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Background and Objectives: Sonar data processing is used to identify and track 
targets whose echoes are unsteady. So that they aren’t trusty identified in typical 
tracking methods. Recently, RLA have effectively cured the accuracy of undersea 
objective detection compared to conventional sonar objective cognition 
procedures, which have robustness and low accuracy.  
Methods: In this research, a combination of classifiers has been used to improve 
the accuracy of sonar data classification in complex problems such as identifying 
marine targets. These classifiers each form their pattern on the data and store a 
model. Finally, a weighted vote is performed by the LA algorithm among these 
classifiers, and the classifier that gets the most votes is the classifier that has had 
the greatest impact on improving performance parameters. 
Results: The results of SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-EFMD, 
R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and joint models have been 
compared with the proposed model. Considering that the objectives and 
databases are different, we benchmarked the average detection rate. In this 
comparison, Precision, Recall, F1_Score, and Accuracy parameters have been 
considered and investigated in order to show the superior performance of the 
proposed method with other methods. 
Conclusion: The results obtained with the analytical parameters of Precision, 
Recall, F1_Score, and Accuracy compared to the latest similar research have been 
examined and compared, and the values are 87.71%, 88.53%, 87.8%, and 87.4% 
respectively for each of These parameters are obtained in the proposed method. 
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Introduction 

Underwater objective classification and cognition 

technology have become a research issue due to the 

detection and extension of oceans and seas [1]. Sonar 

determines the distance and direction of underwater 

targets utilizing sound. Sound waves emitted from the 

target are detected by it and analyzed to calculate range 

information. It should also be said that sonar 

measurements are not affected by turbidity or reduced 

light and color, thus making it a good complement to a 

camera. Because of the relative ease of undersea 

propagation compared to other patterns of radiation, 

acoustic waves have been widely used for undersea 

discovery and other points [2], [3]. 

The point estimation of the target position is usually 

done by thresholding the normalized data and 

announcing the diagnosis when the threshold is crossed. 

Due to the sufficient and high signal-to-noise ratio (SNR) 

of the target echo, this approach is reliable and efficient. 

Because the target echoes are most likely in the survival 

threshold process, and connecting only the detected 

target positions does not require a large number of 

calculations. A low echo level, either due to reduced 

source level or low target power, makes detecting and 

tracking the conventional pulse active sonar less reliable. 
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The recognition of such targets requires a lower threshold 

at the cost of more false detections. 

In reference [1], an identification and classification 

algorithm are proposed to solve this problem. This 

research has proposed a lightweight target detection 

model for small samples using the improved YOLOV4 

algorithm. The improved image feature extraction 

network in this paper has greatly reduced the number of 

network parameters, and the parameters of the feature 

fusion module have been improved. However, this 

algorithm has difficulty in detecting small targets in the 

image and detecting targets with unusual sizes. Many 

researchers have enhanced and proposed various 

reinforcement learning algorithms (RLAs) for sonar 

objective classification and cognition [4]. Williams 

planned a feature classification and exploitation and 

network with only ten convolution layers for sonar 

objective classification. The training network proposed in 

this paper has increased the amount of training data 

images for learning. In this research, image feature 

integration has been used and its performance has been 

displayed only in the form of an AUC diagram [5]. 

Valdenegro-Toro et al. used a convolutional neural 

network (CNN) to detect the object of an undersea sonar 

image, and after training the network, the average 

detection rate in test sets reached 90% [6]. A sonar 

objective cognition procedure based on a shallow CNN 

has fault cognition and insufficient model strength. 

Ferguson et al proposed the use of a deep CNN to detect 

the sound of an undersea ship in a shallow water 

ambiance. In this article, a data augmentation technique 

is introduced, and the criterion for comparing data 

integration performance at the feature level is the 

precision parameter [7]. 

Huo et al. proposed a classification method for sonar 

target detection based on semi-synthetic data training 

and transfer learning for small sample sonar datasets. 

Experiments indicate that transfer training and semi-

synthetic training can help increase model cognition 

accuracy [8]. In reference [9], a hybrid dragonfly 

algorithm is proposed to train a multi-layer perceptron 

(MLP) neural network to design a classifier in solving 

complex issues and to distinguish true targets from fake 

objectives in sonar applications. In this paper, by 

combining DA and ChoA algorithms, the researchers were 

able to achieve a suitable classification rate and execution 

time compared to the separate performance of each 

algorithm. 

