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Background and Objectives: According to this fact that a typical autonomous 
underwater vehicle consumes energy for rotating, smoothing the path in the 
process of path planning will be especially important. Moreover, given the 
inherent randomness of heuristic algorithms, stability analysis of heuristic path 
planners assumes paramount importance. 
Methods: The novelty of this paper is to provide an optimal and smooth path for 
autonomous underwater vehicles in two steps by using two heuristic optimization 
algorithms called Inclined Planes system Optimization algorithm and genetic 
algorithm; after finding the optimal path by Inclined Planes system Optimization 
algorithm in the first step, the genetic algorithm is employed to smooth the path 
in the second step. Another novelty of this paper is the stability analysis of the 
proposed heuristic path planner according to the stochastic nature of these 
algorithms. In this way, a two-level factorial design is employed to attain the 
stability goals of this research. 
Results: Utilizing a Genetic algorithm in the second step of path planning offers 
two advantages; it smooths the initially discovered path, which not only reduces 
the energy consumption of the autonomous underwater vehicle but also shortens 
the path length compared to the one obtained by the Inclined Planes system 
optimization algorithm. Moreover, stability analysis helps identify important 
factors and their interactions within the defined objective function. 
Conclusion: This proposed hybrid method has implemented for three different 
maps; 36.77%, 48.77%, and 50.17% improvements in the length of the path are 
observed in the three supposed maps while smoothing the path helps robots to 
save energy. These results confirm the advantage of the proposed process for 
finding optimal and smooth paths for autonomous underwater vehicles. Due to 
the stability results, one can discover the magnitude and direction of important 
factors and the regression model. 
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Introduction 

Nowadays, autonomous mobile robots have become an 

inseparable part of the growing world. These robots have 

the capability to perform difficult and sensitive tasks in 

high-risk environments and, therefore, have attracted a 

lot of attention. One example of an important type of 

these robots is the Autonomous Underwater Vehicle 

(AUV).   

Path planning is one of the most important research 

topics in the field of Autonomous Underwater Vehicles, 

i.e., determining the movement path of the AUVs from 

the starting point to the target point to carry out a specific 

mission. The AUV's path from origin to destination can be 

pre-programmed, and extensive research has been 
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conducted on optimizing these paths. However, during its 

movement, it's crucial for the AUV to avoid collisions with 

both fixed and moving obstacles, such as other AUVs and 

underwater creatures. So, it can be said that determining 

the appropriate path for AUV movement from origin to 

destination remains an important challenge. 

Path planning for AUVs is a challenging problem that 

heavily relies on optimization techniques and so far, 

various methods have been presented to solve this 

problem. The most important weaknesses of these 

methods are the high probability of getting stuck into 

local optima, the large volume of calculations and also, 

the existence of deficiencies in facing the dynamic 

environment. These cases can make them inappropriate 

for long distances. But due to the ability of heuristic 

optimization algorithms to solve complex optimization 

problems with high dimensions, these algorithms are 

suitable candidates for solving the path planning 

problem. The most important advantages of heuristic 

algorithms are their flexibility, high compatibility, high 

speed and efficiency, and their global search 

characteristic. These algorithms can avoid local optima 

and converge to global optima by using special schemes. 

A significant body of research has been conducted in the 

field of heuristic optimization for AUV path planning.  

For instance, genetic algorithm has been successfully 

applied in this area, as demonstrated in [1]. The proposed 

method in this study introduces a new operator to the 

algorithm to guarantee convergence to the global 

minimum value in case of multiple minima Reference [2] 

introduces a hierarchical approach based on genetic 

algorithm for path planning of AUVs. The method first 

divides the workspace of the AUV into obstacle-free and 

obstacle-filled regions. Then, it utilizes genetic algorithm 

to search for a path among the obstacle-free regions. 

Reference [3] proposes a genetic algorithm-based path 

planning method for AUVs. The method first discretizes 

the three-dimensional space between the start point and 

the end point into a grid. Then, it employs genetic 

algorithm to search for the optimal path among these grid 

points. Each chromosome represents a sequence of these 

grid points, and the path between the start and the target 

points is constructed by connecting these points. The 

objective function is designed to minimize the energy 

consumption of the AUV along the path. In this study, 

some grid points are randomly selected as obstacles to 

simulate static obstacles in the problem space. Therefore, 

the path represented by each chromosome should not 

include these obstacle points. References [4]-[7] provide 

further examples of AUV path planning in known 

environments with static obstacles using genetic 

algorithm. 

