the former accepts one or a few challenges 

and is employed as a secret key for device specific 

encryption, while the latter accepts, possibly, an 

exponential number of challenges and is considered as a 

physical hash function [115]. SRAM PUFs and their 

variants are the most popular implementation of Weak 

PUFs and Arbiter PUFs, and their variants are the most 

popular implementation of electrically Strong PUFs. Weak 

PUFs suffer from cloning and invasive attacks (e.g., 

Helfmeier et al. [116] created a physical clone of a SRAM 

PUF using Focused Ion). Cloning and invasive attacks are 

hardly applicable on Strong PUFs. The most common 

attacks on Strong PUFs are modeling attacks [117], side 

channel attacks [118], and the combination of both [100], 

[119]. 

To conclude, PUFs benfit from the following 

advantages: 

I. Instead of storing a hash value or a sectret key on the 

device that includes both security consideration and 

additional device memory cost, the PUF response is 

derived when needed [115]. 

II. Most types of PUFs are tamper-resistant [115], but 

there are some side channel attacks enhanced by 

machine learning [100]. 

and suffer from the following disadvantages: 

I. PUFs are prone to error and need to employ an error 

correction mechanism. Depending on PUF type, error 

correction may be executed on a PUF holding device 

or on a communication server [115]. 

II. In contrast to non-physical approaches, PUFs are 

prone to aging [115]. 

In essence, PUFs are maps between fixed length inputs 

and fixed length outputs, while arbitrary length input is 

desired. Therefore, PUFs are widely used for 

authentication and rarely used for integrity checks (a 

common application of hash functions).  

Finally, PUFs based on nanotechnology are the 

recently reported trend of PUF design [120]. 

E. Quantum Hash Functions 

There are two sub-categories of quantum hash 

functions, i.e. hard problems which belong to 

postquantum cryptography and hash functions based on 

quantum state. The former was described in Section 4.3, 

and the latter is discussed in the current section. In 

addition to the mentioned subcategories, there are 

quantum hash functions which operate on classical inputs 

and produce classical outputs [121].  

Ziiatdinov [122] and Yang et al. [121] attributed the 

first state-based quantum hash function to Buhrman et al. 

[123], who introduced the notion of quantum 

fingerprinting. Ablayev and Vasiliev [124], [125] 

introduced quantum hash functions that map input data 

to quantum states so that the functions have pre-image 

resistance (sampling property), second pre-image 

resistance, and collision resistance properties. Ablayev et 

al. [126] discussed the reverse relation between the pre-
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image resistance and collision resistance properties of 

quantum hash functions and introduced a construction to 

build balanced quantum hash functions. 

F. Memory-Hard Functions 

There are cases such as cryptocurrency mining and 

password hashing in which a hash function without an 

efficient input-to-output mapping property (Property I in 

Section 2) is desired. In contrast to the design goals of 

distributed electronic payment systems such as Bitcoin, 

multicore CPUs, GPUs, and dedicated ASIC modules are 

used to accelerate cryptocurrency mining at a low cost. 

This consolidates the computing power of the network. 

Some ASIC miners are roughly 200,000 times faster and 

40,000 times more energy efficient than a modern multi-

core CPU [127]. Dictionary attacks on hashed password 

databases are further examples of such parallel 

computation.  

The ASIC resistance property (Property X in Section II) 

aims to reduce attackers’ massively parallel advantage. To 

this end, MHFs [128] and BHFs [127] were introduced to 

increase the hardware capital cost and energy 

consumption, respectively. Percival [128] put forward the 

MHFs idea that with an increase in the size of a hash 

derivation circuit, the number of possible circuits on a 

given area of silicon will decrease. Furthermore, he 

introduced the scrypt hash function [128], [129] as the 

first instance of MHF. 