Researchers have developed many related algorithms, 

such as the combined probability filter algorithm, which 

can effectively filter the confusion in the data with the 

object's motion characteristics [10]. In another algorithm, 

fuzzy least squares regression for filtering is combined 

with joint probability data fusion (DF) filtering to achieve 

efficient target tracking [11]. Also, the new multi-sensor 

probabilistic hypothesis density filter algorithm can 

combine data from different sensors and overcome the 

problems of statistical information loss [12]. 

Environment-based performance is emphasized to obtain 

the most expected benefits in reinforcement learning 

(RL), which is one of the main branches in the field of 

machine learning (ML). A new data tracking and 

communication network structure is also developed in 

this field based on RL networks [13]. 

Various scattering mechanisms affect object-specific 

information in a received signal in a sonar system. 

Collected signals are contaminated by noise, 

reverberation, and confusion in the ocean environment. 

ML methods are traditionally used for feature 

exploitation and classification of active sonar data but 

lack interpretation. This may lead to a decrease in the 

confidence of the algorithm, and the reasoning of the 

classifier becomes unknown. Explainable artificial 

intelligence (AI) is a field that increases the transparency 

of ML algorithms by making them humans interpretable. 

Data fusion is the process of combining data or 

information to create improved estimates or predictions 

of the state of an entity [14]. Information obtained from 

a source may be unreliable or insufficient to determine 

accuracy. Therefore, it is necessary to use multiple data 

sources to increase the reliability and quality of 

information provided to decision-makers. 

DF is especially important in many applications where 

a large amount of data must be fused and then 

intelligently combined. On the other hand, data 

aggregation in wireless sensor networks has a special 

meaning and place. So that in a wireless sensor network, 

a huge amount of data comes from nodes, sensors, and 

different input channels, and certain data must be 

collected before sending these data to some other nodes, 

outputs, sink nodes, etc. are data aggregations. Finally, 

sensor data fusion is done to obtain advanced quality 

information with appropriate integrity so that the 

decisions made based on these data and the integrated 

fused information are very reliable. Which should be 

more accurate about the overall situation, the target 

situation, the process, and the scenario of interest by 

reducing the uncertainty. DF should be done logically and 

with proper understanding of data processing methods 

and related methods [15]. 

ML is a subset of AI where a machine learns how to 

complete a given task without explicitly planning how to 

do it, by feeding it plenty of training data and building a 

good model to predict the true values for recent similar 

data. A common definition is also provided for ML. It is 

called a computer program that learns from experience 

according to a set of tasks and performance criteria. If its 

function in the tasks is the same as the measured 
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efficiency and enhances with experience [16]. In 

supervised ML, a dataset is given to the learning algorithm 

along with labels that indicate how much the correct 

output should be for the given data. Algorithms such as 

support vector machine (SVM), k-nearest neighbor (KNN), 

random forests (RF), and artificial neural networks (ANN) 

are examples of this learning. 

Using six ML algorithms such as KNN, SVM, RF, decision 

tree (DT), extreme gradient boosting (XGboost), and 

ensemble methods, Krishna et al. conducted research 

with the help of sonar data to find sea mines. The 

Ensemble method is the combination of RF, XGboost, and 

Voting Classifier. Comparative results including Accuracy, 

Precision, Recall, and F1-score for all these algorithms are 

presented in this paper [30]. In this research, Wang et al 

presented a method of identifying active sonar targets 

based on multi-domain transformations and precision-

based fusion networks. The results of the experiments 

show that by using multi-domain transformations, active 

sonar echoes can be accurately detected. Improved by 

10.5% compared to single domain methods. Also, the 

findings show that in a high-level feature space by 

combining features of multiple transformations, more 

informative and effective results are obtained for active 

sonar echoes. In addition, the identification performance 

of different fusion models such as the early fusion model 

with resnet (R-EFMD) as the backbone of multi-domain 

attention-based feature extractor (MAFE), early fusion 

model with swin transformer (T-EFMD) as the backbone 

of MAFE, late fusion model with resnet (R-LFMD) as the 

backbone of single domain feature extractor (SFE) no 

attention-based feature extractor (AFE) module, and late 

fusion model with swin transformer (T-LFMD) as the 

backbone of SFE no AFE module has been compared [31]. 

Ahmed et al. investigated an underwater audio signal 

classification model with deep learning method. A regular 

neural network is also implemented to classify audio as 

input features. Comparing the performance of this 

classifier and the general results of the presented models 

is promising [32]. Yang et al. implemented a spatial 

attention deep convolutional neural network for marine 

mammal call detection. This method tends to use spatial 

attention (SA) to help the deep convolutional neural 

network (DCNN) to achieve better detection 

performance. Time-frequency image recognition-DCNN 

(TFIR-DCNN) is designed at the beginning of this method. 

