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Background and Objectives: In order to improve the performance of normalized 
subband adaptive filter algorithm (NSAF) for identifying the block-sparse (BS) 
systems, this paper introduces the novel adaptive algorithm which is called 
BSNSAF. In the following, an improved multiband structured subband adaptive 
filter (IMSAF) algorithms for BS system identification is also proposed. The BS-
IMSAF has faster convergence speed than BS-NSAF. Since the computational 
complexity of BS-IMSAF is high, the selective regressor (SR) and dynamic selection 
(DS) approaches are utilized and BS-SR-IMSAF and BS-DS-IMSAF are introduced. 
Furthermore, the theoretical steady-state performance analysis of the presented 
algorithms is studied. 
Methods: All algorithms are established based on the 𝐿2,0-norm constraint to the 
proposed cost function and the method of Lagrange multipliers is used to optimize 
the cost function. 
Results: The good performance of the proposed algorithms is demonstrated 
through several simulation results in the system identification setup. The 
algorithms are justified and compared in various scenarios and optimum values of 
the parameters are obtained. Also, the computational complexity of different 
algorithms is studied. In addition, the theoretical steady state values of mean 
square error (MSE) values are compared with simulation values. 
Conclusion: The BS-NSAF algorithm has better performance than NSAF for BS 
system identification. The BSIMSAF algorithm has better convergence speed than 
BS-NSAF. To reduce the computational complexity, the BS-SR-IMSAF and BS-DSR-
IMSAF algorithms are developed. These algorithms have close performance to BS-
IMSAF. 
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Introduction 

The least mean squares (LMS) and the normalized LMS 

(NLMS) algorithms are widely used in many adaptive filter 

applications [1]-[4]. These algorithms are simple, stable 

and easy to implement [5]. However, the convergence 

speed of LMS and NLMS algorithms is significantly 

deteriorated in case of colored input signals. To improve 

the convergence speed of these algorithms, different 

algorithms such as affine projection (AP) and normalized 

subband adaptive filter (NSAF) algorithms were 

introduced [6], [7]. Also, the methods of APA and NSAF 

were combined and improved multiband structured SAF 

(IMSAF) was proposed in [8], [9]. Since the computational 

complexity of APA and IMSAF is high, various approaches 

such as selective regressor (SR) and dynamic selection 

regressor (DSR) were applied in APA [10], [11] and IMSAF 

[12]-[14] as well as wavelet transform domain LMS 

(WTDLMS) [15]. 

In some applications, the unknown system to be 
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identified is sparse or block-sparse (BS). It means that the 

unknown system consists of many zero or near-zero 

coefficients and a small number of large ones. The typical 

sparse systems are digital TV transmission channels and 

echo paths [16]. Also, in satellite-linked or in-door MIMO 

communications, the impulse response is block sparse. 

The classical adaptive filter algorithms such as NLMS, APA, 

NSAF, and IMSAF suffer from poor performance when the 

impulse response of the unknown system is sparse or 

block sparse [17]. 

To solve this problem, the 𝐿0-norm constraint are 

utilized in the cost function of various adaptive filter 

algorithms. In [18], the 𝐿0-LMS was presented which 

shows better performance than LMS and NLMS in sparse 

system identifications. Also, two types of 𝐿0-APA and 𝐿0-

NSAF algorithms were proposed in [6], [7]. The other 

researches on sparse systems can be found in [20], [23], 

[24], and [25]. Furthermore, in our recent research, we 

introduced the 𝐿0-IMSAF algorithm [26]. As we 

mentioned, there is a special sparse system which is called 

block-sparse (BS). The impulse response of block-sparse 

system consists of one or more clusters, wherein a cluster 

is a gathering of nonzero coefficients. In this situation, the 

sparse adaptive algorithm such as 𝐿0-LMS doesn’t work 

well. Therefore, the BS-LMS was introduced [27]. The BS-

LMS has much better convergence speed than 𝐿0-LMS in 

BS system identification. In BS-LMS, a penalty of BS, which 

is mixed 𝐿2,0-norm of adaptive filter coefficients with 

equal group partition sizes, is inserted to the cost function 

of LMS. This approach was successfully extended to 

proportionate NLMS in [28]. 

In the present study, the BS-NSAF algorithm is firstly 

introduced. The BS-NSAF has faster convergence speed 

than 𝐿0-NSAF in block-sparse systems. Then, to improve 

the performance of BS-NSAF, the BS-IMSAF is presented. 

Both algorithms are established based on the 𝐿2,0-norm 

constraint to the proposed cost function. In the following, 

we introduce two new algorithms to reduce the 

computational complexity of BS-IMSAF. The SR and DSR 

approaches are extended to BS-IMSAF and BS-SR-IMSAF 

and BS-DSR-IMSAF are established. In BS-SR-IMSAF, a 

subset of the input regressors at each subband are 

optimally selected during the adaptation. The subsets 

with dynamic number of members from the input 

regressors (DSR) at each subband are chosen for every 

iteration in BS-DSR-IMSAF. Furthermore, the theoretical 

steady-state performance analysis of the proposed 

algorithms is also studied. Table 1 reviews the classical, 

sparse, and BS adaptive filter algorithms. The proposed 

algorithms have been indicated in Table 1. Also, Table 2 

compares the cost functions of 𝐿0-LMS, BS-LMS, 𝐿0-NSAF, 

IMSAF, and proposed BS-NSAF and BS-IMSAF algorithms. 

In the following, the notations in this table will be 

illustrated. 

Table 1:  The 𝐿0-norm constraint adaptive filter algorithms 
 

Algorithm Algorithm based on Block Sparse 

LMS 𝐿0-LMS [18], BS-LMS [27] 

NSAF ZN-NSAF [19], BS-NSAF ∗ 

IMSAF BS-IMSAF ∗ 

SR-IMSAF [12] BS-SR -IMSAF  ∗ 

DSR-IMSAF [12] BS-DSR-IMSAF  ∗ 

  ∗ Proposed in this paper.  
 
Table 2: Review of cost functions 
 

Adaptive filter 
algorithm 

Cost function 

𝐿0-LMS [18] 𝐽(𝑘) = |𝑒(𝑘)|2 + 𝛿 ∥ 𝐡(𝑘) ∥0 

BS-LMS [27] 𝐽(𝑘) = |𝑒(𝑘)|2 + 𝛿 ∥ 𝐡(𝑘) ∥2,0 

ZN-NSAF-I [19] 
𝐽(𝑛) =∥ 𝐡(𝑛 + 1) − 𝐡(𝑛) ∥2+∑

𝑁

𝑖=1
𝜆𝑖[𝑑𝑖,𝐷(𝑛)

− 𝐮𝑖
𝑇(𝑛)𝐡(𝑛 + 1)] 

ZN-NSAF-II [19] 𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

(
𝑒𝑖,𝐷(𝑛)

∥ 𝐮𝑖(𝑛) ∥2
)
2

+
1

2
𝛿 ∥ 𝐡(𝑛) ∥0 

IMSAF [12], [13] 
𝐽(𝑛) =∥ 𝐡(𝑛 + 1) − 𝐡(𝑛) ∥2+∑

𝑁

𝑖=1
𝚲𝑖[𝐝𝑖,𝐷(𝑛)

− 𝐔𝑖
𝑇(𝑛)𝐡(𝑛 + 1)] 

IMSAF 𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

𝐞𝑖,𝐷
𝑇 (𝑛)[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐞𝑖,𝐷(𝑛) 

BS-NSAF ∗ 𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

|𝑒𝑖,𝐷(𝑛)|
2

∥ 𝐮𝑖(𝑛) ∥
2
+ 𝛿 ∥ 𝐡(𝑛) ∥2,0 

BS-IMSAF ∗ 
𝐽(𝑛) =

1

2
∑

𝑁

𝑖=1

𝐞𝑖,𝐷
𝑇 (𝑛)[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐞𝑖,𝐷(𝑛)

+ 𝛿 ∥ 𝐡(𝑛) ∥2,0 

  ∗ Proposed in this paper.   

 

What we propose in this paper can be summarized as 

follows:   

    • Establishment of the BS-NSAF. This algorithm has 

faster convergence speed than 𝐿0-NSAF for BS system 

identification.  

    • Establishment of the BS-IMSAF. The BS-IMSAF has 

better convergence speed than BS-NSAF.  

    • Introducing the BS-DSR-IMSAF and BS-SR-IMSAF 

algorithms. These algorithms have lower computational 

complexity than BS-IMSAF.  

    • Studying the theoretical steady-state performance of 

proposed algorithms.  

    • Demonstrating of the proposed algorithms through 

several simulation results.  

This paper is organized as follows: Sect. 2 describes the 

data model and IMSAF algorithm. In Sect. 3, the IMSAF is 

derived based on the gradient descent approach. In Sect. 

