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Background and Objectives: Traction system and adhesion between wheel and 
rail are fundamental aspects in rail transportation. Depending on the vehicle's 
running conditions, different levels of adhesion are needed. Low adhesion 
between wheel and rail can be caused by leaves on the line or other 
contaminants, such as rust or grease. Low adhesion can occur at any time of year 
especially in autumn, resulting in disruptions to passenger journeys. Increased 
wheel-rail adhesion for transit rail services results in better operating 
performance and system cost savings. Deceleration caused by low adhesion, will 
extend the braking distance, which is a safety issue. Because of many uncertain 
or even unknown factors, adhesion modelling is a time taking task. Furthermore, 
as direct measurement of adhesion force poses inherent challenges, state 
observers emerge as the most viable choice for employing indirect estimation 
techniques. Certain level of adhesion between wheel and rail leads to reliable, 
efficient, and economical operation.  
Methods: This study introduces an advantageous approach that leverages the 
behavior of traction motors to provide support in achieving control over wheel 
slip and adhesion in railway applications. The proposed method aims to enhance 
the utilization of existing adhesion, minimize wheel deterioration, and mitigate 
high creep levels. In this regard, estimation of wheel-rail adhesion force is done 
indirectly by concentrating on induction motor parameters as railway traction 
system and dynamic relationships.  Meanwhile, in this study, we focus on 
developing and applying the sixth-order Extended Kalman Filter (EKF) to create a 
highly efficient sensorless re-adhesion control system for railway vehicles.  
Results: EKF based design is compared with Unscented Kalman Filter (UKF) based 
and actual conditions and implemented in Matlab to check the accuracy and 
performance ability for state and parameter estimation. Experimental results 
showed fast convergence, high precision and low error value for EKF.  
Conclusion: The proposed technique has the capability to identify and assess the 
current state of local adhesion, while also providing real-time predictions of wear. 
Besides, in combination with control methods, this approach can be very useful 
in achieving high wheel-rail adhesion performance under variable complex road 
conditions. 
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Introduction 
The contact force at wheel and rail interface governs the 

dynamic behavior of entire vehicle, which is complex and 

highly non-linear. Measurement of this force is one of the 

most important issues for condition monitoring and 

safety evaluation of railway vehicles. In [1] an estimator 

framework is presented for online identification of 

contact force at wheel- rail interface. Sliding and slipping 

are two challenging situations in railway industry that 

arise from the low friction between wheel and rail, 
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especially when wheel and rail are contaminated by 

different factors such as mud, grease, humidity, etc [2]-

[5]. Also, weather conditions [6], deliberately applied 

friction modifiers [7], or contact surface temperatures [8]-

[10], can affect the amount of adhesion. In order to avoid 

wheel slide/slip and uncomfortable riding and decrease in 

traction effort, wheel wear, and noise, it is imperative to 

minimize the excessive slippage that occurs between the 

surfaces of the wheel and the rail. In [11], the proposed 

method to reveal the slip is to compare speed difference 

between the wheel and the vehicle body. Then the 

estimated slip is used for torque compensation signal 

generation. Since the induction motor is one of the most 

important parts of the train's motion system, 

investigation of the induction motor was proposed which 

uses the estimated adhesion force to suppress the slip 

and adjust the torque command [12].  

Many researchers tried to resolve adhesion problem 

and different solutions such as mathematical control 

theory, statistical and genetic have been proposed and 

applied [13], [14]. The adhesion characteristic has two 

stable and unstable areas. Between these two areas, 

maximum value of the adhesion is located. The adhesion 

coefficient depends upon the slip velocity, which 

influences on adhesion coefficient level. Train velocity 

and temperature of contact area are two important 

factors affecting the railway surfaces. Higher values of the 

adhesion coefficient and the slip velocity lead to 

maximum adhesion coefficient. Therefore, adhesion level 

identification is an important task for proper operation of 

a railway vehicle. A novel approach was introduced in a 

recent study [15] to determine the adhesion coefficient 

between the wheel and rail. Additionally, another 

research paper [16] presents a distinct adhesion control 

technique that relies on observing the adhesion state 

between the wheel and rail. Obtaining optimal adhesion 

control can lead to effective utilization of train traction 

power [17], [18]. It is important to mention that based on 

the changes observed in the characteristic curve of the 

adhesion coefficient, it is necessary to limit the creep 

velocity of the train within the stable region to prevent 

wheel slide or slip. To bring the trains back to the stable 

region, readhesion control is implemented by finely 

tuning the torque and promptly detecting instances of 

wheel slide or slip. However, a limitation of this approach 

is that it is unable to completely eliminate the occurrence 

of slide or slip [19]. To explore the phenomenon of slide 

and slip in railway traction, a novel approach utilizing the 

second-order Luenberger observer is introduced. This 

method indirectly determines the frictional force 

associated with this phenomenon [20]. A bank of Kalman 

Filter (KF) is applied for the adhesion estimation.  

