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Background and Obejctives: Multi-task learning is a widespread mechanism to 
improve the learning of multiple objectives with a shared representation in one 
deep neural network. In multi-task learning, it is critical to determine how to 
combine the tasks loss functions. The straightforward way is to optimize the 
weighted linear sum of multiple objectives with equal weights. Despite some 
studies that have attempted to solve the realtime multi-person pose estimation 
problem from a 2D image, major challenges still remain unresolved.  
Methods: The prevailing solutions are two-stream, learning two tasks 
simultaneously. They intrinsically use a multi-task learning approach for predicting 
the confidence maps of body parts and the part affinity fields to associate the parts 
to each other. They optimize the average of the two tasks loss functions, while the 
two tasks have different levels of difficulty and uncertainty. In this work, we 
overcome this problem by applying a multi-task objective that captures task-based 
uncertainties without any additional parameters. Since the estimated poses can 
be more certain, the proposed method is called “CertainPose”.  
Results: Experiments are carried out on the COCO keypoints data sets. The results 
show that capturing the task-dependent uncertainty makes the training procedure 
faster and causes some improvements in human pose estimation.  
Conclusion: The highlight advantage of our method is improving the realtime 
multi-person pose estimation without increasing computational complexity. 
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Introduction 

Multi-person pose estimation is an important open 

problem in computer vision. Human pose estimation 

(HPE) is widely used in many applications such as human-

computer interaction, action recognition, motion 

capture, virtual reality, video surveillance, healthcare, 

gaming, and sports. HPE aims to automatically locate the 

human parts or keypoints (e.g. ankles, knees, hips, 

elbows) on images and videos. In many real-world 

applications, the desired HPE model is expected to: 1) run 

in realtime, 2) estimate the poses of several people 

simultaneously, and 3) extract poses from 2D images. 

Each one of these requirements introduces many 

challenges. The focus of this research is on the realtime 

localization of body parts of individuals in 2D images.  

The challenging issues of the single-person pose 

estimation include the variety of clothes, scenes, body 

shapes, positions, and the scales of the persons in the 

scenes. The multi-person pose estimation imposes more 

challenges as an unknown number of people can appear 

in images at any position and scale. Interactions between 

people may cause occluded joints or interrupted limbs. In 

addition, if the runtime complexity of the solution grows 

with the number of people in the image, it may not be 

useful in some real-world applications.  

The initial studies of the single-person pose estimation 

[1] were based on the pictorial structure models [2]. 
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Traditionally, the focus was on hand-crafted features such 

as the histogram of oriented gradients (HOG). But, these 

methods have not shown promising generalization 

performance in detecting the accurate location of the 

body parts. Deep learning, especially the convolutional 

neural networks (CNNs), made a significant improvement 

in this field [3]. Some HPE approaches used famous deep 

neural networks such as ResNet [4] and Faster R-CNN [5] 

to detect keypoints more accurately [6], [7]. Another 

example of a DNN-based HPE model is a convolutional 

pose machine (CPM) which consists of a sequence of 

convolutional neural networks that repeatedly produce 

more precise 2D confidence maps for the locations of 

human body parts at each stage [8]. However, there is still 

a long way towards the complete resolution of 

dominating some challenges of single-person pose 

estimation such as occlusion of body parts and abnormal 

body poses.  

Multi-person 2D pose estimation is a widely 

investigated form of HPE. The solutions provided for this 

task can be divided into two main categories: top-down 

and bottom-up. Top-down methods [7], [9]-[11] first 

detect the people in the image and then utilize single-

person pose estimation for each individual. The speed 

and accuracy of top-down methods depend on the human 

detection speed and accuracy. Moreover, these models 

fail to estimate human poses in crowded scenes and 

nearby individuals. On the other hand, the bottom-up 

methods [12]-[16] for first, detect human body parts 

without knowing the number and location of people in 

the image; and after that, they associate the parts of each 

individual to each other. The inference time of the 

bottom-up methods is usually satisfactory and 

independent of the number of people while preserving 

high-quality results. However, these approaches suffer 

from difficulty in grouping body parts when there is a 

large overlap between people. Another weakness of most 

of the bottom-up methods is the low resolution of the 

position of the individuals, which can be solved by 

increasing the width of the network or defining an 

additional unit to compute the more precise locations for 

each candidate point. Considering the goals of this 

investigation, we follow the bottom-up methods. 

Recent years have witnessed a huge growth in realtime 

multi-person 2D pose estimation research. The winner of 

the COCO Keypoints 2016 challenge, CMU-Pose, is the 

first realtime multi-person pose estimator on 2D images 

[14]. The newer version of this model, OpenPose [17], is 

an open-source library [18] to localize full-body points on 

single images. Several researchers have tried to improve 

the OpenPose method [16], [19], [20]. The prevailing 

methods are bottom-up methods that learn confidence 

maps and part affinity fields (PAFs) simultaneously. 

Confidence maps and PAFs locate body parts and limbs, 

respectively. Limb refers to the virtual line between two 

keypoints. PAFs are utilized in associating the detected 

body parts to each individual at the inference time. A 

confidence map is a gray-level image in which the pixel 

value refers to the likelihood of the intended part on it.  

The above models intrinsically use a multi-task 

learning (MTL) approach in which the learning of 

confidence maps of the body parts and the PAFs can be 

treated as two different tasks. Most of them consider the 

average mean square error of the two outputs as the 

multi-task loss function. Although the two tasks have 

different levels of difficulty, they are given the same 

weight in the loss function. It has been shown that in MTL, 

finding appropriate weights of different tasks plays an 

important role [21]. In this work, we explain an MTL 

strategy for realtime multi-person pose estimation from a 

2D image. The proposed model, called CertainPose, 

captures task-dependent uncertainty in a two-stream 

network that jointly produces confidence maps and PAFs. 

For the purpose of capturing uncertainty without 

increasing the parameters and computational complexity, 

the model is trained with a new loss function which is 

derived in this manuscript.  

In summary, the main contribution of this research is 

twofold. First, a novel multi-task loss function is 

introduced that captures task-dependent uncertainty in 

multi regression tasks models. Second, a two-task 

architecture is trained by the new loss function for multi-

person pose estimation. Our experiments show that the 

proposed model reduces the training time and improves 

the accuracy of the pose estimation without increasing 

the process time and trainable parameters. 

This paper is organized as follows: First, the related 

literature is briefly reviewed in Section “Related Work”. 