4, the BS-NSAF algorithm is introduced. The family of BS-
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IMSAF is proposed in 5. Sect. 6 studies the theoretical 

steady-state performance of the algorithms. The 

computational complexity of the proposed algorithm is 

discussed in Sect. 7. Finally, the paper ends with a 

comprehensive set of simulations supporting the validity 

of the results. 

Throughout the paper, (.)T represents transpose of a 

vector or matrix, ∥.∥0 indicates ℓ0-norm of a vector, ∥.∥2 

takes the squared Euclidean norm of a vector, ∥.∥2,0 

creates 𝐿2,0-norm of a vector, [.] describes the Ceiling 

function, and 𝐸{.} shows the Expectation. 

Data Model and Review of IMSAF Algorithm  

Consider a linear data model for the desired signal as  
 

𝑑(k)=uT(k)ho+v(k),        (1) 

 

where ho is an unknown 𝑀-dimensional filter 

coefficients that we want to estimate, 𝑣(𝑘) is the additive 

noise with variance 𝜎𝑣
2, and 𝐮(𝑘) = [𝑢(𝑘),𝑢(𝑘 −

1), … ,𝑢(𝑘 −𝑀 + 1)]𝑇 denotes an 𝑀-dimensional input 

regressor vector. It is assumed that 𝑣(𝑘) is zero mean, 

white, Gaussian, and independent of 𝐮(𝑘).  

Fig. 1 shows the structure of the NSAF [7]. In this figure, 

𝐟1,𝐟2, … ,𝐟𝑁 and 𝐠1,𝐠2, … ,𝐠𝑁, are analysis and synthesis 

filter impulse responses of 𝑁 channel. The 𝑢𝑖(𝑘) and 

𝑑𝑖(𝑘) are nondecimated subband signals. It is important 

to note that 𝑘 refers to the index of the original sequences 

and 𝑛 denotes the index of the decimated sequences 

(𝑛=floor(𝑘/𝑁)). The decimated output signal is defined as 

𝑦𝑖,𝐷(𝑛) = 𝐮𝑖
𝑇(𝑛)𝐡(𝑛), 𝐡(𝑛) = [ℎ1(𝑛),ℎ2(𝑛), … ,ℎ𝑀(𝑛)]

𝑇 

and 𝐮𝑖(𝑛) = [𝑢𝑖(𝑛𝑁),𝑢𝑖(𝑛𝑁 − 1),… ,𝑢𝑖(𝑛𝑁 −𝑀 + 1)]
𝑇. 

Also, the decimated subband error signal is expressed as 

𝑒𝑖,𝐷(𝑛) = 𝑑𝑖,𝐷(𝑛) − 𝐮𝑖
𝑇(𝑛)𝐡(𝑛).  

  

 
 

Fig. 1: Structure of the NSAF algorithm. 
 
 

Now, by defining [𝐔𝑖(𝑛)]𝑀×𝐾 and [𝐝𝑖,𝐷(𝑛)]𝐾×1 as  

𝐔𝑖(𝑛) = [𝐮𝑖(𝑛),𝐮𝑖(𝑛 − 1), … ,𝐮𝑖(𝑛 − 𝐾 + 1)],         (2) 

𝐝𝑖,𝐷(𝑛) = [𝑑𝑖,𝐷(𝑛), … ,𝑑𝑖,𝐷(𝑛 − 𝐾 + 1)]
𝑇 ,         (3) 

the IMSAF algorithm is derived from the solution of the 

following constraint optimization problem [12], [13], 

 𝐽(𝑛) =∥ 𝐡(𝑛 + 1) − 𝐡(𝑛) ∥2 

 +∑𝑁𝑖=1 𝚲𝑖[𝐝𝑖,𝐷(𝑛) − 𝐔𝑖
𝑇(𝑛)𝐡(𝑛 + 1)], 

    (4) 

where 𝚲𝑖 = [𝜆𝑖,1,𝜆𝑖,2, … ,𝜆𝑖,𝐾] is the Lagrange multipliers 

vector with length 𝐾. Using 
𝜕𝐽(𝑛)

𝜕𝐡(𝑛+1)
= 0 and 

𝜕𝐽(𝑛)

𝜕𝚲𝑖
= 0, we 

get 

𝐡(𝑛 + 1) = 𝐡(𝑛) +
1

2
∑

𝑁

𝑖=1

𝐔𝑖(𝑛)𝚲𝑖
𝑇 ,         (5) 

where  

𝚲𝑖
𝑇 = 2[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐞𝑖,𝐷(𝑛),        (6) 

and the output error vector, [𝐞𝑖,𝐷(𝑛)]𝐾×1, is given by 

𝐞𝑖,𝐷(𝑛) = 𝐝𝑖,𝐷(𝑛) − 𝐔𝑖
𝑇(𝑛)𝐡(𝑛),        (7) 

Therefore, the update equation for IMSAF becomes  

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇∑

𝑁

𝑖=1

𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛),          (8) 

where 𝜇 is the step-size. 

Derivation of IMSAF Based on the Gradient 

Descent Method  

In this section, we establish the IMSAF algorithm based 

on the gradient descent approach. Instead of minimizing 

(4), the following cost function is defined as [29]. 

𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

𝐞𝑖,𝐷
𝑇 (𝑛)[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐞𝑖,𝐷(𝑛),.        (9) 

Based on the gradient descent approach, the filter 

coefficients recursion is given by  

𝐡(𝑛 + 1) = 𝐡(𝑛) − 𝜇
𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
,      (10) 

Using (7) in (9), 𝐽(𝑛) becomes  

𝐽(𝑛) =
1

2
∑

𝑁−1

𝑖=0

{𝐝𝑖,𝐷
𝑇 (𝑛)[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐝𝑖,𝐷(𝑛) 

 2𝐡𝑇(𝑛)𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐝𝑖,𝐷(𝑛) 

𝐡𝑇(𝑛)𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐔𝑖
𝑇(𝑛)𝐡(𝑛)},   (11) 

and the gradient of 𝐽(𝑛) is  

𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
=∑

𝑁

𝑖=1

{−𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐝𝑖,𝐷(𝑛) 

 +𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐔𝑖
𝑇(𝑛)𝐡(𝑛)} 

 = −∑𝑁𝑖=1 {𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛)}, (12) 

By substituting (12) in      (10), the IMSAF algorithm is 

established as  

𝐡(𝑛 + 1)

= 𝐡(𝑛) + 𝜇∑

𝑁

𝑖=1

𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛), 
  (13) 
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Review of BS-LMS and derivation of BS-NSAF 

In this section, we briefly review BS-LMS adaptive 

algorithms [27]. Then, the BS-NSAF is introduced. 

A.  Review of BS-LMS algorithm 

In BS-LMS, a penalty of block-sparsity is inserted to the 

cost function of traditional LMS algorithms. This penalty 

is a mixed of 𝐿2,0-norm of adaptive filter coefficients with 

equal group partition sizes. In BS-LMS, the cost function is 

defined as [27]. 

𝐽(𝑘) = |𝑒(𝑘)|2 + 𝛿 ∥ 𝐡(𝑘) ∥2,0 ,      (14) 

where 𝛿 is positive factor to balance the estimation error 

and the penalty of block-sparsity. Also  

∥ 𝐡(𝑘) ∥2,0≈ ‖‖

[
 
 
 
∥ 𝐡[1] ∥2
∥ 𝐡[2] ∥2
⋮
∥ 𝐡[𝐵] ∥2]

 
 
 

‖‖

0

,      (15) 

 and  

𝐡[𝑖] = [ℎ(𝑖−1)𝐿+1,ℎ(𝑖−1)𝐿+2, ⋯ ,ℎ𝑖𝐿]
𝑇 ,      (16) 

Denotes the 𝑖th block of 𝐡. The parameters 𝐵 and 𝐿 are 

the number of blocks and the block partition size, 

respectively. Following the same strategy in 𝐿0-LMS [18], 

the update equation for BS-LMS is given by 

𝐡(𝑘 + 1) = 𝐡(𝑘) + 𝜇𝑒(𝑘)𝐮(𝑘) + 𝜅𝐟(𝐡(𝑘)),        (17) 

 where 𝜅 = 𝜇𝛿 regulates the strength of block-sparse 

penalty for given step-size and zero attraction function 

𝐟(𝐡(𝑘))
= [𝑓1(𝐡(𝑘)),𝑓2(𝐡(𝑘)),⋯ ,𝑓𝑀(𝐡(𝑘))]

𝑇 , 
   (18) 

𝑓𝑗(𝐡(𝑘))

=

{
 
 

 
 𝛾2ℎ𝑗(𝑘) −

𝛾ℎ𝑗(𝑘)

∥ 𝐡[⌈𝑗/𝐿⌉] ∥2
,

    𝑤ℎ𝑒𝑛    0 <∥ 𝐡[⌈𝑗/𝐿⌉] ∥2≤
1

𝛾
,

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
    (19) 

Fig. 2 shows zero attraction function for BS-LMS when 

𝛾 = 1 and different length of blocks, 𝐿 = 1,2,4,8. 