Particle swarm optimization algorithm and its variant, 

quantum particle swarm optimization algorithm, have 

been widely used for path planning of autonomous 

underwater vehicles. A combination of particle swarm 

optimization algorithm with differential evolution 

algorithm is proposed for offline path planning of AUVs 

in [8]. This proposed approach reduces the computational 

cost while increasing the ability of the PSO algorithm to 

find the optimal path. An improved quantum particle 

swarm optimization algorithm is proposed in [9] for the 

path planning of AUVs. Safety, path length, and path angle 

are considered to define the fitness function, and a cubic 

spline interpolation algorithm is used to smooth the path. 

Reference [10] presents a method for path planning of 

AUVs, which consists of two parts. First, a general path 

between the origin and destination is determined using 

genetic algorithm. The goal of this part is to find the 

shortest possible path between the origin and 

destination. To find this path, the space between the 

origin, and destination is discretized and points that can 

be considered as positions are extracted. The genetic 

algorithm then finds the best possible sequence of points 

from the available points to find the path. The next part is 

responsible for processing the sequence found by genetic 

algorithm. In this module, a particle swarm optimization 

algorithm is used to search the space between each pair 

of consecutive points in the sequence to find a suitable 

path between these two points. Therefore, a general path 

is first determined, and then other suitable paths are 

found between each pair of points on the general path. In 

the second module, the particle swarm algorithm 

searches the space with the goal of finding the shortest 

path. A new path planning method for underwater 

environments using an enhanced quantum particle 

swarm optimization algorithm is introduced in [11]. This 

method leverages a technique called Deep Q-Network to 

learn and adapt its behavior. The algorithm analyzes data 

about the particles' positions and utilizes neural networks 

to choose the most suitable action from a set of five 

options. This approach empowers the particles to make 

informed decisions in various situations, leading to a 

significant improvement in the algorithm's ability to 

explore the entire search space effectively. Furthermore, 

the accuracy is enhanced by fine-tuning operations. 

Additionally, a custom fitness function is designed 

specifically for underwater environments. This function 

considers factors like path length, deflection angles, and 

currents, allowing the algorithm to navigate underwater 

environments more efficiently and locate the path with 

the least energy consumption. 

A combination of ant colony optimization (ACO) 

algorithm with A* algorithm is used for path planning 

in [12]. The results of this research show that using this 

method, the AUV can successfully navigate through an 

area with dense obstacles. The challenge of two-

dimensional autonomous path planning for AUVs 
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operating in environments with ocean currents and 

obstacles is addressed in [13], and an improved 

Fireworks-Ant Colony Hybrid Algorithm is proposed to 

tackle this problem. First, a two-dimensional Lamb vortex 

ocean current environment scheme that incorporates 

randomly distributed obstacles is created. Subsequently, 

a mathematical model is formulated for path planning, 

considering factors such as navigation time, energy 

consumption, and total distance traveled. A multi-

objective ant colony algorithm for path planning of AUV is 

presented in [14]. This approach goes beyond traditional, 

single-objective path planning by considering path length, 

energy consumption, and safe navigation. To address the 

challenge of finding optimal paths for autonomous 

underwater vehicles in complicated environments, an 

improved ant colony optimization algorithm merged with 

particle swarm optimization algorithm is presented 

in [15]. Considering the limitations faced by AUVs, such as 

constrained energy and visual interval, the proposed 

algorithm employs a modified pheromone update rule 

and heuristic function informed by PSO. This allows the 

AUV to navigate efficiently by connecting designated 

points while abstaining from collisions with the static 

obstacles. By incorporating PSO, this improved ACO 

algorithm overpowers the limitations of the traditional 

approach.   A new algorithm called dynamic multi-role 

adaptive collaborative ant colony optimization is 

presented in [16] to address the limitations of slow 

convergence and poor diversity in the traditional ant 

colony algorithm. The results of applying this algorithm in 

robot path planning, illustrate its successfulness in solving 

this problem. A new approach for path planning of AUVs 

during dam inspections is proposed in [17]. The goal is to 

create safe and reliable paths that avoid obstacles while 

minimizing sharp turns. This method improves upon the 

traditional ACO algorithm by incorporating a "corner-

turning heuristic function." This function helps the AUV 

select straighter paths, reducing turning times and 

improving overall efficiency. The reference [18] focuses 

on enhancing the underwater path-planning capabilities 

of AUVs by addressing limitations inherent to traditional 

algorithms like the ant colony algorithm and the artificial 

potential field algorithm. To overcome these limitations, 

an optimized scheme for the artificial potential field ant 

colony algorithm is proposed. Compared to conventional 

ant colony and other benchmark algorithms, the 

proposed algorithm achieved significant improvements: 

