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Background and Objectives: The detection of community in networks is an 
important tool for revealing hidden data in network analysis. One of the signs that 
the community exists in the network is the neighborhood density between nodes. 
Also, the existence of a concept called a motif indicates that a community with a 
high edge density has a correlation between nodes that goes beyond their close 
neighbors. Motifs are repetitive edge patterns that are frequently seen in the 
network. 
Methods: By estimating the triangular motif in the network, our proposed 
probabilistic motif-based community detection model (PMCD) helps to find the 
communities in the network. The idea of the proposed model is network analysis 
based on structural density between nodes and detecting communities by 
estimating motifs using probabilistic methods. 
Results: The suggested model's output is the strength of each node's affiliation to 
the communities and detecting overlaps in communities. To evaluate the 
performance and accuracy of the proposed method, experiments are done on 
real-world and synthetic networks. The findings show that, compared to other 
algorithms, the proposed method is acting more accurately and densely in 
detecting communities. 
Conclusion: The advantage of PMCD in using the probabilistic generative model is 
speeding up the computation of the hidden parameters and establishing the 
community based on the likelihood of triangular motifs. In fact, the proposed 
method proves there is a probabilistic correlation between the observation of two 
node pairs in different communities and the increased existence of motif structure 
in the network. 
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Introduction 
For effective network component monitoring and 

recognition, network analysis is a key tool. A complex 

network [1] can consist of cells in biology [2], social 

networks with friendly communication [3], or a network 

of scientists doing joint scientific studies [4]. To put it 

another way, it can be any grid with nodes and edges that 

can be represented as a graph. One of the most effective 

methods and methodologies to analyze complex 

networks is community detection.  

Community detection identifies subgraphs of a 

network whose relationship among their nodes is more 

robust and dense than those between other nodes of the 

network [5]. A community can represent an idea, a group, 

an interest, a focus on a particular topic, and so on. 

Communities can be used separately or together; the 

latter are referred to as overlap communities. The 

machine learning clustering topic's component, 
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community detection, has the potential to be applied in a 

variety of engineering fields, such as text classification, 

traffic network optimization, and social network analysis. 

The goal of community detection is to group the nodes of 

a network into different communities so that they are 

strongly connected or have similar node features [5]. A 

key problem in dynamical network research is the 

discovery of communities with the aim of revealing 

hidden features of a complex network, which are 

frequently densely coupled nodes [6]. 

 Community detection in networks is an NP-hard issue 
that categorized from different perspectives. These 
categories include weighted [7], [8] and unweighted [9], 
[10], directed [11] and undirected [12], global [13] and 
local [12], overlapping [14], [15], and non-overlapping 
[16] community discovery techniques. Different 
community detection techniques were developed based 
on these criteria. Examples include model-based 
approaches [7], [14], [17], clique percolation methods 
[18], modularity-based methods [4], [19], [20], label 
propagation methods [11], [21]-[23], model-based 
methods [7], [14], methods for network embedding [24] 
and community detection methods with deep learning 
[25]-[27]. It can be seen from examining the different 
approaches used for community detection and the 
research on this topic that a straightforward analysis of 
node properties won't produce the accuracy needed for 
community detection in networks; rather, taking a deeper 
look at the networks' particulars and using the graphs' 
original characteristics, like motif structure, will produce 
better results. 

The PMCD method employs a probabilistic relation to 
find communities in complex networks. We extend 
probabilistic model-based methods from edge creation to 
motif generation. Complex networks commonly contain 
"motifs", which are a type of small, linked sub-networks. 
Based on empirical studies, communities with similar 
nodes have related motifs. As a result, using motifs with 
lots of connections can be a useful strategy for finding 
communities and performing more accurate network 
analysis [28]. We show that the chance of a triangle motif 
existing between three nodes in shared communities 
grows with the observation of more nodes in such 
communities. In other words, we locate the hidden 
parameter of the probabilistic model and find the 
community by using the triangle motif. We define the 
triangular motif estimator function as a Bernoulli loss 
function over one node and two of that node's neighbors 
for the probabilistic motif generator's function. We also 
research how community overlap affects how motifs are 
generated. 