Next, the proposed method is described. We report the 

results of the experiments in Section “Experiments”. 

Finally, the paper is concluded in Section “Conclusion”. 

Related Work 

Human pose estimation has been a popular subject of 

research in recent years. There are some invaluable 

surveys on HPE methods [22]-[25]. HPE problems are 

divided into single and multi-person human pose 

estimation problems. In this section, we summarize some 

of the most important 2D HPE methods and their cons 

and pros. We also review some studies which solve 3D 

pose estimation by incorporating depth information. 

Given that our innovation is focused on reducing 

uncertainty in HPE models, our next step is to review the 

existing literature on the sources and effects of 

uncertainty in pose estimation. 

A.  Single-Person Pose Estimation 

One of the oldest methods for estimating and tracking 

the human pose is the motion capture technique in which 
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the performer has to wear markers (e.g. LED, magnetic, 

and reflective markers) near each joint so the joints can 

be easily identified. This has been a useful method in 

filmmaking and animation and is still useful for laboratory 

activities [26]. However, it requires special hardware and 

software to obtain and process data. In most real-world 

applications, it is necessary to estimate human pose 

without using markers.  

The earlier approaches for human pose estimation 

from image or video consider a graphical structure to 

model the interactions between body parts obtained 

from local observations. The extracted features can be 

classified into low-level, mid-level, and high-level features 

with regard to human visual perception. Silhouette, 

contour, and edges are some famous low-level features. 

These features are not useful in situations with complex 

backgrounds and scenes. SIFT, Freak, and shapelet are 

known as mid-level features. HOG has been the most 

popular mid-level feature in HPE [25]. Context features 

[6], mixtures of parts [1] and PAFs [14] are examples of 

high-level features used for HPE. In addition to the 

aforementioned features extracted from the input image, 

body structure models are also employed in HPE to 

provide prior knowledge about the relation of different 

parts of the body. Kinematic models [2], cardboard 

models [27], and volumetric models [28] are the usual 

body structures used in the literature. Kinematic models 

consider a line for the connections between pairs of body 

parts and it is possible to define some priors about joint 

angles. The cardboard models are composed of 

information about body part rectangular shapes. 

Volumetric Models realistically represent 3D body shapes 

and poses. 

The pictorial structure model (PSM) was the first 

model to recognize the objects based on the positions of 

their components. In PSM, objects are modeled with a 

graph in which nodes refer to the body components and 

edges refer to the relations of these components. Most 

PSM-based human pose estimation methods consider ten 

body parts as rectangles and find the best parameters of 

these rectangles (e.g. center, scale, and rotation) by using 

the extracted features and the angles between the pairs 

of body parts [1].  

The emergence of deep neural networks significantly 

affected HPE as many other artificial intelligence 

applications. In 2014, the replacement of handcrafted 

features with the features extracted by convolutional 

neural networks made notable improvements in HPE [3]. 

As the first example, [3] optimizes an energy function 

which contains two parts: 1) a unary potential which 

identifies the body parts likelihood in all image pixels and 

2) a pairwise potential that models the relations of 

neighbor parts by considering the relative location and 

the size of the angle between the links to the parent and 

child nodes.  

Neural networks and probabilistic graphical models 

are two basic and useful tools in HPE that have exclusive 

weak points. In [29], both paradigms are combined to 

improve the HPE accuracy. This repetitive algorithm 

computes the likelihood of each part in all pixels of the 

image as a confidence map by using the prior of the 

intended part and the conditional likelihood of it given 

other parts.  

To enable tractable inference, PSM-based methods 

have been restricted to tree-structured body models. 

Pose machine [30] is an iterative pose prediction 

algorithm that incorporates richer spatial interconnection 

among multiple parts and shares information across parts 

of different scales. The input of the pose machine model 

is an image that goes through multiple stages. Each stage 

includes multi predictors which predict confidence maps 

of different parts in different scales. Practically, feeding 

the output of the predictors of one stage to the next stage 

gradually improves confidence maps predictions.  

The Convolutional Pose Machine brought about a 

significant improvement in single-person pose estimation 

accuracy and speed [8]. Actually, this model implements 

the pose machine idea by convolutional neural networks 

in multi-stages. Increasing the number of stages with a 

constant kernel size enlarges the receptive fields. 

Moreover, the multi stages of the algorithm improve the 

accuracy and confidence of estimating difficult parts’ 

localizations by utilizing easy parts locations. In addition, 

the vanishing gradient problem of the deep neural 

networks is solved here by using intermediate supervision 

enforcing at the end of each stage. 

The second winner of the COCO 2016 keypoints 

challenge [31] represents a method [6] based on ResNet 

[4]. First, they predict the confidence maps for body parts 

by a ResNet. The low resolution of the ResNet’s outputs 

enforces estimating offsets for each part. This method is 

very accurate in predicting the pose, but due to the use of 

a very deep ResNet, it has a high computational 

complexity.  

B.  Multi-Person Pose Estimation 

Multi-person pose estimation is more difficult than the 

single-person case due to the interactions between 

people, which increases the inference complexity. 

Increasing the number of people makes realtime 

performance a challenge for multi-person pose 

estimation models. Multi-person human pose estimation 

models can be divided into two main categories: top-

down and bottom-up approaches. The top-down 

methods first detect each person in the image and then 

perform a single-pose estimation for each person. But, in 

the bottom-up methods, the human body parts in the 

image are first detected and then associated with each 

other to form humans and human poses. Although top-
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down methods provide good accuracies, their speed and 

accuracy greatly depend on the human detection model. 

The computational cost of these models increases with 

the number of detected people. Also, crowded scenes 

and high interactions between people are challenging 

situations for top-down methods. In contrast, the 

bottom-up approach represents realtime methods with 

satisfying accuracy. The two challenges of the bottom-up 

methods are how to associate the parts to bodies and 

how to cope with the low resolution of each person in 

images that can be processed by the related neural 

networks. The latter problem can be resolved by 

increasing the width of the network or computing the 

precise locations of the body parts by searching the 

surrounding area of the approximate part locations. In 

this subsection, some top-down and bottom-up methods 

are described, respectively.  

As the first example of the top-down methods, [10] 

proposes a probabilistic approach for parts grouping and 

labeling which uses HOG features for part detection. It is 

developed as a part-based approach by optimizing an 

articulated pictorial structure and a pixel-based method 

for image labeling. The multi-person human pose 

estimation is treated as an optimization problem with a 

single energy function. The goal of the inference step of 

this model is three-fold: 1) to determine the number of 

people and their locations, 2) to localize their joints, and 

3) to assign every pixel of the input image to the 

background or a body part of a person. 

