
J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

Doi: 10.22061/jecei.2024.10202.687 305

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

 Research paper

A Node-Centric Approach for Community Detection in Dynamic
Networks

M. Sabzekar 1,*, S. Baradaran Nezhad 2, M. Khazaeipoor 2
1Department of Computer Engineering, Birjand University of Technology, Birjand, Iran.
2Department of Computer Engineering, Birjand Branch, Islamic Azad University, Birjand, Iran.

Article Info Abstract

Article History:
Received 25 September 2023
Reviewed 13 October 2023
Revised 03 January 2023
Accepted 15 January 2023

Background and Objectives: Nowadays, social networks are recognized as
significant sources of information exchange. Consequently, many organizations
have chosen social networks as essential tools for marketing and brand
management. Communities are essential structures that can enhance the
performance of social networks by grouping nodes and analyzing the information
derived from them. This subject becomes more important with the increase in
information volume and the complexity of relationships in networks. The goal of
community identification is to find subgraphs that are densely connected
internally but loosely connected externally.
Methods: While community detection has mostly been studied in static networks
in the past, this paper focuses on dynamic networks and the influence of central
nodes in forming communities. In the proposed algorithm, the network is captured
through multiple snapshots. The initial snapshot calculates the influence of each
node. Then, by selecting k nodes with higher influence, network communities are
formed, and other nodes belong to the community with the most common edges.
In the second step, after receiving the next snapshot, communities are updated.
Then, k nodes with higher influence are selected, and their associated community
is created if needed. If the previous community centers are not among the newly
selected k nodes, the community is dissolved, and the nodes within it belong to
other communities.
Results: Based on the results obtained, the proposed algorithm has managed to
achieve better results in most cases compared to the compared algorithms,
especially in terms of modularity metrics. The reason behind this success could be
attributed to the utilization of influential nodes in community formation.
Conclusion: Drawing from the outcomes attained, the suggested algorithm has
effectively outperformed the contrasted algorithms in a majority of instances,
particularly concerning metrics related to modularity. This accomplishment can
potentially be ascribed to the incorporation of influential nodes during the process
of community formation.

Keywords:
Social networks

Dynamic networks

Community detection

Node influence

Overlapping communities.

*Corresponding Author’s Email
Address:
sabzekar@birjandut.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction
Online social networks have become the most popular

interactive medium on the internet due to the possibility

of connecting thousands of individuals via the internet

[1]. In these networks, users can establish various forms

of social relationships such as liking, following, trusting,

and more, with each other [2]. These relationships can

pave the way for new forms of communication and

http://jecei.sru.ac.ir/
mailto:sabzekar@birjandut.ac.ir
http://creativecommons.org/licenses/by/4.0/

M. Sabzekar et al.

306 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

sharing emotions and experiences [3], [4]. Nowadays,

many organizations view social networks as primary tools

for marketing and product management [5]. Each

network can be considered as a graph. In this graph,

nodes represent individuals, and edges between them

represent friendship, interaction, or connection [6]. One

of the most important characteristics of networks is the

structure of communities within them. Identifying

community structure is a significant and challenging topic

in social networks, with the aim of finding subgraphs that

are internally dense but externally sparsely connected [5].

One of the crucial challenges in community detection

is the issue of overlapping communities [7]. The shared

membership of some group members is referred to as

community overlap in networks [8]. Considering such a

concept, each node can belong to multiple groups based

on its attributes. When dealing with large-scale data

networks, identifying communities with overlaps

presents a challenging and computationally complex

problem. As a result, many research efforts attempt to

minimize the consideration of overlaps [6].

Various studies have been addressed thr community

detection problem. However, online social networks

possess a dynamic nature, constantly changing and

evolving. A dynamic network (DN) can be understood as a

network that changes and evolves over time. These

changes can be summarized in four types of operations:

node creation, node deletion, edge creation, and edge

deletion. In the past, community detection was primarily

studied for static networks, with the dynamic nature of

networks often overlooked. Nowadays, due to the

substantial growth in network size and the evolving

nature of network structures, researchers have shifted

their focus to DNs [9]. Community detection in DNs is

essential for crucial applications such as social network

analysis [10].

In many social networks, users can express their

opinions and feelings about specific products, services, or

topics based on their experiences and share them with

others. These opinions and feelings are expressed by real

users and customers and are observed by their friends or

followers. If an opinion is presented by a familiar

individual such as a friend or a celebrity, it holds a more

significant influence on the user's decision regarding that

topic. This phenomenon is considered a new concept in

social networks. In social networks, nodes that possess a

higher capacity for disseminating information hold more

significance and are known as influential nodes or leaders.

Identifying influential nodes or leaders in a network can

be perceived as ranking nodes in terms of importance

within the network [11]. Despite studies indicating the

correlation between the behavior of a node and the

behavior of its neighboring nodes in the network [12],

rarely have the behavioral aspects been incorporated into

the problem of community detection.

Alongside the problem of community detection in

dynamic social networks, this topic can introduce various

challenges such as the speed and formation of

communities, dynamics within communities, and the

ability to update them, which have not yet received

suitable solutions.

In this paper, an attempt has been made to provide an

algorithm for community detection in social networks

that aims to efficiently identify existing communities in

the network based on the influence of nodes on each

other and taking into account the possibility of

overlapping communities. Furthermore, we strive to

address the issue of identifying influential nodes in

dynamic networks and enhance current criteria for

effectiveness in dynamic networks. Moreover,

recognizing that real-world network communities often

exhibit overlaps, our aim was to devise a method

addressing such overlaps. Our method aims to preserve

communities with minimal overlap, allowing their

members to participate in multiple overlapping

communities. To our knowledge, no prior method exists

that combines influential node utilization for community

determination in DNs while also accounting for

overlapping communities. Furthermore, our proposed

method accommodates various changes in dynamic

networks, including node and edge additions or removals.

The algorithm achieves these objectives through six

distinct phases: network snapshot acquisition, influential

node identification via local and global information,

initialization, community expansion, evaluation and

merging of communities, and finally, community updates.

Basic Concepts

A. Dynamic Networks

Social networks are one of the most common types of

networks, characterized by a connected structure of

entities formed for social interactions [13]. To encode

networks and represent their adjacencies, adjacency

matrices are also utilized. To express a network in the

form of an adjacency matrix, an n×n matrix is considered,

where n corresponds to the number of graph vertices

[14]:

 (1) 𝐴𝑖,𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

It is evident that interactions among members in a

network, particularly in social networks, change over

time. Networks evolve through the joining or departure

of members from a network and the establishment or

termination of relationships. This evolution not only alters

the fundamental structures of networks but also adjusts

the community structures in various snapshots of the

network over time [15]. Diverse approaches have treated

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 307

social networks as sets of static graphs, each representing

entities and their relationships in a momentary snapshot

of the network [15], [16]. In Fig. 1, an example of a

snapshots of a network is presented.

Fig. 1: An example of snapshots in a dynamic network.

B. Community Detection

In general, community detection is an unsupervised

learning technique for clustering nodes, considering the

network's structure, and is also a key feature that can be

used to extract useful information from networks [17].

Internal communications within each community are

dense, while external communications between

communities are sparse [5]. Each community is a group of

network nodes in such a way that the connections

between nodes within the group are stronger than their

connections with other network nodes [14].

With the introduction and prevalence of dynamic

networks, the concept of dynamic communities has also

emerged [18]. The objective of dynamic community

detection is to identify a set of all the existing

communities within a dynamic network in a way that the

described partitions by it can have overlaps [19].

The problem of community detection in large-scale

networks is computationally infeasible and NP-hard.

Numerous techniques have been proposed to find

optimal communities relatively quickly. Most of these

techniques are based on optimizing objective functions,

with modularity optimization being one of the most

widely used techniques among them. Nevertheless, this

problem is still NP-hard [17]. Researchers have developed

various techniques that usually start from pre-defined

small communities and implement an algorithm that first

expands these communities, then identifies newly formed

communities (in all cases), and finally uncovers overlaps

between communities [20]. To measure and evaluate

community quality, different metrics have been

proposed. One of the most important metrics is

modularity, which is widely used to assess the quality of

the network community structure. Communities with

high modularity have denser connections among nodes

within similar communities but sparser connections with

nodes in other communities. Another metric in this field

is the normalized mutual information [21].

Numerous algorithms for community detection using

different techniques and tools have been developed.

However, due to the wide spectrum of networks, a single

community detection algorithm cannot perform well and

effectively in all types of networks and have good and

suitable performance [22].