Identification of the contact conditions is then done by 

examining the residuals from the Kalman filters [21]. 

In [22] a Kalman Filter based technique is proposed for 

estimation of low adhesion between wheel and rail. The 

EKF is the nonlinear form of Kalman Filter, which has been 

used extensively for estimation of nonlinear states in 

navigation systems [23]. Extended Kalman filter based 

estimation for estimating the creepage, creep force, and 

friction coefficient between the wheel and rail surfaces by 

utilizing the AC motor parameters such as stator voltage, 

current, and speed was proposed in [24]. An alternative 

approach to detect slip velocity is through the utilization 

of multi-rate Extended Kalman Filter state identification. 

This method combines both the multi-rate technique and 

the EKF method to accurately determine the traction 

motor load torque. The advantages of this method are 

faster slip detection and improved reliability and traction 

performance [25]. To predict the wheel and rail wear, 

regions of adhesion variations or low adhesion, and the 

development of rolling contact fatigue, a novel approach 

utilizing the Kalman-Bucy filter technique is suggested to 

estimate the wheel and the rail states [26]. In [27], a 

model-based technique is proposed for condition 

monitoring, in which an unscented Kalman filter is applied 

to estimate rolling radius by considering the angular 

velocity and the traction effort of the motor 

measurements. In [28]-[30] UKF was used for sensorless 

speed control of induction motor, in which it was 

emphasized that UKF has more robust estimation 

performance.  

This study investigates the utilization of EKF approach 

to accurately determine the adhesion force between the 

contact surfaces of a wheel and rail. The estimation is 

achieved through analyzing the measured values of the 

stator currents of an induction motor. To evaluate the 

observer's performance, a dynamic model is constructed, 

comprising a gear box, wheelset, and induction motor. 

The behavior of the wheel-rail contact is described using 

the Polach model. The design of the induction motor is 

based on a first-order decomposition of the sixth-order 

nonlinear model. The proposed EKF technique is capable 

of estimating various parameters, including motor 

current, rotor flux components, motor speed, and load 

torque.Then, dynamic reletion is used for adhesion force 

estimation. For further investigation, we compared our 

method with UKF. The obtained results show good 

convergence and high precision. The rest of this research 

is organized into four parts. First, the details of traction 

system and mathematical model of induction motor are 

explained. Then, the estimator framework is presented.  
Following this, the details of experimental results are 

highlighted. Finally, the conclusion is given. 

System Modelling and Discretization 

The traction system information employed in this 

research is shown in Fig. 1. The model consists of three 

parts, wheel and rail, gear wheel, and traction motor. The 
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continuous dynamic model of the induction motor used 

in this research is described by sixth-order nonlinear 

differential equations with three series of variables 

consisting of two mechanical variables (motor speed and 

load torque), four electrical variables (currents and 

fluxes), and two control variables (stator voltages) and the 

stationary reference frame is (α, 𝛽).      The action of the 

axle load causes the wheels rotation, which leads to micro 

deformation region occurring in the wheel-rail contact 

region. Then, the interaction between wheel and rail 

produces the adhesion force 𝐹𝑎. The schematic of wheel-

rail adhesion mechanism is shown in Fig. 2. The states, the 

measurements, the stator voltages, and the state and 

measurement noises are given in (1) to (5) respectively. 

 
     

  
 

Fig. 1: Schematic of the traction system. 

 
 

Fig. 2: Wheel-rail adhesion mechanism. 
 

𝑥(𝑡) = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5   𝑥6]𝑇 = 

[𝐼𝑠𝛼 𝐼𝑠𝛽 𝜓𝑟𝛼 𝜓𝑟𝛽 𝜔𝑚   𝑇𝐿]𝑇                                     (1) 

z= [ 𝐼𝑠𝛼     𝐼𝑠𝛽]𝑇                                                                        (2)               
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𝑢(𝑡) = [ 𝑢𝑠𝛼    𝑢𝑠𝛽]𝑇                                                              (3) 

𝑤(𝑡) = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5   𝑤6]𝑇                            (4)  

𝑣 = [𝑣1    𝑣2]𝑇                                                                         (5) 

where 𝐼𝑠𝛼  is stator current in 𝛼 frame, 𝐼𝑠𝛽  is stator current 

in 𝛽 frame, 𝜓𝑟𝛼 is rotor flux in 𝛼 frame, 𝜓𝑟𝛽  is rotor flux 

in 𝛽 frame, 𝜔𝑚 is the motor angular velocity, and 𝑇𝐿  is 

load torque.   