A local joint-to-person method is presented for 

estimating the truncated or occluded poses in [11]. First, 

the people bounding boxes are detected by Faster R-CNN 

[5][5]. Then, the joint candidates are localized for each 

person and his neighbors by the convolutional pose 

machine [8]. In the end, a fully connected graph from the 

set of the detected joint candidates is constructed and the 

joint-to-person association is carried out locally with 

integer linear programming.  

The second winner of COCO 2016 keypoint challenge 

[31] first detects the people in an image by a ResNet [4], 

and then, as described in the first part of this section, 

carries out the HPE by another ResNet [6]. Although this 

model provides accurate pose estimations, its 

computation complexity is high.  

As the last top-down method, we refer to one of the 

state-of-the-art methods, Mask R-CNN [7]. Inspired by 

Faster R-CNN [5], Mask R-CNN is proposed which belongs 

to the top-down category of object detection models. The 

features are extracted using a standard convolutional 

neural network such as ResNet [4]. Some regions are 

suggested by the region proposal network (RPN) and then 

the proposed regions and extracted features aid to 

localize people and predict the confidence maps of each 

body part. The RPN and the body parts localization units 

have common feature extractor layers.  

Deepcut [12] is one of the bottom-up multi-person 

pose estimation methods that performs the body part 

detection and pose estimation simultaneously. It employs 

an integer linear programming formulation to partition 

and label the set of body parts detected by a CNN-based 

part detector. It detects some candidates for body parts 

and determines their type, e.g. head, foot, and hand. 

Deepcut considers a complete graph on detected parts. 

Then, it solves the optimization problem by integer linear 

programming, for purpose of removing the edges and 

segmenting the graph into some disjointed subgraphs. As 

a result, each subgraph refers to a person's pose. Deepcut 

theory is satisfactory, but in practice, its speed is very 

slow. It needs about 72 hours for processing an image.  

A deeper, stronger, and faster Deepcut method is 

proposed in Deepercut model [13] which uses a deeper 

part detector based on ResNet [4] and novel stronger 

image-conditioned pairwise terms in the objective 

function. Due to its pairwise and incremental 

optimization, Deepercut is faster than Deepcut. It first 

finds heads and shoulders locations. Then, elbows and 

wrists are added to the first stage solution and re-

optimization is performed. Finally, the rest of the body 

parts are added to the previous stage solution and re-

optimized. Yet, Deepercut is still too slow for realtime 

problems. It takes about 8 minutes for processing one 

image. 

The winner of the COCO 2016 keypoints challenge [31] 

was the CMU-Pose method [14] which was motivated by 

the Convolutional Pose Machine [8]. The CMU-Pose 

method includes a feature extractor unit and multiple 

stages of convolutional neural networks. In each stage, 

confidence maps of each part and PAFs for encoding part-

to-part associations are predicted and refined. PAFs are 

unit vectors defined for each pixel that show the direction 

of the limbs connecting body parts. The width of each 

limb is determined from the length of the connected line 

between the two parts. During test time, they compute 

the line integral over the corresponding PAFs along the 

lines connecting the candidate part locations. 

The winner of PoseTrack 2017 challenge [15] improves 

the CMU-Pose method. They consider a deeper network 

for feature extraction and empirically increase the 

number of network stages from 6 to 7. The main 

contribution of this paper is the definition of enhanced 

PAFs. In the CMU-Pose method, 𝑛 − 1 PAFs are defined 

for the 𝑛 body parts. But in this work, additional PAFs are 

considered. For example, in addition to PAFs between hip 

and knee and also between knee and ankle, they define 

additional PAFs between hip and ankle. 

Another variant of the CMU-Pose model appeared in 

OpenPose which increases both speed and accuracy [17]. 

They released an open-source library which was the first 
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available system for realtime multi-person 2D pose 

estimation, including body, foot, hand, and facial 

keypoints [18]. They found that PAFs refinement is more 

important than confidence map refinement. So, they 

remove the part refinement stages and increase the 

depth of the network. An important aspect of OpenPose 

is that it includes the location of the feet in its pose 

estimation. Some applications such as filmmaking require 

foot information. In addition, the foot keypoints (e.g. big 

toe and heel) localization helps to estimate the whole-

pose more accurately. To address these issues, a small 

subset of foot instances is labeled. OpenPose first obtains 

body and foot keypoints locations [14] and then runs 

hand and face keypoints detectors [32] for each detected 

person. 

The deep Whole-body method [20] applies an MTL 

approach to the OpenPose network to train the model 

with different scale properties. To improve face and hand 

keypoints localization, the network increases the input 

resolution. Unfortunately, this implicitly reduces the 

effective receptive fields and therefore reduces 

body/foot localization accuracy. To solve this issue, the 

number of convolutional layers in each PAF stage is 

increased to recover the effective receptive field that was 

previously reduced. As the result, while the large 

receptive field is preserved, a high resolution for precise 

face and hand keypoint detection is provided. The new 

approach yields higher accuracy than that of the original 

OpenPose, especially for face and hand keypoint 

detection in occluded, blurry, and low-resolution images. 

Additionally, its total training time and inference runtime 

are less than the previous OpenPose. 

While most of the HPE models improve the accuracy of 

the previous models by increasing the number of the 

model’s parameters, Liu et al. propose a method for 

increasing the accuracy without very additional 

complexity [19]. Their contributions are resolution 

irrelevant encoding (RIE) and difficulty balanced loss 

(DBL). RIE is an inner block offset supervision that aids to 

learn the more precise locations for keypoints. 

Furthermore, DBL is a loss function containing two parts: 

1) a Gaussian loss weight for different pixels which guides 

the network focus on useful information, and 2) the 

progressive punishment that discerns between left and 

right joints.  

In [16], a lightweight architecture is designed to 

perform pose estimation on edge devices. They follow the 

OpenPose model, because of its quality and robustness to 

the number of people inside the frames. The parameters 

and complexity of the designed network are just 15 

percent of the baseline 2-stage OpenPose with almost the 

same quality.  

Pifpaf [33] is a multi-person human pose estimation 

method that is suited for low resolution and crowded 

scenes. They use two units, a part intensity field (PIF) to 

localize body parts and a part association field (PAF) to 

associate body parts with each other to form full human 

poses. Part Association Field predicts two vectors to the 

two parts at every image pixel. They use Laplace loss for 

regressions which incorporates a notion of uncertainty. 

