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Background and Objectives: Nowadays, social networks are recognized as 
significant sources of information exchange. Consequently, many organizations 
have chosen social networks as essential tools for marketing and brand 
management. Communities are essential structures that can enhance the 
performance of social networks by grouping nodes and analyzing the information 
derived from them. This subject becomes more important with the increase in 
information volume and the complexity of relationships in networks. The goal of 
community identification is to find subgraphs that are densely connected 
internally but loosely connected externally. 
Methods: While community detection has mostly been studied in static networks 
in the past, this paper focuses on dynamic networks and the influence of central 
nodes in forming communities. In the proposed algorithm, the network is captured 
through multiple snapshots. The initial snapshot calculates the influence of each 
node. Then, by selecting k nodes with higher influence, network communities are 
formed, and other nodes belong to the community with the most common edges. 
In the second step, after receiving the next snapshot, communities are updated. 
Then, k nodes with higher influence are selected, and their associated community 
is created if needed. If the previous community centers are not among the newly 
selected k nodes, the community is dissolved, and the nodes within it belong to 
other communities. 
Results: Based on the results obtained, the proposed algorithm has managed to 
achieve better results in most cases compared to the compared algorithms, 
especially in terms of modularity metrics. The reason behind this success could be 
attributed to the utilization of influential nodes in community formation. 
Conclusion: Drawing from the outcomes attained, the suggested algorithm has 
effectively outperformed the contrasted algorithms in a majority of instances, 
particularly concerning metrics related to modularity. This accomplishment can 
potentially be ascribed to the incorporation of influential nodes during the process 
of community formation. 
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Introduction 
Online social networks have become the most popular 

interactive medium on the internet due to the possibility 

of connecting thousands of individuals via the internet 

[1]. In these networks, users can establish various forms 

of social relationships such as liking, following, trusting, 

and more, with each other [2]. These relationships can 

pave the way for new forms of communication and 
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sharing emotions and experiences [3], [4]. Nowadays, 

many organizations view social networks as primary tools 

for marketing and product management [5]. Each 

network can be considered as a graph. In this graph, 

nodes represent individuals, and edges between them 

represent friendship, interaction, or connection [6]. One 

of the most important characteristics of networks is the 

structure of communities within them. Identifying 

community structure is a significant and challenging topic 

in social networks, with the aim of finding subgraphs that 

are internally dense but externally sparsely connected [5]. 

One of the crucial challenges in community detection 

is the issue of overlapping communities [7]. The shared 

membership of some group members is referred to as 

community overlap in networks [8]. Considering such a 

concept, each node can belong to multiple groups based 

on its attributes. When dealing with large-scale data 

networks, identifying communities with overlaps 

presents a challenging and computationally complex 

problem. As a result, many research efforts attempt to 

minimize the consideration of overlaps [6]. 

Various studies have been addressed thr community 

detection problem. However, online social networks 

possess a dynamic nature, constantly changing and 

evolving. A dynamic network (DN) can be understood as a 

network that changes and evolves over time. These 

changes can be summarized in four types of operations: 

node creation, node deletion, edge creation, and edge 

deletion. In the past, community detection was primarily 

studied for static networks, with the dynamic nature of 

networks often overlooked. Nowadays, due to the 

substantial growth in network size and the evolving 

nature of network structures, researchers have shifted 

their focus to DNs [9]. Community detection in DNs is 

essential for crucial applications such as social network 

analysis [10]. 

In many social networks, users can express their 

opinions and feelings about specific products, services, or 

topics based on their experiences and share them with 

others. These opinions and feelings are expressed by real 

users and customers and are observed by their friends or 

followers. If an opinion is presented by a familiar 

individual such as a friend or a celebrity, it holds a more 

significant influence on the user's decision regarding that 

topic. This phenomenon is considered a new concept in 

social networks. In social networks, nodes that possess a 

higher capacity for disseminating information hold more 

significance and are known as influential nodes or leaders. 

Identifying influential nodes or leaders in a network can 

be perceived as ranking nodes in terms of importance 

within the network [11]. Despite studies indicating the 

correlation between the behavior of a node and the 

behavior of its neighboring nodes in the network [12], 

rarely have the behavioral aspects been incorporated into 

the problem of community detection. 

Alongside the problem of community detection in 

dynamic social networks, this topic can introduce various 

challenges such as the speed and formation of 

communities, dynamics within communities, and the 

ability to update them, which have not yet received 

suitable solutions.  

In this paper, an attempt has been made to provide an 

algorithm for community detection in social networks 

that aims to efficiently identify existing communities in 

the network based on the influence of nodes on each 

other and taking into account the possibility of 

overlapping communities. Furthermore, we strive to 

address the issue of identifying influential nodes in 

dynamic networks and enhance current criteria for 

effectiveness in dynamic networks. Moreover, 

recognizing that real-world network communities often 

exhibit overlaps, our aim was to devise a method 

addressing such overlaps. Our method aims to preserve 

communities with minimal overlap, allowing their 

members to participate in multiple overlapping 

communities. To our knowledge, no prior method exists 

that combines influential node utilization for community 

determination in DNs while also accounting for 

overlapping communities. Furthermore, our proposed 

method accommodates various changes in dynamic 

networks, including node and edge additions or removals. 

The algorithm achieves these objectives through six 

distinct phases: network snapshot acquisition, influential 

node identification via local and global information, 

initialization, community expansion, evaluation and 

merging of communities, and finally, community updates. 

Basic Concepts 

A.  Dynamic Networks 

Social networks are one of the most common types of 

networks, characterized by a connected structure of 

entities formed for social interactions [13]. To encode 

networks and represent their adjacencies, adjacency 

matrices are also utilized. To express a network in the 

form of an adjacency matrix, an n×n matrix is considered, 

where n corresponds to the number of graph vertices 

[14]: 

    (1) 𝐴𝑖,𝑗 = {
1        𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                

 

It is evident that interactions among members in a 

network, particularly in social networks, change over 

time. Networks evolve through the joining or departure 

of members from a network and the establishment or 

termination of relationships. This evolution not only alters 

the fundamental structures of networks but also adjusts 

the community structures in various snapshots of the 

network over time [15]. Diverse approaches have treated 
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social networks as sets of static graphs, each representing 

entities and their relationships in a momentary snapshot 

of the network [15], [16]. In Fig. 1, an example of a 

snapshots of a network is presented. 
 

 
 

Fig. 1: An example of snapshots in a dynamic network. 

B.  Community Detection 

In general, community detection is an unsupervised 

learning technique for clustering nodes, considering the 

network's structure, and is also a key feature that can be 

used to extract useful information from networks [17]. 