Then, SA is added to the TFIR-DCNN to help the 

TFIR_DCNN focus on the location of call features in the 

time and frequency domains. Favorable marine mammal 

contact detection test results have been reported [33]. 

Tian et al. designed a collaborative learning model for 

underwater acoustic target recognition. In this research, 

firstly, a light multiscale residual deep neural network 

(MSRDN) is implemented using light network design 

techniques, where 64.18% of the parameters and 79.45% 

of the floating-point operations (FLOPs) from the original 

MSRDN are reduced in accuracy. It decreases a little. 

Then, a combined model of wave representation and 

time-frequency-based models was presented. The results 

of deterministic experiments prove that the performance 

improvement of the proposed methods from mutual 

deep learning has advantages such as favorable 

recognition accuracy [34]. 

Motivation and Innovation 

In this work, the data fusion problem in sonar data 

classification is considered due to its importance in 

various applications such as navigation and marine 

surveillance. However, we must mention that the 

mechanism of learning automata has not been used in 

this field yet. We intended to check whether using 

mechanisms related to learning automata can be 

effective and efficient in data fusion at the decision level. 

Although data integration at the level of data, decision, 

and feature has been used in the problem of sonar data 

classification. But until now, the use of a machine learning 

method such as learning automata to increase the ability 

to classify targets has been neglected. In this article, we 

measured the remarkable performance of the proposed 

method for 5 different objectives with Precision, Recall, 

F1_Score, and Accuracy indicators. Noise and acoustic 

interferences make the act of identification difficult in the 

vast and diverse oceanic and marine environments. In 

most marine devices, target detection is done by human 

operators, and with the development of this method in 

detecting most different targets, the speed and accuracy 

of identification can be increased and human errors can 

be reduced in these cases. 

Algorithms 

To increase the accuracy of the classification of 

complex problems, it is possible to use a combination of 

classifications that use the same learning algorithm but 

with different complexities and parameters. Hybrid 

classifications use the fusion of several classifiers. In fact, 

these classifiers each build their own model on the data 

and save this model. Next, for the final classification, a 

vote will be held between these classifications, and the 

class that gets the most votes will be the class that has 

had the greatest impact on the classification. The goal of 

AI is to train computers to do the things that persons 

currently do better, and without a doubt, learning is the 

most significant of those targets [17]. 

K-Nearest Neighbor 

In the KNN, an objective is classified by the majority of 

its neighbors' votes, and the target is classified into the 

class that is most general between its KNNs [18]. KNN is a 

classification algorithm and there are mainly two phases 
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in classification. The first phase is learning, in which a 

classification is made using the training data, and in the 

second phase, the evaluation of the classifier is done. Fig. 

1 shows a simple KNN structure [19]. 

 
Fig. 1: A simple KNN classification. 

As presented in Fig. 2. The new unlabeled data 

computes the distance of each of its neighbors according 

to the K value. Then, it specifies the class that contains the 

maximum number of nearest neighbors to it [20]. 

 
Fig. 2: New unlabeled data. 

After collecting KNN, we simply select most of them to 

predict the training sample class. Agents that affect the 

operation of this algorithm are K value, Euclidean distance 

and parameter normalization. For a precise 

understanding of the algorithm's performance and 

according to the set of training data shown in (1), the 

steps are as follows. 

{
(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), …

… , (𝑥(𝑚), 𝑦(𝑚))}
}       (1) 

First, the training set is stored, and then the Euclidean 

distance for each new unlabeled data among two points x 

and y in all training data points is calculated using (2). 

 𝑑 = √∑(𝑥𝑘 − 𝑦𝑘)2

𝑁

𝑘=1

 (2) 

KNNs are determined, and the maximum number of 

nearest neighbors is assigned to a class. After saving the 

training, all the parameters should be set to normal, so 

that the calculations become easier. The value of K affects 

the algorithm because it can be used to create the 

boundaries of each class. The best solution is selected first 

by checking the data. Larger solutions of K are more 

accurate because they decrease the net noise, but this is 

not guaranteed [21]. 

Multi-Layer Perceptron 

ANNs are structures inspired by brain performance. 

These networks can compute model performance 

estimation and manage non-linear and linear functions by 

learning from data generalizing and their relationships to 

unsighted situations. One of the most main ANNs is MLP. 

It is a potent modeling tool that exerts a supervised 

learning method using data samples with certain outputs. 

This method creates a non-linear function model that 

makes it possible to predict the output data from the 

given input data [22]. 

