Research paper

Uncomplicated Dead-time generation Designed for H-Bridge Drivers by Logic Gates Driving Linear Actuators

M. Karimi*, D. Dideban

Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

Article Info

Article History:
Received 16 April 2023
Reviewed 28 May 2023
Revised 23 June 2023
Accepted 13 August 2023

Keywords:
H-bridge
Dead-time
Shoot-through
Logic gates
Propagation delay

*Corresponding Author’s Email Address:
Mohammadkarimi.eng@gmail.com

The basic structure of HB is composed of four power transistors such as BJT, IGBT, or MOSFET. This paper uses complementary MOSFETs as power switches to drive the inductive load (Fig. 1). Due to the physical nature of power switches and body diodes, the transition delays are not the same and consequently, they cannot turn on or turn off simultaneously, IRFZ44ZSPbF \((t_{on}=14\text{ns}, t_{off}=33\text{ns}) \) [2], IRF5305 \((t_{on}=14\text{ns}, t_{off}=39\text{ns}) \) [3]. The intrinsic difference in timing characteristics of power switches leads to an essential issue in driving loads by the HB driver.
which can be solved by DT duration “1”, where t_off denotes the turn-off transition of one switch in the inverter leg [4].

\[t_{DT} \geq t_{off} \] (1)

In practice, the difference between MOSFETs timing transitions caused short circuits among the upper and lower power switches in one inverter leg when HB was driven to change the direction of DC motor rotation or stop driving the load. To overcome this problem, an insertion delay, called DT (t_{DT}) [5], between the pulses generated by driving circuitry activates and deactivates the power switches in one branch to ensure safe operation [6], [7]. However, distortion of the output waveform, fundamental current loss [8], [9] and common-mode voltage issues [10] are the effects of DT duration, especially in the case of speed system control with high-frequency carrier and voltage source converters [11]-[13]. Therefore, DT compensation is one of the most challenging issues for the HB driver system [14], [15]. Although DT duration can prevent the breakdown of CMOS transistors in one inverter branch against shoot-through [16], it should be optimized to reduce body diode conduction and reverse recovery loss [17], [18]. In retrospective studies, different optimization methods were proposed to compensate for the DT effects in power converters and speed control systems [19]. In conventional applications, the fixed DT is used to eliminate the shoot-through [20] while the turn-off time of power switches depends on load current because of junction capacitors [21], [22]. Therefore, DT should be adjusted to an optimum value in case of varying load to eliminate shoot-through. Pulse width adjustment and adaptive DT control are the most convenient compensation methods for power electronic converters [23]-[25].

Although more compensation methods with different features were proposed, most of them require complex hardware design and precise information about the zero crossing of the load current in the existence of the noise and the current ripple which is challenging in implementation.

This paper aimed to intrinsically drive linear actuators with slow linear motion without requiring the speed control system or PWM gating signal. The approach used in this paper is based on a single pulse gate driving that the DT effect is not obvious and shoot-through elimination was guaranteed without requiring DT compensation methods. This approach leads to uncomplicated and reduced hardware utilization in HB drivers.

Modeling and Analysis of Proposed H-Bridge Driver

A. Dead-Time in H-Bridge Driver

Short circuits in complementary MOSFET or half-bridge occur when the direction of load current changes due to the gate driving signal. Changing the direction of DC motor rotation or brake state requires driving the gate of High/Low side power switches in which unequal transition delays from ON to OFF or vice versa may lead to the specific time of concurrent Complementary switches conduction resulting in DC source short circuit. In fact, in HB driver design, the gate driving control section included dead time insertion is substantial which shoot-through was eliminated. DT value depends on some characteristics of power switches such as drive current, voltage bias, input capacitance, and body diode conduction [26], [27]. Typical values for transition delays are informed in component datasheets [2], [3], so gate driving control was designed based on DT> t_off and referred values.

![Fig. 1: CMOS H-bridge driver.](image)
Due to the structure of the linear actuators with low-speed linear motion, speed control of the DC motor or PWM signaling is not necessary, therefore DT effects cannot degrade the efficiency of the driver. Furthermore, HB driver simulation (Fig. 2) represented the great importance of DT existence which avoids shoot-through current. The rest of this paper focused on the gate driving control part with the capability of dealing with mismatch transition delay by adding a safety time. Simulation and experimental results are provided to demonstrate the proposed method’s validity and performance.

B. Proposed H-Bridge Driver Designing

Sign-magnitude (SM) and lock anti-phase are the most common driving modes in HB drivers. The proposed driver was designed based on the former. In SM mode driving, both CMOS switches are closed in each cycle and the others open.