path length reductions of 1.57% and 0.63% (simple 

environment) and 8.92% and 3.46% (complex 

environment). Additionally, this algorithm demonstrated 

faster convergence, with iteration time reductions of 

approximately 28.48% and 18.05% (simple environment) 

and 18.53% and 9.24% (complex environment). 

A novel method for planning safe paths for AUVs 

navigating environments filled with obstacles is 

presented in [19]. To address this, a hybrid approach is 

introduced that combines the strengths of two nature-

inspired algorithms: Grey Wolf Optimization (GWO) and 

GA. This combined method, called Hybrid Grey Wolf 

Optimization, allows AUVs to find safe paths while 

minimizing travel distance. The proposed algorithm 

tackles GWO's weakness of random initialization by using 

GA to generate a good starting point for the search. In this 

research, the ideal path considers both the distance 

traveled and the penalties incurred from avoiding 

obstacles. 

Many conventional heuristic algorithms struggle with 

two limitations: slow progress towards optimal solutions 

and getting stuck on suboptimal ones too early. These 

issues are addressed in [20] by introducing a novel hybrid 

heuristic algorithm. It combines the strengths of genetic 

algorithms, ant colony optimization, and simulated 

annealing. The proposed heuristic fusion incorporates a 

novel mutation operator inspired by ant colony 

optimization. This operator allows individuals from 

different generations to exchange information, leading to 

better solutions and faster convergence. Additionally, a 

mechanism is introduced that dynamically adjusts the 

probability of genetic operations, similar to simulated 

annealing. 

To effectively navigate AUVs in intricate environments, 

an improved differential evolution algorithm is proposed 

in [21]. This approach incorporates a novel adaptive elite 

neighborhood learning strategy to achieve a balance 

between the exploitation and exploration capabilities of 

improved differential evolution when tackling complex 

problems. Additionally, a rank-guided crossover 

probability selection strategy is introduced to ensure 

effective preservation of information from elite 

individuals. Finally, the study explores a novel distance-

greedy selection strategy, which improves population 

diversity while maintaining convergence accuracy. 

Moreover, this research introduces a new double-layer 

coding model for eliminating invalid path points. 

Energy consumption is one of the challenges of AUVs 

due to the limited battery power. An AUV requires more 

energy to probe the coastal waters over a large path 

against the rough environmental situations dominant in 

the sea. Therefore, AUVs must supply the best detection 

performance with decreased search distance. An optimal 

and efficient path planning algorithm should be applied in 

AUVs [22]. 

Due to the unmanned nature of AUVs and the 
importance of saving battery power in them, the issue of 
the optimal path is more critical in this case. Therefore, in 
this paper, AUVs are specifically discussed. 

 According to the importance of energy consumption, 

in this paper, a two-step method is presented to reduce 
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not only the path but also the energy consumption; first, 

the Inclined Planes system Optimization algorithm as a 

powerful heuristic algorithm is employed to obtain the 

path with optimal length and then Genetic Algorithm is 

utilized to smooth the obtained path in order to decrease 

the energy consumption of the AUV. Finally, the stability 

of the presented heuristic path planner is analyzed. In this 

part, the effect of two structural parameters of applied 

heuristic algorithms on the designed path planner is 

investigated. It’s worth mentioning that stability analysis 

of the heuristic path planner of AUVs is addressed in this 

paper for the first time. 

Recently, many heuristic algorithms have been 

introduced. Some of these methods include the Orchard 

algorithm [23], the Meerkat optimization algorithm [24], 

the Artificial Rabbits optimization algorithm [25], and the 

Arithmetic Optimization algorithm [26]. Evaluating the 

performance and capabilities of each algorithm in 

different applications is one of the research areas of 

interest. Therefore, in this paper, the IPO algorithm is 

used for the first time in the field of AUV path planning to 

evaluate its performance. This research has shown that 

this algorithm is suitable for the path planning problem to 

meet expectations. 