In order to comprehend MLP, a short description on 

single layer perceptron (SLP) and single neuron 

perceptron has been prepared. The first type is the 

simplest ANN and has only one output to which all inputs 

are linked, and the values of xi, wi and y are inputs, 

weighting of the neuron and predictive binary class 

respectively, which are described in Fig. 3 of the steps of 

weighting, summation and transfer function. Also, Fig. 4 

shows its simplified model and the transfer function is 

calculated in (3). 

 

 
 

Fig. 3: Perceptron steps: weighting, sum and transfer steps. 

 

 

Fig. 4: Perceptron models: a) steps. b) Simplified. 

x0=1, y is the output and w0 is the bias or threshold 

value. The transfer function has different forms such as 

unit step, linear, and sigmoid. Fig. 5 shows an example of 

the linear and nonlinear functions, which detaches the 

data into two classes. A Function can be represented by 

𝑦 = 𝑓(𝑧) 𝑎𝑛𝑑  𝑧 =  ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 (3) 
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the dot product among the input and the weight vectors 

in (4). 

  ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

= 0       (2) 

 

 
 

Fig. 5: Input patterns: a) linear. b) nonlinear. 

Connecting many perceptrons in parallel creates a SLP 

structure that is used for different outputs. Fig. 6 

represents an example where output and input layers are 

presented in a multi-class situation that can be linearly 

separated. The SLP does not solve separable nonlinear 

problems, which can be seen in Fig. 5. In this case, which 

is also shown in Fig. 6, a response can be found by 

appending any number of layers in a sequential order and 

making a MLP structure [23]. Any connection among 

neurons has its own weight, and SLP has the same 

activation function. Hinging on the performance, the 

output layer can be various functions [24]. 

 

 
Fig. 6: Layer structure: a) SLP. b) MLP. 

Learning Automata Algorithm 

Automatic learning is an easy model for adaptive 

decision-making in anonymous stochastic ambiances. 

Allegedly, its performance can be supposed identically to 

the learning method by a living organism in such 

ambiances. General instances of such positions are cases 

where an inexperienced person learns to perform the 

right motions or an individual who finds the best track 

from home to the office. The structure efforts various 

operations and chooses new operations based on the 

response of the environment to the past acts. The 

structure of such adaptive selection of operations and 

decisions is indicated by learning automata. The learning 

problem the appropriate operation is complicated by the 

verity that ambiance responses are not entirely reliable 

because they are stochastic and the corresponding 

probability distribution is anonymous. 

This model is effective in many functions related to 

adaptive decision-making. Hence, it would be attractive 

to have an algorithm that can learn appropriate selections 

based on some noisy evaluation of the good choice, which 

is consistent with the automata model. A classifier must 

decide on the class label of each pattern input to it in a 

pattern recognition problem. The law of optimal decision-

making can be considered as a learning problem for 

choosing one of the available actions based on some 

random feedback about the appropriate of each selection 

[25]. 

The learning method in the field of LA is as follows. 

Every time it cooperates with the environment, it 

automatically and stochastically selects an action based 

on a probability distribution. After the ambiance responds 

to a chosen action, it automatically updates its operation 

probability distribution. Then, a new operation is chosen 

according to the updated probability distribution, and the 

solution of the environment is extracted for this act, and 

this method is rerun. The updated algorithm for the 

operation probability distribution is called the RLA [25]. 

The general method of LA, which is an unsupervised 

optimization procedure and one of the key parts in 

adaptive learning systems, is to perform an operation 

through cooperation with the ambience in terms of 

receiving a sequence of repeated evaluation cycles with 

selecting the highest reward compared to other 

operations. By learning to select the best solution, 

automata adapt without needing to have detailed data 

about the pattern of the environment [26]. The 

cooperation between the environment and LA is shown in 

Fig. 7. In [27], for the first time, the idea of automatic 

learning was introduced to model the mechanism of 

biological learning.  

 

 

Fig. 7: The cooperation of LA with the environment. 

LA is a self-organizing decision-making unit whose 

performance improves through repeated cooperation 

with a stochastic environment. A LAA learns how to select 

the best solution based on the response it receives from 

the environment. In this process and interaction, 

repetition number n starts when the automata select the 

input vector x(n) from the set X ϵ Rm from the 

environment. According to the input vector, the 
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automata select one of its possible actions and apply it to 

the random environment (for example α(n) ϵ α). Then, the 

stochastic environment classifies the selected α(n) act in 

the x(n) input vector and estimates an amplification signal 

of β(n) ϵ β. For this purpose, the automata use the 

learning algorithm T, the x(n) input vector, the α(n) act, 

and the β(n) reinforcing signal to update its state. By 

repeating or continuing this process, the LA learns how to 

choose the optimal solution [28]. 