Related Works 

The problem of community detection in complex 
networks gets a lot of attention. Several research projects 
on different aspects of community detection have been 
performed over the past few years. The first methods of 

community detection employed traditional techniques 
and clustering-based algorithms. These methods 
presented key ideas for community detection and laid the 
groundwork for future developments. Traditional 
approaches include graph partitioning, hierarchical, 
spectral and partitional clustering [29]. 

The algorithms used to detect communities based on 
modularity have been extensively studied and used due 
to their simple tactics and clear outcomes. However, they 
also encounter difficulties, such as communities that are 
unstable and sensitive to seed node selection [30]. One of 
these, the Louvain technique [5], is frequently applied to 
weighted graphs. This approach provides a 
straightforward and quick methodology to detect distinct 
communities and maximizes modularity by clustering 
network nodes using the greedy approaches [31]. The 
Leiden method, however, corrects numerous flaws in the 
Louvain algorithm [32]. The objective is to change the 
community developed throughout the iteration cycle 
while simultaneously speeding up local mobility and 
transferring nodes to arbitrary neighbors. 

The label propagation algorithm (LPA), a practical 
community detection approach, was initially introduced 
in [22]. Although its simple design and low complexity are 
widely respected, there are several downsides, such as 
the randomness of node selection and label updating. In 
the LPA technique, a node is selected at random, and 
through an iterative process, its label is updated with the 
most prevalent label nearby [33]. To handle the 
weaknesses in the LPA methodology, the Speaker-
Listener Label Propagation Algorithm (SLPA) [34] and the 
COPRA [35] were created. 

Cliques are one of the fundamental ideas in graph 
analysis and are utilized to detect communities in 
networks. The clique percolation algorithm (CPM) [18] 
and CFinder [36] were proposed as overlapping 
community detection algorithms based on the clique 
percolation method's search for local patterns. 

The motif is another idea related to the clique. Small, 
linked sub-networks known as motifs frequently appear 
in complex networks and are one of the basic elements of 
the network [37]. In network analysis, motifs are used to 
detect communities and comprehend network structure 
[38]. Motifs demonstrate that a community with a high 
edge density will have relationships between nodes that 
go beyond their immediate neighbors. Although a few 
motif-based community detection methods have been 
proposed [38]-[40], when used on large-scale networks, 
they frequently encounter high computational 
complexity. It is still challenging to properly and 
economically combine lower-order and higher-order 
structural data into a unified framework for community 
detection. 

The group of methods estimates the probabilistic 
model to detect communities, in difference to the 
techniques cited at the top that employ traditional 
methods to do so. This method creates a generative 
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sample of the graph and estimates the model parameters 
[14], [17]. The degree of node dependency on 
communities is a parameter in the generative model that 
is estimated using methods [14], [17], [41] using a matrix 
factorization-based model. The algorithm [42] presents a 
matrix factorization-based paradigm that makes it easy to 
add or delete edges. The non-negative matrix 
factorization model of the community detection issue is 
also described [43] and a transfer matrix is then used to 
control the dynamics of the network structure. 

Proposed Algorithm Frameworks 

In this research, a probabilistic motif-based community 
detection model (PMCD) is presented that uses the 
triangle motif and the affiliation graph model to detect 
community structures. The core idea of the proposed 
community detection method is that a robust community 
requires taking the node's structural model and 
relationship types into consideration. Two nodes 
observed in more shared communities are more likely to 
be connected, according to Yang and Leskovec's study 
[14] on the connection between edge (2-clique) likelihood 
and community overlap. In this paper, we examine the 
impact of community overlapping on the evolution of the 
triangle and 3-clique motifs. We show that by increasing 
the number of nodes observed in shared communities, 
the probability of the existence of a triangular motif 
between them increases. This result is in accordance with 
the fundamental principle that vertices situated in 
communities' overlaps are more densely connected than 
vertices within a single community. By using the 
optimized Bernoulli loss function for probabilistic 
estimation, we can therefore enhance and increase the 
AGM's ability [14], [17] to generate triangle motifs. 

The PMCD model is different from other community 
detection approaches in that it considers additional 
properties that were not sufficiently considered in earlier 
methods, for instance: 

 Using edge density to detect communities. 