The equations are listed as follows [31]: 

𝑑𝐼𝑆𝛼

𝑑𝑡
= − (

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2) 𝐼𝑠𝛼 +

𝐿𝑚𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2 𝜓𝑟𝛼 +

 
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
𝑛𝑝𝜔𝑚𝜓𝑟𝛽 +

1

𝜎𝐿𝑠
𝑢𝑠𝛼                                                    (6) 

𝑑𝐼𝑆𝛽

𝑑𝑡
=  − (

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2) 𝐼𝑠𝛽 −  

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
𝑛𝑝𝜔𝑚𝜓𝑟𝛼 +

 
𝐿𝑚𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2 𝜓𝑟𝛽 +

1

𝜎𝐿𝑠
𝑢𝑠𝛽                                                               (7) 

𝑑𝜓𝑟𝛼

𝑑𝑡
=  

𝑅𝑟𝐿𝑚

𝐿𝑟
𝐼𝑠𝛼 −

𝑅𝑟

𝐿𝑟
𝜓𝑟𝛼 −  𝑛𝑝𝜔𝑚𝜓𝑟𝛽                             (8) 

𝑑𝜓𝑟𝛽

𝑑𝑡
=  

𝑅𝑟𝐿𝑚

𝐿𝑟
𝐼𝑠𝛽 + 𝑛𝑝𝜔𝑚𝜓𝑟𝛼 −  

𝑅𝑟

𝐿𝑟
𝜓𝑟𝛽                            (9) 

𝑑𝜔𝑚

𝑑𝑡
=  

−3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
𝜓𝑟𝛽𝐼𝑠𝛼 +

3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
𝜓𝑟𝛼𝐼𝑠𝛽 −

𝐶𝑣

𝐽𝑒𝑞𝑣
𝜔𝑚 −

1

𝐽𝑒𝑞𝑣
𝑇𝐿  (10) 

𝑑𝑇𝐿

𝑑𝑡
= 1                                                                         (11) 

where 𝑅𝑠 is the stator resistance, 𝑅𝑟 is the rotor 

resistance, 𝐿𝑠 is the stator self-inductance, 𝐿𝑟 the is rotor 

self-inductance, 𝐿𝑚 is the mutual inductance, 𝑛𝑝 is the 

number of the pole pairs, 𝐽𝑒𝑞𝑣 is the equivalent moment 

of inertia, 𝐶𝑣 is the viscous friction, and 𝜎 is the leakage 

coefficient and defined as (12). 

σ = 1 −
𝐿𝑚

2

𝐿𝑠𝐿𝑟
                                                                         (12) 

     Induction motor extended model is shown in (13). 

 

 

 

 

 

 

 

 

 

 

 

 

Ignoring the damping coefficient, the dynamic 

equation of traction motor is as follows [13]: 

𝑑𝜔𝑚

𝑑𝑡
=

𝑇𝑚−𝑇𝐿

𝐽𝑒𝑞𝑣
                                                                        (15) 

𝜔𝑤 =
𝜔𝑚

𝑛𝑖
                                                                              (16) 

 

(13) 
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𝑇𝑚 =
𝑛𝑝𝐿𝑚

𝐿𝑟
(𝐼𝑠𝛽𝜓𝑟𝛼 − 𝐼𝑠𝛼𝜓𝑟𝛽)                                           (17)  

𝑇𝐿 =
2𝑟𝐹𝑎

𝑛𝑖
                                                                            (18)                                              

𝐽𝑒𝑞𝑣 =  𝐽𝑚 +
𝐽𝑔+𝐽𝑥+𝐽𝑤𝑅+𝐽𝑤𝐿

𝑛𝑖
2                                                    (19)     

where 𝜔𝑤represents the angular velocity of the wheel, 

while 𝐹𝑎 denotes the adhesion force exerted by a single 

wheel. Additionally, 𝐽𝑚, 𝐽𝑔, 𝐽𝑥, 𝐽𝑤𝑅 , and  𝐽𝑤𝐿  refer to the 

moments of inertia associated with the motor, gearbox, 

wheelset axle, right wheel, and left wheel, respectively. 

The adhesion force at the contact point between the 

wheel and rail, denoted as 𝐹𝑎 is determined using Polach's 

method [33] and can be calculated using (20). 

𝐹𝑎 =
2𝐹𝑁𝜇𝑓

𝜋
(

𝑘𝐴𝜖

1+(𝑘𝐴𝜖)2 + arctan(𝑘𝑆𝜖)),  𝑘𝑆 ≤ 𝑘𝐴 ≤ 1    (20) 

where 𝐹𝑁 is the normal force between the wheel and 

rail, 𝜇𝑓 is the traction coefficient, and quantities 𝑘𝐴 and 𝑘𝑆 

are Polach reduction factors in the areas of adhesion and 

slip, respectively. 

𝜇𝑓 = 𝜇0((1 − 𝐷)𝑒−𝐵𝜉𝑉 + 𝐷)                                                 (21) 

𝜖 =
𝐺𝜋𝑎𝑏𝐶11

4𝐹𝑁𝜇𝑓
𝜉                                                                            (22) 

where D and B represent reduction factors associated 

with distinct friction coefficients, 𝑉 is the longitudinal 

velocity of the train, 𝜉 is the creepage between the wheel 

and rail, 𝐺 is shear module, a and b are the semi-axis 

length of the contact patch and 𝐶11 is the Kalker 

coefficient.  