C.  Pose Estimation by Using Depth 

3D pose estimation is useful in widespread 
applications, such as human motion analysis, human-
computer interaction, and robotics. A large number of 
approaches have been developed for pose estimation of 
one or several people, cars, or even dishes. When the 
depth information is available, 3D pose estimation is 
simple. However, it is possible to estimate depth from a 
monocular image or images from multiple camera views. 
As an example, [34] uses OpenPose with multiple 
synchronized video cameras for developing a 3D 
markerless motion capture technique. Here, we review 
some works which utilize or estimate depth to address 
their problem. 

TesseTrack [35] is a top-down approach to estimate 
and track 3D body joints from a video in an end-to-end 
network. Central to this work is a novel spatio-temporal 
formulation that estimates a spatio-temporal volume 
around each person by a 4D CNN. The evaluation 
demonstrates the excellent performance of TesseTrack. 

Occlusion-Net [36] is a self-supervised network that 
predicts 2D and 3D locations of occluded keypoints for 
objects, especially for cars. At the core of this network are 
two losses: 1) a trifocal tensor loss that provides indirect 
self-supervision for occluded keypoint locations that are 
visible in other views of the object, and 2) the self-
supervised reprojection loss which estimates the 3D 
shape and camera pose. 

In [37], the integration of bottom-up and top-down 

approaches is proposed to exploit their strengths. Their 

bottom-up network incorporates normalized heatmaps 

based on human detection, and their top-down network 

estimates human joints from all persons rather than from 

one. Finally, 3D poses are estimated from the top-down 

and bottom-up estimated 3D poses by an integration 

network. Also, to enforces natural two-person 

interactions, a two-person pose discriminator is 

proposed. 

VoxelPose [38] estimates 3D poses of several persons 

from multiple camera views. It directly operates in the 3D 

space by aggregating the features in all camera views in 

the 3D voxel space. Then the features are fed into a 

network to localize all people. Finally, another network 

estimates a detailed 3D pose for each proposal.  

A multi-stream multi-task network [39] for RGB-D-

based human detection and head pose estimation is 

introduced to overcome challenges due to variations of 

illumination, clothing, resolution, pose, occlusion, and 

background. They integrate RGB, depth, and optical flow 
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data, as inputs to represent the appearance, shape, and 

motion information of humans, which makes full use of all 

the information provided by RGB-D video sequences to 

achieve state-of-the-art performance on three 

challenging datasets. 

Depth sensors are prevalent in today's robotics, but 
large amount of data for training CNN is not available. 
Regarding the importance of object recognition and pose 
estimation from RGB-D images and the expensive cost of 
creating and annotating datasets for learning, [40] tries to 
address the problem with transfer learning. They propose 
a transfer learning from deep convolutional neural 
networks (CNN) that are pre-trained and provide a rich, 
semantically meaningful feature set. They transform 
depth data into a representation that is easily 
interpretable by a CNN trained on color images. Actually, 
instead of handcrafting or learning features, they relied 
on a convolutional neural network (CNN) which was 
trained on a large image dataset. They show that 
supervised learning on the CNN features outperforms 
state-of-the-art methods. 

6D pose estimation is a type of pose estimation that is 
an important task in robotics. It is the task of detecting 
the 3D location and 3D orientation of an object. Given the 
depth information makes it feasible to extract the full 6D 
pose of object instances present in the scene. [41] uses 
analysis-by-synthesis which is a method to compare the 
observation with the generated output. They learn a CNN 
that compares observed and synthesized images. In 
particular, for pose estimation, a forward synthesis model 
generates images from possible poses and then selects 
the best match with the observed image. 

D.  Uncertainty in Pose Estimation 

Despite the great achievements of deep neural 
networks in many applications, they still suffer from some 
weaknesses. While DNNs show excellent ability in 
perception, they fail in proper thinking and relational 
reasoning. DNNs are data-driven and need a lot of diverse 
data to learn a task perfectly. Practically, the insufficiency 
of the training data in terms of the number or diversity of 
the data increases the uncertainty of the DNNs’ 
predictions. There are also uncertainties related to the 
nature of data and tasks. Capturing different kinds of 
uncertainties in training DNNs, especially in multi-task 
problems, may improve the efficiency of the training 
process and increase the accuracy of the developed 
model. In summary, three types of uncertainties are 
captured by Bayesian deep learning [42], [43]: 

(1) Epistemic uncertainty is caused by the lack of data 

in training the deep model. If the test data is different 

from the training set, epistemic uncertainty increases 

more. Epistemic uncertainty can be resolved by increasing 

diverse training data or defining a prior distribution over 

the weights of the neural network. Some effective and 

simple algorithms are employed for estimating epistemic 

uncertainty [44]. For example, abnormal human poses 

which are not found in training data increase epistemic 

uncertainty in an HPE task. 

(2) Heteroscedastic aleatoric uncertainty depends on 

the input data and differs from one to another input. 

Unlike epistemic uncertainty, heteroscedastic aleatoric 

uncertainty does not increase for out-of-date samples 

and does not decrease with more data. It is predicted by 

considering a distribution over the model outputs. As an 

example, the pose estimation of a person whose clothes’ 

color or skin tone is very similar to the background is more 

uncertain than that of a person with distinct cloth color or 

skin tone. Modeling heteroscedastic uncertainties can be 

simple with less complexity. 

(3) Homoscedastic aleatoric uncertainty does not 

depend on the inputs and is constant for all input data. 

Actually, it is related to tasks and hence is called task-

dependent uncertainty. The common noises inherent in 

the observations or sensors cause this type of uncertainty 

in deep networks. For example, for estimation of human 

pose on a single 2D image, the lack of depth data causes 

uncertainty which is present in all outputs. It can be 

captured as the output of a model and can be decreased 

by utilizing other information e.g. estimated depth of an 

image. In this research, we only consider task-dependent 

uncertainty. 

Uncertainty-Based Multi-Person Pose Estimation: 

CertainPose 

Multi-task learning (MTL) is an efficient way to improve 

the learning of multiple tasks with a shared 

representation in a network. MTL increases the prediction 

accuracy by involving joint learning of various tasks. 