Internal communications within each community are 

dense, while external communications between 

communities are sparse [5]. Each community is a group of 

network nodes in such a way that the connections 

between nodes within the group are stronger than their 

connections with other network nodes [14].  

With the introduction and prevalence of dynamic 

networks, the concept of dynamic communities has also 

emerged [18]. The objective of dynamic community 

detection is to identify a set of all the existing 

communities within a dynamic network in a way that the 

described partitions by it can have overlaps [19]. 

The problem of community detection in large-scale 

networks is computationally infeasible and NP-hard. 

Numerous techniques have been proposed to find 

optimal communities relatively quickly. Most of these 

techniques are based on optimizing objective functions, 

with modularity optimization being one of the most 

widely used techniques among them. Nevertheless, this 

problem is still NP-hard [17]. Researchers have developed 

various techniques that usually start from pre-defined 

small communities and implement an algorithm that first 

expands these communities, then identifies newly formed 

communities (in all cases), and finally uncovers overlaps 

between communities [20]. To measure and evaluate 

community quality, different metrics have been 

proposed. One of the most important metrics is 

modularity, which is widely used to assess the quality of 

the network community structure. Communities with 

high modularity have denser connections among nodes 

within similar communities but sparser connections with 

nodes in other communities. Another metric in this field 

is the normalized mutual information [21]. 

Numerous algorithms for community detection using 

different techniques and tools have been developed. 

However, due to the wide spectrum of networks, a single 

community detection algorithm cannot perform well and 

effectively in all types of networks and have good and 

suitable performance [22]. 

C.  Influential Nodes in Networks 

 Identifying influential users in social networks has 

extensive applications in marketing, politics, disease 

control, and more [13]. Nodes in such networks have the 

ability to influence their neighboring nodes, and an 

influenced node can acquire a behavior or attribute from 

its neighboring nodes. Finding nodes with the highest 

influence has drawn the attention of social network 

managers and analysts. Marketing managers might be 

interested in identifying influential individuals and 

offering them discounts or free products, hoping that 

these individuals will encourage their friends to purchase 

these products [23].  

The importance of a node in a network can be assessed 

using metrics available in graph theory. These metrics rely 

on the topology of the network. The impact of social 

networks relates to a user's ability to change the 

emotions, attitudes, or behaviors of other users in a 

network. The strength of the link between two nodes in a 

network depends on the overlap of their neighbors. 

Influential individuals are significantly associated with 

more groups compared to ordinary individuals. However, 

in online social networks, this criterion may not always be 

applicable for identifying influential users. Various 

methods for identifying influential nodes have been 

proposed, with the most common being [24]: degree 

centrality, centrality, closeness centrality, eigenvector 

centrality, and leader benefit. Each of these methods 

identifies influential nodes by examining the nodes and 

their connections in a certain way. 

Literature Review 

Numerous studies have been presented that address 

the problem of community detection using influential 

nodes. Most of them are proposed to detect communities 

in the static networks [5], [25], and [26]. Static research 

methods encompass topological analysis of complex 

networks, identification of key nodes or community 

leaders, knowledge-community discovery, and 

community-structure discovery.  

However, real-world networks, particularly prevalent 

online social networks like Facebook, LinkedIn, and 

Twitter, are inherently dynamic and continually 

expanding in size and complexity. Therefore, developing 

effective and efficient algorithms to detect communities 

in dynamic networks is a formidable challenge. 
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An efficient dynamic community detection algorithm 

should adaptively and incrementally update communities 

based on changes in the network structure. Redundant 

computations need to be avoided for computational 

efficiency. Designing such an algorithm that maintains 

effectiveness similar to static algorithms solely through 

historical community structures and incremental changes 

is challenging. Additionally, there is ongoing uncertainty 

regarding categorizing incremental changes in dynamic 

networks and evaluating their influence on community 

structure updates, which is crucial for an effective and 

efficient dynamic algorithm.  

Recent research has proposed several methods for 

detecting communities in dynamic networks, broadly 

categorized into three classes [21]: instant-optimal, 

temporal trade-off, and incremental approaches. Firstly, 

instant-optimal methods involve applying static 

algorithms independently to each network snapshot to 

detect communities, subsequently matching these 

communities with those detected in previous snapshots. 

As an example, the authors in [27] provide a localized 

modularity optimization approach where only the 

communities that underwent changes are examined, 

leaving the rest of the communities untouched. According 

to the claims of the paper, this algorithm exhibits greater 

effectiveness compared to similar algorithms. 

Secondly, temporal trade-off approaches assume that 

communities at a certain time are influenced not only by 

the current network topology but also by past topology or 

identified partitions. These approaches strike a balance 

between an optimal solution at the current time and 

information from the past without considering future 

changes. As an example of the algorithms in this category, 

in [15], a method for detecting overlapping community 

structures is presented. This method considers the task of 

community detection as a non-negative matrix 

factorization problem. The proposed approach utilizes a 

probabilistic model to account for the dynamic nature of 

community structures and employs a block coordinate 

descent technique to solve the objective function of the 

matrix factorization model. This solution introduces a 

non-negative hidden factor to estimate gradients for 

faster computation. The results obtained indicate that the 

proposed method outperforms previous algorithms in 

terms of well-known evaluation metrics for evolving 

networks. In another work [28], the adopted approach 

involves a multi-objective optimization strategy. Initially, 

the method incorporates the probability fusion technique 

and employs two distinct approaches, namely neighbor 

diversity and neighbor crowd. These approaches facilitate 

the rapid and precise formation of appropriate 

communities. Also, the utilization of a progression metric 

enables the authors to identify similarities between the 

communities formed in two consecutive snapshots. 

Finally, cross-time algorithms aim to discover 

communities that are relevant across the entire network 

evolution, where communities identified at a given time 

depend on both past and future network topologies. For 

example, in [21], a dynamic community detection 

algorithm based on modularity is introduced. This method 

aims to identify communities in dynamic networks 

through the repeated use of static algorithms, but in a 

more efficient manner. This approach is an adaptive and 

incremental algorithm designed to maximize incremental 

modularity during the update of dynamic network 

community structures. In this paper, the dynamic 

network is modeled as a sequence of gradual changes, 

and for each gradual change, an operation was designed 

to maximize modularity. An influence-based community 

detection in dynamic networks was proposed in [29] that 

formulate the problem as a combinatorial optimization 

problem that aims at partitioning a given social network 

into disjoint m communities. The objective is to maximize 

the sum of influence propagation of a social network 

through maximizing it within each community. In another 

study [30] a community detection method for dynamic 

networks was represented that is based on tracking of 

backbones and bridges. They applied the “backbones” to 

reflect the critical edges of communities and the “bridge” 

edges to describe the key connections between 

communities. Table 1 summarizes some of the proposed 

methods for addressing the problem.  