 Triangle motif estimation using a probabilistic 

approach. 

 The conceptual link between community detection 

and the likelihood of the triangular motif being 

present or absent. 

 Use of evolutionary approaches and maximum 

likelihood estimation in computations. 

Fig. 1 presents an example of a simple graph to 
illustrate the concept of three-node motifs. Two different 
three-node motif types discovered in Fig. 1 are shown in 
Fig. 2. Depending on the characteristics of the networks, 
the triangle motifs observed in various types of networks 
can be interpreted in multiple ways. For instance, the 3-
node motif (3, e) and the 4-node motif (4, e) are the most 
widely studied motifs in complex networks [44]. The 
proposed method uses the triangular motif to build the 
hidden parameter of the probabilistic model and detect 
the community. 

 

 
 

Fig. 1: Illustrated an example of a simple graph to illustrate the 

concept of three-node motifs. 

 
 

 

 
 

Fig. 2: Illustrated two types of three-node motifs that we use in 

the proposed model: (a) a 3-clique or closed triangle motif 

(denoted as M(3,3)-motif) with 3 nodes and 3 edges discovered 

from Fig. 1; (b) types of the opened triangle motif (denoted as 

M(3,2)-motif) with 3 nodes and 2 edges extracted from Fig. 1. 
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The PMCD model is based on a network G (N, E), where 
nodes and edges are referred to as N and E, respectively. 
We create Muc, a nonnegative integer, to represent the 
strength of the node's affiliation with the community. 
(Muc = 0 denotes u's non-membership in c.) The degree of 
reliance between each node and each community is thus 
shown in the M matrix.  

The value of M in PMCD establishes whether or not a 
triangular motif between three nodes (u, v1, and v2) will 
appear in a community (c). Specifically, we presumed that 
three nodes, u, v1, and v2, are triangular motifs by taking 
into account the following likelihood. For the probabilistic 
motif generator's function, we define the triangular motif 
estimator function as a loss function over one node and 
two neighbors of that node, that is, 
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Due to the generative probabilistic approach between 
two couples of nodes in a triangle motif, each couple of 
nodes is independently propagated by the Bernoulli 
model. Thus, per element of the adjacency matrix is 
formed on the following probabilistic method: 
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The framework of computation for (1) and (2), which 
describe a probabilistic generative model, is predicated 
on the following premises: 

 In a community, a triangle motif can exist between 
two pairs of nodes (one node and two neighbors of 
that node). 

 The probability of the existence triangle motif 
increases when two pairs of nodes are observed in 
multiple communities. 

 Communities can overlap; communities that 
overlap have a higher density of triangle motifs. 

Community detection by PMCD model 
We defined the components of the PMCD model 

before illustrating how to utilize it for community 
detection in networks. The model parameter discussed in 
the preceding section is the degree of a node's 
community membership (Muc). By maximizing the 
likelihood, we can get the optimum M as follows: 
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After combining (2) and (3), a natural logarithm is 

needed to be computed on both sides to correct the 

multiplication to the aggregate and reduce the next 

computations. The logarithm is completely ascending; 

therefore, it won't interfere with the maximum likelihood 

estimation. 
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Updating the Parameter 

The non-linear likelihood function of (4), which 

contains the latent variable M, cannot be maximized by 

conventional optimization methods. We calculate the 

objective function in (4) using the Block Coordinate Ascent 

approach [45], which helps solve optimization problems 

with latent variables in machine learning. By maintaining 

fixed neighbors (Mv), we update Mu for each node u. 
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In (5), N(u) is a set of neighbours of u. In order to 

calculate the maximum probability (the diagram's 

maximum point), we must find a location on the 

Figurative chart where the gradient equals 0. Thus, it is 

necessary to derive the partial derivation of the likelihood 

logarithmic in (5) than Mu. 
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The gradient ascent algorithm will eventually update 

Mu values [46], [47]. A node's belonging strength to a 

community will be replaced with 0 if it detects it, as it is 

impossible for it to be negative. 
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In (5),   is a learning parameter, As long as the 

difference between the value from the last step and the 

current value is lower than the acceptable threshold, the 

process of updating each Mu at each stage of the 

algorithm iteration is repeated. 