The creepage contains longitudinal and lateral 

components but in this research, the lateral dynamics are 

neglected, so calculated by the following equation [34]: 

𝜉 =
𝜔𝑤𝑟−𝑉

𝑉
                                                                            (23) 

Estimation of Wheel-Rail Adhesion 

The details of the EKF and UKF used for estiomation of 

Wheel-Rail adhesion can be found in the following 

subsections.  

A.  Extended Kalman Filter  

The EKF is an enhanced variant of the traditional 

Kalman filter that takes into account nonlinear systems. 

In this study, our goal is to determine the optimal linear 

estimation for the state vector of the induction motor. 

The discrete-time nonlinear model is expressed as below: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 ,𝑢𝑘,𝑤𝑘)                                                           (24)  

𝑧𝑘 = ℎ(𝑥𝑘 ,𝑣𝑘)                                                                      (25) 

where 𝑓(.) represents the dynamics of machine, h(.) is 

the relationship between the observation 𝑧𝑘  and the state 

vector 𝑥𝑘, 𝑢𝑘refers to the input provided to the motor, 

while 𝑤𝑘  and 𝑣𝑘   represent the vectors of noise that affect 

the process and measurement respectively.   Equations 

(24) and (25) exhibit nonlinearity,   necessitating their 

linearization. This process involves employing the first-

order Taylor approximation in the vicinity of a chosen 

reference point. Linearizing these nonlinear equations 

will result in the following description of the dynamics: 

𝑥𝑘+1 = 𝑓(𝑥̂𝑘 , 𝑢𝑘, 0) + 𝐹𝐾(𝑥𝑘 − 𝑥̂𝑘) + 𝑊𝑘𝑤𝑘                 (26) 

𝑧𝑘 = ℎ(𝑥̂𝑘 ,0) + 𝐻𝐾(𝑥𝑘 − 𝑥̂𝑘) + 𝑉𝑘(𝑣𝑘 − 0)                      (27) 

where 𝐹𝐾, 𝑊𝑘, 𝐻𝐾  and 𝑉𝑘  are Jacobean matrices defined 

as below: 

𝐹𝐾 =
𝜕𝑓

𝜕𝑥
|

𝑥̂𝑘

,𝑊𝑘 =
𝜕𝑓

𝜕𝑤
|

𝑤
,𝐻𝑘 =

𝜕ℎ

𝜕𝑥
|

𝑥𝑘

,𝑉𝑘 =
𝜕ℎ

𝜕𝑣
|

𝑥𝑘

             (28) 

The EKF algorithm using induction motor model in (13) 

and (14) can be given by the following equations:                   

𝑃𝑘+1|𝑘 = 𝐹𝐾𝑃𝑘(𝑘)𝐹𝐾
𝑇 + 𝑊𝑘𝑄𝑊𝐾

𝑇                                       (29) 

𝐾𝐾 = 𝑃𝑘+1|𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘+1|𝑘𝐻𝑘

𝑇 + 𝑉𝑘𝑅𝑉𝐾
𝑇)−1              (30) 

𝑥̂𝑘+1|𝑘 =  𝑓(𝑥̂𝑘|𝑘 . 𝑢𝑘,0)                                                       (31) 

𝑥̂𝑘+1|𝑘+1 =  𝑥̂𝑘+1|𝑘 + 𝐾𝐾(𝑧𝑘 − ℎ(𝑥̂𝑘+1|𝑘 ,0))                 (32) 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝐾𝐻𝑘)𝑃𝑘+1|𝑘                                          (33) 

where 𝑃𝑘+1|𝑘  is the priori prediction error covariance 

matrix, 𝑃𝑘+1|𝑘+1 is the posteriori prediction error 

covariance matrix, 𝐾𝐾  is the Kalman gain, 𝑥̂𝑘+1|𝑘  is the 

priori state prediction vector, 𝑥̂𝑘+1|𝑘+1is the posteriori 

state prediction vector and 𝑄 and 𝑅 are the covariance 

matrixes of process and measurement noise and I is the 

unit matrix symbol.  In general, the extended Kalman filter 

is not an optimal estimator. If the process is modeled 

incorrectly, or if the initial estimate of the state is wrong, 

linearization may lead to rapid divergence of the filter. 

Furthermore, the estimated covariance matrix in EKF has 

a tendency to inaccurately assess the true covariance 

matrix. Consequently, it runs the risk of losing consistency 

in the statistical context unless stabilizing noise is 

introduced. Finally, because of the 𝑄 and 𝑅 uncertainty, 

their values are obtained by trial-and-error methods 

which is tedious and time-consuming procedure. 