LA is more practical and effective in discovering the 

exact best solutions for complicated optimization issues. 

The dimensions of the points are equal to the number of 

automata used in the LAA. In other words, for the N-

dimensional problem, this algorithm contains N automata 

[29]. Each automata is accountable for exploring one 

dimension and operates separately in the ambiance. The 

i-th LA can be defined as the model ⟨xi, Ai, r, Pi, U⟩ where 

xi = {xi} represents the set of possible positions in the i-th 

dimension. As well as, xi is the next state in the dimension 

i (xi ϵ [xmin,i, xmax,i]), the maximum and minimum amounts 

in dimension i are xmax,i and xmin,i, respectively. In 

automatic learning, Ai = {al,η} is the set of possible 

operations that the LA can perform in the dimension i, al,η 

demonstrates that an operation is right (l=2) or left (l=1) 

moves and η is the length of step. Note that r is a scalar 

value and represents a reinforcement signal that is 

generated through the ambiance to demonstrate the 

quality of the movement xi during the step in the selected 

route. As well as, Pi includes two possibilities p1 and p2. p1 

and p2 respectively demonstrate the probability of 

choosing the right route and the left route in the i-th 

dimension. Suppose the right route is chosen, and the 

probability of selecting one cell among k cells located on 

the route determines the probability p2. As well as, U is a 

procedure for calculating the probabilities of operations, 

P.  

In the introduced procedure, each dimension is parted 

into D cells. This intends that xi is parted into D subsets, 

and each subset comprises all dimensional states located 

in the cell. Thus, D×N cells are generated for the N-

dimensional space of exploration where ωc,i is a cell width 

in the dimension i and is computed using (5). 

 𝜔𝑐,𝑖 =
𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝐷
 (3) 

At the beginning of the operation exploration, it must 

be able to select one of two possible directions to 

appraise the selection of the best solution in the route. 

Therefore, the value of L2(xi) is determined by the 

amounts of the k adjacent cells in the right route, where 

k is a predefined integer amount and ci,j is cell j in 

dimension i. As well as, j is computed by (6) and the 

amount of a route can be evaluated by (7). 

𝑗 = 𝑓𝑙𝑜𝑜𝑟 (
𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝜔𝑐,𝑖
)   (6) 

𝑳𝑙(𝑥𝑖) = (1 − 𝜆1) ∑ 𝜆1
𝑚−1𝜐𝑙,𝑚

∗ +

𝑘−1

𝑚=1

𝜆1
𝑘−1𝜈𝑙,𝑘

∗       

𝑙 = 1,2  

    (4) 

where 𝜐𝑙,𝑚
∗  represent the variable of the vector m that is 

placed in the direction of l. Also, 𝜆1 is computed with the 

conditions 0 ≤ 𝜆1 ≤ 1 and (1 − 𝜆1) ∑ 𝜆1
𝑚−1𝑘−1

𝑚=1 +

𝜆1
𝑘−1 = 1, provided that the relation (1 − 𝜆1)𝜆1

𝑘−2 ≥

𝜆1
𝑘−1 is established. The two probabilities p1 and p2 are 

obtained from (8) and (9). 

  𝑝1(𝐿𝑙(𝑥𝑖)) =
𝑒

𝐿𝑙(𝑥𝑖)
𝜏

∑ 𝑒
𝐿𝑠(𝑥𝑖)

𝜏2
𝑠=1

   𝑙 = 1,2 (5) 

  𝑝2(𝑐𝑖,𝑗+𝑠) =
𝑒

(𝑉(𝑥𝑖)|𝑥𝑖𝜖𝑐𝑖,𝑗+𝑠)

2𝜏

∑ 𝑒
(𝑉(𝑥𝑖)|𝑥𝑖𝜖𝑐𝑖,𝑗+𝑧)

2𝜏𝑘
𝑧=1

             

 𝑙 = 1,2     𝑠 = 1, … , 𝑘 

   (6) 

where V(xi) is the cell value. The τ parameter makes a 

balance among search and utilization. With selecting a 

cell, the operation proceeds to the new cell with a step 

length that can be expressed in the act of η in (10). Thus, 

when L1 is chosen, the current dimensional state of xi 

changes to xi = xi − η and when L2 is selected, xi moves to 

xi = xi + η. 

 𝜂 = 𝜔𝑐,𝑖(𝜉 + 𝜁)    (7) 

where the distance among the former cell and the chosen 

cell ζ and ξ is a stochastic number (ζ ∈ (0, 1]). Next, an 

amplification signal is applied to investigate the next state 

xi. Just after the dimensional state 𝑥𝑖 is transferred to 𝑥𝑖
′, 

the i-th variable of the current state 𝑋(𝑥𝑖) is changed by 

𝑋(𝑥𝑖
′). According to (11), the amplification signal is 

allocated to cell ci,j. The amplification signal is used to 

update the cell value ci, j and is obtained according to 

(12). 