Besides, combining multiple objectives in a model 

reduces the computational complexity, so it is useful in 

realtime systems. A naive approach for learning multiple 

tasks is to minimize a weighted linear sum of multiple 

objectives with equal or fixed predefined weights. while it 

is important to determine the optimal weights [21], 

manual tuning of weights is difficult and inefficient.  

Some studies are carried out to find an appropriate 

approach to combine the tasks’ loss functions. As an 

example, the Cross-stitch network proposes a new unit 

that learns optimal coefficients for multiple objectives 

[45][45] In another attempt, Gradient Normalization 

(GradNorm), an adaptive multi-task loss balancing 

technique, normalizes across tasks instead of batch data 

in batch normalization [46]. The Human can learn from 

knowledge, but deep networks are data-driven and, 

unlike the probabilistic graphical models, cannot model 

the probability and the uncertainty well. Uncertainty is 

increased by the lack of training data and their diversity. 

Even if there is enough and diverse data, some 

uncertainties still remain due to the nature of the data 
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and the task.  

Considering the different degrees of difficulty and 

uncertainty in various tasks, [47] learns the task-based 

uncertainties as additional parameters in the network and 

uses them to combine multi-task loss functions in an MTL 

loss function. 

In recent years, the prevailing approach for multi-

person pose estimation [15]-[17], [19], [20] has been the 

extraction of a set of shared features for learning two 

disjoint representations, simultaneously: confidence 

maps of the joints and part affinity fields (PAFs). 

Confidence maps show the likelihood of the presence of 

each keypoint at each pixel of the input image. On the 

other hand, PAFs represent limbs, the connections 

between keypoints, by a set of unit vectors. Actually, 

these models leverage MTL to learn two tasks with two 

distinct loss functions using a shared representation in a 

deep neural network. 

In most networks which predict confidence maps and 

PAFs simultaneously, the simplest way of MTL is applied. 

The loss function of each task is the mean square error of 

the predicted and the actual outputs and the total loss 

function of the network is the average of the two 

objectives. However, the uncertainties of the two tasks 

are not necessarily equal, and using different weights for 

the two tasks boosts the learning efficiency. In this 

research, we intend to learn the two tasks more 

efficiently with the same computational complexity as the 

base networks. The main novelty of this work is to capture 

task-dependent uncertainties in an MTL method without 

any additional parameters. So, we call the proposed 

method "CertainPose", as it captures the uncertainty and  

estimates more certain poses. This section continues by 

describing the overall architecture of our model. Then, we 

explain three types of uncertainties and an MTL approach 

that model task-dependent uncertainties. Finally, a new 

loss function is introduced for training confidence maps 

and PAFs more fairly, which captures task-dependent 

uncertainty without any additional parameters. 

A. Network Architecture 

The role of the CertainPose model is to predict 

confidence maps and PAFs for the input image, as shown 

Fig. 1. There are three main components: 1) Feature 

extractor, 2) Confidence maps predictor, and 3) PAFs 

predictor. The input of the model is an image that is first 

fed into a feature extractor, and then the extracted 

features are used by the Confidence maps predictor and 

PAFs predictor. The second component predicts the 

confidence map of each body joint which represents the 

confidence score of that joint at the location at each pixel. 

The third component predicts the PAFs for each body 

limb, consisting of a directional vector at each pixel of the 

input image. While the input and architecture of these 

two networks are similar, their goals are different. They 

are trained in parallel, but with different loss functions 

and ground truth maps and fields, which result are yielded 

from the ground truth coordinates of multi-person poses. 

Therefore, the parameters of the two networks are 

trained with different loss values. To calculate an overall 

loss value for training the CertainPose network, the loss 

functions of the two parallel networks can be aggregated 

in different ways. We propose a new loss function that is 

described later.    

The detailed architecture of the CertainPose model is 

outlined in Fig. 2. First, the input image (𝐼) is fed into the 

feature extraction unit. The extracted features are then 

passed to two branches of the model, each of which 

consisting of a series of convolutional and pooling layers. 

In the first branch, a feedforward network predicts a set 

of 2D confidence maps (𝑆) for the body parts’ locations. 

There are 𝐽 confidence maps for different parts 

(keypoints) of the body in 𝑆 =  {𝑆1, 𝑆2, . . . ,𝑆𝐽}. In the 

second branch, a set of 2D vector fields (𝐿) of PAFs are 

predicted which encode the unit vectors in the direction 

of limbs, resembling the connections between adjacent 

body parts. The PAFs set consists of 𝐶 PAF related to the 

𝐶 limbs 𝐿 =  {𝐿1, 𝐿2, . . . , 𝐿𝐶}. The two-branch network is 

repeated over t successive stages to refine the 

predictions. At each stage, the confidence maps and PAFs 

of the previous step along with the extracted features are 

taken as the input and the refined confidence maps and 

PAFs are generated as the outputs.  

The internal structure of the feature extractor and the 

units of the two branches of the network are 

demonstrated in Fig. 2 Similar to CMU-Pose [17], 

CertainPose uses the first ten layers of the VGG-19 

network as the feature extractor, and adds two more 3x3 

convolutional layers to these layers.  

The two branches of the network consist of 6 stages. In 

the first stage, shared features are fed into two disjoint 

CNN networks with the same layers: two 3x3 

convolutional layers followed by two 1x1 convolutional 

layers regressing the tasks’ outputs, i.e. the confidence 

maps and PAFs.  

The inputs of the next successive stages consist of the 

concatenation of the shared features and the outputs of 

the previous stage (confidence maps and PAFs).  

In stages 2 to 6, there are two CNN networks in each 

stage which are similar to each other with four 7x7 

convolutional layers and two 1x1 convolutional layers. 

The number of parameters in each layer of CertainPose is 

shown in Fig. 3. 

Moreover, ReLu is used as the activation function in all 

neurons.  

The deep networks suffer from the vanishing gradient 

problem.  

The intermediate supervision at each stage addresses 

this problem by replenishing the gradient periodically. 
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Fig. 3: The number of parameters of CertainPose layers. 

 

To guide the network to estimate the confidence maps 

and PAFs more accurately, the network is trained with a 

multi-task loss function. The loss function of each task is 

the mean of squared differences between the estimated 

and the actual outputs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the total loss function, CMU-Pose and the other 

approaches following it consider the average of the two 

tasks’ loss functions. But, we attempt to have a fairer loss 

function for learning the two objectives by considering 

task-dependent uncertainties for the two tasks. Because 

of the more certain estimated poses, the new model is 

called ‘CertainPose’. The new loss function is derived in 

subsection “Loss Function”.  