Genetic Algorithm is employed in this paper for several 

reasons. Firstly, GA has a theoretical foundation for 

convergence and guarantees global optimality. Secondly, 

it has been successfully applied to robot path planning in 

numerous prior studies. Thirdly, it is utilized as a hybrid 

approach in this research. However, it is crucial to 

emphasize that there are numerous alternative methods 

that could be investigated to examine their applicability 

in the path planning problem. Anti-coronavirus 

optimization algorithm [27], Backtracking search 

optimization algorithm [28] and Seasons optimization 

algorithm [29] are Some of these methods. In addition, a 

large number of algorithms can be extracted from [30] 

because more than three hundred researches related to 

bio-inspired and nature-inspired algorithms are reviewed 

in this paper.  

The rest of this paper is organized as follows: first, the 

employed method for stability analysis is presented. After 

that, a review of Inclined Planes system Optimization 

algorithm is described. Then the proposed combinational 

method for achieving the optimal and smooth path of 

AUVs and the stability analysis of this heuristic path 

planner are presented. The experimental results are 

reported in the next section. Finally, conclusion of the 

paper is explained. 

Two-Level Factorial Designs 

When it’s necessary to investigate the joint effects of 

several parameters on output in the experiments, 

factorial designs are extensively exerted. Joint effects 

implicate interactions and original effects. A significant 

case in this field is when two levels for each of the 

parameters exist; this type is named 2k factorial designs 

as regards every replicate owning precisely 2k 

experimental runs. 2k factorial designs are helpful when 

screening tests should be performed to discover 

significant factors.  

Adjusting a first order Response Surface Model (RSM) 

and acquiring the estimate of factor effect are the other 

applications of them. 

One can employ factorial designs to determine the 

influence of several independent factors upon one 

dependent variable. There are two factors in 22 factorial 

designs (A and B), and two levels are defined for each 

parameter. The expressions high and low are employed 

for these levels. A and B indicate the impact of 

parameters A and B, respectively. Moreover, AB refers to 

the AB interaction. In this scheme, + and - are applied to 

show high and low levels related to each factor.  Table 1 

shows the design matrix, which specifies four treatment 

combinations of 22 design. 

 
Table 1: The design matrix 
 

Run A B 

1 - - 

2 + - 

3 - + 

4 + + 

 
Small letters also illustrate the four runs; small letter 

related to each factor indicates the high level of it and the 

miss of one letter specifies the low level of that factor. So, 

a betokens the situation in which the level of A is high and 

the level of B is low and ab means the levels of two 

parameters are high. When the levels of all parameters 

are low, 1 is applied.  

To calculate the original effect of A the difference of 

two averages is employed; the average of two 

combinations where the level of A is high ( Ay ) and the 

average of two combinations where the level of A is low   

( Ay  ). Thus, the main effect of A is specified as (1). 

       (1) 
n

baab

n

b

n

aab
yyA

AA
2

1

2

1

2








 

 

In the same way, the main effect B is measured in (2). 

      (2)   1 1

2 2 2
B B

ab b a ab b a
B y y

n n n
 

    
      

The interaction effect AB is the average of the 

difference of the effect A at low and high levels of B. So, 

the interaction AB is specified as (3). 
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         (3)   
   11 1

2 2

ab b a ab a b
AB

n n n

      
   

  
 

In many experiments of 2k designs, both the direction 

and magnitude of the parameter effects are studied to 

discover significant parameters. Comparing the 

magnitudes of the effects in terms of their related 

standard errors is an advantageous method for advising 

the importance of the effects. To measure the standard 

error of A, B, and AB, one can compute the sums of 

squares for effects that are specified by SSA, SSB, and SSAB 

in (4)-(6), respectively. 

         (4)   
 

2
1

4
A

ab a b
SS

n

  
  

        (5)  
 

2
1

4
B

ab b a
SS

n

  
  

         (6)  
 

2
1

4
AB

ab a b
SS

n

  
  

The total sums of squares, i.e. SST is measured by using  

(7) where ijky  is the outcome of each run and ...y  is the 

sum of all runs. 

         (7)  
22 2

2 ...

1 1 1 4

n

T ijk

i j k

y
SS y

n  

   

Finally, the error sum of squares (SSE) is measured by 

using (8). 