In this section, an attempt has been made to introduce 

the latest articles in this field. Based on conducted 

studies, there are numerous challenges that need to be 

addressed as open research issues. Community detection 

itself is a computationally expensive and complex 

problem. The existence of various snapshots of the 

network necessitates re-computation to update or create 

communities. Therefore, methods are required to be as 

cost-effective and computationally efficient as possible. 

Additionally, for community detection in dynamic 

networks, it is necessary to compare two momentary 

images of the past and present. This comparison is often 

time-consuming and requires moderate to high 

computations. Having rules or methods to expedite this 

process can be the key to success in speeding up 

community detection algorithms in dynamic networks. 

Furthermore, influential nodes can serve as a 

foundation for generating many communities. This aspect 

has been overlooked in many studies. Moreover, the 

identification and updating of influential nodes in a 

network is a subject that has received less attention. 

Ultimately, many research efforts have disregarded the 

issue of community overlap. In other words, attempts 

have been made to develop algorithms for non-

overlapping communities. Yet, in today's world, 

networks, especially social networks, exhibit overlapping 

communities. 
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Table 1: Overview some of the reviewed studies 
 

Method Description Strengths/Weaknesses 

LGIEM [5] 
A community detection algorithm for static 
networks utilizing influential nodes to find 
communities. 

Strengths:  

 Using a suitable criterion to reduce overlap between 
communities  

Weaknesses:  

 time-consuming and computationally expensive 

LPA_NI [25] 

Detection of communities based on label 
propagation Conducting label propagation 
operations based on node importance and 
influence. 

Strengths: 

 Utilizing node importance for label propagation can 
identify more appropriate communities.  

 The influence of nodes on each other is well modeled. 

  The detected communities have good quality.  

Weaknesses:  

 Calculating node importance and influence increases 
computational load. 

NANI [26] 

Utilizing group influence for identifying 
communities Using various metrics to 
determine the influence of each node on 
others Utilizing a method similar to 
hierarchical agglomerative clustering for 
community detection 

Strengths:  

 High simplicity of the proposed algorithm using a wide 
range of metrics to determine influence and compare 
node similarities for community creation. 

Weaknesses:  

 No specific corrective mechanism for refining clusters and 
finding optimal clusters overlap. 

DynaMo [21] 

Proposing a community detection 
algorithm for dynamic networks 
Considering six categories of changes in 
communities and designing strategies for 
each 

Strengths:  

 Appropriate speed for introducing changes in communities  

Weaknesses:  

 Repetitive computations and operations 

PODCD [15] 
Using a probabilistic method for identifying 
overlapping communities 

Strengths:  

 Taking overlap into account in communities. 

Weaknesses:  

 High computational load in large networks. 

D-Louvain [27] 

Based on the modularity optimization 
algorithm (Louvain algorithm), which is 
one of the strongest algorithms in this 
field. 

Strengths:  

 Examining changing communities instead of all 
communities, leading to reduced computations and 
increased algorithm speed.  

Weaknesses:  

 The algorithm is stochastic, resulting in unstable results. 
Unable to cope with overlap in communities. 

MOCCD [28] 
Based on characteristics fusion of dynamic 
social networks 

Strengths:  

 Utilize multi-objective optimization that fuses the 
characteristics of dynamic network communities. 

 Fast convergence and high accuracy. 

Sandwich [29] 
formulate the problem as a combinatorial 
optimization problem based on sandwich 
approximation framework. 

Strengths:  

 influence maximization 

  develop a lower bound and an upper bound of the 
objective function. 

BBTA [30] 
Introducing two concepts, backbones and 
bridges for edges.  

Strengths:  

 novel incremental algorithm to detect dynamic 
communities based on the network change rate and 
changes on the backbones or bridges. 

Weaknesses:  

 Stability and robustness 

 
The Proposed Method 

The proposed method  consists of six main phases, and 

in the following, we will explain each phase. Fig. 2 

illustrates the overall phases of the proposed method. 

The details of each phase will be discussed at the 

following of the section. 
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Fig. 2: Phases of the proposed method. 

 

A.  Phase 1: Acquiring Snapshot of the Network 

In this phase, multiple snapshot images of the network 

are taken at different time intervals. Each image 

represents a set of nodes and the links between them, 

divided based on the time interval. Each image is 

independently given to the algorithm for community 

identification. The first image of the network is used for 

community detection, and the subsequent images are 

used to update the communities. Additionally, the nodes 

and edges present in the current network snapshot are 

extracted and encoded. For this purpose, two sets will be 

available: one containing the nodes and the other 

containing the edges. It is assumed that each node has a 

unique identifier, and the network can identify a node 

using this identifier. Therefore, based on this identifier, 

the sets of nodes and edges are generated. 

The set of nodes in the current network snapshot is 

stored in an array called Current_Nodes. To store the 

edges, a matrix of size m×2 named Current_Edges is used, 

where m represents the number of edges, and each row 

contains the identifiers of the nodes forming the edge. 

B.  Phase 2: Selection of Influential Nodes  

In this phase, following the approach in [5], three steps 

are taken to find influential nodes based on their local and 

global information. In the first step, to identify the global 

information of a node, the k-shell network decomposition 

algorithm is employed. Various metrics exist for 

calculating node importance in the network, but only 

node degree and clustering coefficient can indicate local 

network information. The k-shell is a connected subgraph 

of the maximum possible size in graph G where each 

vertex has a degree of at least k. The k-shell value for node 

i denoted as Ks(i) indicates that node i belongs to shell k 

but not to any other (k+1) shell. The k-shell 

decomposition method is often used to identify core 

nodes and peripheral nodes of the network. It starts by 

removing all nodes with only one link until no nodes 

remain and assigns them to shell 1. Likewise, it recursively 

removes all nodes with degree 2 or less and creates shell 

2. This process continues until all nodes of the network 

are assigned to a single shell. Shells with higher indices are 

located in the core or center of the network. The k-shell 

decomposition method can be efficiently implemented 

with a linear time complexity of O(m), where m 

represents the number of edges in the network. An 

example of the k-shell algorithm's operation is depicted in 

Fig. 3. 