B.  Unscented Kalman Filter 

The UKF is created by incorporating the unscented 

transformation (UT) method.It is assumed that the 

studied system is nonlinear and in discrete form: 

𝑥𝑘 = 𝑓(𝑥̂𝑘 , 𝑢𝑘) + 𝑤𝑘                  𝑤𝑘~(0,𝑄𝑘)                     (34) 

𝑧𝑘 = ℎ(𝑥̂𝑘 , 𝑢𝑘) + 𝑣𝑘                 𝑣𝑘~(0,𝑅𝑘)                       (35)      

In the first step of estimate of state vector of the 

induction motor using UKF, a set of 2𝑛𝑥 + 1 weighted 

samples or sigma points are determined as: 
𝜒𝑘−1 = [𝑥𝑘−1 𝑥𝑘−1 + √(𝑛𝑥 + 𝜆)(𝑃𝑘−1)𝑖 𝑥𝑘−1 − √(𝑛𝑥 + 𝜆)(𝑃𝑘−1)𝑖]     

                                                                                               (36) 
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𝑤𝑚
(0)

=
𝜆

𝜆+𝑛𝑥
                                                                            (37) 

𝑤𝑐
(0)

=
𝜆

𝜆+𝑛𝑥
+ 1 − 𝛼2 + 𝛽                                                (38) 

𝑤𝑐
(𝑗)

= 𝑤𝑚
(𝑗)

=
𝜆

2(𝜆+𝑛𝑥)
                                                        (39) 

where the dimension of the state variable is represented 

as 𝑛𝑥 .The estimate of 𝑥𝑘at time k-1  is denoted as  𝑥̂𝑘−1, 

and its covariance is represented as 𝑃𝑘−1. The weight 

𝑤𝑚is is utilized for determining the mean, while 𝑤𝑐  is 

employed for calculating the covariance. The parameter 

α, which lies within the range of [0,1], is employed to 

regulate the distribution of the sigma points. Additionally, 

β non-negative term, is utilized to incorporate 

information from higher order moments of the 

distribution and 
2 ( )x xn n     . It should be noted 

that in this study, these three parameters are set as 

follows: 1  , 0  and 1        

The column i of the matrix 𝑃𝑘−1is denoted as (𝑃𝑘−1)𝑖. 

Sigma points 𝜒𝑘−1 are substituted into the nonlinear state 

equation, and the transformed sigma points are 

evaluated for each of the the 0 - 2𝑛𝑥 points as described 

below:  

𝜒𝑘
(𝑖)

= 𝑓(𝜒𝑘−1
(𝑖)

,𝑢𝑘)                                                               (40) 
 

To obtain the mean and covariance of the modified set 

of sigma points, the following procedure is employed: 

𝑥̂𝑘
− = ∑ 𝑤𝑚

(𝑖)
𝜒𝑘

(𝑖)2𝑛𝑥
𝑖=1                                                              (41) 

𝑃𝑘
− = ∑ 𝑤𝑐

(𝑖)
(𝜒𝑘

(𝑖)
−

2𝑛𝑥
𝑖=1 𝑥̂𝑘

−)(𝜒𝑘
(𝑖)

− 𝑥̂𝑘
−)𝑇 + 𝑄𝑘               (42) 

where 𝑄𝑘  is the process noise covariance. The sigma 

points that have been transformed are subsequently 

utilized to predict  the measurements by employing the 

measurement model: 

𝜉(𝑖) = ℎ(𝜒𝑘
(𝑖)

,𝑈𝑘)                                                                 (43)  

The expected measurement 𝑧̂𝑘is as: 

𝑧̂𝑘 = ∑ 𝑤𝑚
(𝑖)

𝜉(𝑖)2𝑛𝑥
𝑖=1                                                               (44) 

Using the predicted sigma points, 𝑃𝑘
𝑥𝑧and 𝑃𝑘

𝑧𝑧 also 

determines as follows: 

𝑃𝑘
𝑥𝑧 = ∑ 𝜔𝑖

(𝑐)2𝑛
𝑖=0 (𝜒𝑘

(𝑖)
− 𝑥̂𝑘)(𝜉(𝑖) − 𝑧̂𝑘

−)𝑇                        (45) 

 𝑃𝑘
𝑧𝑧 = ∑ 𝜔𝑖

(𝑐)2𝑛
𝑖=0 (𝜉(𝑖) − 𝑧̂𝑘

−)(𝜉(𝑖) − 𝑧̂𝑘
−)𝑇 + 𝑅𝑘           (46) 

The mean and square root of covariance for the state 

are recalculated based on the actual measurement. 

𝑥̂𝑘 = 𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝑧̂𝑘)                                                      (47) 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝐾𝑃𝑘

𝑥𝑧𝐾𝐾
𝑇                                                        (48) 

𝐾𝑘 = 𝑃𝑘
𝑥𝑧(𝑃𝑘

𝑧𝑧)−1                                                        (49) 
 

Results 

This section begins by simulating the presented model 

to verify the accuracy of the EKF in estimating variables. 

Subsequently, the performance of the EKF is assessed by 

comparing it with the UKF to determine its accuracy as an 

estimator. All of our codes have been developed and 

implemented using the Matlab, with a sampling period of 

10−3s seconds. To ensure more realistic testing 

conditions, the induction motor is powered through an AC 

drive with a sinusoidal input voltage. 