PMCD Algorithm  

Algorithm 1 displays the proposed PMCD model 

(probabilistic motif-based community detection). A graph 
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(G) and the number of communities (k) are the method's 

inputs. The model also creates a matrix (Muc) that displays 

the degree to which each node belongs to each 

community. When they are observed in different 

communities, the likelihood that there is an existing motif 

structure between two groups of nodes increases. 

Since the hidden variable (M) is initialized (details of 

computing M addressed later), the method then begins 

an iterative process. After the difference among Mu(t+1) 

and Mu(t) was smaller than a predefined point (in this 

case, the stop threshold is 0.005), the iterations stop. In 

order to estimate the model's unknown parameter in the 

graph, this iterative method calculates the likelihood of 

the probabilistic model (L(Mu)). To derive the likelihood 

function's logarithm as close as possible to its maximum 

value (when the line's slope is 0), the likelihood function's 

logarithm is collected from each node u using the formula 

D(L(Mu)). 

 

Algorithm 1: Probabilistic motif-based community detection 
(PMCD) 

1: Inputs: Graph G = (N; E);  

              Number of communities (k); 

2: Output: Muc belonging of each node u Community c 

3: t ← 0 

4: M = local_maximun_neighborhood() 

5: while |Mu(t + 1) - Mu(t)| <= 0.005 do 

6:        t ← t + 1 

7:        for i = 1 to |V| do 

8:              L(M)= log p(G│M) 

9:              D(L(Mu)) = Derivation_finder_L(Mu) 

10:     Update: Mu (t + 1) =  

                 Gradient_ascent (D(L(Mu)); Mu(t)) 

11:      end for 

12: end while 

13: for i = 1 to |V| do 

14:      for j = 1 to k do 

15:            if Muc > threshold then  

16:                 Add: cj ← ui 

17:            end if 

18:      end for 

19: end for 

 

In line 10 of Algorithm 1, we chose the ascending 

gradient approach [46], [47] to optimize the probability 

because the computations were complex. This method is 

used to update the latent variable of the model (Mu) at 

each iteration of the algorithm. After the M value has 

been fixed, each node's ability to contribute per 

community is assessed. Since comparing this value to a 

testing point (such as the median of M), it may be defined 

as either belonging to or not belonging to the 

communities, and the output of the model will then be 

realized. 

Computational Complexity 

The count of communities and dense motifs affect the 

computational complexity of the PMCD method. The core 

concept of Algorithm 1, as shown in its iteration phases, 

is the rate of depending on the community, which is 

updated using (6) and (7). In this case, whether or not two 

nodes have neighbors who are members of one or more 

communities determines whether or not those nodes 

share a theme. Because of this, the computational 

complexity will depend on the number of communities 

present and the order of each node's neighbors (N(u)); in 

the worst case, this complexity will be O(2k.|E|). 

Initialize 

The matrix of depending strengths for the nodes 

communities can start in a variety of ways. The first 

option, which also appears to be the simplest, involves 

filling in the values at random. The algorithm's major 

drawback, however, is that it repeats the steps more 

frequently, increasing computing complexity as it 

advances to the model stability phases. 

The other choice is the local minim neighborhood 

approach [48], which has been shown through studies to 

be an excellent starting point for community discovery 

algorithms. Using this method has the added benefit of 

being able to estimate the initial number of communities 

to start the proposed model's community detection 

phase, in addition to minimizing iteration steps and 

starting the process in a stable state. 

Experiments 

The proposed PMCD method has been implemented 

in the Spyder environment using the Python 

programming language. We used five real-world data sets 

(Table 2) and sixteen synthetic networks (Table 5), 

respectively, to evaluate the results. Additionally, the 

statistics include the node's "ground-truth" community 

memberships. In these datasets, the proposed method is 

compared with fundamental algorithms like Louvain [49], 

Leiden [32], Bigclam [14], [17], CPM [18], Label 

propagation [35], and SLPA [34]. Table 1 lists these 

algorithms in brief. 