If we have one block in BS-LMS, 𝐿 = 1, then the zero 

attraction function in BS-LMS reduces to the zero 

attraction function in 𝐿0-LMS. Zero attraction imposes an 

attraction to zero on small weight coefficients. After each 

iteration, a filter weight will decrease a little when it is 

positive, or increase a little when it is negative. Therefore, 

it seems that in space of weight coefficients, an attractor, 

which attracts the nonzero vectors, exists at the 

coordinate origin. The function of zero attractor improves 

the performance of LMS in sparse system identification. 

To be specific, in the adaptation process, a weight 

coefficient closer to zero shows a higher possibility of 

being zero itself in the impulse response.  

 
Fig. 2: Zero attraction function for BS-LMS when γ=1, L=1,2,4,8. 

 

B.  Proposed BS-NSAF algorithm  

In [19], the 𝐿0-NSAF was proposed. To improve the 

performance of NSAF and 𝐿0-NSAF for block-sparse 

system identification, the BS-NSAF is presented. If the 

parameter 𝐾 in (8) is set to 1, the NSAF algorithm is 

established. Therefore, by selecting this value in (9), the 

cost function for BS-NSAF algorithm is proposed as  

𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

|𝑒𝑖,𝐷(𝑛)|
2

∥ 𝐮𝑖(𝑛) ∥
2
+ 𝛿 ∥ 𝐡(𝑛) ∥2,0 ,      (20) 

Now, by applying the gradient descent approach in      

(10) to the proposed cost function and setting 
𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
 equal 

to zero, we get  

𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
= −∑

𝑁

𝑖=1

𝐮𝑖(𝑛)𝑒𝑖,𝐷(𝑛)

∥ 𝐮𝑖(𝑛) ∥
2
+ 𝛿

𝜕 ∥ 𝐡(𝑛) ∥2,0
𝜕𝐡(𝑛)

,       (21) 

Finally, the update equation for BS-NSAF is established 

as  

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜇∑

𝑁

𝑖=1

𝐮𝑖(𝑛)𝑒𝑖,𝐷(𝑛)

∥ 𝐮𝑖(𝑛) ∥
2
+ 𝜅𝐟(𝐡(𝑛)), (22) 

 where 

 𝐟(𝐡(𝑛)) = [𝑓1(𝐡(𝑛)),𝑓2(𝐡(𝑛)),⋯ ,𝑓𝑀(𝐡(𝑛))]
𝑇 ,     (23) 

The Family of BS-IMSAF Algorithms  

Although, the IMSAF works well for dispersive 

unknown systems, its performance needs to be improved 

when the impulse response is block-sparse. In this 

section, three block-sparse adaptive algorithms are 

proposed. The first algorithm is BS-IMSAF algorithm. In 

the following, to reduce the computational complexity of 

BS-IMSAF algorithm, the selective regressors (SR) and 

dynamic selection of regressors (DSR) strategies are 

utilized and BS-SR-IMSAF and BS-DSR-IMSAF algorithms 

are derived. 

A.  The BS-IMSAF algorithm 

By applying 𝐿2,0-norm into (9), the optimization 

problem turns to  
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𝐽(𝑛) =
1

2
∑

𝑁

𝑖=1

𝐞𝑖,𝐷
𝑇 (𝑛)[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1𝐞𝑖,𝐷(𝑛) 

 +𝛿 ∥ 𝐡(𝑛) ∥2,0 , 
      (24) 

Setting 
𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
 equal to zero,  

𝜕𝐽(𝑛)

𝜕𝐡(𝑛)
= −∑

𝑁

𝑖=1

{𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛)} 

 +𝛿
𝜕∥𝐡(𝑛)∥2,0

𝜕𝐡(𝑛)
, 

      (25) 

the weight coefficients update equation becomes 

𝐡(𝑛 + 1) = 𝐡(𝑛) − 𝜇𝛿
𝜕 ∥ 𝐡(𝑛) ∥2,0
𝜕𝐡(𝑛)

 

 +𝜇∑𝑁𝑖=1 𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛),      (26) 

Finally, the weight update equation for BS-IMSAF is 

described as 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) 

 +𝜇∑𝑁𝑖=1 𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛), 
(27) 

where 𝐟(𝐡(𝑛)) is obtained from (24) and (25). Table 3 

summarizes the BS-IMSAF algorithm. 

 
Table 3: The BS-IMSAF algorithm 
 

For 𝑛 = 0,1, … 

𝐮(𝑛) = [𝑢(𝑛),𝑢(𝑛 − 1), … ,𝑢(𝑛 −𝑀 + 1)]𝑇 

For 𝑖 = 1,… ,𝑁 

𝐝𝑖,𝐷(𝑛) = [𝑑𝑖,𝐷(𝑛),… ,𝑑𝑖,𝐷(𝑛 − 𝐾 + 1)]
𝑇 

𝐔𝑖(𝑛) = [𝐮𝑖(𝑛),𝐮𝑖(𝑛 − 1), … ,𝐮𝑖(𝑛 − 𝐾 + 1)] 

𝐞𝑖,𝐷(𝑛) = 𝐝𝑖,𝐷(𝑛) − 𝐔𝑖
𝑇(𝑛)𝐡(𝑛) 

End 

%——Update the filter: 

𝐟(𝐡(𝑛)) = [𝑓1(𝐡(𝑛)),𝑓2(𝐡(𝑛)),⋯ ,𝑓𝑀(𝐡(𝑛))]
𝑇 

𝑓𝑗(𝒉(𝑛)) =

{
 
 

 
 𝛾2ℎ𝑗(𝑛) −

𝛾ℎ𝑗(𝑛)

∥ 𝒉[⌈𝑗/𝐿⌉] ∥2
,

    𝑤ℎ𝑒𝑛    0 <∥ 𝒉[⌈𝑗/𝐿⌉] ∥2≤
1

𝛾
,

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) 

+𝜇∑

𝑁

𝑖=1

𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛) + 𝜖𝐈]

−1𝐞𝑖,𝐷(𝑛) 

End 

 

B.    The BS-SR-IMSAF Algorithm 

In BS-SR-IMSAF, a subset of the input regressors at 

each subband is optimally selected for every adaptation. 

Let Θ𝑆 = {𝜃1,𝜃2, … ,𝜃𝑆} denotes a 𝑆-subsets (subsets with 

𝑆 members) of the {0,1, … ,𝐾 − 1}. Now define  

𝐝𝑖,𝐷,Θ𝑆(𝑛) = [𝑑𝑖,𝐷(𝑛 − 𝜃1), … ,𝑑𝑖,𝐷(𝑛 − 𝜃𝑆)]
𝑇 ,       (28) 

and  

𝐔𝑖,Θ𝑆(𝑛) = [𝐮𝑖(𝑛 − 𝜃1), … ,𝐮𝑖(𝑛 − 𝜃𝑆)],  (29) 

Therefore, the output error vector is given by 

𝐞𝑖,𝐷,Θ𝑆(𝑛) = 𝐝𝑖,𝐷,Θ𝑆(𝑛) − 𝐔𝑖,Θ𝑆
𝑇 (𝑛)𝐡(𝑛),   (30) 

The cost function for BS-SR-IMSAF is defined as 

𝐽Θ𝑆(𝑛) = 𝛿 ∥ 𝐡(𝑛) ∥2,0 

+
1

2
∑

𝑁

𝑖=1

𝐞𝑖,𝐷,Θ𝑆
𝑇 (𝑛)[𝐔𝑖,Θ𝑆

𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛)]
−1𝐞𝑖,𝐷,Θ𝑆(𝑛). 

 (31) 

Following the same approach in BS-IMSAF, we get 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) 

+𝜇∑

𝑁

𝑖=1

𝐔𝑖,Θ𝑆(𝑛)[𝐔𝑖,Θ𝑆
𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛)]

−1𝐞𝑖,𝐷,Θ𝑆(𝑛), 
 (32) 

We should select the regressors which makes 𝐽Θ𝑆(𝑛) 

as close as possible to 𝐽(𝑛). Thus, the optimum selection 

of the input regressors is obtained by a subset that 

minimizes  

Θ𝑆
𝑜𝑝𝑡

= |∑

𝑁

𝑖=1

[𝐞𝑖,𝐷
𝑇 (𝑛)(𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛))
−1𝐞𝑖,𝐷(𝑛) 

−𝐞𝑖,𝐷,Θ𝑆
𝑇 (𝑛)(𝐔𝑖,Θ𝑆

𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛))
−1𝐞𝑖,𝐷,Θ𝑆(𝑛)]|, 

   (33) 

Since 𝐞𝑖,𝐷,Θ𝑆
𝑇 (𝑛)(𝐔𝑖,Θ𝑆

𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛))
−1𝐞𝑖,𝐷,Θ𝑆(𝑛) is 

always smaller than 𝐞𝑖,𝐷
𝑇 (𝑛)(𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛))
−1𝐞𝑖,𝐷(𝑛), the 

optimum selection is reformulated by a subset that 

maximizes  

Θ𝑆
𝑜𝑝𝑡

=∑

𝑁

𝑖=1

[𝐞𝑖,𝐷,Θ𝑆
𝑇 (𝑛)(𝐔𝑖,Θ𝑆

𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛))
−1𝐞𝑖,𝐷,Θ𝑆(𝑛)], 

(34) 

To reduce the computational complexity of (36), we 

assume that the diagonal elements of 𝐔𝑖,Θ𝑆
𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛) is 

much larger than off-diagonal elements [10], [12]. 