         (8)   E T A B ABSS SS SS SS SS     

Considering the degrees of freedom of SSE i.e.,

)1(4  n , the mean square error, MSE, is specified as (9). 

        (9)  
4 ( 1)

E
E

SS
MS

n


 
 

Therefore, the standard error of an effect is calculated 

by using (10). 

      (10)    
1

Ese effect MS
n

  

Finally, for each effect estimate, two standard error 

limits exist as (11). 

       (11) 

 

 

 

2

2

2

A se effect

B se effect

AB se effect

 

 

 

 

Due to the considered analysis, if the interval of an 

effect estimate does not include zero, it is introduced a 

significant effect. At the end, it should be mentioned that 

the coefficients for the regression model are half of the 

corresponding factor effect estimates [31]. 

Inclined Planes System Optimization Algorithm 

(IPO) 

The movement of several globular things on a 

frictionless ramp is the main basis of the IPO algorithm; 

these objects want to arrive at the lowest place on the 

ramp. In this algorithm, some tiny balls, as algorithm 

agents, probe the search space to discover the optimal 

point. The principal scheme of this algorithm is to 

attribute the height to every object according to a 

reference point. This height value is received from the 

objective function; the obtained values are an 

approximation of potential energy of the agents at 

different points, and as the balls descend, this energy is 

converted into kinetic energy and thus caused the balls to 

accelerate downwards. Therefore, the agents repeatedly 

move in the exploring space to discover a better answer 

and hence acquire an acceleration [32]. 

In a supposed search space with N agents, the position 

of the i-th agent is calculated as (12): 

      (12)   1, , , , , 1,2, ,d n

i i i ix x x x for i N K K K  

in which, 
d

ix is the position of i-th agent in the d-th 

dimension in an n-dimensional system. The angle 

between the i-th and j-th agents in dimension d, i.e., 
d

ij  

is measured by (13): 

      (13)  
 

   

   
1tan ,

1, , , 1,2, , ,

j id

ij d d

i j

f t f t
t

x t x t

for d n and i j N i j

 
  
   

    

  K K

 

where,  f t
i

 is the value of the objective function, i.e., 

height for the i-th agent at the time t. A certain agent 

wants to move toward the lowest heights on the ramp, 

therefore the agents with lower height values are the only 

agents used in calculating the acceleration. The direction 

and amplitude of acceleration for the i-th agent in 

dimension d and at the time t, is demonstrated in (14) 

where, U(.) means the unit step function: 

       (14)           
1

. sin
N

d d

i j i ij

j

a t U f t f t t


   

Finally, (15) is employed to update the position of the 

balls: 

      (15)  
   

   

2

1 1

2 2

1 . . .

. . .

d d

i i

d d

i i

x t k rand a t t

k rand v t t x t

  

  
 

rand1 and rand2 are two random parameters distributed 

uniformly on the [0,1] interval.  d

iv t  is the velocity 

related to the i-th agent at time t and in dimension d. k1 
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and k2 are applied to control the exploring process of the 

algorithm. These factors are defined by using (16) and 

(17): 

      (16)    
  

1

1

1 11 exp

c
k t

t shift scale


  
 

       (17)    
  

2

2

2 21 exp

c
k t

t shift scale


  
 

 d

iv t  is defined in (18), where 
bestx  is placed in 

numerator to demonstrate the agent’s desire to achieve 

the best position in each run: 

      (18)   
   d d

best id

i

x t x t
v t

t





 

Design and Stability Investigation of Heuristic Path 

Planner for AUVs  

This research proposes a hybrid approach that 

combines the strengths of IPO and Genetic GA to achieve 

an optimal and smooth path for Autonomous Underwater 

Vehicles. This two-step method leverages IPO for global 

optimization and GA for path refinement, ultimately 

leading to efficient and safe AUV navigation. In the first 

step, the IPO algorithm is used to find the optimal path. 

The objective function is one of the important issues that 

should be defined properly when employing heuristic 

algorithms for optimization. Path length is considered as 

objective function in this research. It is expected that this 

objective function will be minimized by using IPO 

algorithms.  

The path length is considered as a criterion for 

measuring the quality of the path in path planning 

problem. Therefore, the shorter the path it is, the better 

the fitness function it is. 