 𝑟(𝑋(𝑥𝑖
′)) = {

1, 𝑖𝑓 𝐹(𝑋(𝑥𝑖
′)) ≤ 𝐹(𝑋𝑏𝑒𝑠𝑡)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

 

 𝑉(𝑥𝑖)|𝑥𝑖𝜖𝑐𝑖,𝑗
← 𝑟(𝑋(𝑥𝑖))

+ 𝛼1𝑉(𝑥𝑖)|𝑥𝑖𝜖𝑐𝑖,𝑗
 

(9) 

 +(1 − 𝛼1)((1 − 𝜆2)𝐿𝑚𝑎𝑥(𝑥𝑖) + 𝜆2𝐿𝑚𝑖𝑛(𝑥𝑖)) 

The solution is desirable when r=1 and r=0 indicates an 

unfavorable answer. Also, Lmax (xi) = max {L1 (xi), L2 (xi)} and 

Lmin (xi) = min {L1 (xi), L2(xi)} are two estimated path values 

at xi. Lmax (xi) has a greater impression on the cell value 

than Lmin (xi). Thus, the parameter λ2 must be given in such 

a way that this relation (1− λ2) > λ2 is true. The weights α1 

and (1-α1) show the impression of past evaluations and 

route values on the new evaluation, respectively. In (13), 



Fusion of Classifiers Using Learning Automata Algorithm 

J. Electr. Comput. Eng. Innovations, 13(1): 65-80, 2025                                                                             71 

the relationship among Xbest and X and is shown. 

 𝑋𝑏𝑒𝑠𝑡

← {

𝑋(𝑥𝑖
′), 𝑋(𝑥𝑖

′)

= [𝑥𝑖 , … , 𝑥𝑖−1, 𝑥𝑖
′, 𝑥𝑖+1, … , 𝑥𝑁]

𝑋𝑏𝑒𝑠𝑡

𝑖𝑓 𝑟 = 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 (10) 

Methodology 

To increase the classification accuracy of complex 

problems, it is possible to use a combination of 

classifications that use the same learning algorithm but 

with different complexities and parameters. Hybrid 

classifiers use the fusion of several classifiers. In fact, 

these classifiers each build their own pattern on the data 

and save this model. Eventually, for the final classification, 

a vote is held between these classifications, and the class 

that gets the most votes will be the class that has had the 

greatest impact on the classification. In this work, we 

defined coefficients to weight the classifiers, and in order 

to achieve the best accuracy, we implemented voting and 

finding the optimal coefficients by automata learning 

algorithm. We proceeded with this process in five steps. 

Fig. 8 shows the overall process. 

 

 
 

Fig. 8: The overall process of the proposed method. 

In the first step, we created and stored sonar data in 

five classes with specific dimensions and samples. 

In the second step, we loaded those data into the 

introduced classification training algorithm and after 

running the algorithm, we saved the accuracy results of 

each of the classification models related to the sonar 

data. Four classifiers (two KNN classifiers and two MLP 

classifiers) were used in this research. 

In the third step, the stored models and data were 

loaded into the LA algorithm. 

In the fourth step, we created and integrated functions 

for weighting the categories. 

In the last step, to find the best accuracy answer with 

the majority vote, we ran the LA algorithm to find the 

optimal coefficients of the classifiers and saved the 

results. 

Data and Device 

In this work, a dataset of sonar targets with five 

different classes and dimensions of 103x129 was used. 

Also, these targets in different subclasses include 

different viewing angles and signal-to-noise. The 

Specifications of targets are demonstrated in Table 1. 

 
Table 1: Specifications of objectives 

Class 

Number 
Name 

Type of 

Application 

1 MV Barzan container carrier 

2 Front Century oil tanker 

3 Harmoney of the Seas Cruise 

4 Atlas Pishro passenger ship 

5 logistic Military 

 

This program is implemented on a system with Intel® 

Core™ i7-6500U CPU (2.50-2.59) GHz processor 

specifications, 8 GB RAM, and MATLAB R2020b software. 

Results and Discussion 

In this work, we are going to investigate the 

improvement of the performance of combining the 

classifications using the automatic learning algorithm. 

Also, to better check the efficiency of the used models, 

Accuracy, Precision, Recall, F1_Score, and AUC 

parameters are reported in Table 2. Also, the test charts 

of each model are shown in Figs 9 to 16.  