C. Influential Nodes in Networks

 Identifying influential users in social networks has

extensive applications in marketing, politics, disease

control, and more [13]. Nodes in such networks have the

ability to influence their neighboring nodes, and an

influenced node can acquire a behavior or attribute from

its neighboring nodes. Finding nodes with the highest

influence has drawn the attention of social network

managers and analysts. Marketing managers might be

interested in identifying influential individuals and

offering them discounts or free products, hoping that

these individuals will encourage their friends to purchase

these products [23].

The importance of a node in a network can be assessed

using metrics available in graph theory. These metrics rely

on the topology of the network. The impact of social

networks relates to a user's ability to change the

emotions, attitudes, or behaviors of other users in a

network. The strength of the link between two nodes in a

network depends on the overlap of their neighbors.

Influential individuals are significantly associated with

more groups compared to ordinary individuals. However,

in online social networks, this criterion may not always be

applicable for identifying influential users. Various

methods for identifying influential nodes have been

proposed, with the most common being [24]: degree

centrality, centrality, closeness centrality, eigenvector

centrality, and leader benefit. Each of these methods

identifies influential nodes by examining the nodes and

their connections in a certain way.

Literature Review

Numerous studies have been presented that address

the problem of community detection using influential

nodes. Most of them are proposed to detect communities

in the static networks [5], [25], and [26]. Static research

methods encompass topological analysis of complex

networks, identification of key nodes or community

leaders, knowledge-community discovery, and

community-structure discovery.

However, real-world networks, particularly prevalent

online social networks like Facebook, LinkedIn, and

Twitter, are inherently dynamic and continually

expanding in size and complexity. Therefore, developing

effective and efficient algorithms to detect communities

in dynamic networks is a formidable challenge.

M. Sabzekar et al.

308 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

An efficient dynamic community detection algorithm

should adaptively and incrementally update communities

based on changes in the network structure. Redundant

computations need to be avoided for computational

efficiency. Designing such an algorithm that maintains

effectiveness similar to static algorithms solely through

historical community structures and incremental changes

is challenging. Additionally, there is ongoing uncertainty

regarding categorizing incremental changes in dynamic

networks and evaluating their influence on community

structure updates, which is crucial for an effective and

efficient dynamic algorithm.

Recent research has proposed several methods for

detecting communities in dynamic networks, broadly

categorized into three classes [21]: instant-optimal,

temporal trade-off, and incremental approaches. Firstly,

instant-optimal methods involve applying static

algorithms independently to each network snapshot to

detect communities, subsequently matching these

communities with those detected in previous snapshots.

As an example, the authors in [27] provide a localized

modularity optimization approach where only the

communities that underwent changes are examined,

leaving the rest of the communities untouched. According

to the claims of the paper, this algorithm exhibits greater

effectiveness compared to similar algorithms.

Secondly, temporal trade-off approaches assume that

communities at a certain time are influenced not only by

the current network topology but also by past topology or

identified partitions. These approaches strike a balance

between an optimal solution at the current time and

information from the past without considering future

changes. As an example of the algorithms in this category,

in [15], a method for detecting overlapping community

structures is presented. This method considers the task of

community detection as a non-negative matrix

factorization problem. The proposed approach utilizes a

probabilistic model to account for the dynamic nature of

community structures and employs a block coordinate

descent technique to solve the objective function of the

matrix factorization model. This solution introduces a

non-negative hidden factor to estimate gradients for

faster computation. The results obtained indicate that the

proposed method outperforms previous algorithms in

terms of well-known evaluation metrics for evolving

networks. In another work [28], the adopted approach

involves a multi-objective optimization strategy. Initially,

the method incorporates the probability fusion technique

and employs two distinct approaches, namely neighbor

diversity and neighbor crowd. These approaches facilitate

the rapid and precise formation of appropriate

communities. Also, the utilization of a progression metric

enables the authors to identify similarities between the

communities formed in two consecutive snapshots.

Finally, cross-time algorithms aim to discover

communities that are relevant across the entire network

evolution, where communities identified at a given time

depend on both past and future network topologies. For

example, in [21], a dynamic community detection

algorithm based on modularity is introduced. This method

aims to identify communities in dynamic networks

through the repeated use of static algorithms, but in a

more efficient manner. This approach is an adaptive and

incremental algorithm designed to maximize incremental

modularity during the update of dynamic network

community structures. In this paper, the dynamic

network is modeled as a sequence of gradual changes,

and for each gradual change, an operation was designed

to maximize modularity. An influence-based community

detection in dynamic networks was proposed in [29] that

formulate the problem as a combinatorial optimization

problem that aims at partitioning a given social network

into disjoint m communities. The objective is to maximize

the sum of influence propagation of a social network

through maximizing it within each community. In another

study [30] a community detection method for dynamic

networks was represented that is based on tracking of

backbones and bridges. They applied the “backbones” to

reflect the critical edges of communities and the “bridge”

edges to describe the key connections between

communities. Table 1 summarizes some of the proposed

methods for addressing the problem.

In this section, an attempt has been made to introduce

the latest articles in this field. Based on conducted

studies, there are numerous challenges that need to be

addressed as open research issues. Community detection

itself is a computationally expensive and complex

problem. The existence of various snapshots of the

network necessitates re-computation to update or create

communities. Therefore, methods are required to be as

cost-effective and computationally efficient as possible.

Additionally, for community detection in dynamic

networks, it is necessary to compare two momentary

images of the past and present. This comparison is often

time-consuming and requires moderate to high

computations. Having rules or methods to expedite this

process can be the key to success in speeding up

community detection algorithms in dynamic networks.

Furthermore, influential nodes can serve as a

foundation for generating many communities. This aspect

has been overlooked in many studies. Moreover, the

identification and updating of influential nodes in a

network is a subject that has received less attention.

Ultimately, many research efforts have disregarded the

issue of community overlap. In other words, attempts

have been made to develop algorithms for non-

overlapping communities. Yet, in today's world,

networks, especially social networks, exhibit overlapping

communities.

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 309

Table 1: Overview some of the reviewed studies

Method Description Strengths/Weaknesses

LGIEM [5]
A community detection algorithm for static
networks utilizing influential nodes to find
communities.

Strengths:

 Using a suitable criterion to reduce overlap between
communities

Weaknesses:

 time-consuming and computationally expensive

LPA_NI [25]

Detection of communities based on label
propagation Conducting label propagation
operations based on node importance and
influence.

Strengths:

 Utilizing node importance for label propagation can
identify more appropriate communities.

 The influence of nodes on each other is well modeled.

 The detected communities have good quality.

Weaknesses:

 Calculating node importance and influence increases
computational load.

NANI [26]

Utilizing group influence for identifying
communities Using various metrics to
determine the influence of each node on
others Utilizing a method similar to
hierarchical agglomerative clustering for
community detection

Strengths:

 High simplicity of the proposed algorithm using a wide
range of metrics to determine influence and compare
node similarities for community creation.

Weaknesses:

 No specific corrective mechanism for refining clusters and
finding optimal clusters overlap.

DynaMo [21]

Proposing a community detection
algorithm for dynamic networks
Considering six categories of changes in
communities and designing strategies for
each

Strengths:

 Appropriate speed for introducing changes in communities

Weaknesses:

 Repetitive computations and operations

PODCD [15]
Using a probabilistic method for identifying
overlapping communities

Strengths:

 Taking overlap into account in communities.

Weaknesses:

 High computational load in large networks.

D-Louvain [27]

Based on the modularity optimization
algorithm (Louvain algorithm), which is
one of the strongest algorithms in this
field.

Strengths:

 Examining changing communities instead of all
communities, leading to reduced computations and
increased algorithm speed.

Weaknesses:

 The algorithm is stochastic, resulting in unstable results.
Unable to cope with overlap in communities.

MOCCD [28]
Based on characteristics fusion of dynamic
social networks

Strengths:

 Utilize multi-objective optimization that fuses the
characteristics of dynamic network communities.

 Fast convergence and high accuracy.

Sandwich [29]
formulate the problem as a combinatorial
optimization problem based on sandwich
approximation framework.

Strengths:

 influence maximization

 develop a lower bound and an upper bound of the
objective function.

BBTA [30]
Introducing two concepts, backbones and
bridges for edges.

Strengths:

 novel incremental algorithm to detect dynamic
communities based on the network change rate and
changes on the backbones or bridges.

Weaknesses:

 Stability and robustness

The Proposed Method

The proposed method consists of six main phases, and

in the following, we will explain each phase. Fig. 2

illustrates the overall phases of the proposed method.

The details of each phase will be discussed at the

following of the section.