In this research, the Euclidean distance is used to 

calculate the path length. When the system is 

implemented in the real world, the unit of the obtained 

path length will be in terms of the actual distance 

between the start and the end points. An important point 

to note here is the path length depends on various 

factors, including the speed of the AUV, the run speed of 

the algorithm, and the sonar accuracy. For example, 

suppose that based on sonar accuracy, the sonar detects 

an obstacle ten meters away, and the speed of the AUV is 

one meter per second. Additionally, the algorithm 

requires 10 runs to reach the next point, which takes one 

second. Therefore, during this time, the AUV has moved 

one meter, and until the sonar doesn’t warn, the 

algorithm continues on its path and begins to explore the 

next point. 

In the path planning problem, the goal is to find a 

possible path from the starting point to the end point of 

the movement, and after optimizing the length of this 

route, the path should have the shortest length. While 

safety is a paramount concern for any path, a safe path 

should be both collision-free and minimize its overall 

length. So, one can conclude that there is a constrained 

optimization problem to solve. Here, the penalty function 

method is used to solve this constrained optimization 

problem. For this purpose, the objective function is 

defined as the summation of the path length with a 

penalty function in the form of (19). 

     (19)  (1 )Objective Function L V     

where L is the path length, V is the penalty function, and 

β is the coefficient of the penalty function. For all points 

of the path, the penalty is calculated, and finally, the 

penalty function will be the average of all calculated 

values. Obviously, if a point of the path does not collide 

with an obstacle, the penalty for that point is zero. 

After detecting the optimal path using IPO, genetic 

algorithm is employed to smooth the obtained path. The 

importance of smoothing path is due to the energy 

consumption of AUV when turning.  

So, if the path improves in such a way that the AUV 

turns with less angles, as a result, less energy is 

consumed. 

It's noteworthy that path smoothing with a genetic 

algorithm can offer a twofold benefit for AUVs.  First, it 

reduces energy consumption by minimizing unnecessary 

rotations. Second, it shortens the overall path compared 

to IPO's obtained path by eliminating redundant 

waypoints. 

The second goal of this research is using two-level 

factorial designs to investigate the stability of designed 

heuristic path planner. So, two structural parameters 

which are common in both algorithms, are selected to 

check the stability of the proposed path planner. These 

parameters are number of iterations and population size.  

Results and Discussion 

The proposed method used for designing heuristic 

path planner is implemented for three different maps and 

the results are reported as follows. The dimensions of the 

search agents are equal to the number of points in the 

cubic spline Interpolation. 

It’s worth mentioning the values of parameters in the 

IPO algorithm are considered as below: 

c1 = 0.225. 

c2 = 2.283. 

shift1 = 121.044. 

shift2 = 149.675. 

scale1 = 0.056. 

scale2 = 0.525. 

A.  Map 1 

In this case, in the first step, IPO algorithm has reached 
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the path with a length of 20.1796. In the next step, after 

applying genetic algorithm to this problem, two 

important consequences have obtained; firstly, the path 

has become smooth and secondly, the length of the path 

has reduced to 12.7596; That is, the path length has 

improved 36.77% by using the proposed method. The 

path found by IPO and the smooth path discovered by the 

combined algorithm are shown in Fig. 1 and Fig. 2. 

 

 
Fig. 1: Optimal path for map 1 using IPO algorithm. 

 
 

Fig. 2: Optimal and smooth path for map 1 using the hybrid 
algorithm of IPO-GA.  

B.  Map 2 

In this case, at the first step, the path length obtained 

by IPO algorithm is 27.2011. The application of the genetic 

algorithm in the second step yielded two key results. First, 

the path was significantly smoothed. Second, the path 

length was reduced to 13.5540, representing a 

remarkable improvement of 50.17% compared to the 

original path. The path found by IPO and the smooth path 

discovered by the combined algorithm for map 2 are 

shown in Fig. 3 and Fig. 4. 

 
Fig. 3: Optimal path for map 2 using IPO algorithm. 

 

Fig. 4: Optimal and smooth path for map 2 using the hybrid 
algorithm of IPO-GA.  

 

Fig. 5: Optimal path for map 3 using IPO algorithm. 

C.  Map 3 

During the first step, the IPO algorithm was utilized to 
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optimize path length, resulting in a path with a length of 

29.4538. The final step involving the genetic algorithm 

yielded two significant improvements. First, the path 

became noticeably smoother. Second, the path length 

was reduced to 15.0879, representing a noteworthy 

improvement of 48.77% achieved through the proposed 

hybrid method.  