In the first model, the data was trained by a KNN 

classifier with a nearest neighbor rate of 3. The 

performance of model 1 on sonar data with confusion 

matrix and ROC charts for 5 different classes is shown in 

Fig. 9 and Fig. 10. 

In the second model, the data was trained by a KNN 

classifier with a nearest neighbor rate of 15. The 

performance of model 2 on sonar data with confusion 

matrix and ROC charts for five different classes are 

demonstrated in Fig. 11 and Fig. 12. 

In the third model, the data was trained by an MLP 

classifier with an input layer of 15. The performance of 

model 3 on sonar data with confusion matrix and ROC 

charts for 5 different classes is shown in Fig. 13 and Fig. 

14. 

In the fourth model, the data was trained by an MLP 

classifier with an input layer of 15 and a hidden layer of 

15. The performance of model 4 on sonar data with 

confusion matrix and ROC charts for 5 different classes is 

shown in Fig. 15 and Fig. 16. 
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Table 2: Machine learning Models performance results 
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Fig. 9: Confusion matrix chart for KNN - 1st Model. 

 

Fig. 10: ROC chart for KNN - 1st Model. 

As described in the work process in the previous 
sections. The stored models of each class are weighted 
using the LAA and weighted summation functions in the 
defined range. To achieve the best accuracy and decision 
by obtaining the best solutions for the classifications and 
fusion it by the LA algorithm.  

 
Fig. 11: Confusion matrix chart for KNN - 2nd Model. 

 

Fig. 12: Roc chart for KNN - 2nd Model. 

Due to the fact that in this process the effective 
parameters in the learning automata algorithm are very 
effective.  

The results of Accuracy, Precision, Recall, F1_Score, 
and AUC are reported separately for the impact of each 
of the K, D, and Nfemax parameters. 
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Fig. 13: Confusion matrix chart for MLP - 3rd Model. 

 
Fig. 14: ROC chart for MLP: 3rd Model. 

  

 
In Table 3, the parameter D = 50 is considered constant 

and the results are reported by changing the values of K 
and Nfemax parameters. Also, the performance of sonar 
data fusion by LAA is shown using the confusion matrix 
and ROC charts in Figs 17 to 22. 

 
Fig. 16: ROC chart for MLP - 4th Model. 

The performance of sonar data fusion by the learning 
automata algorithm for D = 50, K = 10, and Nfemax = 5 
values is shown in Fig. 17 and Fig. 18. 

 

 

Fig. 17: Confusion matrix chart for D = 50, K = 10, and Nfemax = 
5 parameters in LAA. 

 
Fig. 18: ROC chart for D = 50, K = 10, and Nfemax = 5 

parameters in LAA. 

Fig. 15: Confusion matrix chart for MLP - 4th Model. 
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Table 3: LA performance results with the influence of Nfe and K parameters 

The results for D=50 in LAA 
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The performance of sonar data fusion by the learning 

automata algorithm for D = 50, K = 100, and Nfemax = 10 

values is shown in Fig. 19 and Fig. 20.  

  

Fig. 19: Confusion matrix chart for D = 50, K = 100, and Nfemax 
= 10 parameters in LAA. 

 

The performance of sonar data fusion by the learning 

automata algorithm for D = 50, K = 200, and Nfemax = 15 

values is shown in Fig. 21 and Fig. 22. 

In Table 4, the parameter K = 100 is considered 

constant and the results are reported by changing the 

values of D and Nfemax parameters. Also, the performance 

of sonar data fusion by LAA is shown using the confusion 

matrix and ROC charts in Figs 23 to 28. 

The performance of sonar data fusion by the learning 

automata algorithm for K = 100, D = 10, and Nfemax = 5 

values is shown in Fig. 23 and Fig. 24. 

 

 
Fig. 20: ROC chart for D = 50, K = 100, and Nfemax = 10 

parameters in LAA. 

 
Fig. 21: Confusion matrix chart for D = 50, K = 200, and Nfemax 

= 15 parameters in LAA. 
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Fig. 22: ROC chart for D = 50, K = 200, and Nfemax = 15 

parameters in LAA. 
 

  
Fig. 23: Confusion matrix chart for K = 100, D = 10, and Nfemax 

= 5 parameters in LAA. 

 
Fig. 24: ROC chart for K = 100, D = 10, and Nfemax = 5 

parameters in LAA. 

 
Fig. 25: Confusion matrix chart for K = 100, D = 50, and Nfemax 

= 10 parameters in LAA. 
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Fig. 26: ROC chart for K = 100, D = 50 and, Nfemax = 10 
parameters in LAA. 