M. Sabzekar et al.

310 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

Fig. 2: Phases of the proposed method.

A. Phase 1: Acquiring Snapshot of the Network

In this phase, multiple snapshot images of the network

are taken at different time intervals. Each image

represents a set of nodes and the links between them,

divided based on the time interval. Each image is

independently given to the algorithm for community

identification. The first image of the network is used for

community detection, and the subsequent images are

used to update the communities. Additionally, the nodes

and edges present in the current network snapshot are

extracted and encoded. For this purpose, two sets will be

available: one containing the nodes and the other

containing the edges. It is assumed that each node has a

unique identifier, and the network can identify a node

using this identifier. Therefore, based on this identifier,

the sets of nodes and edges are generated.

The set of nodes in the current network snapshot is

stored in an array called Current_Nodes. To store the

edges, a matrix of size m×2 named Current_Edges is used,

where m represents the number of edges, and each row

contains the identifiers of the nodes forming the edge.

B. Phase 2: Selection of Influential Nodes

In this phase, following the approach in [5], three steps

are taken to find influential nodes based on their local and

global information. In the first step, to identify the global

information of a node, the k-shell network decomposition

algorithm is employed. Various metrics exist for

calculating node importance in the network, but only

node degree and clustering coefficient can indicate local

network information. The k-shell is a connected subgraph

of the maximum possible size in graph G where each

vertex has a degree of at least k. The k-shell value for node

i denoted as Ks(i) indicates that node i belongs to shell k

but not to any other (k+1) shell. The k-shell

decomposition method is often used to identify core

nodes and peripheral nodes of the network. It starts by

removing all nodes with only one link until no nodes

remain and assigns them to shell 1. Likewise, it recursively

removes all nodes with degree 2 or less and creates shell

2. This process continues until all nodes of the network

are assigned to a single shell. Shells with higher indices are

located in the core or center of the network. The k-shell

decomposition method can be efficiently implemented

with a linear time complexity of O(m), where m

represents the number of edges in the network. An

example of the k-shell algorithm's operation is depicted in

Fig. 3.

In the second step, both global and local information

of each node is computed. Global information indicates

the node's status within the entire network. A node with

high centrality has a higher k-shell value. The global

Phase 1: Acquiring Snapshot of the
Network

 Acquiring the initial snapshot from
the network.

 Creating a list of current nodes
called Current_Nodes

 Creating a list of current edges
called Current_Edges

Phase 2: Selection of Influential Nodes

 Calculating global information

 Calculating local information

 Calculating the influence of nodes
based on both global and local
information

Phase 3: Initialization of Initial
Communities

 Selection of k influential nodes

 Attachment of nodes having direct
links to community centers

Phase 5: Merge of Communities

 Calculating the rate of overlap
among communities.

 Merging communities with high
overlap rates.

Phase 4: Development of
Communities

 Calculating the probability of
attaching each node to the
community centers.

 Attaching nodes to community or
multiple communities that acquire
the highest probability.

Phase 6: Community Update

 Acquiring the next snapshot

 Identifying changes in the current
snapshot

 Applying the changes to the
communities.

 Reviewing the communities

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 311

information of a node i, denoted as GIi, indicates the

dependency strength of other nodes in the network on

node i. In other words, GIi is calculated based on the

average shells of the neighboring nodes. Thus, for a node

like node i, it is computed according to (2).

a) Initial Network b) Identifying the nodes with
1 link and creating shell 1.

c) Identifying the nodes with
2 links and creating shell 2.

d) Identifying the nodes with
3 links and creating shell 3.

Fig. 3: An example of the k-shell decomposition algorithm's.

In this equation, NumShell represents the number of

layers created by k-shell decomposition. Moreover,

neighbor(i,j) is the number of neighbors of node i that

belong to layer j of the k-shell decomposition.

𝐺𝐼𝑖 =
∑ |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖,𝑗)| × 𝑗𝑗∈ NumShell

NumShell

 (2)

After obtaining the global information of nodes, the

measurement of local information follows. For measuring

local information, the number of neighbors of each node

is utilized. Thus, based on (2), the value of LIi, representing

the local information of node i, is derived.

𝐿𝐼𝑖 = |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)| (3)

In the final step, to calculate the node's influence in the

network, global and local information are combined

according to (4). In this equation, α and β are coefficients

for global and local information, respectively.

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒(𝑖) = 𝛼(𝐺𝐼𝑖) + 𝛽(𝐿𝐼𝑖) (4)

Nodes with higher influence are considered as

community centers. The pseudocode corresponding to

the algorithm of this phase is provided in Algorithm 1.

C. Phase Three: Initialization of Initial Communities

Based on Phase Two, the list of influential nodes is

obtained and sorted in descending order according to

their influence level. In the next step, k nodes with higher

influence are chosen as the cluster centers. Among the

remaining nodes in the network, those having a direct link

to cluster center nodes form the basis of communities. If

two cluster centers have a direct link to each other, this

link is disregarded, and these two centers will not be part

of each other's communities.

Algorithm 1: Calculating nodes’ influences

Input: Graph

Output: find influence of each node

1. initialize V = all nodes in G
2. for i = 1: n
3. compute k-shell by k-shell decomposition

algorithm
4. end for
5. compute k-shell for each node
6. calculate the number of neighbors of each node
7. for each node like i:
8. calculate GI(i) by formula (2)
9. calculate LI (i) by formula (3)
10. calculate influence(i) by formula (4)
11. end for

D. Phase Four: Development of Communities

In this phase, nodes that are not yet part of any

community are integrated into existing communities. To

achieve this, attention is given to the nodes' neighbors.

Essentially, a node joins a cluster where the majority of its

neighbors are already affiliated. If the number of

neighbors is the same for multiple clusters, the node

becomes a member of all those clusters. The degree of

association with a community is determined using (5):

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑖)

= max
𝑗 ∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠

 (|𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖),𝑗)|) ,

 (5)

where, |𝑐𝑙𝑢𝑙𝑜𝑢𝑣𝑎𝑖𝑛𝑠𝑡𝑒𝑟(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖),𝑗)| represents

the count of neighbors of node i belonging to cluster j. If

a node has neighbors to which no cluster has been

assigned yet, those neighbors are disregarded in the

aforementioned equation. Algorithm 2 outlines the steps

related to community creation and expansion.

In line 1 of Algorithm (2), nodes are sorted based on

their influence levels. In line 2, k nodes with higher

influence are selected as seed nodes and stored in a list

named "HeadCluster," responsible for maintaining the

community centers. To better manage node processing

for community expansion, a list called "Candidate" is

created in line 3. This list is responsible for keeping track

of nodes that have at least one neighbor belonging to a

community. This ensures that nodes chosen for

community extension are those which are guaranteed to

have at least one neighboring node with an assigned

M. Sabzekar et al.

312 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

cluster. Otherwise, the node will remain without a

community affiliation. Consequently, in line 3, all

neighbors of the community centers are added to the

Candidate list. Additionally, another list named

"assign_Nodes" is created in line 4, tasked with holding

nodes that have joined at least one community.

Algorithm 2: Algorithm for community creation and
development

Input: Get Graph snapshot

Output: Output: Communities

 1. Sort nodes in a descending order

 2. 𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑠𝑒𝑙𝑒𝑐𝑡 𝑘 𝑡𝑜𝑝 𝑛𝑜𝑑𝑒𝑠

 3. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟)

 4. assign_Nodes←assign_Nodes ∪ HeadCluster

 5. for j in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

 6. flag ← false

 7. for 𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 like h

 8. if j is neighbors h

 9. Communities (h) ← j

 10. flag ← true

 11. end if

 12. end for

 13. if (flag == false)

 14. maxCom ← calculate 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦(𝑗)

 15. for each community in maxCom

 16. Communities (community) ← j

 17. end for

 18. end if

 19. for each node in 𝑁𝑒𝑖𝑔ℎ𝑏𝑎𝑟𝑠(𝑗) like t

 20. if 𝑡 ∉ 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠

 21. 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∪ 𝑡

 22. end if

 23. end for

 24. 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ∪ 𝑗

 25. end for

 26. while (there is node in Graph that don’t exist in

𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 like j)

 27. neighbor ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑎𝑟𝑠(𝑗) ∪ 𝑗

 28. 𝐻𝑒𝑎𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑚𝑎𝑥𝑖𝑛𝑓𝑙𝑢𝑛𝑐𝑒 (neighbor)

 29. for each node in neighbor like t

 30. Communities (maxinfluence(neighbor)) ← 𝑡

 31. 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑁𝑜𝑑𝑒𝑠 ∪ 𝑡

 31. end for

 32. end while

Continuing, all nodes selected as seed nodes are added

to this list to prevent them from reappearing during the

clustering process (line 5). In line 6, a variable named

"flag" is initialized to identify cases where a node is a

neighbor of a community center. Line 7 iterates through

each community center to check whether node j is a

neighbor or not. If node j is a neighbor of a community

center, it is integrated into that community, and the flag

is set to true (lines 7-12). If node j is not a neighbor of any

community center, its association with communities is

calculated using (5), and it is added to the possible

communities (lines 13-18). Subsequently, all neighbors of

node j that do not belong to any community are added to

the Candidate list, and node j is also added to the

assign_Nodes list to exclude it from the community

creation process (lines 19-24). This process continues

until the Candidate list contains at least one member

(lines 26-30). Finally, lines 26-30 address cases of

community dispersion. If nodes without a community

exist, the most influential node among them and its

neighbors are selected as the community center, and

other nodes join this cluster as members.