At the inference step, CertainPose predicts PAFs and 

Confidence maps for the input image. Similar to [14], non-

maximum suppression is carried out to discretize the 

confidence maps and obtain some candidates for each 

part. A graph is then formed using candidate parts as 

vertices and candidate limbs as edges. To perform multi-

person pose estimation, we should parse the graph and 

select the optimal set of limbs by measuring the 

association scores of the edges and removing the non-

optimal edges. The score of a candidate limb is calculated 

by the line integral over the corresponding PAF along the 

candidate limb, virtual line segment connecting the 

candidate parts.   

To speed up the parsing procedure, we use a greedy 

method. A greedy algorithm is a problem-solving 

approach that involves selecting the most advantageous 

  
Fig. 1: The block diagram of CertainPose model. 

 

Fig. 2: The detailed architecture of CertainPose. 
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option at each step. While this strategy may not yield the 

best solution in all cases, it can produce locally optimal 

solutions that approximate the global optimal solution. 

Although greedy algorithms are not guaranteed to find 

the best solution, they are known for their speed and 

simplicity, making them a popular choice in real-time 

applications. We first consider a spanning tree skeleton 

for the human body instead of a complete graph, e.g. we 

ignore the virtual connected line between the head and 

the elbow. Then, we solve a bipartite matching problem 

to detect each limb. Bipartite matching is finding a set of 

edges between two vertices of two disjoint sets of 

vertices in the way that no two edges share an endpoint. 

For example, if we have three head and three shoulder 

keypoints, we should find the best three edges between 

the heads and shoulders without any shared point. 

Bipartite matching of disjoint parts’ pairs obtains the limb 

connection candidates for each limb independently. 

Therefore, we can estimate the full-body poses of 

multiple people by assembling the candidate limbs. 

B. Uncertainty 

As described before, we only consider task-dependent 

uncertainty. Due to the importance of capturing task-

based uncertainties and appropriately weighting the 

losses in multi-task learning, the uncertainty-based 

weighting method seems to be better than equal 

weighting of the losses [47]. The weights can be learned 

as a part of the convolutional neural network and loss 

functions. If the probabilistic likelihood of a regression 

task is considered as a Gaussian distribution, the variance 

parameter represents the noise and uncertainty of the 

task. In the following subsection, we describe this 

approach. 

The problem (1) is finding the best weights w for the 

multi-task network 𝑓 using the training data set 

{(𝐼(𝑖), 𝑆(𝑖), 𝐿𝑖 ): 𝑖 = 1,2, … , 𝑁}  where 𝐼(𝑖), 𝑆(𝑖), and 𝐿(𝑖) 

refer to 𝑖-th sample input image, output set of confidence 

maps and PAFs, respectively.  

arg  max  
𝑤

𝒥(𝑤)               (1) 

where 

𝒥(𝑤) = ∏ 𝑝

𝑁

𝑖=1

(𝑆(𝑖),𝐿(𝑖)|𝐼(𝑖),𝑤)

𝑆 = 𝒩(𝑓𝑤𝑆(𝐼),𝜎𝑆
2);  𝑤𝑆 ⊂ 𝑤

𝐿 = 𝒩(𝑓𝑤𝐿(𝐼),𝜎𝐿
2);  𝑤𝐿 ⊂ 𝑤

 

 

where 𝑤𝑆 and 𝑤𝐿 are weights related to the confidence 

maps and PAFs regression tasks, respectively. We assume 

that the two tasks are independent, so 𝒥(𝑤) can be 

written as (3). 

  

𝒥(𝑤) = ∏ 𝑝

𝑁

𝑖=1

(𝑆(𝑖)|𝐼(𝑖),𝑤𝑆) 𝑝(𝐿(𝑖)|𝐼(𝑖),𝑤𝐿)

= ∏
1

√2𝜋𝜎𝑆
 

𝑁

𝑖=1

𝑒𝑥𝑝 (
−∥ 𝑆(𝑖) − 𝑓𝑤𝑆(𝐼(𝑖)) ∥2

2𝜎𝑆
2 )

1

√2𝜋𝜎𝐿
 

𝑒𝑥𝑝 (
−∥ 𝐿(𝑖) − 𝑓𝑤𝐿(𝐼(𝑖)) ∥2

2𝜎𝐿
2 )

 

 

We solve the problem by minimizing the loss function, 

ℒ, instead of maximizing  𝒥 (4). 

max  
𝑤

𝒥(𝑤) ≡ min  
𝑤

ℒ(𝑤)

ℒ(𝑤) = −log(𝒥(𝑤))

= ∑ log

𝑁

𝑖=1

(√2𝜋𝜎𝑆) +
∥ 𝑆(𝑖) − 𝑓𝑤𝑆(𝐼(𝑖)) ∥2

2𝜎𝑆
2

+log(√2𝜋𝜎𝐿) +
∥ 𝐿(𝑖) − 𝑓𝑤𝐿(𝐼(𝑖)) ∥2

2𝜎𝐿
2

ℒ(𝑤) = 𝑁log(𝜎𝑆) + 𝑁log(𝜎𝐿)

+
1

2𝜎𝑆
2 ∑ ∥

𝑁

𝑖=1

𝑆(𝑖) − 𝑓𝑤𝑆(𝐼(𝑖)) ∥2

+
1

2𝜎𝐿
2 ∑ ∥

𝑁

𝑖=1

𝐿(𝑖) − 𝑓𝑤𝐿(𝐼(𝑖)) ∥2

 

( 3 ) 

ℒ(𝑤) = log(𝜎𝑆) + log(𝜎𝐿)

+
1

2𝜎𝑆
2 ℒ𝑆(𝑤𝑆) +

1

2𝜎𝐿
2 ℒ𝐿(𝑤𝐿)

ℒ𝑆(𝑤𝑆) =
1

𝑁
∑ ∥

𝑁

𝑖=1

𝑆(𝑖) − 𝑓𝑤𝑆(𝐼(𝑖)) ∥2

ℒ𝐿(𝑤𝐿) =
1

𝑁
∑ ∥

𝑁

𝑖=1

𝐿(𝑖) − 𝑓𝑤𝐿(𝐼(𝑖)) ∥2

 

( 4 ) 

Equation (5) shows the final solution of the proposed 

loss function, where 𝜎𝑆 and 𝜎𝐿 should be learned. As 

shown in this section, the task-dependent uncertainty can 

be captured by multi-task learning, while learning the 

additional parameters increases computational 

complexity.  