It is necessary to add dead-time to ensure that one switch is completely off before turning on the complementary switch. In this mode during the off-time, motor winding acts as an inductor \(V = L \frac{di}{dt} \) which opposes the sudden alteration in current flowing through it. On the other hand, a sudden reduction in its current induces very high range voltages out of power switch limitations, which will destroy them. Therefore, the current should circulate in a motor rotation direction during the off-time which can be accessed by one of the turned-on switches and the other turned-off switch body diode is forward-biased. Inductor-induced voltage rose the Anode of the body diode voltage till its junction is forward-biased. Also, discrete diodes can be used along with CMOS switches instead of body diodes, but two essential characteristics in comparison to body diodes should be considered such as reverse recovery time and forward bias voltage. IRFZ44 (N-Channel) and IRF5305 (P-Channel) were chosen as complementary MOS transistors (Fig. 1). The gate driving circuitry which is comprised of fixed DT generation is incorporated into the proposed HB driver is shown in Fig. 3-5. As depicted in the driving voltage waveforms (Fig. 4), which fed to power switches and logic gates, two direct-current (DC) potentials provide the desired biasing voltage. The first one is 24-volt which supplies the CMOS gate bias voltages by proper voltage divider resistors and the other is 5-volt which provides logic gates bias voltages. In digital signals, 5-volt generally corresponds to a high signal or ’1’ binary and zero potential to a low signal or ’0’ binary. Propagation delays of logic gates cause a blank time between activating and deactivating the CMOS transistors in one leg of the inverter. The High/Low side driver is both composed of two paths to CMOS gates. The path with NAND gates is activated during the turn-on time of the Complementary power switches (Fig. 6).

Fig. 2: Short circuit occurred during gate driving of half-bridge without DT; (a) Gate driving signal; (b) Complementary MOSFET’s turn on and off concurrently; (c) Short circuit current due to both complementary power switch conduction.
Fig. 3: Block diagram of H-Bridge circuit; HS: High-Side; LS: Low-Side.

Fig. 4: Gate driving signal and the sequence of activation and deactivation of High/Low side switches by the propagation delay of logic gates driving path.

Fig. 5: Schematic diagram of proposed H-Bridge with High/Low side gate driver with NAND gates.
This topology confirms one MOS transistor turns off before other complementary transistors turn on due to logic gates propagation delay (PD) acting as DT. As stated by Equ. 1, PD in whole logic gates should be upper than the CMOS turn-off time (IRFZ44: 33ns, IRF5305: 39ns). The rest of the paper is allocated to simulation and experimental results to demonstrate the validity of the proposed method.

Simulation and Experimental Results

The schematic diagram of the proposed H-Bridge in Fig. 5 was simulated in OrCAD Capture CIS version 17.2-2016. Gate driving control as shown in the schematic diagram composed of AND, NAND, and OR Logic gates in the path of high/low side arrival gates drive signal. As illustrated in Fig. 7, the outputs of logic gates level change on the length of the time interval between the specified reference points (V_m) on the input and output voltage waveforms.

These time intervals are called t_{PHL} when output switches from high to low and t_{PLH} when output switches from low to high. t_{PLH} and t_{PHL} act as DT to eliminate CMOS transistor cross-conduction. DT must be higher than the turn-off time of power switches, and the higher value of the turn-off time considered (t_{off} = 39ns). According to Fig. 5, three types of logic gates were used to add proper DT in the arrival gate drive signal (Table 1).

Table 1: Types and timing characteristics of logic gates. t_{PHL}: LOW to HIGH propagation delay; t_{PLH}: HIGH to LOW propagation delay

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type</th>
<th>Power Supply</th>
<th>t_{PHL}</th>
<th>t_{PLH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEF4093B [28]</td>
<td>NAND</td>
<td>5v</td>
<td>85</td>
<td>170</td>
</tr>
<tr>
<td>HEF4081B [29]</td>
<td>AND</td>
<td>5v</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>74LS32 [30]</td>
<td>OR</td>
<td>5v</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Fig. 6: NAND gates are activated in the turning-on power switch path to postpone the arrival gate drive signal.

Fig. 5: Schematic diagram of proposed H-Bridge with High/Low side gate driver with NAND gates.
In accordance with different values of propagation delay for logic gate, power switches turn-on and turn-off time can be calculated. For high-side power switch (IRF5305) (Fig. 8- a):

Turn-on: \(t_{\text{PLH}}(\text{NAND}) + t_{\text{PLH}}(\text{AND}) + t_{\text{ON}} \text{(IRF5305)} = 234 \text{ ns} \)
(2)

Turn-off: \(t_{\text{PLH}}(\text{AND}) + t_{\text{OFF}} \text{(IRF5305)} = 94 \text{ ns} \)
(3)

For low-side power switch (IRFZ44) (Fig. 7- b):

Turn-on: \(t_{\text{PLH}}(\text{NAND}) + t_{\text{PLH}}(\text{NAND}) + t_{\text{PHL}}(\text{OR}) + t_{\text{ON}} \text{(IRFZ44)} = 192 \text{ ns} \)
(4)

Turn-off: \(t_{\text{PLH}}(\text{OR}) + t_{\text{OFF}} \text{(IRFZ44)} = 36 \text{ ns} \)
(5)

The timing diagram of logic gates proves the discrepancy between the theoretical propagation delays listed in the datasheet and practical values. As depicted in the figures, \(t_{\text{PLH}} \) and \(t_{\text{PHL}} \) are at least two orders of magnitude higher than the typical ones.