Evaluation Metrics 

We evaluate the community detection algorithms' 

effectiveness and accuracy using three standard 

evaluation metrics. Modularity [50] is an internal metric 

for assessing community quality, whereas the F1_Score 

and NMI are external metrics for assessing community 

accuracy by comparing them to ground-truth 

communities [6]. The modularity measure in internal 

metrics, a popular benchmark for estimating the density 

in the community is derived from Girvan-Newman [50]. 
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                             Table 1: The employed methods for PMCD evaluation 
 

Description Method Name 

Louvain amplifies the modularity value of communities   Louvain 

The Leiden method is an advancement of the Louvain Leiden 

The probabilistic community detection method that scales to large networks Bigclam 

Find k-clique communities in a graph using the percolation method CPM 

The label propagation algorithm detects communities by network structure LPA 

SLPA is an overlapping community discovery that extends the LPA SLPA 
 

By dividing the projected community edges by the 

expected community edges, the modularity value is 

calculated. The identified community will perform better 

if there are more nodes inside the community and if the 

modularity score of the community is around 1. When 

comparing the frequency of properly recognizing the 

nodes in each community using the supplied ground truth 

data, the F1_Score is a well-known evaluation statistic 

used in community detection methods. The other 

outsider statistic is NMI, or mutual information, about the 

connection found among the recognized groups and the 

real world. 

Real-World Datasets 
Five real-world datasets are used in the experiments. 

Zachary's karate club network [51] is the first dataset, 

containing 34 nodes, 78 connecting edges between them, 

and 2 ground-truth communities. This dataset contains 

social ties among university karate club members 

collected by Wayne Zachary in 1977. Dolphins' online 

social network [52] is the second dataset, which contains 

62 nodes, 159 connecting edges, and two ground-truth 

communities containing a list of all the links, where a link 

represents frequent associations between dolphins. The 

third dataset [53], with 105 nodes, 441 connecting edges, 

and 3 ground-truth communities, is based on data from 

the network of books about US politics published around 

the time of the 2004 presidential election. Edges between 

books represent frequent co-purchasing of books by the 

same buyers. The fourth dataset is the American football 

[4], with 116 nodes, 613 connecting edges, and 12 

ground-truth communities. This network contains 

American football games between Division IA colleges 

during the fall of 2000. The fifth dataset is a large network 

generated using email data from a large European 

research institution [54], [55]. This network contains 1005 

members of the institution as nodes, and 25571 edges 

contain emails sent between members of the institution 

and people outside of the institution. The dataset also 

assumes departments at the research institute as the 

nodes' ground-truth community memberships. Each 

individual belongs to exactly one of the 42 departments 

at the research institute.  

The real-world datasets analyzed during the current 

study are shown in Table 2, where N is the number of 

nodes, E is the number of edges, and K is the number of 

ground truths. These datasets are available in the 

network repository1 [56], the KONECT project2 [53], and 

the Stanford Network Analysis Project3 [54] (SNAP). 

 

 
                                          Table 2: The specifics of the real-world dataset used 

 

 

 

 

 

 

                                                           
1 https://networkrepository.com/ 
2 http://konect.cc/ 

3 https://snap.stanford.edu/      

K (#Ground_truth) E (#Edges) N (#Nodes) Dataset Name 

2 78 34 Karate 

2 159 62 Dolphin 

3 441 105 Pol-Book 

12 613 115 Football 

42 25571 1005 Email-EU 

 

https://networkrepository.com/
http://konect.cc/
https://snap.stanford.edu/
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Experimental on Real Datasets 

We evaluate the PMCD by four kinds of community 

detection models, such as modularity optimization, label 

propagation, probabilistic estimation, and clique 

percolation, in order to assessment the efficacy and 

accuracy of PMCD in community detection. In the sections 

before, several of these methods were briefly discussed. 

The suggested approach is assessed using six algorithms 

using internal evaluation criteria (modularity and 

community number) as well as external evaluation 

metrics (NMI and F1_Score).  

The findings in Table 3 demonstrate that our method 

has more accuracy than other methods in terms of the 

internal metrics (modularity maximum and accuracy in 

the number of communities). 

Additionally, Fig. 3 and 4 demonstrate that our 

suggested method has absolute superiority over 

probabilistic estimation and clique percolation methods 

and relative superiority over modularity optimization and 

label propagation methods in the external assessment 

criteria (NMI and F1_Score). 