In the second step, both global and local information 

of each node is computed. Global information indicates 

the node's status within the entire network. A node with 

high centrality has a higher k-shell value. The global 

Phase 1: Acquiring Snapshot of the 
Network 

 Acquiring the initial snapshot from 
the network. 

 Creating a list of current nodes 
called Current_Nodes 

 Creating a list of current edges 
called Current_Edges 

Phase 2: Selection of Influential Nodes 

 Calculating global information 

 Calculating local information 

 Calculating the influence of nodes 
based on both global and local 
information 

Phase 3: Initialization of Initial 
Communities 

 Selection of k influential nodes 

 Attachment of nodes having direct 
links to community centers 

Phase 5: Merge of Communities 

 Calculating the rate of overlap 
among communities. 

 Merging communities with high 
overlap rates. 

Phase 4: Development of 
Communities 

 Calculating the probability of 
attaching each node to the 
community centers. 

 Attaching nodes to community or 
multiple communities that acquire 
the highest probability. 

Phase 6: Community Update 

 Acquiring the next snapshot 

 Identifying changes in the current 
snapshot 

 Applying the changes to the 
communities. 

 Reviewing the communities 
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information of a node i, denoted as GIi, indicates the 

dependency strength of other nodes in the network on 

node i. In other words, GIi is calculated based on the 

average shells of the neighboring nodes. Thus, for a node 

like node i, it is computed according to (2). 

 

  

a) Initial Network b) Identifying the nodes with 
1 link and creating shell 1. 

  

c) Identifying the nodes with 
2 links and creating shell 2. 

d) Identifying the nodes with 
3 links and creating shell 3. 

 
Fig. 3: An example of the k-shell decomposition algorithm's. 

In this equation, NumShell represents the number of 

layers created by k-shell decomposition. Moreover, 

neighbor(i,j) is the number of neighbors of node i that 

belong to layer j of the k-shell decomposition. 

𝐺𝐼𝑖 =
∑  |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖,𝑗)| × 𝑗𝑗∈ NumShell

NumShell
 

     (2) 

After obtaining the global information of nodes, the 

measurement of local information follows. For measuring 

local information, the number of neighbors of each node 

is utilized. Thus, based on (2), the value of LIi, representing 

the local information of node i, is derived. 

𝐿𝐼𝑖 = |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)|      (3) 

In the final step, to calculate the node's influence in the 

network, global and local information are combined 

according to (4). In this equation, α and β are coefficients 

for global and local information, respectively. 

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑖) = 𝛼(𝐺𝐼𝑖) + 𝛽(𝐿𝐼𝑖)      (4) 

Nodes with higher influence are considered as 

community centers. The pseudocode corresponding to 

the algorithm of this phase is provided in Algorithm 1. 

C.  Phase Three: Initialization of Initial Communities 

Based on Phase Two, the list of influential nodes is 

obtained and sorted in descending order according to 

their influence level. In the next step, k nodes with higher 

influence are chosen as the cluster centers. Among the 

remaining nodes in the network, those having a direct link 

to cluster center nodes form the basis of communities. If 

two cluster centers have a direct link to each other, this 

link is disregarded, and these two centers will not be part 

of each other's communities. 

Algorithm 1: Calculating nodes’ influences 
 

Input: Graph 

Output: find influence of each node 

1. initialize V = all nodes in G 
2. for i = 1: n 
3.    compute k-shell by k-shell decomposition 

algorithm 
4. end for 
5. compute k-shell for each node 
6. calculate the number of neighbors of each node 
7. for each node like i: 
8.     calculate GI(i) by formula (2)  
9.     calculate LI (i) by formula (3)  
10.     calculate influence(i) by formula (4) 
11. end for 

 

D.  Phase Four: Development of Communities 

In this phase, nodes that are not yet part of any 

community are integrated into existing communities. To 

achieve this, attention is given to the nodes' neighbors. 

Essentially, a node joins a cluster where the majority of its 

neighbors are already affiliated. If the number of 

neighbors is the same for multiple clusters, the node 

becomes a member of all those clusters. The degree of 

association with a community is determined using (5): 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑖)

= max
𝑗 ∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠

 (|𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖),𝑗)|) , 

     (5) 

where, |𝑐𝑙𝑢𝑙𝑜𝑢𝑣𝑎𝑖𝑛𝑠𝑡𝑒𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖),𝑗)| represents 

the count of neighbors of node i belonging to cluster j. If 

a node has neighbors to which no cluster has been 

assigned yet, those neighbors are disregarded in the 

aforementioned equation. Algorithm 2 outlines the steps 

related to community creation and expansion. 

In line 1 of Algorithm (2), nodes are sorted based on 

their influence levels. In line 2, k nodes with higher 

influence are selected as seed nodes and stored in a list 

named "HeadCluster," responsible for maintaining the 

community centers. To better manage node processing 

for community expansion, a list called "Candidate" is 

created in line 3. This list is responsible for keeping track 

of nodes that have at least one neighbor belonging to a 

community. This ensures that nodes chosen for 

community extension are those which are guaranteed to 

have at least one neighboring node with an assigned 
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cluster. Otherwise, the node will remain without a 

community affiliation. Consequently, in line 3, all 

neighbors of the community centers are added to the 

Candidate list. Additionally, another list named 

"assign_Nodes" is created in line 4, tasked with holding 

nodes that have joined at least one community. 

 
Algorithm 2: Algorithm for community creation and 
development 
 

Input: Get Graph snapshot 

Output: Output: Communities 

 1. Sort nodes in a descending order 

 2. 𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑠𝑒𝑙𝑒𝑐𝑡 𝑘 𝑡𝑜𝑝 𝑛𝑜𝑑𝑒𝑠 

 3. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 )    

 4. assign_Nodes←assign_Nodes ∪ HeadCluster 

 5.  for j in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

 6.      flag ← false 

 7.      for 𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 like h 

 8.          if j is neighbors h 

 9.              Communities (h) ← j 

 10.            flag ← true 

 11.        end if 

 12.    end for 

 13.    if (flag == false) 

 14.         maxCom ← calculate 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑗) 

 15.         for each community in maxCom 

 16.             Communities (community) ← j 

 17.         end for 

 18.    end if 

 19.    for each node in 𝑁𝑒𝑖𝑔ℎ𝑏𝑎𝑟𝑠(𝑗 ) like t 

 20.         if 𝑡 ∉  𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 

 21.              𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∪ 𝑡 

 22.         end if 

 23.    end for 

 24.    𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ∪ 𝑗 

 25. end for 

 26. while (there is node in Graph that don’t exist in 

𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 like j) 

 27.     neighbor ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑎𝑟𝑠(𝑗 ) ∪ 𝑗 