Simulation of the proposed HB driver by analyzing voltages and currents used to test the driver behavior under operating conditions that showed the validity of the schematic diagram of Fig. 5 and its method for shoot-through elimination (Fig. 10).
Uncomplicated Dead-time generation Designed for H-Bridge Drivers by Logic Gates Driving Linear Actuators

75
Experimental results and prototype pictures of the HB driver are shown in Figs. (11-13). As expected, the proposed HB driver circuit drives the linear actuator as an inductive load without cross-conduction. Compared with other research articles [20] that fixed DT is used to overcome the cross-conduction, the method proposed in this paper is practicable and not complicated for implementing. On the other hand, most of them must use additional circuits like current polarity detection to eliminate DT effects resulting in hardware complexity and not being reliable because there is the noise and current ripple which can create a false zero crossing of the load current.

Fig. 10: voltage and current waveforms of the proposed HB driver. (a): CMOS switching voltages operation without overlapping due to the proper DT in the arrival gate drive signal; (b): load and CMOS switches currents during switching without any cross-conduction current.

Fig. 11: prototype picture of the proposed HB driver circuit.

Fig. 12: Experimental results of the CMOS transistors switching while logic gates propagation delay eliminates cross-conduction without inductive load.
Moreover, various comments from anonymous reviewers helped authors to improve and enrich this research.

Conflict of Interest

The authors declare no potential conflict of interest regarding the publication of this work. In addition, the ethical issues including plagiarism, informed consent, misconduct, data fabrication and, or falsification, double publication and, or submission, and redundancy have been completely witnessed by the authors.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>Dead-Time</td>
</tr>
<tr>
<td>SH</td>
<td>Shoot-Through</td>
</tr>
<tr>
<td>PD</td>
<td>Propagation Delay</td>
</tr>
<tr>
<td>DC</td>
<td>Direct-Current</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>HS</td>
<td>High-Side</td>
</tr>
<tr>
<td>LS</td>
<td>Low-Side</td>
</tr>
<tr>
<td>t_{PH}</td>
<td>LOW to HIGH propagation delay</td>
</tr>
<tr>
<td>t_{PL}</td>
<td>HIGH to LOW propagation delay</td>
</tr>
</tbody>
</table>

References

Fig. 13: Experimental results of the CMOS transistors switching while logic gates propagation delay eliminates cross-conduction with inductive load.

Conclusion

The transition delay discrepancy in MOSFET switches leads to cross-conduction in the H-bridge driver resulting in a shoot-through current. This paper investigates a novel dead-time generation method for H-bridge drivers based on CMOS transistors. As noted, dead-time should be higher than the MOSFETs turn-off time (DT＞t_{on}) to ensure safe operation. In this paper, logic gates propagation delay included AND, NAND, and OR gates are used to generate dead-time. Dead-time value can be chosen at least two orders of magnitude higher than the turn-off time to ensure the cross-conduction elimination and the experimental results validate the accuracy of the proposed method.

Author Contributions

M. Karimi designed the experiments. M. Karimi and D. Dideban collected and carried out the data analysis. M. Karimi interpreted the results and wrote the manuscript.

Acknowledgment

Authors would like to appreciate the supports received from university of Kashan to complete this work.

Biographies

Mohammad Karimi was born on February 1, 1991. He received M.Sc. degree in electronic engineering from Kashan University, Kashan, Iran, in 2019. He has been working as a research and development specialist in biomedical device production including physiotherapy systems, hemodialysis machines, and ventilators. His special fields of interest included Biomedical Engineering, Artificial intelligence, both analog and digital Integrated Circuits, embedded systems, and microcontroller programming.

Daryoosh Dideban is currently an Associate professor of Nanoelectronics at the department of Electrical and Computer Engineering, University of Kashan. He received his M.Sc. and Ph.D. degrees from Sharif University of Technology, Iran, and the University of Glasgow, UK, both in Electronics Engineering. His fields of research are device simulation, compact modeling, novel two-dimensional devices, and statistical variability.

How to cite this paper:

DOI: 10.22061/jecel.2023.9574.636
URL: https://jecel.sru.ac.ir/article_1925.html