E. Phase Five: Evaluation and Merge of Communities

In the process of selecting influential nodes, k nodes

with high influence and their neighbors form initial

communities. Therefore, if a node is connected to

multiple community centers, it can be assigned to

different communities. During the community expansion

process, if a node of equal priority belongs to multiple

communities, it is assigned to all of them. Consequently,

many nodes exhibit overlapping membership. However,

excessive overlapping between communities can increase

algorithm complexity. Thus, controlling community

overlap is essential for optimizing community structure.

To control overlap, the overlap rate is employed,

calculated based on (6):

𝛿 =
|𝐶𝑖 ∩ 𝐶𝑗|

min{|𝐶𝑖|,|𝐶𝑗|}
,

 (6)

where Ci and Cj are two clusters or communities and |Ci|

and |Cj| denote the number of their nodes. As δ

increases, more nodes share membership in overlapping

communities, making two communities more susceptible

to merging. Nevertheless, in real-world scenarios,

although two communities might have high overlap,

practical considerations such as the community's subject

matter might prevent their merger. Therefore, this paper

also introduces another criterion called "community

fitness". Community fitness indicates the significance of a

community in the network and is calculated according to

(7):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑖) =
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝑢𝑛𝑖𝑞𝑢𝑒𝑖

2
,

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =
|𝐶𝑖|

𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑠
,

 𝑢𝑛𝑖𝑞𝑢𝑒𝑖 =
 𝑢𝑛𝑖𝑞𝑢𝑒_𝑚𝑒𝑚𝑏𝑒𝑟𝑖

𝑚𝑒𝑚𝑏𝑒𝑟𝑖

 (7)

Here, densityi represents the density of the community

which is calculates as the result of dividing the number of

community members by the total number of nodes in the

network. Furthermore, uniquei shows the ratio of all

nodes belonging to the same community i to the total

nodes present in the community. Consequently,

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 313

communities that can achieve a fitness value exceeding a

certain threshold persist, while others merge with

different communities. In other words, for the community

fitness criterion, lower values increase the likelihood of

cluster merging.

To merge two communities, the node with the highest

influence is selected as the new community center. All

members of both clusters, including the old community

center, are considered members of the new merged

community. Algorithm 3 outlines the procedure for

merging communities.

Algorithm 3: Algorithm for Community Merge

Input: communities
Output: final communities

1. for each community like𝐶𝑖
2. for each community like𝐶𝑗 ≠ 𝐶𝑖

3. calculate δ according to (6) and (7)
4. if (δ > thresholdδ and fitness < thresholdfitness)
5. Cnew←max(seedinfluence,i, seedinfluence,j)

7. 𝐶𝑛𝑒𝑤 ← {𝐶𝑖 ∪ 𝐶𝑗}

8. 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 − 𝐶𝑖 − 𝐶𝑗

9. 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 ← 𝐶𝑛𝑒𝑤
10. end if
11. end for
12.end for

F. Phase Six: Community Update

This phase consists of four steps, including: obtaining a

new snapshot and identifying changes, incorporating

changes into communities, reviewing communities,

determining communities for orphan nodes, and

evaluating and merging communities. Algorithm 4

illustrates the steps involved in performing this task.

Assume that the designated nodes in the previous

network are placed in the list Current_Node and the

corresponding edges are in the list Current_Edge.

In the first step, a new snapshot of the network is

acquired, and based on the existing communities, the

communities are updated. To update communities,

considering t as the current time, changes occurring in the

network at time t compared to time t-1 (the previous

network) must be determined. Network changes may

involve adding or removing a node to/from the network

or adding/removing an edge to/from the network. Set

operators, including union and intersection, are utilized to

identify network changes.

In the second step, following the identification of

changes, the changes are applied to the network and the

existing community structure from the previous network

snapshot. The network can provide five types of changes,

including adding or removing a node, or adding/removing

an edge. In each of these scenarios, the influence levels of

nodes and node membership in communities might

undergo changes, necessitating decisions regarding them.

After implementing changes in the previous step, a

reevaluation of the communities is carried out. During

this stage, all communities that have undergone at least

one change are reviewed. In this phase, the community

centers and the nodes present within them are examined.

If necessary, a community might be reassigned to a

different node. Furthermore, if a community cannot meet

the threshold for influence, it is dissolved. In this case, the

dependency value (dependency(i)) is calculated for the

members of the dissolved community, and decisions are

made concerning orphan nodes.

In the final step, the degree of overlap and the fitness

of nodes within communities are evaluated and

determined. If necessary, communities are merged. In the

next section, a detailed discussion will be presented

regarding the effectiveness of the proposed method.

Algorithm 4: Algorithm for Network Change Detection

Input:

 𝑁𝑒𝑤𝐺𝑟𝑎𝑝ℎ //Get new Graph snapshot

𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node // Nodes in pervious network

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 // Edges in pervious network

Output: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒

Step 1: Initialization

 1. 𝑜𝑙𝑑Node ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node , 𝑜𝑙𝑑𝐸𝑑𝑔𝑒 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒

 2. get 𝑁𝑒𝑤𝐺𝑟𝑎𝑝ℎ and create 𝑁𝑒𝑤𝑁𝑜𝑑𝑒 , 𝑁𝑒𝑤𝐸𝑑𝑔𝑒

Step 2: find node changes

 3. 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← 𝑜𝑙𝑑Node ∩ 𝑁𝑒𝑤𝑁𝑜𝑑𝑒

 4.𝑂𝑚𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒 = 𝑜𝑙𝑑Node − 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 5.𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒 = 𝑁𝑒𝑤Node − 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 6. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node − 𝑂𝑚𝑖𝑡𝑒𝑑𝑁𝑜𝑑𝑒

 7. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡Node + 𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑑𝑒

Step 3: find edge intersect

 8. 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡 ← 𝑜𝑙𝑑𝐸𝑑𝑔𝑒 ∩ 𝑁𝑒𝑤𝐸𝑑𝑔𝑒

 9.𝑂𝑚𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒 = 𝑜𝑙𝑑𝐸𝑑𝑔𝑒 − 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡

 10.𝐴𝑑𝑑𝑒𝑑𝐸𝑑𝑔𝑒 = 𝑁𝑒𝑤𝐸𝑑𝑔𝑒 − 𝐸𝑑𝑔𝑒𝐿𝑖𝑠𝑡

 11. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 − 𝑂𝑚𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒

 12. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑑𝑔𝑒 + 𝐴𝑑𝑑𝑒𝑑𝐸𝑑𝑔𝑒

Step 4: Calculate influence

 13. for each Node that adds or changes

 14. Calculate influence according (Algorithm 1).

 15. end for

Results and Discussion

In this section, we focus on the implementation and

evaluation of the proposed algorithm (DIC). For

implementation, the Python programming language is

utilized. To execute the algorithm, relevant datasets are

loaded. The datasets employed in this study are

presented in Table 2.

To assess the performance of the proposed algorithm,

we compare it with five recent methods introduced in

studies DynaMo [21], D-Louvain [27], BBTA [30], DPC-DLP

[31], ECD [32], IncNSA [33].

M. Sabzekar et al.

314 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

Table 2: Datasets used for the experiment

Dataset #Nodes #Edges #Snapshots

Cit-Hep Ph 34546 421578 11

sx-mathoverflow 24818 506550 8

CollegeMsg 1899 59835 7

The evaluation metrics employed in this article consist

of Newman’s modularity, modularity with split penalty,

and modularity density. The Newman’s modularity (𝒬),

applicable to undirected and unweighted networks, is

defined as the difference ratio between the actual and

expected number of edges within a community, as shown

in (8).