Input-independent memory addressing, input-

dependent memory addressing, and number of passes 

over the memory are major considerations in designing 

an MHF. For example, Argon2 hash function [22] includes 

the following tree variants:  

I. Argon2d: It uses data-dependent memory access and 

targets the design of cryptocurrency Proof-of-Work 

(PoW). 

II. Argon2i: It uses data-independent memory access to 

resist side channel attacks and includes more passes 

over the memory in comparison with Argon2d. 

Argon2i aims to secure password hashing.  

III. Argon2id: It is not a part of Argon2 hash function 

proposal [22] and use a sequential composition of 

data-depending and data-independent memory 

accesses. First half pass uses data-independent 

memory access and the second half uses data-

dependent memory access. 

As a last example of MHFs, Zamanov et al. [34] 

evaluated the memory demand of Equihash and Ethash 

algorithms. The former increases PoW memory usage 

based on the birthday problem, while the latter fills a 

huge amount of memory and searches within it. 

Although MHFs incur additional capital costs, ASICs 

require far less energy than CPUs. To this end, BHFs define 

a large number of planned memory accesses to avoid the 

energy saving of ASIC hash engines [127]. 

G. Optical Hash Functions 

Because of physical properties of light such as velocity 

and its parallel nature, light-based computing is promising 

and has been shown to outperform electronic computing 

in some cases [130]. Optical hash functions are 

photoelectric systems which encode blocks into images 

known as the “information plane” [131] and replace 

computations of a compression function with “confusion” 

and “diffusion” of modulated light [132]. Amplitude-only 

spatial light modulator, phase-only spatial light 

modulator, charge coupled devices along with lenses 

[131], half mirrors [131], and/or scattering media [132] 

are the basic constituents of such systems. As an example, 

Wen-Qi et al. [132] proposed an optical hash function 

which is based on scattering media and provides the 

avalanche effect and collision resistance. As another 

example, He and Peng [131] proposed two optical hash 

functions based on phase-truncated Fourier transform 

and interference phenomena (i.e. two beam 

interference). Last but not least on our list of examples, as 

noise inherent in free space setup can affect the security 

and performance of beam interference and phase 

truncation-based hash functions, Kumar et al. [133] 

proposed an optical hash function based on 

superposition.  

Mobile Service Requirements 

Mobile devices can consume some services and also 

provide some other services, but they have several 

constraints on their resources which may jeopardize the 

Quality of Service (QoS). On the other hand, as mobile 

devices roam between environments, they are exposed 

to more attacks than stationary computers. Hence, 

lightweight but not less secure cryptographic hash 

functions which secure interactions of resource-

constrained devices are urgently needed. Mobile service 

requirements are as follows:    

I. Roaming may cause inaccessibility of some resources 

and accessibility to some others. To aid service 

continuity, hash functions are used to identify 

identical alternative resources and mutual 

authentication of the mobile device and remote 

servers [134]. 

II. Most mobile devices have low processing power in 

comparison with desktop computers.  

III. Most mobile devices have small memory size in 

comparison with desktop computers.   

IV. Limited battery capacity makes energy consumption 

an important consideration for mobile devices. Not 

only does WS-Security hash computation required by 

service invocation consume energy, but also the 

battery usage of hash computation is important to 

avoid power analysis side channel attacks [135]. 

V. Mobile device bandwidth is limited by the network 

interfaces of that device and by the network being 
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used. This limit mediated mobile WS-Security 

solutions usage [136], [137]. 

VI. From time to time, mobile devices undergo 

connection intermittence caused not only by roaming, 

but also by things such as other wireless devices, 

microwave ovens, and other devices with poorly 

shielded cabling.  

VII. Some mobile devices have multiple network 

interfaces such as Wi-Fi, Bluetooth, NFC, and GPRS (in 

addition to LoRaWAN and ZigBee for IoT). To benefit 

from multi-homed architectures, authentication and 

integrity achieved by hash functions are urgent needs 

for mobile service communications [138]. 