Table 3: Experimental results on real-world networks by the modularity metric (Q) and community number (CN) 
 

Methods Louvain Leiden Bigclam CPM LPA SLPA PMCD 

Datasets Q CN Q CN Q CN Q CN Q CN Q CN Q CN 

Karate 0.415 4 0.116 5 0.204 4 0.215 4 0.354 3 0.371 3 0.397 3 

Dolphin 0.518 5 0.134 7 0.185 6 0.321 5 0.456 4 0.470 3 0.522 3 

Pol-Book 0.526 4 0.279 9 0.347 8 0.271 9 0.481 5 0.493 5 0.543 4 

Football 0.604 10 0.257 19 0.381 16 0.283 18 0.552 14 0.596 13 0.632 11 

Email-EU 0.432 27 0.226 58 0.207 65 0.162 74 0.274 55 0.303 52 0.507 46 

 

 

Fig. 3: NMI assessment chart, compare PMCD by community 
detection models on five real-world data sets. 

 

 

 

Fig. 4: F1_Score assessment chart, compare PMCD by 
community detection models on five real-world data sets. 
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Artificial Datasets 
Utilizing an artificial network for evaluating community 

detection methods makes sense. Different methods can 
be used to generate artificial networks.  

One of the most famous and often used strategies is 
the LFR benchmark [57]. The LFR benchmark builds types 
of artificial graphs with ground truth communities using 
density and dimension of communities. The network and 
community parameters can be set up before using LFR to 
simulate networks. The mixing parameter (μ) is one of the 
essential LFR parameters. This variable controls how 
various communities interact. A high mixing parameter 
value (μ), as indicated in Table 5, will reduce the 
network's level of modularity (QGT). As a result, the LFR-
generated datasets are divided into two categories based 
on the modularity measure and mixing parameter: sparse 
communities and dense communities. The average 
degree is another crucial element that might be raised to 
encourage more intercommunal interaction.  

Table 4 displays the key characteristics of the LFR 

artificial networks. Table 5 details the dataset that was 

created using our LFR approach. 

 
Table 4: Parameters of LFR synthetic datasets [57] 

 

Parameter Description 

N Node number 

K Average degree 

Min K Minimum nodes degree  

Max K Maximum nodes degree 

µ Mixing parameter for the structure 

Min C Minimum for the community sizes 

Max C Maximum for the community sizes 

tau1(𝛾) The degree distribution 

tau2(𝛽) The community size distribution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Table 5: The LFR artificial network properties 

 

Graph Name N k 𝛾 𝛽 𝜇 QGT 

LFR-1 1000 20 3 1.5 0.05 0.895 

LFR-2 1000 20 3 1.5 0.10 0.844 

LFR-3 1000 20 3 1.5 0.15 0.800 

LFR-4 1000 20 3 1.5 0.20 0.739 

LFR-5 1000 20 3 1.5 0.25 0.699 

LFR-6 1000 20 3 1.5 0.30 0.647 

LFR-7 1000 20 3 1.5 0.35 0.603 

LFR-8 1000 20 3 1.5 0.40 0.560 

LFR-9 1000 20 3 1.5 0.45 0.504 

LFR-10 1000 20 3 1.5 0.50 0.460 

LFR-11 1000 20 3 1.5 0.55 0.407 

LFR-12 1000 20 3 1.5 0.60 0.364 

LFR-13 1000 20 3 1.5 0.65 0.321 

LFR-14 1000 20 3 1.5 0.70 0.275 

LFR-15 1000 20 3 1.5 0.75 0.229 

LFR-16 1000 20 3 1.5 0.80 0.182 

 

Table 6: Experimental results on sixteen LFR artificial networks by the modularity metric 

 