𝒬 = ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
− (

2|𝐸𝑐𝑖
𝑖𝑛| + |𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
)

2

]

𝑐𝑖∈ 𝐶

, (8)

where C represents the set of all communities, ci denotes

the i-th community, |𝐸𝑐𝑖
𝑖𝑛| is the number of edges within

the community, |𝐸𝑐𝑖
𝑜𝑢𝑡| is the number of edges outside the

community, and ∣E∣ is the total number of edges in the

network. A higher value of this metric indicates the

suitability of the communities. It's worth noting that due

to the complexity of social networks' interactions and the

possibility of links between any two edges, a value around

0.5 is considered appropriate for modularity. Therefore, if

the value of this metric is around 0.5, it signifies the

appropriateness of the community structure in a social

network. Table 3 to 5 display the results of this metric for

the compared methods across various datasets.

Table 3: Comparison of results using the Newman’s modularity
metric for the cit-Hep Ph dataset

TS* DIC
D-

Louvain
DynaMo IncNSA ECD

DPC-
DLP

BBTA

1 0.655 0.628 0.534 0.538 0.566 0.575 0.631

2 0.088 0.083 0.021 0.087 0.0722 0.059 0.078

3 0.040 0.036 0.034 0.034 0.0508 0.061 0.049

4 0.022 0.017 0.013 0.015 0.012 0.016 0.025

5 0.012 0.005 0.010 0.010 0.0018 0.015 0.013

6 0.011 0.005 0.010 0.011 0.0006 0.010 0.012

7 0.199 0.111 0.174 0.123 0.195 0.118 0.163

8 0.218 0.201 0.215 0.211 0.213 0.209 0.200

9 0.374 0.223 0.116 0.238 0.263 0.292 0.374

10 0.405 0.103 0.157 0.365 0.280 0.351 0.295

11 0.412 0.225 0.261 0.303 0.255 0.252 0.359

* TS: Time stamp

As observed, according to the results obtained from

Table 3 to 5, the proposed method has shown better

performance compared to the other compared methods

in most time intervals for each dataset.

Table 4: Comparison of results using the Newman’s modularity
metric for the CollegeMsg dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.380 0.329 0.331 0.278 0.322 0.354 0.348

2 0.146 0.149 0.122 0.129 0.122 0.108 0.151

3 0.494 0.477 0.431 0.378 0.443 0.359 0.510

4 0.253 0.244 0.232 0.245 0.202 0.210 0.211

5 0.137 0.117 0.110 0.104 0.111 0.108 0.110

6 0.167 0.150 0.181 0.171 0.195 0.154 0.181

7 0.288 0.206 0.209 0.238 0.183 0.239 0.213

* TS: Time stamp

Table 5: Comparison of results using the Newman’s modularity
metric for the sx-mathoverflow dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.042 0.214 0.190 0.209 0.216 0.151 0.041

2 0.000 0.068 0.001 0.001 0.007 0.057 0.074

3 0.000 0.218 0.188 0.213 0.176 0.160 0.221

4 0.001 0.004 0.032 0.084 0.020 0.114 0.046

5 0.100 0.054 0.069 0.049 0.008 0.062 0.074

6 0.118 0.096 0.086 0.106 0.106 0.104 0.110

7 0.124 0.071 0.107 0.111 0.114 0.061 0.101

8 0.110 0.016 0.074 0.108 0.064 0.102 0.079

* TS: Time stamp

Modularity with split penalty (Qs) is another evaluation

criterion used to assess the quality of community

structures. It is calculated based on (9). In this equation,

Q represents the modularity measure, and SP is the

number of shared edges between communities,

calculated according to (10).

𝒬𝑠 = 𝒬 − 𝒮𝒫 (9)

𝒮𝒫 = ∑

[

∑
|𝐸𝑐𝑖,𝑐𝑗

|

2|𝐸|
𝑐𝑗∈ 𝐶
𝑐𝑗≠𝑐𝑖]

𝑐𝑖∈ 𝐶

 (10)

In (10), |𝐸𝑐𝑖,𝑐𝑗
| represents the number of edges that

connect community ci to cj. In this criterion as well, a

higher value indicates a more suitable community

structure. The results obtained for this criterion,

separated by dataset, are presented in Table 6 to 8.

According to the results obtained from Table 6 to 8, for

most datasets and time intervals, the proposed method

based on the modularity with penalty division criterion

has performed better.

Both Newman’s modularity (Q) and modularity with

split penalty (Qs) are independent of the number of nodes

within communities. Modularity density (Qds) examines

the nodes' density and their compactness within

communities. For undirected networks, modularity

density (Qds) is defined by (11).

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 315

Table 6: Comparison of results using Qs criterion for the cit-Hep
Ph dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.196 0.120 0.136 0.195 0.145 0.130 0.156

2 0.433 0.437 0.328 0.412 0.403 0.456 0.555

3 0.4663 0.4695 0.446 0.426 0.424 0.427 0.410

4 0.488 0.485 0.433 0.384 0.384 0.383 0.419

5 0.489 0.495 0.406 0.388 0.417 0.474 0.436

6 0.490 0.485 0.452 0.450 0.459 0.462 0.450

7 0.143 0.104 0.176 0.101 0.173 0.134 0.160

8 0.492 0.498 0.389 0.422 0.391 0.395 0.515

9 0.491 0.486 0.410 0.446 0.446 0.465 0.532

10 0.491 0.486 0.457 0.446 0.397 0.398 0.364

11 0.153 0.015 0.087 0.131 0.161 0.096 0.140

* TS: Time stamp

Table 7: Comparison of results using Qs criterion for the
CollegeMsg dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.499 0.491 0.143 0.399 0.296 0.399 0.368

2 0.500 0.500 0.493 0.490 0.410 0.415 0.432

3 0.499 0.399 0.408 0.430 0.433 0.484 0.360

4 0.498 0.499 0.397 0.324 0.313 0.424 0.460

5 0.040 0.048 0.162 0.034 0.027 0.011 0.042

6 0.074 0.054 0.040 0.0339 0.041 0.038 0.055

7 0.068 0.058 0.141 0.136 0.141 0.132 0.059

* TS: Time stamp

Table 8: Comparison of results using Qs criterion for the sx-
mathoverflow dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.5660 0.1829 0.2727 0.2722 0.3167 0.3268 0.6245

2 0.0002 0.0002 0.1279 0.0417 0.1514 0.1212 0.1540

3 0.0005 0.0008 0.0001 0.0004 0.0005 0.0005 0.0006

4 0.0018 0.0031 0.0013 0.0013 0.0014 0.0012 0.0025

5 0.1750 0.1321 0.1067 0.1590 0.1644 0.1600 0.1236

6 0.2080 0.0101 0.0155 0.1747 0.1495 0.1090 0.1608

7 0.1577 0.0146 0.1404 0.1393 0.1341 0.0188 0.1554

8 0.0109 0.0104 0.0107 0.0023 0.0102 0.0104 0.0105

* TS: Time stamp

𝒬𝑑𝑠 = ∑

[

|𝐸𝑐𝑖

𝑖𝑛|

2|𝐸|
𝑑𝑐𝑗

− (
2|𝐸𝑐𝑖

𝑖𝑛| + |𝐸𝑐𝑖
𝑜𝑢𝑡|

2|𝐸|
)2

𝑐𝑖∈ 𝐶

− ∑
|𝐸𝑐𝑖,𝑐𝑗

|

2|𝐸|
𝑑𝑐𝑖,𝑐𝑗

𝑐𝑗∈ 𝐶

𝑐𝑗≠𝑐𝑖]

,

 (11)

where dci represents the internal density of cluster ci, and

dci,cj represents the between-community density

between communities ci and cj, calculated using (12).

 (12) 𝑑𝑐𝑖
=

2|𝐸𝑐𝑖
𝑖𝑛|

|𝑐𝑖|(|𝑐𝑖| − 1)
, 𝑑𝑐𝑖,𝑐𝑗

=
|𝐸𝑐𝑖,𝑐𝑗

|

|𝑐𝑖||𝑐𝑗|

Similar to the previous criteria, in this criterion as well,

a higher value indicates a more suitable community

structure. The results obtained for this criterion,

separated by dataset, are presented in Table 9 to 11.