Therefore, (34) is approximated for each subband as  

𝐞𝑖,𝐷,Θ𝑆
𝑇 (𝑛)(𝐔𝑖,Θ𝑆

𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛))
−1𝐞𝑖,𝐷,Θ𝑆(𝑛) 

 ≈
𝑒𝑖,𝐷
2 (𝑛−𝜃1)

∥𝐮𝑖(𝑛−𝜃1)∥
2 +⋯+

𝑒𝑖,𝐷
2 (𝑛−𝜃𝑆)

∥𝐮𝑖(𝑛−𝜃𝑆)∥
2 , 

(35) 

 

where 𝐞𝑖,𝐷(𝑛) = [𝑒𝑖,𝐷(𝑛),𝑒𝑖,𝐷(𝑛 − 1), … ,𝑒𝑖,𝐷(𝑛 − 𝐾 +

1)]𝑇. Based on (35), the indices of the optimum subset at 

each subband for every iteration are obtained by the 

following simplified procedure:   

1. Compute the following values for 0 ≤ 𝑗 ≤ 𝐾 − 1 

and 1 ≤ 𝑖 ≤ 𝑁  

𝑒𝑖,𝐷
2 (𝑛 − 𝑗)

∥ 𝐮𝑖(𝑛 − 𝑗) ∥
2
, (36) 
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2.  The 𝑗-indices of Θ𝑆
𝑜𝑝𝑡

 for each 𝑖 correspond to the 

indices of the 𝑆 largest values of (36).  

The BS-DSR-IMSAF Algorithm 

In BS-DSR-IMSAF, the number of selected input 

regressors at each subband are dynamically changed for 

every adaptation. By defining the weight error vector as 

�̃�(𝑛) = 𝐡𝑜 − 𝐡(𝑛), the weight error vector update 

equation in BS-IMSAF can be stated as  

�̃�(𝑛 + 1) = �̃�(𝑛) − 𝜅𝐟(𝐡(𝑛)) 

 −𝜇∑𝑁𝑖=1 𝐔𝑖(𝑛)[𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛)]

−1𝐞𝑖,𝐷(𝑛), 
(37) 

Table 4 summarizes the BS-SR-IMSAF algorithm.  

 
Table 4: The BS-SR-IMSAF algorithm 
 

For 𝑛 = 0,1, … 

𝐮(𝑛) = [𝑢(𝑛),𝑢(𝑛 − 1), … ,𝑢(𝑛 − 𝑀 + 1)]𝑇 

For 𝑖 = 1,… ,𝑁 

𝐝𝑖,𝐷(𝑛) = [𝑑𝑖,𝐷(𝑛),… ,𝑑𝑖,𝐷(𝑛 − 𝐾 + 1)]
𝑇 

𝐔𝑖(𝑛) = [𝐮𝑖(𝑛),𝐮𝑖(𝑛 − 1), … ,𝐮𝑖(𝑛 − 𝐾 + 1)] 

𝐞𝑖,𝐷(𝑛) = 𝐝𝑖,𝐷(𝑛) − 𝐔𝑖
𝑇(𝑛)𝐡(𝑛) 

 

%——Determining the s-indices: 

For 𝑗 = 0,1, … ,𝐾 − 1 

compute 
𝑒𝑖,𝐷
2 (𝑛−𝑗)

∥𝐮𝑖(𝑛−𝑗)∥
2
 

End 

 

%——Update the desired signal vector: 

𝐔𝑖,Θ𝑆(𝑛) = [𝐮𝑖(𝑛 − 𝜃1), … ,𝐮𝑖(𝑛 − 𝜃𝑆)] 

𝐝𝑖,𝐷,Θ𝑆(𝑛) = [𝑑𝑖,𝐷(𝑛 − 𝜃1), … ,𝑑𝑖,𝐷(𝑛 − 𝜃𝑆)]
𝑇 

𝐞𝑖,𝐷,Θ𝑆(𝑛) = 𝐝𝑖,𝐷,Θ𝑆(𝑛) − 𝐔𝑖,Θ𝑆
𝑇 (𝑛)𝐡(𝑛) 

End 

 

%——Update the filter: 

𝐟(𝐡(𝑛)) = [𝑓1(𝐡(𝑛)),𝑓2(𝐡(𝑛)),⋯ ,𝑓𝑀(𝐡(𝑛))]
𝑇 

𝑓𝑗(𝒉(𝑛)) =

{
 
 

 
 𝛾2ℎ𝑗(𝑛) −

𝛾ℎ𝑗(𝑛)

∥ 𝒉[⌈𝑗/𝐿⌉] ∥2
,

    𝑤ℎ𝑒𝑛    0 <∥ 𝒉[⌈𝑗/𝐿⌉] ∥2≤
1

𝛾
,

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) + 𝜇∑

𝑁

𝑖=1

{𝐔𝑖,Θ𝑆(𝑛) 

× [𝐔𝑖,Θ𝑆
𝑇 (𝑛)𝐔𝑖,Θ𝑆(𝑛) + 𝜖𝐈]

−1𝐞𝑖,𝐷,Θ𝑆(𝑛)} 

End 

 

 Taking the squared Euclidean norm and then 

expectation from both sides of (39) leads to the mean-

square deviation (MSD) that satisfies  

𝐸 ∥ �̃�(𝑛 + 1) ∥2= 𝐸 ∥ �̃�(𝑛) ∥2− Δ, (38) 

 

where  

Δ =∑

𝑁

𝑖=1

[𝜇(2 − 𝜇)𝐸{𝐞𝑖,𝐷
𝑇 (𝑛)(𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛))
−1𝐞𝑖,𝐷(𝑛)} 

−2𝜇𝜎𝑣𝑖,𝐷
2 Tr(𝐸[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1)] 

 +{crosstermswith𝜅},  (39) 

If Δ is maximized, then the fastest convergence is 

obtained. In (39), 𝜎𝑣𝑖,𝐷
2  is the variance of the 𝑖th subband 

signal of 𝑣𝑖(𝑛) being partitioned and decimated. We 

assume that the {crosstermof𝜅} are zero, because 𝜅 is 

very small value. Since the exact expected values are not 

available, the instantaneous values are used as follows  

Δ̂ = 𝜇(2 − 𝜇)∑

𝑁

𝑖=1

[𝐞𝑖,𝐷
𝑇 (𝑛)(𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛))
−1𝐞𝑖,𝐷(𝑛) 

 −
2

2−𝜇
𝜎𝑣𝑖,𝐷
2 Tr[𝐔𝑖

𝑇(𝑛)𝐔𝑖(𝑛)]
−1], (40) 

Again we use the previous approximation for 

𝐔𝑖
𝑇(𝑛)𝐔𝑖(𝑛) and obtain [11], [12] 

Δ̂ = 𝜇(2 − 𝜇)∑

𝑁

𝑖=1

{(
𝑒𝑖,𝐷
2 (𝑛) − 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇)

∥ 𝐮𝑖(𝑛) ∥
2

) 

 +(
𝑒𝑖,𝐷
2 (𝑛−1)−2𝜎𝑣𝑖,𝐷

2 /(2−𝜇)

∥𝐮𝑖(𝑛−1)∥
2 ) + ⋯ 

 +(
𝑒𝑖,𝐷
2 (𝑛−𝑃+1)−2𝜎𝑣𝑖,𝐷

2 /(2−𝜇)

∥𝐮𝑖(𝑛−𝐾+1)∥
2 )}, (41) 

 From (41), we can find the following facts. If at each 

subband 𝑒𝑖,𝐷
2 (𝑛 − 𝑗) > 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇), then 𝐮𝑖(𝑛 − 𝑗) 

contributes to maximizing Δ̂. However, if 𝑒𝑖,𝐷
2 (𝑛 − 𝑗) ≤

2𝜎𝑣𝑖,𝐷
2 /(2 − 𝜇), then 𝐮𝑖(𝑛 − 𝑗) makes Δ̂ decrease. 