A.  EKF-Based Model Simulation 

In the first step of our simulation, we try to simulate 

contact conditions. Our goal in this step is to show the 

created changes in adhesion force versus creepage for all 

track conditions such as dry, wet, low, and very low 

relationship between adhesion force and creepage. The 

designed friction coefficients are as follows: 
 

𝜇0 =  {

0.55           𝑡 < 10         
0.3        10 ≤ 𝑡 < 20    
0.06      20 ≤ 𝑡 < 30   
0.03      30 ≤ 𝑡 < 35   

  

 

The values of 𝑘𝐴, 𝑘𝑆, D and B under different friction 

conditions are listed in Table 1 and the other parameter 

values used in equations (20) to (23) are as the following:  

FN = 60 KN, G = 8.4×1010 𝑁

𝑚2, a = 0.0015 m, b = 0.0075 m,  

C11 =4.12, V= 15 
𝑚

𝑠
 

Fig. 3 shows the curves of the adhesion force versus 

creepage in different wheel-rail contact conditions. As the 

creepage increases, the slip region increases versus the 

stick region. As we see, the adhesion force changeswith 

respect to creepage for all track conditions nonlinearly. In 

the second step, the results of the simulation in MATLAB 

and the estimation of the variables mentioned in the 

previous section are shown and discussed. 
 

Table 1: Polach model parameters under different friction 

conditions [24] 

 

The parameter values for the traction system 

employed in this research can be found in Table 2. 

Matrices Q and R are given in the following, which are 

obtained by trial and error.  

Q = diag ([3.88e-7  1.00e-12  1.39e-16  1.42e-16  1.85e-10 

1.85e-3]) × 0.099,  R = diag ([3.39e-4  3.39e-4]) × 2. 

 
\ 

 

 

Model parameter 

Wheel–rail conditions 

Dry Wet Low Very Low 

kA  1 1 1 1 

kS 0.4 0.4 0.4 0.4 

D 0.6 0.2 0.2 0.1 

B 0.4 0.4 0.4 0.4 
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Table 2: Parameters and values used in the simulation 

Cv (
𝑵.𝒎

𝒓𝒂𝒅.𝒔
) 0.015 Jeqv (kg.m2) 0.07 

LS(H) 0.1004 RS (Ω) 1.54 

Lm(H) 0.0915 Rr (Ω) 1.294 

Lr(H) 0.0969 𝒓 (m) 0.34 

ni 7.5 f (Hz) 50 

np 3   

   

 
 
 

 
 

Fig. 3: Adhesion force curves creepage. 

Estimated and actual trajectories of stator currents in 

𝜶 and 𝜷 frames (𝑰̂𝒔𝜶,𝑰̂𝒔𝜷) are shown in Fig. 4 (a) and (b), 

respectively. The trajectories of the current errors in 𝜶 

and 𝜷 frames (𝒆𝑰𝒔𝜶
,𝒆𝑰𝒔𝜷

) are represented in Fig. 5 (a) and 

(b), respectively. 
 

 
 

 

Fig. 4: EKF based estimated and actual motor current 
trajectories (a) α axis (b) 𝛽 axis. 

 
Fig. 5: The trajectories of the motor current error (a) α axis (b)  

𝛽 axis. 

Estimated and actual trajectories of rotor fluxes in 𝜶   

and 𝜷 frames (𝝍̂𝒓𝜶, 𝝍̂𝒓𝜷) are represented in Fig. 6 (a) and 

(b), respectively. The trajectories of the rotor flux errors 

in 𝜶 and 𝜷 frames (𝐞𝝍𝒔𝜶
,𝒆𝝍𝒔𝜷

) are represented in Fig. 7 (a) 

and (b), respectively.  

As seen in Fig. 4 (a) and (b) and Fig. 6 (a) and (b), the 

estimated trajectories of the stator current and rotor flux 

in α and 𝛽 frames follow the real trajectories of these four 

motor variables with minimal error bound. 

Estimated and actual trajectories of motor speed (ωm, 

ω̂m) and speed error (𝑒ωm
) are shown in Figs. 8 and 9 

respectively. In Fig. 8, fast convergence with a very low 

bound of error in following the real trajectory by the EKF 

estimator is clearly evident. The trajectories of the 

estimated and actual load torque (𝑇𝐿 , 𝑇̂𝐿) and load torque 

error (𝑒𝑇𝐿
)  are given in Figs. 10 and 11 respectively.  

 

 
 

 

 

Fig. 6: EKF based estimated and actual rotor flux trajectories (a) 
α axis (b) 𝛽 axis. 

 
 

 
 

 

Fig. 7: The trajectories of the rotor fluxes error (a) α axis (b) 𝛽 
axis. 

 

 
 

Fig. 8: EKF based estimated and actual trajectories of motor 
speed. 
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Fig. 9: The trajectory of the motor speed error. 

                        
 
 

Fig. 10: EKF based estimated and actual trajectories of load  
torque. 

 
          Fig. 11: The trajectory of the load torque error. 