Table 9: Comparison of results using Qds criterion for the cit-Hep
Ph dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.513 0.474 0.399 0.479 0.433 0.472 0.480

2 0.070 0.064 0.1229 0.140 0.116 0.197 0.165

3 0.095 0.030 0.122 0.060 0.116 0.128 0.120

4 0.121 0.015 0.066 0.108 0.119 0.118 0.110

5 0.111 0.005 0.138 0.059 0.166 0.063 0.160

6 0.128 0.001 0.123 0.126 0.072 0.058 0.148

7 0.257 0.181 0.229 0.150 0.231 0.239 0.249

8 0.167 0.100 0.169 0.141 0.153 0.146 0.127

9 0.208 0.101 0.143 0.043 0.126 0.070 0.183

10 0.210 0.103 0.127 0.100 0.045 0.131 0.115

11 0.223 0.133 0.138 0.216 0.192 0.169 0.186

* TS: Time stamp

Table 10: Comparison of results obtained using Qds criterion for
the CollegeMsg dataset

TS* DIC D-louvain DynaMo IncNSA ECD
DPC-
DLP

BBTA

1 0.200 0.219 0.186 0.170 0.166 0.171 0.180

2 0.003 0.001 0.001 0.000 0.000 0.000 0.003

3 0.002 0.001 0.001 0.000 0.001 0.001 0.001

4 0.001 0.000 0.000 0.000 0.000 0.000 0.000

5 0.339 0.373 0.190 0.243 0.269 0.195 0.345

6 0.208 0.129 0.120 0.125 0.136 0.222 0.208

7 0.286 0.206 0.204 0.162 0.237 0.284 0.274

* TS: Time stamp

Table 11: Comparison of results obtained using Qds criterion for
the sx-mathoverflow dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.566 0.182 0.272 0.272 0.316 0.326 0.410

2 0.000 0.000 0.127 0.041 0.151 0.121 0.160

3 0.001 0.001 0.000 0.00 0.000 0.000 0.001

4 0.002 0.003 0.001 0.001 0.001 0.001 0.002

5 0.075 0.132 0.106 0.059 0.064 0.060 0.124

6 0.208 0.0001 0.195 0.074 0.049 0.009 0.197

7 0.157 0.014 0.140 0.109 0.034 0.018 0.136

8 0.010 0.016 0.001 0.003 0.010 0.004 0.016

* TS: Time stamp

M. Sabzekar et al.

316 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

Considering the obtained results, it can be observed

that the proposed method has demonstrated better

performance compared to the compared methods on the

introduced datasets, as well as with various evaluation

criteria.

Finally, it is interesting to compare the execution time

of different methods. Table 12 to 14 summarize the

results for different datasets.

Table 12: Comparison of execution time (seconds) for the cit-
Hep Ph dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 0.06 0.07 1.3 2.5 4.4 3.2 1.3

2 3.6 4.4 6.6 8.7 9.1 6.2 4.6

3 17.1 59.8 63.3 63.1 63.0 64.9 46.7

4 51.9 91.6 93.6 93.5 96.7 94.2 68.7

5 95.7 126.5 129.1 128.6 130.8 129.1 140.3

6 146.6 182.6 183.9 187.1 185.8 185.9 168.1

7 250.2 246.6 248.0 250.7 251.0 248.1 269.3

8 145.6 181.5 184.6 184.4 186.3 183.5 191.9

* TS: Time stamp

Table 13: Comparison of execution time (seconds) for the
CollegeMsg dataset

TS* DIC D-louvain DynaMo IncNSA ECD
DPC-
DLP

BBTA

1 0.8 0.3 0.6 1.3 0.6 1.6 0.4

2 18.3 19.6 20.4 21.0 20.8 11.1 16.4

3 37.6 40.9 41.5 42.1 42.1 41.6 40.6

4 13.6 14.4 14.8 14.8 15.5 18.4 16.5

5 3.3 3.1 4.0 3.6 3.8 4.8 3.6

6 1.4 1.1 2.1 1.7 1.5 2.6 2.0

7 0.7 0.2 1.6 0.7 0.8 1.5 0.6

 * TS: Time stamp

Table 14: Comparison of execution time (seconds) for the sx-
mathoverflow dataset

TS* DIC D-louvain DynaMo IncNSA ECD DPC-DLP BBTA

1 14.0 21.9 22.7 23.0 22.9 23.4 20.6

2 300.8 460.5 472.7 519.9 541.2 491.8 521.6

3 997.6 1515.3 1291.2 1371.3 1487.2 1871.8 1418.6

4 1198.7 1804.8 1336.0 1425.1 1745.3 1409.8 1245.7

5 1048.2 1573.9 1741.5 1575.0 1322.8 1612.8 1510.0

6 1002.1 1503.9 1505.0 1504.8 1504.6 1505.3 1469.1

7 986.0 1479.4 1480.1 1480.2 1479.8 1480.9 1341.1

8 789.4 1184.1 923.2 1012.5 964.2 811.1 794.0

* TS: Time stamp

According to the obtained results, the proposed

method has been reported lower execution time in

comparison with other methods.

Conclusion and Future Works
In this paper, we have presented a method for

detecting communities in dynamic networks based on

influential nodes. Considering that communities and

groups formed in a network in the real world can overlap,

another goal of this paper is to provide a method to

address community overlaps. Through this method, an

attempt is made to preserve communities that have low

overlap and allow their members to belong to both

overlapping communities. To the best of our knowledge,

a method for detecting communities in dynamic networks

that simultaneously utilizes influential nodes to

determine communities while considering overlapping

communities has not been presented so far. Furthermore,

the proposed method supports all possible changes in

dynamic networks, including the addition and removal of

nodes as well as the addition and removal of edges in

dynamic networks. The proposed algorithm accomplishes

the desired objectives through six phases: obtaining a

snapshot of the network, selecting influential nodes

based on local and global information, initialization,

community expansion, evaluation and merging of

communities, and finally updating communities. To

evaluate the performance of the proposed method, we

compared it with five recently proposed methods using

three modularity metrics.

Based on the results obtained, the proposed algorithm

has managed to achieve better results in most cases

compared to the compared algorithms, especially in

terms of modularity metrics and execution time. The

reason behind this success could be attributed to the

utilization of influential nodes in community formation. In

the proposed algorithm, two metrics, namely node

degree and k-shell decomposition, are used to determine

influential nodes, both of which focus on node degree. As

a result, the algorithm aims to shape the community

around nodes that have the most connections to other

nodes. On the other hand, the proposed method

attempts to form a community around nodes that have

the potential to establish a community, meaning they

have high influence and lack connections with current

communities. Ultimately, communities capable of

merging based on the degree of congruence and overlap

rate are merged with each other. Consequently, the

proposed method retains only those communities that,

on the one hand, have the potential to form a community

and, on the other hand, cannot merge with other

communities. In contrast, in other methods, attempts are

made to use baseline modularity as a criterion for

deciding whether to merge two communities or form a

new one. Moreover, no clear and coherent idea exists

regarding which nodes should be recognized as the center

of a community. Only if the algorithm determines that

separating one or more nodes would improve the

A Node-Centric Approach for Community Detection in Dynamic Networks

J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024 317

baseline modularity, will the operation of forming a new

community take place. Furthermore, in the evaluation

and community merging phase, the algorithm addresses

inter-community edges and merges communities with

overlapping members as much as possible. Therefore, in

terms of modularity metrics, the proposed algorithm has

achieved more favorable results compared to other

methods.

Despite all the advantages of the proposed method,

there are still challenges that are posed as open research

issues. Firstly, we should emphasize that rapid

identification of a change in the network and its

application to communities in real-time might be closer to

real-world applications. Thus, it is interesting that extend

our method to detect the communities in real-time.

Secondly, in this paper, we used two metrics, k-shell and

node degree, for identifying influential nodes. The k-shell

metric itself has high computational and time complexity.

Therefore, considering other metrics and examining their

results in the created communities could be another

subject in this field.

Author Contributions

S. Baradaran Nejad implemented the methods and

evaluated their performance. M. Sabzekar wrote the

paper, coordinated the study and contributed to the

analysis of the results. M. Khazaeipoor edited the

manuscript. All authors revised and discussed the results

and approved the final manuscript.

Acknowledgment

This work is completely self-supporting, thereby no

any financial agency’s role is available.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Abbreviations

LI local information

DN Dynamic Network

SN Social Network

References

[1] B. Yang, D. Liu, J. Liu, “Discovering communities from social
networks: Methodologies and applications,” Handb. Soc. Netw.
Technol. Appl.: 331–346, 2010.

[2] S. Souravlas, S. D. Anastasiadou, T. Economides, S. Katsavounis,
“Probabilistic community detection in social networks,” IEEE
Access, 11: 25629–25641, 2023.

[3] A. Abbasi, H. Chen, A. Salem, “Sentiment analysis in multiple
languages: Feature selection for opinion classification in web
forums,” ACM Trans. Inf. Syst., 26(3): 1–34, 2008.