Therefore, we should perform the update with the input 

regressors satisfying 𝑒𝑖,𝐷
2 (𝑛 − 𝑗) > 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇) at 

every iteration for the largest MSD decrease. Thus, the 

number of the selected input regressors at each subband 

for every iteration should be the same as the number of 

errors satisfying 𝑒𝑖,𝐷
2 (𝑛 − 𝑗) > 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇). 

Suppose Θ𝑆𝑖(𝑛) = {𝜃1,𝜃2, … ,𝜃𝑆𝑖(𝑛)} indicates a subset 

with 𝑆𝑖(𝑛) members of the set {0,1. … ,𝐾 − 1} at each 

subband. Then, the update equation for proposed BS-

DSR-IMSAF is introduced as  

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) + 𝜇∑

𝑁

𝑖=1

𝐔𝑖,Θ𝑆𝑖(𝑛)
(𝑛) 

 [𝜖𝐈 + 𝐔𝑖,Θ𝑆𝑖(𝑛)
𝑇 (𝑛)𝐔𝑖,Θ𝑆𝑖(𝑛)

(𝑛)]−1𝐞𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛), (42) 

where 

𝐝𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛) = [𝑑𝑖,𝐷(𝑛 − 𝜃1), … ,𝑑𝑖,𝐷(𝑛 − 𝜃𝑆𝑖(𝑛))]

𝑇,   (43) 

𝐔𝑖,Θ𝑆𝑖(𝑛)
(𝑛) = [𝐮𝑖(𝑛 − 𝜃1), … ,𝐮𝑖(𝑛 − 𝜃𝑆𝑖(𝑛))],   (44) 

and 
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𝐞𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛) = 𝐝𝑖,𝐷,Θ𝑆𝑖(𝑛)

(𝑛) − 𝐔𝑖,Θ𝑆𝑖(𝑛)
𝑇 (𝑛)𝐡(𝑛). (45) 

The parameter 𝑆𝑖(𝑛) changes between 0 and 𝐾. The 

indices of the subset (𝐽𝑆𝑖(𝑛)) are obtained through the 

following procedure:   

1. Compute the following values for 0 ≤ 𝑗 ≤ 𝐾 − 1 

and 0 ≤ 𝑖 ≤ 𝑁 − 1  

|𝑒𝑖,𝐷(𝑛 − 𝑗)| > √
2

2 − 𝜇
𝜎𝑣𝑖,𝐷 , (46) 

2.  The 𝑗-indices of 𝐽𝑆𝑖(𝑛) at each subband correspond 

to the indices that satisfies the condition in (46).  

 Table 5 summarizes the BS-DSR-IMSAF algorithm. 

 
Table 5: The BS-DSR-IMSAF algorithm 
 

For 𝑛 = 0,1, … 

𝐮(𝑛) = [𝑢(𝑛),𝑢(𝑛 − 1), … ,𝑢(𝑛 − 𝑀 + 1)]𝑇 

For 𝑖 = 1,… ,𝑁 

𝐝𝑖,𝐷(𝑛) = [𝑑𝑖,𝐷(𝑛), … ,𝑑𝑖,𝐷(𝑛 − 𝐾 + 1)]
𝑇 

𝐔𝑖(𝑛) = [𝐮𝑖(𝑛),𝐮𝑖(𝑛 − 1),… ,𝐮𝑖(𝑛 − 𝐾 + 1)] 

𝐞𝑖,𝐷(𝑛) = 𝐝𝑖,𝐷(𝑛) − 𝐔𝑖
𝑇(𝑛)𝐡(𝑛) 

 

%——Determining the s-indices: 

For 𝑗 = 0,1, … , 𝐾 − 1 

compute |𝑒𝑖,𝐷(𝑛 − 𝑗)| > √
2

2−𝜇
𝜎𝑣𝑖,𝐷  

End 

 

%——Update the desired signal vector: 

𝐔𝑖,Θ𝑆𝑖(𝑛)
(𝑛) = [𝐮𝑖(𝑛 − 𝜃1), … ,𝐮𝑖(𝑛 − 𝜃𝑆𝑖(𝑛))] 

𝐝𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛) = [𝑑𝑖,𝐷(𝑛 − 𝜃1), … ,𝑑𝑖,𝐷(𝑛 − 𝜃𝑆𝑖(𝑛))]

𝑇 

𝐞𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛) = 𝐝𝑖,𝐷,Θ𝑆𝑖(𝑛)

(𝑛) − 𝐔𝑖,Θ𝑆𝑖(𝑛)
𝑇 (𝑛)𝐡(𝑛). 

End 

 

%——Update the filter: 

𝐟(𝐡(𝑛)) = [𝑓1(𝐡(𝑛)),𝑓2(𝐡(𝑛)),⋯ ,𝑓𝑀(𝐡(𝑛))]
𝑇 

𝑓𝑗(𝒉(𝑛)) =

{
 
 

 
 𝛾2ℎ𝑗(𝑛) −

𝛾ℎ𝑗(𝑛)

∥ 𝒉[⌈𝑗/𝐿⌉] ∥2
,

    𝑤ℎ𝑒𝑛    0 <∥ 𝒉[⌈𝑗/𝐿⌉] ∥2≤
1

𝛾
,

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝐡(𝑛 + 1) = 𝐡(𝑛) + 𝜅𝐟(𝐡(𝑛)) + 𝜇∑
𝑁

𝑖=1
{𝐔𝑖,Θ𝑆𝑖(𝑛)

(𝑛) 

× [𝜖𝐈 + 𝐔𝑖,Θ𝑆𝑖(𝑛)
𝑇 (𝑛)𝐔𝑖,Θ𝑆𝑖(𝑛)

(𝑛)]−1𝐞𝑖,𝐷,Θ𝑆𝑖(𝑛)
(𝑛)} 

End 

 

Theoretical Performance Analysis  

In this section, we analyze the performance of the 

family of BS-IMSAF algorithms. By defining the weight 

error vector, �̃� = 𝐡𝑜 − 𝐡(𝑛), the general weight error 

vector update equation can be written as  

�̃�(𝑛 + 1) = �̃�(𝑛) − 𝜅𝐟(𝐡(𝑛)) 

−𝜇∑

𝑁−1

𝑖=0

𝕌𝑖(𝑛)[𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛)]

−1𝕖𝑖,𝐷(𝑛), 
(47) 

where 𝕌𝑖(𝑛) and 𝕖𝑖,𝐷(𝑛) is defined according to the Table 

6. 

 
Table 6: The definitions of 𝕌𝑖(𝑛) and 𝕖𝑖,𝐷(𝑛) 

 

Algorithm 𝕌𝑖(𝑛) 𝕖𝑖,𝐷(𝑛) 

BS-IMSAF 𝐔𝑖(𝑛) 𝐞𝑖,𝐷(𝑛) 

BS-SR-IMSAF 𝐔𝑖,Θ𝑆(𝑛) 𝐞𝑖,𝐷,Θ𝑆(𝑛) 

BS-DSR-IMSAF 𝐔𝑖,Θ𝑆𝑖(𝑛)
(𝑛) 𝐞𝑖,𝐷,Θ𝑆𝑖(𝑛)

(𝑛) 

 

 By taking the squared Euclidean norm from both sides 

of (25), we get  

∥ �̃�(𝑛 + 1) ∥2=∥ �̃�(𝑛) ∥2 ,  (48) 

−2𝜇∑

𝑁−1

𝑖=0

[�̃�𝑇(𝑛)𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛) 

+2𝜇𝜅 ∑

𝑁−1

𝑖=0

[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛) 

+𝜇2∑

𝑁−1

𝑖=0

𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛) 

 −𝜅𝐟𝑇(𝐡(𝑛))�̃�(𝑛) + 𝜅2 ∥ 𝐟(𝐡(𝑛)) ∥2 , (49) 

From (1) and (7), we have  

�̃�𝑇(𝑛)𝕌𝑖(𝑛) = 𝕖𝑖,𝐷
𝑇 (𝑛) − 𝕧𝑖,𝐷

𝑇 (𝑛), (50) 

Therefore, (49) is reformulated as 

∥ �̃�(𝑛 + 1) ∥2=∥ �̃�(𝑛) ∥2 

−2𝜇∑

𝑁−1

𝑖=0

[𝕖𝑖,𝐷
𝑇 (𝑛) − 𝕧𝑖,𝐷

𝑇 (𝑛)](𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛) 

+2𝜇𝜅 ∑

𝑁−1

𝑖=0

𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛) 

+𝜇2∑

𝑁−1

𝑖=0

𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛) 

              −𝜅𝐟𝑇(𝐡(𝑛))�̃�(𝑛) + 𝜅2 ∥ 𝐟(𝐡(𝑛)) ∥2 , (51) 

which can be stated as  

∥ �̃�(𝑛 + 1) ∥2=∥ �̃�(𝑛) ∥2 

 −2𝜇∑𝑁−1𝑖=0 𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛) 

 +2𝜇∑𝑁−1𝑖=0 𝕧𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛) 

+2𝜇𝜅 ∑

𝑁−1

𝑖=0

𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝐞𝑖,𝐷(𝑛) 

 +𝜇2∑𝑁−1𝑖=0 𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛) 

 −𝜅𝐟𝑇(𝐡(𝑛))�̃�(𝑛) + 𝜅2 ∥ 𝐟(𝐡(𝑛)) ∥2 , (52) 

To simplify the recent relation, we apply the following 

independence assumptions [12], [30]:   
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1.  𝕌𝑖(𝑛) is independent and identically distributed 

sequence matrix.  