C. Loss Function 

We propose a new method for capturing the task-

based uncertainties. In this method, the network 

architecture does not change and no further 

computational complexity is required. The new loss 

function (6) is derived as (7). 

arg  min  
𝑤

ℒ(𝑤)                                ( 5 ) 

where 

( 2 ) 

( 1 ) 
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ℒ(𝑤) = ∑  

𝑁

𝑖=1

log(𝜎𝑆) + log(𝜎𝐿) +
1

2𝜎𝑆
2 ℒ𝑆(𝑤𝑆) +

1

2𝜎𝐿
2 ℒ𝐿(𝑤𝐿)

ℒ𝑆(𝑤𝑆) =
1

𝑁
∑ ∥

𝑁

𝑖=1

𝑆(𝑖) − 𝑓𝑤𝑆(𝐼(𝑖)) ∥2

ℒ𝐿(𝑤𝐿) =
1

𝑁
∑ ∥

𝑁

𝑖=1

𝐿(𝑖) − 𝑓𝑤𝐿(𝐼(𝑖)) ∥2

 

( 6 ) 

In regression tasks, the likelihood is considered as a 

Gaussian whose mean is the output of the model (8). This 

means when the network’s parameters are learned 

through the training process, the network’s output for 

each task approaches the mean of the corresponding 

response variable given the input, i.e. 𝑆 and 𝐿 for our two 

tasks. So, 𝜎𝑆
2 and 𝜎𝐿

2 can be estimated with sample 

variances 𝑉𝑎𝑟𝑆
2 and 𝑉𝑎𝑟𝐿

2, respectively. 

 
𝑝(𝑆𝑖 | 𝑆) = 𝒩(𝑆,𝜎𝑆

2)

𝑝(𝐿𝑖 | 𝐿) = 𝒩(𝐿,𝜎𝐿
2)

 

( 7 ) 

 

 
ℒ𝑆(𝑤𝑆) =

1

𝑁
∑ ∥𝑁

𝑖=1 𝑆(𝑖) − 𝑆 ∥2= 𝑉𝑎𝑟𝑆

2

ℒ𝐿(𝑤𝐿) =
1

𝑁
∑ ∥𝑁

𝑖=1 𝐿(𝑖) − 𝐿 ∥2= 𝑉𝑎𝑟𝐿

2 

( 8 ) 

As a result, a simple equation is obtained for the loss 

function (10). Therefore, we consider the average 𝑙𝑜𝑔 of 

the tasks’ loss functions instead of the mean of the loss 

functions themselves. 

 ℒ(𝑤) =
1

2
(log(ℒ𝑆(𝑤𝑆)) + log(ℒ𝐿(𝑤𝐿)))                    ( 9 ) 

The new loss function aims to improve the validity of 

the body part predictions by capturing task-based 

uncertainty without changing the complexity of the 

model. 

Experiments 

In this section, we first introduce the datasets and 

evaluation metrics and then report the experimental 

results and analyze them.   

A. Datasets and Metrics 

We conduct the experiments on the COCO keypoints 

2014 and COCO keypoints 2017 datasets [48]. These 

datasets are the largest collection of multi-instance 

person keypoint annotations which has been widely used 

in many studies. COCO datasets consist of many 

challenging situations for multi-person pose estimation 

problems. 17 keypoints including 12 human body parts 

and 5 facial keypoints are localized in the COCO keypoints 

dataset. COCO keypoints 2014 consists of 83k training 

data and 41k test data and COCO keypoints 2017 consists 

of 118k training and 41k test data. The COCO training set 

consists of over 100K person instances labeled with over 

1 million keypoints. We report the results on both 

versions of COCO keypoints. 

The performance of the proposed method is evaluated 

based on the object keypoint similarity (OKS) which is 

defined in COCO evaluation [49]. The role of OKS is the 

same as the IoU in object detection. OKS measures the 

degree of match between real and predicted poses. It 

ranges from 0 to 1 which refers to poor to perfect match. 

The mean average recall (AR) and the mean average 

precision (AP) over 10 OKS thresholds are used as the 

main competition metrics. Moreover, we assess the 

methods by AP and AR over thresholds 0.5 and 0.75, 

which are indicated by 𝐴𝑃50 and 𝐴𝑅50, and 𝐴𝑃75 and 

𝐴𝑅75, respectively. Besides, results per each body part 

are presented to have a better analysis. 

The results are reported on two models: 1) CMU-Pose: 

a model whose architecture is similar to our proposed 

model, but uses the CMU-Pose loss function [14] which is 

the average of the two tasks’ loss functions and does not 

capture uncertainty, 2) CertainPose: the proposed 

method which captures task-based uncertainty as a new 

loss function.  

B. Results and Discussion 

Both models, CertaionPose and CMU-Pose, are trained 

on COCO keypoints 2014 training data. The MultiSGD 

optimizer with a learning rate of 2e-5 is used and the size 

of each batch is 10 images. CMU-Pose and CertainPose 

are trained for 100 and 18 epochs respectively. 

Practically, CertainPose can be trained faster than CMU-

Pose. 

 
Table 1: Comparison between CertainPose and CMU-Pose by 
mean of AP and AR metrics over all body parts on COCO 
validation sets 2014 and 2017 
 

DB Methods AP 𝑨𝑷𝟓𝟎 𝑨𝑷𝟕𝟓 AR 𝑨𝑹𝟓𝟎 𝑨𝑹𝟕𝟓 

V
al

2
0

1
4

 CMU-Pose 0.59 0.792 0.637 0.623 0.806 0.664 

CertainPose 0.589 0.802 0.643 0.626 0.816 0.671 

V
al

2
0

1
7

 CMU-Pose 0.578 0.78 0.625 0.613 0.795 0.654 

CertainPose 0.575 0.79 0.624 0.614 0.804 0.66 

 

The results of the test procedure for CMU-Pose and 

CertainPose on both datasets are shown in Table 1. The 

higher AP values refer to the more precise localization, 

and the higher ARs show more valid predictions. The 

results are measured by mean AP and mean AR over three 

values of OKS thresholds (0.5, 0.75, and 0.05:0.95) for all 

body parts. The higher threshold value considers the 

more perfect match between the estimated and real parts 

locations. The results show that CertainPose: 1) improves 
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AR measure definitely, 2) improves AP measure with 

lower OKS, and 3) has AP factor comparable to the base 

model when OKS is increased.  