Mixing Parameter ( µ ) Louvain Leiden Bigclam CPM LPA SLPA PMCD 

0.05 1.00 0.64 0.89 0.84 0.99 1.00 1.00 
0.10 0.99 0.51 0.86 0.81 0.97 0.98 0.97 
0.15 0.96 0.42 0.77 0.72 0.93 0.95 0.98 
0.20 0.93 0.41 0.73 0.66 0.88 0.87 0.91 
0.25 0.89 0.37 0.69 0.57 0.83 0.85 0.91 
0.30 0.86 0.23 0.59 0.53 0.76 0.79 0.84 
0.35 0.82 0.22 0.57 0.43 0.69 0.72 0.81 
0.40 0.79 0.19 0.47 0.31 0.52 0.64 0.72 
0.45 0.70 0.14 0.31 0.29 0.43 0.56 0.73 
0.50 0.53 0.12 0.25 0.24 0.41 0.48 0.66 
0.55 0.50 0.09 0.19 0.22 0.36 0.33 0.52 
0.60 0.44 0.05 0.12 0.14 0.28 0.29 0.39 
0.65 0.37 0.04 0.08 0.07 0.24 0.18 0.38 
0.70 0.29 0.01 0.05 0.03 0.15 0.14 0.30 
0.75 0.21 0.00 0.03 0.01 0.11 0.09 0.24 
0.80 0.15 0.00 0.01 0.00 0.08 0.05 0.18 
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Experimental on Artificial Networks 

In addition to actual graphs, we have also examined 
LFR artificial networks. We contrast the PMCD by the 
famous community detection model in Table 1 to 
demonstrate the result of the optimized loss function 
for a probabilistic estimate on the community 
detection utilizing modularity, F1_Score, and NMI 
measure. For this, sixteen LFR artificial networks are 
developed with various configures of mixing 
parameters )μ) ranging from 0.05 to 0.8, as indicated in 
Table 5. These networks are created in accordance with 
the attributes of synthetic networks listed in Table 4. 
Table 6's experimental findings demonstrate that the 
communities are dense for low mixing parameter range 
)e.g., 0.05≤μ≤0.4) and that the compared methods are 
almost correct in this situation.  

However, the major contrast between the methods 
becomes more apparent when the mixing parameter's 
)μ) value rises )e.g., 0.4<μ≤0.8) and the communities 
are sparse, making it difficult to identify communities 
since the edges between communities’ rise.  

 
Fig. 5: NMI assessment graph on sixteen LFR datasets, 

comparing PMCD with six community detection methods. 

 

 

 

 

 

 

 

 
 

 

 
Fig. 6: On sixteen LFR datasets, the F1_score assessment 

chart compares PMCD with six community detection 
methods. 

As can be seen in Figs 5 and 6, when the mixing 

parameter value increases, certain algorithms have 

NMI and F1Score values that are equivalent to zero. The 

majority of frequently used approaches in the range of 

0.5 to 0.8 are outperformed by the suggested method. 

Conclusion 

We proposed a probabilistic motif-based method for 

detecting communities in complex networks. Due to 

the complexity of combining probabilistic approaches 

in motif structure, recent community detection 

methods have given the latent variable of the 

probabilistic model less consideration. However, the 

proposed approach leverages the intensity of the 

node's participation in the community and the 

relationship of at least two linked edges between three 

nodes (triangular motif structure) to estimate the 

hidden variable of the probabilistic model. The research 

maximized the likelihood function and extracted the 

model's latent parameters using the well-known block 

coordinate ascent technique. The association between 

node membership in communities and edge density is 

another aspect that helps in the examination of newly 

detected communities; three nodes are more likely to 

create a motif structure when seen in various 

communities. Overlapping in the identification of 

communities is another benefit of PMCD; according to 

the findings, communities that overlap have a greater 

density of triangular motifs. We employed 16 artificial 

graphs and 5 real graphs to evaluate the performance 

of the suggested method. In comparison to the other 

six methods, PMCD was able to achieve a sufficient 

quorum on real-world networks and surpass them in 

terms of internal and external assessment criteria. 

Synthetic network assessments further show that the 

suggested strategy performs better in sparse datasets 

than other approaches. Furthermore, a review of the 

complexity of the execution time reveals that the 

suggested method outperforms previous approaches. 

Future research can develop PMCD. A probabilistic 

generative model can be used to estimate edge weight 

while taking a latent parameter into account. Also, the 

suggested method can be enhanced by utilizing 

network node properties in order to give a more precise 

description of the found communities. 
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