2.  �̃�(𝑛) is independent of 𝕌𝑖(𝑛)  

Now, taking the expectation from both sides of (52) 

and using the fact that 𝕖𝑖,𝐷(𝑛) = 𝕌𝑖
𝑇(𝑛)�̃�(𝑛) + 𝕧𝑖,𝐷(𝑛), 

the third term in the right-hand side of (52) is simplified 

by 

∑

𝑁−1

𝑖=0

𝐸{𝕧𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛)} = 

∑

𝑁−1

𝑖=0

𝐸{𝕧𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕧𝑖,𝐷(𝑛)} = 

 ∑𝑁−1𝑖=0 𝜎𝑣𝑖,𝐷
2 Tr(𝐸[𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛)]
−1), (53) 

where 𝐸{𝕧𝑖,𝐷(𝑛)𝕧𝑖,𝐷
𝑇 (𝑛)} = 𝜎𝑣𝑖,𝐷

2 . 𝐈. Substituting (53) into 

(54), we obtain  

𝐸 ∥ �̃�(𝑛 + 1) ∥2= 𝐸 ∥ �̃�(𝑛) ∥2 

−2𝜇∑

𝑁−1

𝑖=0

𝐸[𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛)] 

 +2𝜇∑𝑁−1𝑖=0 𝜎𝑣𝑖,𝐷
2 Tr(𝐸[𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛)]
−1) 

+2𝜇𝜅 ∑𝑁−1𝑖=0 𝐸[𝐟
𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛)]

 +𝜇2∑𝑁−1𝑖=0 𝐸[𝕖𝑖,𝐷
𝑇 (𝑛)(𝕌𝑖

𝑇(𝑛)𝕌𝑖(𝑛))
−1𝕖𝑖,𝐷(𝑛)] 

 −𝜅𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝜅2𝐸[∥ 𝐟(𝐡(𝑛)) ∥2],        (54) 

To simplify the recent relation, we assume that matrix, 

𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛), is diagonal. This assumption was 

successfully applied in [10] and [11]. Using this 

assumption leads to  

𝐸 ∥ �̃�(𝑛 + 1) ∥2= 𝐸 ∥ �̃�(𝑛) ∥2 

−𝜇(2 − 𝜇)∑

𝑁−1

𝑖=0

𝐸{(
𝑒𝑖,𝐷
2 (𝑛) − 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇)

∥ 𝐮𝑖(𝑛) ∥
2

) 

+(
𝑒𝑖,𝐷
2 (𝑛 − 1) − 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇)

∥ 𝐮𝑖(𝑛 − 1) ∥
2

) + ⋯ 

+(
𝑒𝑖,𝐷
2 (𝑛 − 𝐾 + 1) − 2𝜎𝑣𝑖,𝐷

2 /(2 − 𝜇)

∥ 𝐮𝑖(𝑛 − 𝐾 + 1) ∥
2

)} 

+2𝜇𝜅∑

𝑁−1

𝑖=0

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝐔𝑖(𝑛))

−1𝐞𝑖,𝐷(𝑛)] 

 −𝜅𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝜅2𝐸[∥ 𝐟(𝐡(𝑛)) ∥2], (55) 

The mean square deviation (MSD) and mean square 

error (MSE) are obtained by  

𝑀𝑆𝐷(𝑛) = 𝐸 ∥ �̃�(𝑛) ∥2 , (56) 

𝑀𝑆𝐸(𝑛) = 𝐸[𝑒𝑖,𝐷
2 (𝑛)], (57) 

Therefore,  

𝑀𝑆𝐷(𝑛 + 1) = 𝑀𝑆𝐷(𝑛) 

 −𝜇(2 − 𝜇)∑𝑁−1𝑖=0 (
𝑀𝑆𝐸(𝑛)−2𝜎𝑣𝑖,𝐷

2 /(2−𝜇)

𝐸∥𝐮𝑖(𝑛)∥
2 ) 

 −𝜇(2 − 𝜇)∑𝑁−1𝑖=0 (
𝑀𝑆𝐸(𝑛−1)−2𝜎𝑣𝑖,𝐷

2 /(2−𝜇)

𝐸∥𝐮𝑖(𝑛−1)∥
2 ) − ⋯ 

 −𝜇(2 − 𝜇)∑𝑁−1𝑖=0 (
𝑀𝑆𝐸(𝑛−𝐾+1)−2𝜎𝑣𝑖,𝐷

2 /(2−𝜇)

𝐸∥𝐮𝑖(𝑛−𝐾+1)∥
2 ) 

+2𝜇𝜅∑

𝑁−1

𝑖=0

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)] 

 −𝜅𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝜅2𝐸[∥ 𝐟(𝐡(𝑛)) ∥2],  (58) 

The recent relation can be rearranged as  

𝑀𝑆𝐷(𝑛 + 1) = 𝑀𝑆𝐷(𝑛) 

 −𝜇(2 − 𝜇)∑𝑁−1𝑖=0 (
𝑀𝑆𝐸(𝑛)

𝐸∥𝐮𝑖(𝑛)∥
2
+⋯+

𝑀𝑆𝐸(𝑛−𝐾+1)

𝐸∥𝐮𝑖(𝑛−𝐾+1)∥
2
) 

+2𝜇∑

𝑁−1

𝑖=0

𝜎𝑣𝑖,𝐷
2 (

1

𝐸 ∥ 𝐮𝑖(𝑛) ∥
2
+⋯+

1

𝐸 ∥ 𝐮𝑖(𝑛 − 𝐾 + 1) ∥
2
) 

+2𝜇𝜅∑

𝑁−1

𝑖=0

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)] 

 −𝜅𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝜅2𝐸[∥ 𝐟(𝐡(𝑛)) ∥2], (59) 

when 𝑛 goes to infinity, 𝑀𝑆𝐷(𝑛 + 1) = 𝑀𝑆𝐷(𝑛), 

𝑀𝑆𝐸(𝑛) = 𝑀𝑆𝐸(𝑛 − 1) = ⋯ = 𝑀𝑆𝐸(𝑛 − 𝐾 + 1), and 

𝐸 ∥ 𝐮𝑖(𝑛) ∥
2= 𝑀𝜎𝑢𝑖

2 . Therefore, the above relation 

becomes  

𝜇(2 − 𝜇)∑

𝑁−1

𝑖=0

(
𝑀𝑆𝐸

𝑀𝜎𝑢𝑖
2
+⋯+

𝑀𝑆𝐸

𝑀𝜎𝑢𝑖
2

⏞          
𝑃=𝐾,𝑆,or𝑆𝑖(𝑛)times

) = 

 2𝜇 ∑𝑁−1𝑖=0 𝜎𝑣𝑖,𝐷
2 (

1

𝑀𝜎𝑢𝑖
2 +⋯+

1

𝑀𝜎𝑢𝑖
2

⏞          
𝑃=𝐾,𝑆,𝑜𝑟𝑆𝑖(𝑛)times

) 

+2𝜇𝜅∑

𝑁−1

𝑖=0

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝐔𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)] 

 −𝜅𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝜅2𝐸[∥ 𝐟(𝐡(𝑛)) ∥2],   (60) 

Equation (60) can be simplified as 

𝜇(2 − 𝜇)

𝑀
𝑀𝑆𝐸∑

𝑁−1

𝑖=0

𝑃

𝜎𝑢𝑖
2
=
2𝜇

𝑀
∑

𝑁−1

𝑖=0

𝑃𝜎𝑣𝑖,𝐷
2

𝜎𝑢𝑖
2

 

 +{termswith𝐟(𝐡(𝑛))} 

 (61) 

Finally, the steady-state MSE is given by  

𝑀𝑆𝐸 =

2∑𝑁−1𝑖=0

𝑃𝜎𝑣𝑖,𝐷
2

𝜎𝑢𝑖
2

(2 − 𝜇)∑𝑁−1𝑖=0
1
𝜎𝑢𝑖
2

 

 +
{termswith𝐟(𝐡(𝑛))}
𝜇(2−𝜇)𝑃

𝑀
∑𝑁−1𝑖=0

1

𝜎𝑢𝑖
2

, 

  (62) 