Hence, low processor usage, thrifty memory usage, 

and limited battery usage are urgent needs of application-

specific hash functions for mobile services. In addition, 

due to connection intermittence and bandwidth 

limitation, mobile security-related computations such as 

hash computation can hardly be delegated to servers that 
are available through wireless connections. For simplicity, 

the application-specific hash function for mobile services 

will be referred to hereafter as mobile hash functions. 

Such mobile hash functions need to cope with the 

mentioned limitations, and it is desirable that they benefit 

from multi-homed architectures. Table 3 shows the 

appropriateness of each hash function category for 
satisfying mobile service requirements. As Table 3 

outlines, optical hash functions and state-based quantum 

hash functions are not applicable for mobile devices. 

Algebraic-based functions benefit from provable security 

but have high computational costs. Bitwise equivalent of 

algebraic structures that belongs to post-quantum 
cryptography seemed like a good idea, but we could not 

find such algebraic-based hash functions in practice. PUFs 

have very low computational costs and communicate just 

challenge-responses. In addition, PUFs are available for 

IoT nodes [139]. Hence, we suggest PUFs with polynomial-

time error correction for mobile service hashing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application Scenarios 

All applications do not have the same requirements for 

security and performance. There are a number of 

application scenarios for cryptographic hash functions. 

Four scenarios and their corresponding analysis to select 

appropriate cryptographic hash functions are presented 

in Table 4. The first scenario benefits from the parallel 

processing capability of hash functions such as MD-6. The 

second scenario uses the intrinsic randomness of PUFs to 

lighten hash computation load for resource constrained 

sensor nodes. The third shows the usage of hash chains 

for process authentication. Finally, the last scenario 

shows the need for output transformation in the lack of 

encryption. 

 Conclusion 

Massive usage, significant competitions such as the 

SHA-3 competition, the Password Hashing competition 

and the NIST lightweight competition, and nationwide 

hash standards [20], [21], [23]-[25] have led to the 

introduction of new hash functions and new hash 

function constructions. To the best of our knowledge, 
recent research and competitions make the following 

futuristic trends possible: Resource constrained devices 

are used in IoT solutions such as smart farming and smart 

cities. Security plays a crucial role in the success such 

systems so that employing hash functions need to be both 

resource efficient and side-channel resistant [141]. 

Hence, lightweight hash functions received great 
attention in recent years so that IoT specific hash 

functions emerged and NIST lightweight competition is 

ongoing since 2018 [142]-[144]. In contrast to the 

lightweight design of these hash functions, it is important 

that a hash function cannot be computed too fast on 

massively parallel computers and quantum computers. 
Hence, evaluation of hash functions on quantum 

computers is a recent measure to avoid brute force 

attacks [145].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Appropriateness of each Hash Function category for satisfying mobile service requirements 

 

Row 

 

Hash Function Category 

Mobile Service Hash Consideration 

Processing Memory Battery Security Applicability 

1 Hash functions based on a block cipher High     

2 Hash functions based on algebraic structures High   Proven  

3 Custom-designed hash functions Low     

4 Physical unclonable functions  Very low None or very 
low 

(depending 
on PUF type) 

   

5 Quantum 
hash 
functions 

Quantum states No reported work (have not found yet) Not applicable 

Post-quantum cryptography High     

6 Memory-hard functions  High    

7 Optical hash functions No reported work (have not found yet) Not applicable 
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As mentioned, PUFs based on nanotechnology are the 

recently reported trend of PUF design [120]. Last but not 

least, optical computing has a long history to trace back 

and was introduced 60-year ago [146], but optical hash 

functions were introduced in recent years are among the 

futuristic trend of hash functions. In addition, application-

specific properties have been defined for applications 

such as cryptocurrency and video hashing. In this article, 

we discussed 11 properties of hash functions (Section 2), 

overviewed the concepts of compression function and 

domain extension, and outlined four iterative and three 

noniterative hash function constructions and combiners 

(Section 3). The current research also investigated those 

hash functions and proposed a seven-category 

classification (Section 5). To the best of our knowledge, 

four out of seven categories have not been sufficiently 

addressed in most existing surveys [18], [19], [26]-[29]. In 

addition, this article discussed some attacks affecting 

each category (Table 2) and summarized what effective 

attacks entail (Section 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, considering the prevalence of mobile 