 28.     𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑚𝑎𝑥𝑖𝑛𝑓𝑙𝑢𝑛𝑐𝑒 (neighbor ) 

 29.     for each node in neighbor like t 

 30.          Communities (maxinfluence(neighbor)) ← 𝑡 

 31.          𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ∪ 𝑡 

 31.     end for 

 32. end while 

 
Continuing, all nodes selected as seed nodes are added 

to this list to prevent them from reappearing during the 

clustering process (line 5). In line 6, a variable named 

"flag" is initialized to identify cases where a node is a 

neighbor of a community center. Line 7 iterates through 

each community center to check whether node j is a 

neighbor or not. If node j is a neighbor of a community 

center, it is integrated into that community, and the flag 

is set to true (lines 7-12). If node j is not a neighbor of any 

community center, its association with communities is 

calculated using (5), and it is added to the possible 

communities (lines 13-18). Subsequently, all neighbors of 

node j that do not belong to any community are added to 

the Candidate list, and node j is also added to the 

assign_Nodes list to exclude it from the community 

creation process (lines 19-24). This process continues 

until the Candidate list contains at least one member 

(lines 26-30). Finally, lines 26-30 address cases of 

community dispersion. If nodes without a community 

exist, the most influential node among them and its 

neighbors are selected as the community center, and 

other nodes join this cluster as members. 

E.  Phase Five: Evaluation and Merge of Communities 

In the process of selecting influential nodes, k nodes 

with high influence and their neighbors form initial 

communities. Therefore, if a node is connected to 

multiple community centers, it can be assigned to 

different communities. During the community expansion 

process, if a node of equal priority belongs to multiple 

communities, it is assigned to all of them. Consequently, 

many nodes exhibit overlapping membership. However, 

excessive overlapping between communities can increase 

algorithm complexity. Thus, controlling community 

overlap is essential for optimizing community structure. 

To control overlap, the overlap rate is employed, 

calculated based on (6): 

𝛿 =
|𝐶𝑖 ∩ 𝐶𝑗|

min{|𝐶𝑖|,|𝐶𝑗|}
, 

     (6) 

where Ci and Cj are two clusters or communities and |Ci| 

and |Cj| denote the number of their nodes. As δ 

increases, more nodes share membership in overlapping 

communities, making two communities more susceptible 

to merging. Nevertheless, in real-world scenarios, 

although two communities might have high overlap, 

practical considerations such as the community's subject 

matter might prevent their merger. Therefore, this paper 

also introduces another criterion called "community 

fitness". Community fitness indicates the significance of a 

community in the network and is calculated according to 

(7): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑖) =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝑢𝑛𝑖𝑞𝑢𝑒𝑖

2
, 

  𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =
|𝐶𝑖|

𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑠
,  

  𝑢𝑛𝑖𝑞𝑢𝑒𝑖 = 
 𝑢𝑛𝑖𝑞𝑢𝑒_𝑚𝑒𝑚𝑏𝑒𝑟𝑖 

𝑚𝑒𝑚𝑏𝑒𝑟𝑖
 

     (7) 

Here, densityi represents the density of the community 

which is calculates as the result of dividing the number of 

community members by the total number of nodes in the 

network. Furthermore, uniquei shows the ratio of all 

nodes belonging to the same community i to the total 

nodes present in the community. Consequently, 
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communities that can achieve a fitness value exceeding a 

certain threshold persist, while others merge with 

different communities. In other words, for the community 

fitness criterion, lower values increase the likelihood of 

cluster merging. 

To merge two communities, the node with the highest 

influence is selected as the new community center. All 

members of both clusters, including the old community 

center, are considered members of the new merged 

community. Algorithm 3 outlines the procedure for 

merging communities. 

Algorithm 3: Algorithm for Community Merge 
 

Input: communities 
Output: final communities 

1.  for each community like𝐶𝑖 
2.     for each community like𝐶𝑗  ≠ 𝐶𝑖 

3.         calculate δ according to (6) and (7) 
4.         if (δ > thresholdδ and fitness < thresholdfitness)  
5.                Cnew←max(seedinfluence,i, seedinfluence,j) 

7.                  𝐶𝑛𝑒𝑤 ← {𝐶𝑖 ∪ 𝐶𝑗} 

8.                𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 ←  𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 − 𝐶𝑖 − 𝐶𝑗   

9.                  𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 ←  𝐶𝑛𝑒𝑤  
10.       end if 
11.   end for 
12.end for 

F.  Phase Six: Community Update 

This phase consists of four steps, including: obtaining a 

new snapshot and identifying changes, incorporating 

changes into communities, reviewing communities, 

determining communities for orphan nodes, and 

evaluating and merging communities. Algorithm 4 

illustrates the steps involved in performing this task. 

Assume that the designated nodes in the previous 

network are placed in the list Current_Node and the 

corresponding edges are in the list Current_Edge. 

In the first step, a new snapshot of the network is 

acquired, and based on the existing communities, the 

communities are updated. To update communities, 

considering t as the current time, changes occurring in the 

network at time t compared to time t-1 (the previous 

network) must be determined. Network changes may 

involve adding or removing a node to/from the network 

or adding/removing an edge to/from the network. Set 

operators, including union and intersection, are utilized to 

identify network changes. 

In the second step, following the identification of 

changes, the changes are applied to the network and the 

existing community structure from the previous network 

snapshot. The network can provide five types of changes, 

including adding or removing a node, or adding/removing 

an edge. In each of these scenarios, the influence levels of 

nodes and node membership in communities might 

undergo changes, necessitating decisions regarding them. 

After implementing changes in the previous step, a 

reevaluation of the communities is carried out. During 

this stage, all communities that have undergone at least 

one change are reviewed. In this phase, the community 

centers and the nodes present within them are examined. 

If necessary, a community might be reassigned to a 

different node. Furthermore, if a community cannot meet 

the threshold for influence, it is dissolved. In this case, the 

dependency value (dependency(i)) is calculated for the 

members of the dissolved community, and decisions are 

made concerning orphan nodes. 

In the final step, the degree of overlap and the fitness 

of nodes within communities are evaluated and 

determined. If necessary, communities are merged. In the 

next section, a detailed discussion will be presented 

regarding the effectiveness of the proposed method. 