The path found by IPO and the smooth path discovered 

by the combined algorithm for map 3 are shown in Fig. 5 

and Fig. 6. 

 

 

Fig. 6: Optimal and smooth path for map 3 using the hybrid 
algorithm of IPO-GA. 

 

The obtained results in each step for three maps are 

shown in Table 2. 

 
Table 2: The path length in each step 
 

Map First Step Second Step 
Improvement 

(%) 

1 20.1796 12.7596 36.77 

2 27.2011 13.5540 50.17 

3 29.4538 15.0879 48.77 

 
The maps used in this research are synthetic maps 

designed for the present study to evaluate the 

performance of the proposed method for AUV path 

planning. These maps use obstacles with different 

geometric shapes and variant sizes to evaluate the 

effectiveness of the proposed method. Therefore, a one-

to-one comparison with other researches is not possible. 

However, computational cost can be considered as a 

metric for comparison with previous studies, in which 

case the number of iterations can be an appropriate 

choice. Table 3 shows the comparison results between 

the proposed method and several other methods in terms 

of number of iterations. According to this comparison, the 

number of iterations required by the proposed method is 

significantly lower than those of other methods. 

 
Table 3: A comparative analysis of Number of iterations 
between the proposed method and other existing methods 
 

Method Number of iterations 

[16] 2000 

[33] 1000 

[34] _PSO 2400 

[34]_ACO 480 

[35]  1000 

Proposed Method 500 

 
It’s worth to mention that we can never accurately 

determine the actual operational delay of the above 

methods because the coding style and instructions are 

crucial for delays.  

In fact, even if we measure the order of computations, 

we can never accurately determine the computational 

cost, as there are many important factors that affect it 

during implementation, such as the type of hardware, the 

program itself, and the programmer. If all of these factors 

are identical, there are still important considerations 

during operational implementation; even if we have a 

highly optimized code running on powerful hardware, 

there are still operational factors that can affect 

execution time such as sensor delay, sensor accuracy, 

data acquisition rate, data processing time, and data 

decoding; these operational considerations introduce a 

layer of variability that makes it difficult to precisely 

determine the computational cost of a method in a real-

world setting.  

In practice, we often rely on approximations, and 

metrics to get a general sense of the computational 

efficiency of different methods. However, it's important 

to recognize that these estimates may not reflect the 

exact execution time in a specific application or 

environment. 

It is also important to consider that the maps, the 

programming style, and the methods employed in this 

research are all unique.  

It is precisely after taking these factors into account, it 

appears that the number of iterations is the most logical 

measure and criterion that can be considered as an 

estimate, rather than saying that because the number of 

iterations is a certain value, the computational cost must 

also be the same.  

In fact, the claim has been that since it was not possible 

to implement these methods, the number of iterations 
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was simply used as a handy and documented metric for 

comparison.  So, without a doubt the number of iterations 

of an algorithm may not accurately indicate its speed or 

efficiency, but this can still be used as a metric. Now, we 

can take a step further and complete the before 

statement: even the number of iterations reported is not 

entirely reliable as all heuristic methods are problem 

based and random methods.  

This means that if a heuristic method finds a solution 

to a problem in an experiment with a specific number of 

iterations, it may take more or fewer iterations to find the 

solution to the same problem in a different experiment. 

However, in the absence of a documented metric, it 

seems that one of the logical metrics to use is the number 

of iterations. This is because the search loop is the core 

component of the body of all heuristic methods. In fact, 

all heuristic methods have a search loop that constitutes 

the largest part of the body of a heuristic method, 

including all the operators that need to be performed and 

the termination conditions. In fact, the search loop is 

typically the most computationally expensive part of a 

heuristic method. Therefore, the number of iterations of 

this part, as a common and substantial body of all 

heuristic algorithms, is an appropriate metric to 

understand how many times calculations were needed to 

reach the main solution. 

As mentioned before, two selected factors for stability 

analysis are population size (A) and number of iterations 

(B) and two levels are assumed for each factor; 100 and 

200 for population size, 500 and 700 for number of 

iterations in IPO.  50 and 100 for population size, 700 and 

1000 for number of iterations in GA. Moreover, map 3 is 

used to accomplish stability analysis.  

It’s worth mentioning that for each treatment 

combination, the experiment is repeated two times in 

order to obtain needful data for stability investigation. 