[4] R. K. Bakshi, N. Kaur, R. Kaur, G. Kaur, “Opinion mining and
sentiment analysis,” in Proc. 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom), 16:
452-455, 2016.

[5] T. Ma, Q. Liu, J. Cao, Y. Tian, A. Al-Dhelaan, M. Al-Rodhaan, “LGIEM:
Global and local node influence-based community detection,”
Futur. Gener. Comput. Syst., 105: 533–546, 2020.

[6] N. Chen, Y. Liu, J. Cheng, Q. Liu, “A novel parallel community
detection scheme based on label propagation,” World Wide Web,
21: 1377–1398, 2018.

[7] Y. Niu, D. Kong, L. Liu, R. Wen, J. Xiao, “Overlapping community
detection with adaptive density peaks clustering and iterative
partition strategy,” Expert Syst. Appl., 213: 119213, 2023.

[8] A. Reihanian, M. R. Feizi-Derakhshi, H. S. Aghdasi, “An enhanced
multi-objective biogeography-based optimization for overlapping
community detection in social networks with node attributes,” Inf.
Sci. (Ny)., 622: 903-929, 2023.

[9] P. Agarwal, R. Verma, A. Agarwal, T. Chakraborty, “DyPerm:
Maximizing permanence for dynamic community detection,” in
Proc. Pacific-Asia conference on knowledge discovery and data
mining: 437-449, 2018.

[10] X. Zeng, W. Wang, C. Chen, G. G. Yen, “A consensus community-
based particle swarm optimization for dynamic community
detection,” IEEE Trans. Cybern., 50(6): 2502–2513, 2020.

[11] S. Ahajjam, M. El Haddad, H. Badir, “A new scalable leader-
community detection approach for community detection in social
networks,” Soc. Networks, 54: 41-49, 2018.

[12] K. Dasgupta et al., “Social ties and their relevance to churn in
mobile telecom networks,” in Proc. 11th international conference
on Extending database technology: Advances in database
technology: 668–677, 2008

[13] M. A. Al-Garadi et al., “Analysis of online social network
connections for identification of influential users: Survey and open
research issues,” ACM Comput. Surv., 51(1): 1-37, 2018.

[14] Y. Zhao, “A survey on theoretical advances of community detection
in networks,” Wiley Interdiscip. Rev. Comput. Stat., 9(5): 1403,
2017.

[15] S. Bahadori, H. Zare, P. Moradi, “PODCD: Probabilistic overlapping
dynamic community detection,” Expert Syst. Appl., 174: 114650,
2021.

[16] N. Chen, B. Hu, Y. Rui, “Dynamic network community detection
with coherent neighborhood propinquity,” IEEE Access, 8: 27915-
27926, 2020.

[17] B. S. Khan, M. A. Niazi, “Network community detection: A review
and visual survey,” arXiv Prepr. arXiv1708.00977, 2017.

[18] R. Cazabet, G. Rossetti, F. Amblard, “Dynamic community
detection,” In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social
Network Analysis and Mining. Springer, New York, NY., 2017.

[19] G. Rossetti, R. Cazabet, “Community discovery in dynamic
networks: a survey,” ACM Comput. Surv., 51(2): 1-37, 2018.

[20] S. Souravlas, S. Anastasiadou, S. Katsavounis, “A survey on the
recent advances of deep community detection,” Appl. Sci., 11(16):
7179, 2021.

[21] D. Zhuang, J. M. Chang, M. Li, “DynaMo: Dynamic community
detection by incrementally maximizing modularity,” IEEE Trans.
Knowl. Data Eng., 33(5): 1934-1945, 2019.

[22] M. A. Javed, M. S. Younis, S. Latif, J. Qadir, A. Baig, “Community
detection in networks: A multidisciplinary review,” J. Netw.
Comput. Appl., 108: 87-111, 2018.

[23] J. Scripps, “Discovering influential nodes in social networks
through community finding.,” in Proc. WEBIST: 403-412, 2013.

[24] J. Dai et al., “Identifying influential nodes in complex networks
based on local neighbor contribution,” IEEE Access, 7: 131719-
131731, 2019.

https://link.springer.com/chapter/10.1007/978-1-4419-7142-5_16
https://link.springer.com/chapter/10.1007/978-1-4419-7142-5_16
https://link.springer.com/chapter/10.1007/978-1-4419-7142-5_16
file:///C:/Users/Fahimeh/Desktop/S.%20Souravlas,%20S.%20D.%20Anastasiadou,%20T.%20Economides,%20S.%20Katsavounis,%20“Probabilistic%20community%20detection%20in%20social%20networks,”%20IEEE%20Access,%2011:%2025629–25641,%202023,%20https:/doi.org/10.1109/ACCESS.2023.3257021
file:///C:/Users/Fahimeh/Desktop/S.%20Souravlas,%20S.%20D.%20Anastasiadou,%20T.%20Economides,%20S.%20Katsavounis,%20“Probabilistic%20community%20detection%20in%20social%20networks,”%20IEEE%20Access,%2011:%2025629–25641,%202023,%20https:/doi.org/10.1109/ACCESS.2023.3257021
file:///C:/Users/Fahimeh/Desktop/S.%20Souravlas,%20S.%20D.%20Anastasiadou,%20T.%20Economides,%20S.%20Katsavounis,%20“Probabilistic%20community%20detection%20in%20social%20networks,”%20IEEE%20Access,%2011:%2025629–25641,%202023,%20https:/doi.org/10.1109/ACCESS.2023.3257021
file:///C:/Users/Fahimeh/Desktop/S.%20Souravlas,%20S.%20D.%20Anastasiadou,%20T.%20Economides,%20S.%20Katsavounis,%20“Probabilistic%20community%20detection%20in%20social%20networks,”%20IEEE%20Access,%2011:%2025629–25641,%202023,%20https:/doi.org/10.1109/ACCESS.2023.3257021
https://dl.acm.org/doi/abs/10.1145/1361684.1361685
https://dl.acm.org/doi/abs/10.1145/1361684.1361685
https://dl.acm.org/doi/abs/10.1145/1361684.1361685
https://www.nowpublishers.com/article/Details/INR-011
https://www.nowpublishers.com/article/Details/INR-011
https://www.nowpublishers.com/article/Details/INR-011
https://www.nowpublishers.com/article/Details/INR-011
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19310210
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19310210
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19310210
https://link.springer.com/article/10.1007/s11280-017-0519-0
https://link.springer.com/article/10.1007/s11280-017-0519-0
https://link.springer.com/article/10.1007/s11280-017-0519-0
https://www.sciencedirect.com/science/article/abs/pii/S095741742202231X
https://www.sciencedirect.com/science/article/abs/pii/S095741742202231X
https://www.sciencedirect.com/science/article/abs/pii/S095741742202231X
https://www.sciencedirect.com/science/article/abs/pii/S0020025522014360?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0020025522014360?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0020025522014360?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0020025522014360?via%3Dihub
https://link.springer.com/chapter/10.1007/978-3-319-93034-3_35
https://link.springer.com/chapter/10.1007/978-3-319-93034-3_35
https://link.springer.com/chapter/10.1007/978-3-319-93034-3_35
https://link.springer.com/chapter/10.1007/978-3-319-93034-3_35
https://ieeexplore.ieee.org/document/8846589
https://ieeexplore.ieee.org/document/8846589
https://ieeexplore.ieee.org/document/8846589
https://ieeexplore.ieee.org/document/8846589
https://www.sciencedirect.com/science/article/abs/pii/S0378873316300909
https://www.sciencedirect.com/science/article/abs/pii/S0378873316300909
https://www.sciencedirect.com/science/article/abs/pii/S0378873316300909
https://dl.acm.org/doi/abs/10.1145/1353343.1353424
https://dl.acm.org/doi/abs/10.1145/1353343.1353424
https://dl.acm.org/doi/abs/10.1145/1353343.1353424
https://dl.acm.org/doi/abs/10.1145/1353343.1353424
https://dl.acm.org/doi/abs/10.1145/3155897
https://dl.acm.org/doi/abs/10.1145/3155897
https://dl.acm.org/doi/abs/10.1145/3155897
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.1403
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.1403
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.1403
https://www.sciencedirect.com/science/article/abs/pii/S0957417421000919
https://www.sciencedirect.com/science/article/abs/pii/S0957417421000919
https://www.sciencedirect.com/science/article/abs/pii/S0957417421000919
https://ieeexplore.ieee.org/abstract/document/8976076
https://ieeexplore.ieee.org/abstract/document/8976076
https://ieeexplore.ieee.org/abstract/document/8976076
https://arxiv.org/abs/1708.00977
https://arxiv.org/abs/1708.00977
https://link.springer.com/referenceworkentry/10.1007/978-1-4614-7163-9_383-1
https://link.springer.com/referenceworkentry/10.1007/978-1-4614-7163-9_383-1
https://link.springer.com/referenceworkentry/10.1007/978-1-4614-7163-9_383-1
https://link.springer.com/referenceworkentry/10.1007/978-1-4614-7163-9_383-1
https://dl.acm.org/doi/abs/10.1145/3172867
https://dl.acm.org/doi/abs/10.1145/3172867
https://www.mdpi.com/2076-3417/11/16/7179
https://www.mdpi.com/2076-3417/11/16/7179
https://www.mdpi.com/2076-3417/11/16/7179
https://ieeexplore.ieee.org/abstract/document/8890861
https://ieeexplore.ieee.org/abstract/document/8890861
https://ieeexplore.ieee.org/abstract/document/8890861
https://www.sciencedirect.com/science/article/abs/pii/S1084804518300560
https://www.sciencedirect.com/science/article/abs/pii/S1084804518300560
https://www.sciencedirect.com/science/article/abs/pii/S1084804518300560
https://www.scitepress.org/papers/2013/43507/43507.pdf
https://www.scitepress.org/papers/2013/43507/43507.pdf
https://ieeexplore.ieee.org/abstract/document/8827472
https://ieeexplore.ieee.org/abstract/document/8827472
https://ieeexplore.ieee.org/abstract/document/8827472