Here, we explain the conclusions more clearly. First, 

CertainPose improves the AR measure by capturing task-

based uncertainty through the loss function. This results 

in more valid and more certain outputs. In other words, 

the false positive rate is reduced in this method. Second, 

the AP measure improves because of training the two 

tasks fairer and predicting more accurate PAFs, which are 

impressive in keypoint association and body pose 

estimation. Third, while the CertainPose AP measure 

improves for lower OKS, it is not better than CMU-Pose 

for the higher OKS threshold, e.g. 0.95. It means that our 

model estimates more valid and more accurate body 

poses, but it fails to localize body parts more precisely 

since we apply a 𝑙𝑜𝑔 operator over the distance between 

the predicted and the actual outputs in the loss function. 

 
 

Fig. 4: The improvements of CertainPose for different 

keypoints on Val2017 dataset by  𝐴𝑃50and 𝐴𝑅50metrics for 
OKS=0.5. 

 
CertainPose can associate the localized keypoints 

more accurately because PAFs are predicted more 

precisely. In the CMU-Pose loss function, equal weights 

are considered for PAFs and Confidence maps, but 

CertainPose considers task-dependent uncertainties to 

weigh the sub-loss functions. PAFs are more difficult than 

confidence maps to predict. Therefore, PAFs need higher 

weights and CertainPose predicts PAFs more precisely.  

Fig. 4 and Fig. 5 show the improvements of CertainPose 

for each keypoint in comparison with CMU-Pose on COCO 

val2014 and val2017 datasets. The keypoints like the 

elbows, hips, ankles, and knees which are connected with 

more clear limbs are localized more precisely.  

We further show qualitative results for some images in 

Fig. 6. The (a) and (b) parts show the results of 

CertainPose and CMU-Pose, respectively. Some keypoints 

such as knees and elbows are predicted more accurately 

by the CertainPose method. Predicting the right elbow 

and left knee causes the more correct poses in the first 

two of the above images. Other shown samples 

demonstrate the power of CertainPose in PAF estimation. 

Higher accuracy in PAFs estimation is the reason of 

correct poses in the left hand and the left leg of the men, 

and the left hand of the baby in other three images, 

respectively.  

We have analyzed the cases where our approach fails. 

Fig. 5. shows an overview of some failure cases and 

compares with the base method. The low resolution is the 

main cause of errors in the joint localization and PAFs 

estimation. 

Realtime estimation is an important characteristic of 

HPE models in many real-world applications. CMU-Pose is 

the popular realtime multi-person pose estimation 

method. Its speed is independent of the number of 

people in the image. CertainPose improves the base 

model without adding any parameters. The main 

contribution of CertainPose is improving the CMU-Pose 

accuracy without decreasing the speed and increasing the 

complexity.  

Table 2 shows the almost equal time of the two 

methods when perform single-scale process with the 

CUDA toolkit. 
 

Table 2: Comparison between CertainPose and CMU-Pose by 
process time (ms) 

 

Methods CertainPose CMU-Pose 

CUDA (ms) 88.74 86.82 

 
The goal of this research was to introduce the new loss 

function and investigate its performance in an applicable 

network, 2D HPE.  

We show that we can increase the accuracy with the 

same number of parameters and inference speed. It is 

true that the improvement is not very significant, but one 

should note that the cost is not increased, either. In 

addition, the task-dependent uncertainties are captured 

and a few epochs are needed in the training step. The 

comparison of CertainPose and some other studies on 

COCO val split is shown in Table 3.  

Fig. 3: The improvements of CertainPose for different 

keypoints on Val2014 dataset by  𝐴𝑃50and 𝐴𝑅50metrics for 
OKS=0.5. 
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(a) 

 

(b) 

Fig. 6: The qualitative results of (a) CertainPose and (b) CMU-Pose. 
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(a) 

 

(b) 

 

(c) 

Fig. 5: Visualization of some failure results of CertainPose on the COCO dataset and comparison between CertainPose (left) 

and CMU-Pose (right). 
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Osokin [16] introduces a lightweight OpenPose with 

fewer parameters and lower complexity compared to 

OpenPose. Cao et al. [14], the winner of the COCO 2016 

keypoints challenge reports 58.4 AP for a model that is 

similar to CertainPose but, with two less layers. Newell et 

al. [50] propose a new approach for detections and group 

assignments. As reported in [51], their AP on COCO 

dataset is 56.9. Kocabas et al. [51] improve the base 

method by using a new grouping idea to associate body 

joints. 
 

Table 3: Comparison of CertainPose and other works. 
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In summary, we compare the proposed idea and the 

baseline in Table 4. However, CMU-Pose is trained for 100 

epochs, CertainPose needs 18 epochs. The runtime and 

number of parameters are almost the same. 
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Abbreviations 

HPE Human Pose Estimation 

HOG Histogram of Oriented Gradients  

CNN Convolutional Neural Network 

CPM Convolutional Pose Machine 

PAFs Part Affinity Fields 

MTL Multi-Task Learning 

PSM Pictorial Structure Model 

The AP and AR comparisons show that CertainPose 

estimates more valid and accurate poses, and finds the 

less precise location for keypoints.  

Conclusion 

To obtain a more certain realtime multi-person pose 

estimation network, we propose a method to capture 

task-dependent uncertainties across the loss functions 

without increasing the number of parameters. As 

comparison Table 4 shows, the experiments prove that 

CertainPose: 1) needs fewer epochs for training, 2) 

preserves the realtime pose estimation property, 3) 

provides more valid and accurate estimations, and 4) 

locates keypoints less precisely.  

In future work, we intend to examine different tasks 

and information to improve multi-person pose 

estimation. 

The main weakness of our work is focusing on PAFs 

which causes less precise predicted heatmaps, 

particularly for keypoints with lower resolution (Fig. 5). 

We can use high resolution architecture instead of 

predictor units.  

Also, the CertainPose idea can be the base method for 

incorporating other information to improve the pose 

estimation accuracy. 

 

 

 

 

 

 

 

 

 

 

RPN Region Proposal Network 

RIE Resolution Irrelevant Encoding 

DBL Difficulty Balanced Loss 

PIF Part Intensity Field 

PAF Part Association Field  

CNN Convolutional Neural Networks 

MTL Multi-Task Learning 

OKS Object Keypoint Similarity 

AR Average Recall 

AP Average Precision 
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