The first term in the right-hand side of (62) is the 

steady-state MSE of IMSAF. The second term is related to 

𝐿0-IMSAF. Using 𝜅 = 𝜇𝛿, we have 

𝑀𝑆𝐸⏞
𝐵𝑆−𝐼𝑀𝑆𝐴𝐹

= 𝑀𝑆𝐸⏞
𝐼𝑀𝑆𝐴𝐹

 

+
2𝜇𝛿 ∑𝑁−1𝑖=0 𝐸[𝐟

𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)

(2 − 𝜇)𝑃
𝑀

∑𝑁−1𝑖=0
1
𝜎𝑢𝑖
2

 

 +
−𝛿𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)]+𝜇𝛿2𝐸[∥𝐟(𝐡(𝑛))∥2]

(2−𝜇)𝑃

𝑀
∑𝑁−1𝑖=0

1

𝜎𝑢𝑖
2

 
(63) 

By defining 𝑎 = 𝜇𝐸 ∥ 𝐟(𝐡(𝑛)) ∥2 and 

  
𝑏

= 2𝜇∑

𝑁−1

𝑖=0

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛) 

 −𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)],  (64) 

the MSE relation becomes  
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𝑀𝑆𝐸⏞
𝐵𝑆−𝐼𝑀𝑆𝐴𝐹

= 𝑀𝑆𝐸⏞
𝐼𝑀𝑆𝐴𝐹

+
𝛿2𝑎 + 𝛿𝑏

(2 − 𝜇)𝑃
𝑀

∑𝑁−1𝑖=0
1
𝜎𝑢𝑖
2

, (65) 

Since 0 < 𝜇 < 2, the denominator of second term in 

the right-hand side of (65) is positive, i.e. 
(2−𝜇)𝑃

𝑀
∑𝑁−1𝑖=0

1

𝜎𝑢𝑖
2 > 0. Therefore, if 𝛿2𝑎 + 𝛿𝑏 < 0, then 

the MSE of family of BS-IMSAF algorithms will be lower 

than IMSAF. In the following, we find the condition for 𝛿 

when 𝛿2𝑎 + 𝛿𝑏 < 0. The condition is 𝛿 < −𝑏/𝑎. Based 

on this, we obtain  

𝛿 <
−2𝜇 ∑𝑁−1𝑖=0 𝐸[𝐟

𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)]

𝜇𝐸[∥ 𝐟(𝐡(𝑛)) ∥2]
 

 +
𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)]

𝜇𝐸[∥𝐟(𝐡(𝑛))∥2]
. (66) 

By using 𝕖𝑖,𝐷(𝑛) = 𝕌𝑖
𝑇(𝑛)�̃�(𝑛) + 𝜈𝑖,𝐷(𝑛) and 

independence assumptions, we have 

𝐸[𝐟𝑇(𝐡(𝑛))𝕌𝑖(𝑛)(𝕌𝑖
𝑇(𝑛)𝕌𝑖(𝑛))

−1𝕖𝑖,𝐷(𝑛)] ≈ 

 𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)]. 
  (67) 

Based on (69), the following condition is achieved 

𝛿

<
−2𝜇∑𝑁−1𝑖=0 𝐸[𝐟

𝑇(𝐡(𝑛))�̃�(𝑛)] + 𝐸[𝐟𝑇(𝐡(𝑛))�̃�(𝑛)]

𝜇𝐸[∥ 𝐟(𝐡(𝑛)) ∥2]
, 

(68) 

Due to the analyze the relation in the steady-state, we 

need to replace the index 𝑛 with ∞ in (68). By simplifying 

the recent relation, we obtain  

𝛿 <
(1 − 2𝜇𝑁)𝐸[𝐟𝑇(𝐡(∞))�̃�(∞)]

𝜇𝐸[∥ 𝐟(𝐡(∞)) ∥2]
, (69) 

Finally, the steady-state MSE in the family of BS-IMSAF 

algorithms is given by 

𝑀𝑆𝐸⏞
𝐵𝑆−𝐼𝑀𝑆𝐴𝐹

= 𝑀𝑆𝐸⏞
𝐼𝑀𝑆𝐴𝐹

 

+
(2𝜇𝑁 − 1)𝛿𝐸[𝐟𝑇(𝐡(∞))�̃�(∞)] + 𝜇𝛿2𝐸[∥ 𝐟(𝐡(∞)) ∥2]

(2 − 𝜇)𝑃
𝑀

∑𝑁−1𝑖=0
1
𝜎𝑢𝑖
2

, (70) 

Computational Complexity  

Table 7 presents the computational complexity of the 

IMSAF and the proposed algorithms in terms of the 

number of multiplications per iteration for real data. In 

this table, 𝑀 is the filter length, 𝑁 is the number of 

subbands, 𝐾 is the number of input regressors, 𝑄 is the 

length of channel filters, 𝐿 is the length of blocks, 𝑆 is the 

number of selected input regressors, and 𝑆𝑖(𝑘) is the 

number of selected regressors at each subband which is 

dynamic. This table indicates that the number of 

multiplications in BS-IMSAF depends on 𝐾. But, in BS-SR-

IMSAF and BS-DSR-IMSAF, this parameter depends on 𝑆 

and 𝑆𝑖(𝑘). Therefore, the computational complexity of 

BS-SR-IMSAF and BS-DSR-IMSAF is lower than BS-IMSAF. 

In the proposed algorithms, we have also additional 3𝑀 +

𝐿𝑀 multiplications and 1 division for the term of 

𝜅𝐟(𝐡(𝑛)). 

 
Table 7: The number of multiplications in IMSAF, BS-IMSAF, BS-
SR-IMSAF, and BS-DSR-IMSAF algorithms 
 

Algorithm  Number of Multiplications 

IMSAF  (𝐾2 + 2𝐾)𝑀 + 𝐾3 + 𝐾2 + 3𝑁𝑄 

BS-IMSAF^*  (𝐾2 + 2𝐾 + 3)𝑀 + 𝐾3 + 𝐾2 + 3𝑁𝑄
+ 𝐿𝑀 

BS-SR-IMSAF^*  (𝑆2 + 2𝑆 + 3)𝑀 + 𝑆3 + 𝑆2 + 2𝑀(𝐾
− 𝑆) + 2𝐾 + 3𝑁𝑄
+ 𝐿𝑀 

BS-DSR-IMSAF^*  
∑

𝑁−1

𝑖=0

1

𝑁
[(𝑆𝑖

2(𝑘) + 𝑆𝑖(𝑘) + 𝐾)𝑀

+ 𝑆𝑖
3(𝑘) + 𝑆𝑖

2(𝑘)]

+ 3𝑁𝑄 + 3𝑀
+ 𝐿𝑀 

 ∗ Proposed in this paper.   

 

Simulation Results  

The performance of the proposed algorithms is 

evaluated by computer simulations in the system 

identification. To generate block sparse of impulse 

response, the Markov-Gaussian model is used as  

 𝑃{𝑠𝑘 = 0|𝑠𝑘−1 = 0} = 𝑝1, 
 𝑃{𝑠𝑘 ≠ 0|𝑠𝑘−1 ≠ 0} = 𝑝2. 

where 𝑝1 = 0.99, and 𝑝2 = 0.91 [27]. The nonzero 

coefficients are generated according to the white 

Gaussian noise. The input signal is an AR(1) signal which is 

generated by passing a zero-mean white Gaussian noise 

through a first-order system 𝐻(𝑧) =
1

1−0.9𝑧−1
. An additive 

white Gaussian noise was added to the system output, 

which sets the signal-to-noise ratio (𝑆𝑁𝑅) to 40 dB. In all 

simulations, we show the normalized mean square 

deviation (NMSD), 10𝑙𝑜𝑔10(
∥𝐡(𝑛)−𝐡𝑜∥2

∥𝐡𝑜∥2
), which is 

evaluated by ensemble averaging over 200 independent 

trials. Table 8 shows the values of the parameters in the 

simulations. The impulse response of the unknown block 

sparse system with 𝑀 = 800 has been presented in Fig. 

3. 

Fig. 4  shows the steady-state NMSD values versus 𝜅 

for the family of BS-IMSAF algorithms. The values of 𝜅 

changes from 10−8 to 10−3. The optimum values for 𝜅 are 

observed in this simulation. Table 9 specifies the exact 

optimum values of 𝜅. We observe that, the BS-NSAF and 

the family of BS-IMSAF algorithms have close optiumm 

values. Fig. 5 shows the NMSD learning curves in optimum 

values of 𝜅 for conventional and block sparse adaptive 

algorithms. We compared the learning curves of the 

proposed algorithms with NSAF [7], IMSAF [9], and 𝐿0-

NSAF [19] algorithms. The block sparse adaptive 
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algorithms show better convergence speed and lower 

steady-state error than classical NSAF and IMSAF 

algorithms. In comparison with BS adaptive algorithms, 

the NSAF and IMSAF algorithms have larger steady-state 

error. Also, the 𝐿0-NSAF has larger steady-state error than 

BS adaptive algorithms. 
 