Algorithm 4: Algorithm for Network Change Detection 
 

Input: 

 𝑁𝑒𝑤𝐺𝑟𝑎𝑝ℎ  //Get new Graph snapshot  

𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node // Nodes in pervious network 

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒  // Edges in pervious network 

Output: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node  , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 

Step 1: Initialization 

 1. 𝑜𝑙𝑑Node ←  𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node  , 𝑜𝑙𝑑𝐸𝑑𝑔𝑒 ←  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 

 2. get 𝑁𝑒𝑤𝐺𝑟𝑎𝑝ℎ  and create 𝑁𝑒𝑤𝑁𝑜𝑑𝑒  , 𝑁𝑒𝑤𝐸𝑑𝑔𝑒  

Step 2: find node changes 

 3. 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ←  𝑜𝑙𝑑Node  ∩  𝑁𝑒𝑤𝑁𝑜𝑑𝑒  

 4.𝑂𝑚𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒 = 𝑜𝑙𝑑Node −  𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 

 5.𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒 = 𝑁𝑒𝑤Node −  𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 

 6. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node −  𝑂𝑚𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒 

 7. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node + 𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒  

Step 3: find edge intersect 

 8. 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡 ←  𝑜𝑙𝑑𝐸𝑑𝑔𝑒  ∩  𝑁𝑒𝑤𝐸𝑑𝑔𝑒 

 9.𝑂𝑚𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒 = 𝑜𝑙𝑑𝐸𝑑𝑔𝑒 −  𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡  

 10.𝐴𝑑𝑑𝑒𝑑𝐸𝑑𝑔𝑒 = 𝑁𝑒𝑤𝐸𝑑𝑔𝑒 −  𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡  

 11. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 −  𝑂𝑚𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒 

 12. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 =  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 + 𝐴𝑑𝑑𝑒𝑑𝐸𝑑𝑔𝑒  

Step 4: Calculate influence 

 13. for each Node that adds or changes 

 14.    Calculate influence according (Algorithm 1).  

 15. end for 

 

Results and Discussion 

In this section, we focus on the implementation and 

evaluation of the proposed algorithm (DIC). For 

implementation, the Python programming language is 

utilized. To execute the algorithm, relevant datasets are 

loaded. The datasets employed in this study are 

presented in Table 2. 

To assess the performance of the proposed algorithm, 

we compare it with five recent methods introduced in 

studies DynaMo [21], D-Louvain [27], BBTA [30], DPC-DLP 

[31], ECD [32], IncNSA [33]. 
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Table 2: Datasets used for the experiment 

Dataset #Nodes #Edges #Snapshots 

Cit-Hep Ph 34546 421578 11 

sx-mathoverflow 24818 506550 8 

CollegeMsg 1899 59835 7 

 

The evaluation metrics employed in this article consist 

of Newman’s modularity, modularity with split penalty, 

and modularity density. The Newman’s modularity (𝒬), 

applicable to undirected and unweighted networks, is 

defined as the difference ratio between the actual and 

expected number of edges within a community, as shown 

in (8). 

𝒬 = ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
− (

2|𝐸𝑐𝑖
𝑖𝑛| + |𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
 )

2

]

𝑐𝑖∈ 𝐶

,      (8) 

where C represents the set of all communities, ci denotes 

the i-th community, |𝐸𝑐𝑖
𝑖𝑛| is the number of edges within 

the community, |𝐸𝑐𝑖
𝑜𝑢𝑡| is the number of edges outside the 

community, and ∣E∣ is the total number of edges in the 

network. A higher value of this metric indicates the 

suitability of the communities. It's worth noting that due 

to the complexity of social networks' interactions and the 

possibility of links between any two edges, a value around 

0.5 is considered appropriate for modularity. Therefore, if 

the value of this metric is around 0.5, it signifies the 

appropriateness of the community structure in a social 

network. Table 3 to 5 display the results of this metric for 

the compared methods across various datasets. 

Table 3: Comparison of results using the Newman’s modularity 
metric for the cit-Hep Ph dataset 

TS* DIC 
D-

Louvain 
DynaMo IncNSA ECD 

DPC-
DLP 

BBTA 

1 0.655 0.628 0.534 0.538 0.566 0.575 0.631 

2 0.088 0.083 0.021 0.087 0.0722 0.059 0.078 

3 0.040 0.036 0.034 0.034 0.0508 0.061 0.049 

4 0.022 0.017 0.013 0.015 0.012 0.016 0.025 

5 0.012 0.005 0.010 0.010 0.0018 0.015 0.013 

6 0.011 0.005 0.010 0.011 0.0006 0.010 0.012 

7 0.199 0.111 0.174 0.123 0.195 0.118 0.163 

8 0.218 0.201 0.215 0.211 0.213 0.209 0.200 

9 0.374 0.223 0.116 0.238 0.263 0.292 0.374 

10 0.405 0.103 0.157 0.365 0.280 0.351 0.295 

11 0.412 0.225 0.261 0.303 0.255 0.252 0.359 

* TS: Time stamp 

As observed, according to the results obtained from 

Table 3 to 5, the proposed method has shown better 

performance compared to the other compared methods 

in most time intervals for each dataset. 

Table 4: Comparison of results using the Newman’s modularity 
metric for the CollegeMsg dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP     BBTA 

1 0.380 0.329 0.331 0.278 0.322 0.354 0.348 

2 0.146 0.149 0.122 0.129 0.122 0.108 0.151 

3 0.494 0.477 0.431 0.378 0.443 0.359 0.510 

4 0.253 0.244 0.232 0.245 0.202 0.210 0.211 

5 0.137 0.117 0.110 0.104 0.111 0.108 0.110 

6 0.167 0.150 0.181 0.171 0.195 0.154 0.181 

7 0.288 0.206 0.209 0.238 0.183 0.239 0.213 

* TS: Time stamp 

Table 5: Comparison of results using the Newman’s modularity 
metric for the sx-mathoverflow dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 0.042 0.214 0.190 0.209 0.216 0.151 0.041 

2 0.000 0.068 0.001 0.001 0.007 0.057 0.074 

3 0.000 0.218 0.188 0.213 0.176 0.160 0.221 

4 0.001 0.004 0.032 0.084 0.020 0.114 0.046 

5 0.100 0.054 0.069 0.049 0.008 0.062 0.074 

6 0.118 0.096 0.086 0.106 0.106 0.104 0.110 

7 0.124 0.071 0.107 0.111 0.114 0.061 0.101 

8 0.110 0.016 0.074 0.108 0.064 0.102 0.079 

* TS: Time stamp 

Modularity with split penalty (Qs) is another evaluation 

criterion used to assess the quality of community 

structures. It is calculated based on (9). In this equation, 

Q represents the modularity measure, and SP is the 

number of shared edges between communities, 

calculated according to (10). 