 

 
 
 

 

 

 

Fig. 12. The trajectory of the estimated adhesion force.      

Referring to Fig. 10, it is evident that the error 

undergoes a narrow variation when there is a sudden 

change in the torque command. By analyzing Figs. 4 to 12, 

it becomes apparent that the EKF estimator accurately 

follows the real state trajectories with great precision and 

rapid convergence. Equation (18) allows us to obtain the 

trajectory of the estimated adhesion force, 

demonstrating a linear correlation between the load 

torque and the adhesion force. Fig. 12 shows the 

estimated adhesion force trajectory. By estimating the 

longitudinal creep force, it becomes feasible to ascertain 

the degree of adhesion between the wheel and the rail. 

B.  Low Speed Performance 

To further investigate the proposed method at low 

speeds, the findings of the estimated stator current, rotor 

flux, motor speed, and load torque compared to the 

actual conditions are illustrated in Figs. 13-16. Upon 

analyzing Figs. 15 and 16, it is evident that the proposed 

method showcased in this study offers prompt response 

and precise estimation of speed and torque across the 

entire low-speed range. In Fig. 15, the reference speed is 

initially set to 6 rad/s, then altered to -6 rad/s at 4s, and 

finally adjusted back to 6 rad/s at 14s. Fig. 16 indicates 

minor estimation errors of similar magnitude. The 

estimated load torque demonstrates the successful 

operation of the proposed scheme.  

 

 
Fig. 13: EKF based estimated and actual motor current 
trajectories (a) α axis (b) 𝛽 axis at low speed operation. 

 
Fig. 14: EKF based estimated and actual rotor flux trajectories 

(a) α axis (b) 𝛽 axis at low speed operation. 

Fig. 17 displays the trajectory of the adhesion force in 

low-speed scenarios, which was plotted based on the 

linear relationship between load torque and adhesion 
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force. These results confirm the robustness and 

exceptional tracking capabilities of the estimation 

approach, even when operating at lower velocities. 

 
Fig. 15: EKF based estimated and actual trajectories of motor 

speed at low speed operation. 

 
Fig. 16: EKF based estimated and actual trajectories of load 

torque at low speed operation. 
 

 
Fig 17: EKF based estimated trajectory of adhesion force at low 

speed operation. 

C.  Performance Comparison 

As mentioned and considered in subsection 4-1, the 

estimation of variables with EKF results in good 

information. For a more detailed investigation and to 

check the amount of estimation error, and according to 

subsection 3-2, the performance of the proposed EKF is 

compared with UKF, validated with Matlab simulation, 

and comparative analysis is discussed.  

In Figs. 18-21 the estimation results of motor current, 

stator flux, motor speed, and load torque are 

represented. Both EKF and UKF estimator are used for 

estimating variables and their outputs compared with the 

actual situation. As it can be seen, the obtained results 

present a high degree of convergence, acceptable 

accuracy, and good estimation of variables in estimating 

with the EKF estimator. The trajectory of the estimated 

adhesion in two estimation modes i.e. EKF and UKF is 

given in Fig. 22. Based on the analysis of the estimation 

results, it can be deduced that the UKF algorithm, known 

for its effectiveness in highly-nonlinear systems as per 

previous research, does not exhibit any advantage over 

the EKF algorithm when it comes to estimating induction 

motor parameters and statistics. 

 

 

Fig. 18: EKF and UKF based estimated and actual motor current 
trajectories. 

 
Fig. 19: EKF and UKF based estimated and actual rotor flux 

trajectories. 

 

Fig. 20: EKF and UKF based estimated and actual motor speed 
trajectories. 
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Fig. 21: EKF and UKF based estimated and actual load torque 

trajectories. 
 

 
Fig. 22: EKF and UKF based estimated adhesion trajectories. 

 

In the following, the trajectories of the estimation 

error for all mentioned state variables with the UKF and 

EKF estimation modes are shown in Figs. 23-26. By 

comparing the obtained results, it is obvious that EKF can 

estimate variables with high accuracy and partial error in 

the presence of UKF.  

Fig. 26 shows the load torque error in estimating with 

both EKF and UKF estimators. According to the (18), there 

is a linear relation between load torque and adhesion 

force.  

Hence, it can be deduced that the EKF exhibits swift 

responsiveness and provides estimations with minimal 

margin of error, given the fluctuating adhesion 

circumstances between the wheel and rail surfaces. 

 

 

Fig. 23: The trajectories of the motor current error (a) α axis (b) 
𝛽 axis. 

 

 

Fig. 24: The trajectories of the rotor flux error (a) α axis (b) 𝛽 
axis. 

To further evaluate the estimation accuracy of the 

approach, the root mean square error (RMSE) of state 

variables is shown in Figs. 27-30. By analyzing the Figs, it 

can be concluded that the RMSE of EKF is smaller than the 

RMSE of UKF, as a result, the speed estimated by EKF is 
closer to its actual values. 

 
 

Fig. 25: The trajectory of the motor speed error. 
 