M. Sabzekar et al.

318 J. Electr. Comput. Eng. Innovations, 12(2): 305-318, 2024

[25] X. K. Zhang, J. Ren, C. Song, J. Jia, Q. Zhang, “Label propagation
algorithm for community detection based on node importance and
label influence,” Phys. Lett. A, 381(33): 2691-2698, 2017.

[26] C. Li et al., “NANI: an efficient community detection algorithm
based on nested aggregation of node influence,” in Proc. the ACM
Turing 50th Celebration Conference-China: 1-10, 2017.

[27] M. Cordeiro, R. P. Sarmento, J. Gama, “Dynamic community
detection in evolving networks using locality modularity
optimization,” Soc. Netw. Anal. Min., 6: 1-20, 2016.

[28] W. Li, X. Zhou, C. Yang, Y. Fan, Z. Wang, Y. Liu, “Multi-objective
optimization algorithm based on characteristics fusion of dynamic
social networks for community discovery,” Information Fusion, 79:
110–123, 2022.

[29] Q. Ni, J. Guo, W. Wu H. Wang, “Influence-Based community
partition with sandwich method for social networks,” IEEE Trans.
Comput. Social Syst., 10: 2: 819-830, 2023.

[30] H. Long, X. Li, X. Liu, X. et al., “BBTA: Detecting communities
incrementally from dynamic networks based on tracking of
backbones and bridges,” Applied Intelligence, 53:1084–1100,
2023.

[31] S. A. Seyedi, A. Lotfi, P. Moradi, N. N. Qader, “Dynamic graph-based
label propagation for density peaks clustering,” Expert Syst. Appl.,
115: 314–328, 2019.

[32] F. Liu, J. Wu, C. Zhou, J. Yang, “Evolutionary community detection
in dynamic social networks,” in Proc. 2019 International Joint
Conference on Neural Networks (IJCNN): 1–7, 2019.

[33] X. Su, J. Cheng, H. Yang, M. Leng, W. Zhang, X. Chen, “IncNSA:
Detecting communities incrementally from time-evolving
networks based on node similarity,” Int. J. Mod. Phys. C, 31(7):
2050094, 2020.

Biographies

Mostafa Sabzekar received the B.S. degree in
computer engineering from Kharzami
University of Tehran, Iran, in 2007, and the M.S.
and Ph.D. degrees in Computer Engineering
from Ferdowsi University of Mashhad, Iran, in
2009, and 2017, respectively. He is currently an
assistant professor at Birjand University of
Technology, Birjand, Iran. His research focuses
mainly on machine learning, evolutionary
computation, and Bioinformatics.

 Email: Sabzekar@birjandut.ac.ir

 ORCID: 0000-0002-6886-1240

 Web of Science Researcher ID: NA

 Scopus Author ID: 35796344600

 Homepage: https://cv.birjandut.ac.ir/sabzekar/en

Shima Baradaran Nezhad was born in
Birjand, Iran. She received the B.Sc. degree in
Computer Engineering, from University of
Birjand, Iran, in 2007. She received the M.Sc.
dgree in Computer Engineeringtion from
Birjand Branch, Islamic Azad University,
Birjand, Iran, in 2022. She is currently an
employee of the General Department of
Natural Resources and Watershed
Management of South Khorasan, Iran. Her
research interests include Pattern

Recognition and Algorithms.

 Email: sh.baradaran@frw.ir

 ORCID: NA

 Web of Science Researcher ID: NA

 Scopus Author ID: 35796344600

 Homepage: NA

 Mahdi Khazaiepoor recived the B. Sc.
Degree in Software Engineering from
Islamic Azad university of mashhad, iran, in
2003 and M.Sc. degree in Software
Engineering from Islamic Azad University
Science and Research Branch, Tehran, Iran,
in 2008, and Ph. D. degree in Software
Engineering- Development of software
systems from Islamic Azad University
kerman branch, kerman, Iran. He is He is
currently an assistant professor and the

director of the computer department of the Islamic Azad University,
Birjand branch, Iran. His research interest includes Data Mining,
Software Effort Estimation and swarm intelligence algorithms.

 Email: mkhazaeipoor@iaubir.ac.ir

 ORCID: NA

 Web of Science Researcher ID: NA

 Scopus Author ID: 35796344600

 Homepage: NA

How to cite this paper:
M. Sabzekar, S. Baradaran Nezhad, M. Khazaeipoor, “A node-centric approach for
community detection in dynamic networks,” J. Electr. Comput. Eng. Innovations, 12(2):
305-318, 2024.

DOI: 10.22061/jecei.2024.10202.687

URL: https://jecei.sru.ac.ir/article_2043.html

https://www.sciencedirect.com/science/article/abs/pii/S0375960117305868
https://www.sciencedirect.com/science/article/abs/pii/S0375960117305868
https://www.sciencedirect.com/science/article/abs/pii/S0375960117305868
https://dl.acm.org/doi/abs/10.1145/3063955.3063980
https://dl.acm.org/doi/abs/10.1145/3063955.3063980
https://dl.acm.org/doi/abs/10.1145/3063955.3063980
https://link.springer.com/article/10.1007/s13278-016-0325-1
https://link.springer.com/article/10.1007/s13278-016-0325-1
https://link.springer.com/article/10.1007/s13278-016-0325-1
https://www.sciencedirect.com/science/article/abs/pii/S1566253521002001
https://www.sciencedirect.com/science/article/abs/pii/S1566253521002001
https://www.sciencedirect.com/science/article/abs/pii/S1566253521002001
https://www.sciencedirect.com/science/article/abs/pii/S1566253521002001
https://ieeexplore.ieee.org/abstract/document/9714196
https://ieeexplore.ieee.org/abstract/document/9714196
https://ieeexplore.ieee.org/abstract/document/9714196
https://link.springer.com/article/10.1007/s10489-022-03418-2
https://link.springer.com/article/10.1007/s10489-022-03418-2
https://link.springer.com/article/10.1007/s10489-022-03418-2
https://link.springer.com/article/10.1007/s10489-022-03418-2
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304998
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304998
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304998
https://www.sciencedirect.com/science/article/abs/pii/S0957417418304998
https://ieeexplore.ieee.org/abstract/document/8852006
https://ieeexplore.ieee.org/abstract/document/8852006
https://ieeexplore.ieee.org/abstract/document/8852006
https://ieeexplore.ieee.org/abstract/document/8852006
https://www.worldscientific.com/doi/abs/10.1142/S0129183120500941
https://www.worldscientific.com/doi/abs/10.1142/S0129183120500941
https://www.worldscientific.com/doi/abs/10.1142/S0129183120500941
https://www.worldscientific.com/doi/abs/10.1142/S0129183120500941
mailto:Sabzekar@birjandut.ac.ir
https://cv.birjandut.ac.ir/sabzekar/en
mailto:sh.baradaran@frw.ir
mailto:mkhazaeipoor@iaubir.ac.ir
https://jecei.sru.ac.ir/article_2043.html