𝒬𝑠 = 𝒬 − 𝒮𝒫      (9) 

𝒮𝒫 = ∑

[
 
 
 
 

∑
|𝐸𝑐𝑖,𝑐𝑗

|

2|𝐸|
𝑐𝑗∈ 𝐶
𝑐𝑗≠𝑐𝑖 ]

 
 
 
 

𝑐𝑖∈ 𝐶

      (10) 

In (10), |𝐸𝑐𝑖,𝑐𝑗
| represents the number of edges that 

connect community ci to cj. In this criterion as well, a 

higher value indicates a more suitable community 

structure. The results obtained for this criterion, 

separated by dataset, are presented in Table 6 to 8. 

According to the results obtained from Table 6 to 8, for 

most datasets and time intervals, the proposed method 

based on the modularity with penalty division criterion 

has performed better. 

Both Newman’s modularity (Q) and modularity with 

split penalty (Qs) are independent of the number of nodes 

within communities. Modularity density (Qds) examines 

the nodes' density and their compactness within 

communities. For undirected networks, modularity 

density (Qds) is defined by (11). 
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Table 6: Comparison of results using Qs criterion for the cit-Hep 
Ph dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP     BBTA 

1 0.196 0.120 0.136 0.195 0.145 0.130 0.156 

2 0.433 0.437 0.328 0.412 0.403 0.456 0.555 

3 0.4663 0.4695 0.446 0.426 0.424 0.427 0.410 

4 0.488 0.485 0.433 0.384 0.384 0.383 0.419 

5 0.489 0.495 0.406 0.388 0.417 0.474 0.436 

6 0.490 0.485 0.452 0.450 0.459 0.462 0.450 

7 0.143 0.104 0.176 0.101 0.173 0.134 0.160 

8 0.492 0.498 0.389 0.422 0.391 0.395 0.515 

9 0.491 0.486 0.410 0.446 0.446 0.465 0.532 

10 0.491 0.486 0.457 0.446 0.397 0.398 0.364 

11 0.153 0.015 0.087 0.131 0.161 0.096 0.140 

* TS: Time stamp 
 

Table 7: Comparison of results using Qs criterion for the 
CollegeMsg dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 0.499 0.491 0.143 0.399 0.296 0.399 0.368 

2 0.500 0.500 0.493 0.490 0.410 0.415 0.432 

3 0.499 0.399 0.408 0.430 0.433 0.484 0.360 

4 0.498 0.499 0.397 0.324 0.313 0.424 0.460 

5 0.040 0.048 0.162 0.034 0.027 0.011 0.042 

6 0.074 0.054 0.040 0.0339 0.041 0.038 0.055 

7 0.068 0.058 0.141 0.136 0.141 0.132 0.059 

* TS: Time stamp 

 
Table 8: Comparison of results using Qs criterion for the sx-
mathoverflow dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP     BBTA 

1 0.5660 0.1829 0.2727 0.2722 0.3167 0.3268 0.6245 

2 0.0002 0.0002 0.1279 0.0417 0.1514 0.1212 0.1540 

3 0.0005 0.0008 0.0001 0.0004 0.0005 0.0005 0.0006 

4 0.0018 0.0031 0.0013 0.0013 0.0014 0.0012 0.0025 

5 0.1750 0.1321 0.1067 0.1590 0.1644 0.1600 0.1236 

6 0.2080 0.0101 0.0155 0.1747 0.1495 0.1090 0.1608 

7 0.1577 0.0146 0.1404 0.1393 0.1341 0.0188 0.1554 

8 0.0109 0.0104 0.0107 0.0023 0.0102 0.0104 0.0105 

* TS: Time stamp 

 

𝒬𝑑𝑠 = ∑

[
 
 
 
 
|𝐸𝑐𝑖

𝑖𝑛|

2|𝐸|
𝑑𝑐𝑗

− (
2|𝐸𝑐𝑖

𝑖𝑛| + |𝐸𝑐𝑖
𝑜𝑢𝑡|

2|𝐸|
)2

𝑐𝑖∈ 𝐶

− ∑
|𝐸𝑐𝑖,𝑐𝑗

|

2|𝐸|
𝑑𝑐𝑖,𝑐𝑗 

𝑐𝑗∈ 𝐶

𝑐𝑗≠𝑐𝑖 ]
 
 
 
 

, 

     (11) 

where dci represents the internal density of cluster ci, and 

dci,cj represents the between-community density 

between communities ci and cj, calculated using (12). 

  (12) 𝑑𝑐𝑖
=

2|𝐸𝑐𝑖
𝑖𝑛|

|𝑐𝑖|(|𝑐𝑖| − 1)
,      𝑑𝑐𝑖,𝑐𝑗

=
|𝐸𝑐𝑖,𝑐𝑗

|

|𝑐𝑖||𝑐𝑗|
 

Similar to the previous criteria, in this criterion as well, 

a higher value indicates a more suitable community 

structure. The results obtained for this criterion, 

separated by dataset, are presented in Table 9 to 11. 
 

Table 9: Comparison of results using Qds criterion for the cit-Hep 
Ph dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 0.513 0.474 0.399 0.479 0.433 0.472 0.480 

2 0.070 0.064 0.1229 0.140 0.116 0.197 0.165 

3 0.095 0.030 0.122 0.060 0.116 0.128 0.120 

4 0.121 0.015 0.066 0.108 0.119 0.118 0.110 

5 0.111 0.005 0.138 0.059 0.166 0.063 0.160 

6 0.128 0.001 0.123 0.126 0.072 0.058 0.148 

7 0.257 0.181 0.229 0.150 0.231 0.239 0.249 

8 0.167 0.100 0.169 0.141 0.153 0.146 0.127 

9 0.208 0.101 0.143 0.043 0.126 0.070 0.183 

10 0.210 0.103 0.127 0.100 0.045 0.131 0.115 

11 0.223 0.133 0.138 0.216 0.192 0.169 0.186 

* TS: Time stamp 
 

Table 10: Comparison of results obtained using Qds criterion for 
the CollegeMsg dataset 

TS* DIC D-louvain DynaMo IncNSA ECD 
DPC-
DLP 

BBTA 

1 0.200 0.219 0.186 0.170 0.166 0.171 0.180 

2 0.003 0.001 0.001 0.000 0.000 0.000 0.003 

3 0.002 0.001 0.001 0.000 0.001 0.001 0.001 

4 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

5 0.339 0.373 0.190 0.243 0.269 0.195 0.345 

6 0.208 0.129 0.120 0.125 0.136 0.222 0.208 

7 0.286 0.206 0.204 0.162 0.237 0.284 0.274 

* TS: Time stamp 
 

Table 11: Comparison of results obtained using Qds criterion for 
the sx-mathoverflow dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 0.566 0.182 0.272 0.272 0.316 0.326 0.410 

2 0.000 0.000 0.127 0.041 0.151 0.121 0.160 

3 0.001 0.001 0.000 0.00 0.000 0.000 0.001 

4 0.002 0.003 0.001 0.001 0.001 0.001 0.002 

5 0.075 0.132 0.106 0.059 0.064 0.060 0.124 

6 0.208 0.0001 0.195 0.074 0.049 0.009 0.197 

7 0.157 0.014 0.140 0.109 0.034 0.018 0.136 

8 0.010 0.016 0.001 0.003 0.010 0.004 0.016 

* TS: Time stamp 
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Considering the obtained results, it can be observed 

that the proposed method has demonstrated better 

performance compared to the compared methods on the 

introduced datasets, as well as with various evaluation 

criteria. 