 
Fig. 26: The trajectory of the load torque error.      

 
 

Fig. 27: The RMSE of motor current over time (a) in α axis (b) in 

𝛽 axis. 
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Fig. 28: The RMSE of stator flux over time (a) α axis (b) 𝛽 axis. 

 
 

Fig. 29: The RMSE of motor speed over time. 

 
 

Fig. 30: The RMSE of load torque over time. 

Table 3. Running times of  EKF and UKF algorithms 

Execution Time (sec) Estimator 

2.6 EKF 

9.2 UKE 

 

It can be seen in Fig. 30 that the RMSE of load torque 

with EKF is equal to that of UKF. Therefore, it is the same 

for adhesion force due to the linear relationship between 

the load torque and adhesion force. In order to show the 

difference clearly and better understand the two 

algorithm performances, the computational cost of 

methodes is  given in Table 3. The results show that the 

running time of EKF is lower than UKF, which confirm the 

superiority of EKF relative to UKF in estimating adhesion 

force and induction motor parameters. 

Conclusion 

In this research, an EKF-based condition monitoring is 

proposed to estimate adhesion force. To assess the 

efficiency of the estimator, an evaluation was conducted 

by comparing the estimated motor parameters such as 

load torque, speed, rotor flux, and stator current in three 

modes i.e. actual, EKF-based, and UKF-based. Meanwhile, 

the linear relationship between motor torque and 

adhesion force was used to determine the adhesion level 

between the wheel and the rail. The results indicated that 

the EKF estimator demonstrates prompt responsiveness 

and accurately estimates the variables, despite the 

varying adhesion conditions of the wheel-rail contact. The 

estimator consistently maintains a minimal margin of 

error. The remarkable thing is that EKF shows its 

superiority in state and parameter estimation  of 

induction motor and adhesion force since UKF is not able 

to exhibit its effectiveness for this type of application. 

Therefore, utilizing such estimator can help to achieve 

maximum traction, reduce the creepage, and improve the 

performance of the re-adhesion controller. One major 

issue with the EKF and UKF lies in the significant impact of 

the covariance matrices Q and R on the estimation 

outcomes. If these matrices are chosen badly, the 

estimation result will be divergent or large estimate 

errors will be inevitable.  

Tuning of Q and R is necessary to yield the best 

estimations. Changing these two matrices affects both 

the steady-state and transient duration operation of the 

estimator. When the value of Q increases, it indicates the 

presence of significant disturbances or uncertainties in 

the machine model. Consequently, the Kalman gain is 

augmented, resulting in a faster performance of the 

estimator during the transitional phase. On the other 

hand, increasing R means that noise measurements are 

strong and the noise will be weighted less by estimator, 

which leads to Kalman gain decrease and gives us a slower 

transient performance. To enhance the performance, 

accuracy, and stability of the estimator, it is imperative to 

employ various tuning algorithms. In our upcoming 

endeavors, we will focus on implementing these 

algorithms and give particular attention to developing a 

real-time system. 
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Abbreviations  

a and b: Semi-axis length of the contact patch 

B and D: Reduction factors 

C11: Kalker coefficient 

Cv: Viscous friction 

𝐹𝑎: Adhesion force 

𝐹𝑁: Normal force between the wheel and rail 

G: Shear module 

𝐼𝑠𝛼  and 𝐼𝑠𝛽: α−𝛽 axis stator currents 

𝑐1 and 𝑐2: Self-recognition and social component 
coefficients 

𝐽eqv: Equivalent moment of inertia 

𝐽𝑔: Gearbox moment of inertia 

𝐽𝑥: Wheelset axle moment of inertia 

𝐽𝑤𝑅  𝑎𝑛𝑑 𝐽𝑤𝐿: Right and left wheel moment of inertia 

𝑘𝐴 and 𝑘𝑆: Reduction factors in the adhesion and slip 
area 

Lm: Mutual inductance 

Lr and Ls: Rotor and stator self-inductance 

𝑛𝑖: Gear reduction ratio 

np : Number of the pole pairs 

N: Number of unknown variables or number of samples 

Pi: Previous best position of each particle 

Q and R: Process and measurement noise covariance 
matrixes 

r: Wheel radius 

Rr and Rs: Rotor and stator resistance 

𝑛𝑖: Gear reduction ratio 

𝑇𝑚: Motor torque 

𝑇𝐿: Load torque 

𝑉: Longitudinal velocity 

𝑣(𝑡) and 𝑤(𝑡): Measurement and process noise 

Vi: Particle velocity 

w: Inertia weight factor 

Xi: ith particle position 

𝜓𝑟𝛼 and 𝜓𝑟𝛽: α−𝛽 axis rotor flux 

𝜇𝑓: Traction coefficient 

σ: Leakage coefficient 

ϵ: Gradient of tangential stress 

𝜉: Creepage between the wheel and rail 

𝜔𝑚: Motor angular velocity 

𝜔𝑤: Wheel angular velocity 
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