devices, this paper discussed mobile service requirements 

on hash functions (Section 6), outlined how each hash 

function category fits these requirements (Table 3), and 

suggested (strong) PUFs with polynomial-time error 

correction for mobile service hashing. In addition, the 

bitwise equivalent of algebraic structures that belong to 

post-quantum cryptography seemed like a good idea, but 

we could not find such algebraic-based hash functions in 

practice. Finally, to clarify the usage, four application 

scenarios and their corresponding analysis to select 

appropriate cryptographic hash functions were presented 

(Table 4). The authors aim to extend this work by 

extracting patterns which fulfill the 11 properties 

discussed in second section. This extension, along with 

the other mentioned benefits, can assist design, choice, 

and analysis of hash functions. 

Author Contributions 

Second and third authors supervised this research by 

sketching roadmap, and evaluating the results at each 

Table 4: Application scenarios – selecting appropriate Hash Function 

Row Scenario Name Scenario Analysis 

1 A file server on a 
multiprocessor 
host 

A multiprocessor file server stores some large 
multimedia files. This server needs to provide 
the hash value of each file as a checksum. 
Users can download files along with 
corresponding checksums. To ensure a file 
has not been tampered with after the 
checksum was created, user computes the 
hash of the downloaded file and compares it 
with the checksum.  

Computing hash for large files connotes the 
need for fast computation. It may be obtained 
by using a fast hash function such as BLAKE 
[101], [140] (BLAKE 2 or 3) or a multiprocessing 
support hash function such as MD-6 [36]. The 
multiprocessor server indicates the latter 
function as choice.  

2 Message 
authentication in 
a sensor network 

A sensor network sends monitored data to a 
server. A hash function is used for message 
authentication. Each sensor node has limited 
memory and limited processing speed. More 
importantly, each sensor node operates with 
limited battery energy and will die as its 
energy is consumed.   

Resource constraints of sensor nodes and the 
reverse relationship between energy 
consumption and node lifetime suggest the use 
of intrinsic properties of sensors instead of 
running a hash algorithm on these nodes. 
Hence, PUFs [139] are appropriate for this 
scenario.    

3 One-time 
passwords 

In a geographically distributed organization, it 
is required that two processes hosted on 
different servers authenticate and 
communicate with each other. There is no 
deployed authentication (or encryption) 
facilities such as Primary Key Infrastructure 
(KPI). 

This scenario may benefit from one-time 
passwords that are a hash chain made by 
consecutive computation of hash values and 
using the hash values in descending order (using 
last value first). Any hash function that supports 
the one-way property is appropriate for this 
scenario, so that an eavesdropper cannot use 
an observed password to compute the next 
valid password.  

4 Authentication 
and integrity 
without 
encryption 

A key is shared between sender and receiver. 
To send a message, the sender hashes that 
message prepended by the shared key. Then 
the message along with the hash value is 
transmitted to the receiver. Having the shared 
key, the receiver will hash the received 
message prepended by the shared key and 
compares it with the received hash value.  

This scenario is prone to length extension attack 
(Section 4.2.1). It allows the attacker to forge 
messages with the same prefix. Hence, both 
authentication and integrity will be lost. Section 
4.2.1 pointed out that exposure of the internal 
state of the hash function causes this 
vulnerability. Hence, hash functions benefitting 
from output transformation such as SHA-3 
(Keccak) and MASH (section 5.2) are 
appropriate for this scenario.     
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step. First author searched in authentic journals and 

research repositories to gather all relevant papers, and 

read the selected papers in details. In addition, he made 

a comparison of investigated hash functions.  
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