Obtained data from two replicates for stability analysis of 

IPO are indicated in Table 4. 

 
Table 4: Observed Data for IPO 
 

Treatment 
Combination 

Replicate Path Length 

1 
I 27.4652 

II 33.7509 

a 
I 23.3083 

II 29.3106 

b 
I 23.8117 

II 19.7694 

ab 
I 28.193 

II 33.1777 

 Two standard error limits on the effects related to 

supposed fitness function (path length) is calculated by 

employing observed data. Obtained interval for each 

effect is shown in (20). 

(20)  

:2.2981 5.4020

: 2.2208 5.4020

: 6.5967 5.4020

A

B

AB



 



 

Due to above intervals, it’s obvious that effect AB in 

path length, optimized with IPO, is important because its 

interval does not include zero.  

Now, the regression model for path length measure for 

IPO can be specified as (21). Where x1 and x2 are the 

design factors A and B, respectively, on the coded (-1, +1) 

scale and β0 is the mean of all observations of path length 

measure. 

       (21)  

0 12 1 2

1 2

6.5967
27.3484

2

y x x

x x

  

 
   

 

 

The direction of each factor, which is also extracted 

from this analysis, is another important point; the effect 

AB in path length is positive in this path planning problem; 

i.e., if AB increases from the low to the high level, the path 

length measure will increase.  

Obtained data from 2 replicates for stability analysis of 

GA are shown in Table 5. 

 
Table 5: Observed Data for GA 
 

Treatment 
Combination 

Replicate Path Length 

1 
I 17.2608 

II 19.9797 

a 
I 10.7910 

II 13.8029 

b 
I 13.2827 

II 13.4881 

ab 
I 12.9068 

II 15.8683 

 
Two standard error limits on the effects related to the 

path length obtained by GA, is defined by employing 

observed data. The related interval for each effect is 

shown in (22). 

       (22)  

: 2.6606 2.5138

: 1.5721 2.5138

: 3.6627 2.5138

A

B

AB

 

 


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Due to obtained intervals, one can conclude that effect 

A and AB in path length, optimized by applying GA, are 

significant because these intervals do not include zero. 

Hence, the regression model for path length measure for 

GA can be described as (23).  

    (23)  

0 1 1 12 1 2

1 1 2

2.6606 3.6627
14.6725

2 2

y x x x

x x x

    

   
     

   

 

The effect A in path length measure is negative; i.e., 

increasing A from the low to the high level will decrease 

the path length measure. Also, AB is positive in this path 

planning problem; i.e., increasing the level of AB from low 

to high leads the measure of path length to increase. 

Conclusion 

In this study, a hybrid heuristic method is developed to 

detect the optimal and smooth path from the starting 

point to the target point for AUVs. The proposed method 

is implemented in two steps by using IPO and GA. In the 

first step, the only goal is to find an optimal path for AUV 

by applying IPO. In the next step, GA is employed to 

smooth the detected path obtained in the previous step. 

The results of the last step are an optimal and smooth 

path, i.e., the GA not only smooths the path but also 

decreases the length of the path. This method reduces 

AUV energy consumption by eliminating unnecessary 

turns.  

So, it is an efficient method for the path planning of 

AUVs. 

The IPO-GA algorithm has applied on three different 

maps. In all three cases, the results confirm the efficiency 

of the proposed method; after using GA, the path 

becomes smooth and also shorter. In the best case, an 

improvement of 50.17% is seen in the length of the path. 

After developing the proposed heuristic path planner, 

it’s time to study the stability of this heuristic path 

planner.  

Due to the random nature of heuristic algorithms, this 

part seems to be necessary. By applying the two-level 

factorial design, one can efficiently evaluate how each 

parameter (population size and number of iterations) and 

their potential interactions affect the objective function 

(path length).  

This will help you identify the optimal configuration for 

your genetic algorithm in optimizing AUV path planning. 

This approach can find significant effects in each situation 

and also, can specify regression model related to the 

defined objective function. 

Finally, it is necessary to emphasize that some 

suggestions can be made for future work in this field. One 

of these suggestions is using other new algorithms with a 

new objective function. It is also possible to use multi-

objective heuristic algorithms with several objective 

functions.  

Another important suggestion is to investigate the 

stability of the proposed heuristic method with other 

approaches and also by considering other parameters. 
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