Finally, it is interesting to compare the execution time 

of different methods. Table 12 to 14 summarize the 

results for different datasets. 
 

Table 12: Comparison of execution time (seconds) for the cit-
Hep Ph dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 0.06 0.07 1.3 2.5 4.4 3.2 1.3 

2 3.6 4.4 6.6 8.7 9.1 6.2 4.6 

3 17.1 59.8 63.3 63.1 63.0 64.9 46.7 

4 51.9 91.6 93.6 93.5 96.7 94.2 68.7 

5 95.7 126.5 129.1 128.6 130.8 129.1 140.3 

6 146.6 182.6 183.9 187.1 185.8 185.9 168.1 

7 250.2 246.6 248.0 250.7 251.0 248.1 269.3 

8 145.6 181.5 184.6 184.4 186.3 183.5 191.9 

* TS: Time stamp 
 

Table 13: Comparison of execution time (seconds) for the 
CollegeMsg dataset 

TS* DIC D-louvain DynaMo IncNSA ECD 
DPC-
DLP 

BBTA 

1 0.8 0.3 0.6 1.3 0.6 1.6 0.4 

2 18.3 19.6 20.4 21.0 20.8 11.1 16.4 

3 37.6 40.9 41.5 42.1 42.1 41.6 40.6 

4 13.6 14.4 14.8 14.8 15.5 18.4 16.5 

5 3.3 3.1 4.0 3.6 3.8 4.8 3.6 

6 1.4 1.1 2.1 1.7 1.5 2.6 2.0 

7 0.7 0.2 1.6 0.7 0.8 1.5 0.6 

 * TS: Time stamp 
 

Table 14: Comparison of execution time (seconds) for the sx-
mathoverflow dataset 

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA 

1 14.0 21.9 22.7 23.0 22.9 23.4 20.6 

2 300.8 460.5 472.7 519.9 541.2 491.8 521.6 

3 997.6 1515.3 1291.2 1371.3 1487.2 1871.8 1418.6 

4 1198.7 1804.8 1336.0 1425.1 1745.3 1409.8 1245.7 

5 1048.2 1573.9 1741.5 1575.0 1322.8 1612.8 1510.0 

6 1002.1 1503.9 1505.0 1504.8 1504.6 1505.3 1469.1 

7 986.0 1479.4 1480.1 1480.2 1479.8 1480.9 1341.1 

8 789.4 1184.1 923.2 1012.5 964.2 811.1 794.0 

* TS: Time stamp 

According to the obtained results, the proposed 

method has been reported lower execution time in 

comparison with other methods. 

Conclusion and Future Works 
In this paper, we have presented a method for 

detecting communities in dynamic networks based on 

influential nodes. Considering that communities and 

groups formed in a network in the real world can overlap, 

another goal of this paper is to provide a method to 

address community overlaps. Through this method, an 

attempt is made to preserve communities that have low 

overlap and allow their members to belong to both 

overlapping communities. To the best of our knowledge, 

a method for detecting communities in dynamic networks 

that simultaneously utilizes influential nodes to 

determine communities while considering overlapping 

communities has not been presented so far. Furthermore, 

the proposed method supports all possible changes in 

dynamic networks, including the addition and removal of 

nodes as well as the addition and removal of edges in 

dynamic networks. The proposed algorithm accomplishes 

the desired objectives through six phases: obtaining a 

snapshot of the network, selecting influential nodes 

based on local and global information, initialization, 

community expansion, evaluation and merging of 

communities, and finally updating communities. To 

evaluate the performance of the proposed method, we 

compared it with five recently proposed methods using 

three modularity metrics. 

Based on the results obtained, the proposed algorithm 

has managed to achieve better results in most cases 

compared to the compared algorithms, especially in 

terms of modularity metrics and execution time. The 

reason behind this success could be attributed to the 

utilization of influential nodes in community formation. In 

the proposed algorithm, two metrics, namely node 

degree and k-shell decomposition, are used to determine 

influential nodes, both of which focus on node degree. As 

a result, the algorithm aims to shape the community 

around nodes that have the most connections to other 

nodes. On the other hand, the proposed method 

attempts to form a community around nodes that have 

the potential to establish a community, meaning they 

have high influence and lack connections with current 

communities. Ultimately, communities capable of 

merging based on the degree of congruence and overlap 

rate are merged with each other. Consequently, the 

proposed method retains only those communities that, 

on the one hand, have the potential to form a community 

and, on the other hand, cannot merge with other 

communities. In contrast, in other methods, attempts are 

made to use baseline modularity as a criterion for 

deciding whether to merge two communities or form a 

new one. Moreover, no clear and coherent idea exists 

regarding which nodes should be recognized as the center 

of a community. Only if the algorithm determines that 

separating one or more nodes would improve the 
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baseline modularity, will the operation of forming a new 

community take place. Furthermore, in the evaluation 

and community merging phase, the algorithm addresses 

inter-community edges and merges communities with 

overlapping members as much as possible. Therefore, in 

terms of modularity metrics, the proposed algorithm has 

achieved more favorable results compared to other 

methods.  

Despite all the advantages of the proposed method, 

there are still challenges that are posed as open research 

issues. Firstly, we should emphasize that rapid 

identification of a change in the network and its 

application to communities in real-time might be closer to 

real-world applications. Thus, it is interesting that extend 

our method to detect the communities in real-time. 

Secondly, in this paper, we used two metrics, k-shell and 

node degree, for identifying influential nodes. The k-shell 

metric itself has high computational and time complexity. 

Therefore, considering other metrics and examining their 

results in the created communities could be another 

subject in this field. 
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