Table 8: The values of the parameters in the simulations (𝑀 =
800, 𝑆 = 2, and 𝜎𝑣

2 = 10−4). 
 

Figure 𝑁 𝐾 𝐿 𝜇 𝜅 

— Performance for changing 𝜅: 

Fig. 4 8 2 2 1 10−8,...,10−3 

Fig. 5 8 2 2 1 
{1.7,3.8,8.5}
× 10−6 

Fig. 56 4 8 2 0.5 10−8,...,10−3 

Fig. 7 4 8 2 0.5 
{0.36,1.74,2.59}
× 10−6 

— Performance of Changing 𝐿: 

Fig. 8 4 8 1,...,50 0.5 1.74 × 10−6 

— Performance for changing 𝐾: 

Fig. 10 4 2,...,8 5 0.5 5.5 × 10−6 

Fig. 11 4 2,...,8 5 0.5 5.5 × 10−6 

Fig. 12 4 2,...,8 5 0.5 5.5 × 10−6 

 
Table 9: Optimum values of 𝜅 in Figs. 4 and 6. 
 

Algorithm 
Optimum values of 𝜅 

in Fig. 4 

Optimum values of 𝜅 

in Fig. 6 

𝐿0-NSAF 1.7 × 10−6 0.36 × 10−6 

BS-NSAF 8.5 × 10−6 2.59 × 10−6  

BS-IMSAF 8.5 × 10−6 2.59 × 10−6 

BS-SR-IMSAF 8.5 × 10−6 2.59 × 10−6 

BS-DSR-IMSAF 3.8 × 10−6 1.74 × 10−6 

 

 
Fig. 3: The impulse response of unknown block sparse system. 

 
Fig. 4: The steady-state NMSD versus 𝜅 for the proposed 

algorithms (𝑀 = 800, 𝑁 = 8, and 𝐾 = 2).   

 

 
Fig. 5: The NMSD learning curves of all algorithms in the 

optimum values of κ (M = 800, N = 8, and K = 2). 

 
Fig. 6 presents the steady-state NMSD values versus 𝜅 

for the family of subband adaptive filter algorithms 

according to the parameters in Table 8.  

Again, optimum values are obtained for block sparse 

adaptive filter algorithms. Table 9 shows the exact 

optimum values of 𝜅 in this simulation. We observe that 

BS-NSAF, BS-IMSAF, and BS-SR-NSAF have the same 

optimum values.  

The BS-DSR-IMSAF has slightly lower optimum value 

than other BS algorithms. Fig. 7 compares the NMSD 

learning curves of classical and block sparse adaptive 

algorithms. This figure indicates that the proposed block 

sparse adaptive algorithms have better performance than 

NSAF, IMSAF, and 𝐿0-NSAF algorithms. The performance 

of BS-SR-IMSAF and BS-DSR-IMSAF are close to the BS-

IMSAF.  

Furthermore, the steady-state NMSD of BS-SR-IMSAF 

and BS-DSR-IMSAF algorithms are lower than BS-IMSAF. 
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Fig. 6: The steady-state NMSD versus κ for the proposed 

algorithms (M = 800, N = 4, and K = 8). 

 
Fig. 7: The NMSD learning curves of all algorithms in the 

optimum values of κ (M = 800, N = 4, and K = 8). 
 

In Fig. 8, we change the value of 𝐿 and plot the steady-

state NMSD values versus 𝐿. The values of 𝐿 change from 

1 to 50. The other parameters are set according to the 

Table 8. As we see, for 𝐿=5, the steady-state NMSD is 

obtained. Since the optimum value of 𝜅 changes between 

10−5 and 10−6, we select the midpoint value, 5.5 × 10−6, 

for 𝜅. Therefore, in the following simulations, we set the 

parameter 𝐿 to 5 and the value of 𝜅 is set to 5.5 × 10−6. 

Fig. 9 shows the performance of BS-IMSAF for different 

values of 𝐾. By increasing 𝐾, the convergence speed 

increases. But, the steady-state error also increases. The 

performance of BS-IMSAF is significantly better than 

other algorithms. Fig. 10 compares the learning curves of 

BS-SR-IMSAF and BS-IMSAF algorithm. We see that the 

BS-SR-IMSAF has the same performance as BS-IMSAF. 

But, the computational complexity of BS-SR-IMSAF is 

lower than BS-IMSAF. Fig. 11 investigates the 

performance of BS-DSR-IMSAF algorithm. Good 

performance can be seen for BS-DSR-IMSAF. By increasing 

the parameter 𝐾, the convergence speed of BS-DSR-

IMSAF is faster than BS-IMSAF. Also, for BS-DSR-IMSAF, 

the same steady-state NMSD as BS-IMSAF is observed. 

 
Fig. 8: The steady-state NMSD versus 𝐿, length of block, for 
NSAF, IMSAF and proposed BS-IMSAF algorithms (𝑀 = 800, 

𝑁 = 4, and 𝐾 = 8). 

   

Fig. 12 shows the number of selected regressors at 

each subband during the adaptation. This figure indicates 

that in the steady-state, the number of selected 

regressors converged to 1. It means that the steady-state 

error of this algorithm becomes low even for large values 

of 𝐾. Table 10 shows the simulated and theoretical 

steady-state NMSD for different values of SNR. These 

values are obtained for BS-IMSAF, BS-SR-IMSAF, and BS-

DSR-IMSAF algorithms. As we see, the good agreement 

between simulated and theoretical steady-state NMSD 

values is observed. Table 11 compares the computation 

time and the values of NMSD in different algorithms at 

iterations 2000 and 3000. The parameters of the 

algorithms are according to the Fig. 9. This table indicates 

that the NMSD values of BS adaptive algorithms at 

iterations 2000 and 3000 are significantly lower than 

NSAF, IMSAF and 𝐿0-NSAF algorithms. 

 
Fig. 9: The simulated and theoretical steady-state NMSD for 
different values of SNR (M = 800, N = 4, K = 8, μ = 0.5). 
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Table 10: The simulated and theoretical steady-state NMSD for 
different values of SNR (M = 800, N = 4, K = 8, 𝜇 = 0.5) 

 

Algorithm BS-IMSAF 
BS-SR- 
IMSAF 

BS-DSR-
IMSAF 

Simulation (SNR=10dB) −14.45 −14.72 −14.85 

Theory (SNR=10dB) −15.21 −15.81 −15.90 

Simulation (SNR=20dB) −29.50 −29.60 −29.62 

Theory (SNR=20dB) −30.40 −30.35 −30.51 

Simulation (SNR=40dB) −64.81 −64.85 −64.89 

Theory (SNR=40dB) −65.20 −65.12 −65.20 
 

Table 11: The computation time and the values of the NMSD in 
different algorithms at iterations 2000 and 3000 
 

 Time (s) NMSD in dB 

Algorithm 2000 3000 2000 3000 

NSAF 2.2 3.3 −23.9 −34.5 

IMSAF 56.4 84.6 −39.2 −57.2 

𝐿0-NSAF 2.9 4.3 −26.3 −41.1 

BS-NSAF 4.5 6.4 −25.1 −40.5 

BS-IMSAF 56.9 85.5 −54.2 −64.8 

BS-SR-IMSAF 14.5 21.7 −54.2 −64.8 

BS-DSR-IMSAF 26.6 40.5 −63.5 −64.8 

 
Fig. 10: The NMSD learning curves for different values of K, 
number of recent regressors in BS-SR-IMSAF algorithm (κ =

5.5 × 10−6,M = 800,N = 4,K = 2,4,6,8). 
 

 
Fig. 11: The NMSD learning curves for different values of K, 

number of recent regressors in BS-DSR-IMSAF algorithm (κ =
5.5 × 10−6,M = 800,N = 4,K = 2,4,6,8).   

 
Fig. 12: The number of selected regressors at each subband in 

BS-DSR-IMSAF algorithm (M = 800, N = 4, and K = 8). 

Summary and Conclusion  

This paper presented the family of IMSAF algorithms 

for block sparse system identification. In the first 

algorithm, the BS-NSAF was introduced. This algorithm 

had better performance than NSAF for BS system 

identification. In the following the BS-IMSAF was 

presented. The proposed algorithm had better 

convergence speed than BS-NSAF. To reduce the 

computational complexity, the BS-SR-IMSAF and BS-DSR-

IMSAF algorithms were developed. These algorithms had 

close performance to BS-IMSAF. Furthermore, the 

theoretical steady-state behavior of the proposed 

algorithms was studied. 
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APA Affine Projection Algorithm 

NSAF Normalized Subband Adaptive Filter 

IMSAF Improved Multiband Structured 

Subband Adaptive Filter 

BS Block Sparse  
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