 

 

Fig. 27: Confusion matrix chart for K = 100, D = 100, and 
Nfemax = 15 parameters in LAA. 

The performance of sonar data fusion by the learning 

automata algorithm for K = 100, D = 50, and Nfemax = 10 

values is shown in Fig. 25 and Fig. 26. 

The performance of sonar data fusion by the learning 

automata algorithm for K = 100, D = 100, and Nfemax = 15 

values is shown in Fig. 27 and Fig. 28. 

In Table 5, the parameter Nfemax = 10 is considered 

constant and the results are reported by changing the 

values of K and D parameters. Also, the performance of 

sonar data fusion by LAA is shown using the confusion 

matrix and ROC charts in Figs 29 to 34. 

The performance of sonar data fusion by the learning 

automata algorithm for Nfemax = 10, K = 10, and D = 10 

values is shown in Fig. 29 and Fig. 30. 
 

 

Fig. 28: ROC chart for K = 100, D = 100, and Nfemax = 15 
parameters in LAA. 

  
 
 

 

Fig. 30: ROC chart for Nfemax = 10, K = 10, and D = 10 
parameters in LAA. 

 

Fig. 29: Confusion matrix chart for Nfemax = 10, K = 10, and D 
= 10 parameters in LAA. 
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The performance of sonar data fusion by the learning  

 
 

      

 
 

Fig. 32: ROC chart for Nfemax = 10, K = 100, and D = 50 
parameters in LAA. 

 

 

 

 

 

 

 

 

 

 
Fig. 33: Confusion matrix chart for Nfemax = 10, K = 200, and D 

= 100 parameters in LAA. 

 

Fig. 34: ROC chart for Nfemax = 10, K = 200, and D = 100 
parameters in LAA. 

In addition, Table 6 shows the important parameters 

and computational requirements of introduced models 

such as SVM, RF, DT, XGboost, ensemble method, R-

EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-

Table 5: LA performance results with the influence of K and D parameters 

The results for Nfe=10 in LAA 
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Fig. 31: Confusion matrix chart for Nfemax = 10, K = 100, and 
D = 50 parameters in LAA. 
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DCNN+SA, and joint [30-34]. The results of these models 

have been compared with the proposed model. 

Considering that the objectives and databases are 

different, we benchmarked the average detection rate. 
In this comparison, Precision, Recall, F1_Score, and 

Accuracy   parameters     have    been     considered     and 

investigated in order to show the superior performance 

of the proposed method with other methods. Also, in Fig. 

35, the graph of this comparison is illustrated to show the 

results of each of the model’s side by side, and the 

optimal performance of the data fusion method with the 

C algorithm is quite evident.
  

Table 6: Performance comparison of conventional and fused classification models 

No. Model Precision (%) Recall (%) F1_Score (%) Accuracy (%) 

1 SVM 71.4 70 70 83.9 

2 RF 70 77.78 73.68 76.19 

3 DT 90 75 81.81 80.95 

4 XGboost 80 80 80 80.95 

5 Ensemble Method 60 75 66.67 71.45 

6 R-EFMD 79.27 76.5 77.86 78.25 

7 T-EFMD 79.51 81.5 80.49 80.25 

8 R-LFMD 78.82 80 79.4 79.25 

9 T-LFMD 83.17 86.5 84.8 84.5 

10 ANN 63.71 64.58 64.14 65.57 

11 CNN 78.47 79.39 78.92 65.57 

12 TFIR-DCNN+SA 73.55 66.14 69.65 66.14 

13 Joint 79.5 80.12 79.49 79.8 

14 Proposed Method 87.71 88.53 87.8 87.4 

 

 

Fig. 35: Functional comparison of Precision, Recall, F1_Score, and Accuracy parameters. 
 

Conclusion 
In this article, the issue of combining classifications 

using LAA and sonar data is considered. The used sonar 

data, which includes 5 types of targets with different 

capabilities and specifications, were analyzed with the 

help of LAAs. The interference of sound waves and noise 

causes many problems in the detection of targets in 

marine environments. The classification of this data is 

often done in a traditional and manual way, and the 

possibility of target identification error is high in this 
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method. By using ML methods and combining them with 

each other, the accuracy of detecting these targets can be 

increased. In this research, we first used 4 classification 

models separately to classify sonar data. Then by 

combining those classifiers with learning automata 

algorithm to achieve the best solution and by determining 

the optimal coefficients for each classifier, we were able 

to achieve significant results compared to similar works. 

The results obtained with the analytical parameters of 

Precision, Recall, F1_Score, and Accuracy compared to 

the latest similar papers have been examined and 

compared, and the values are 87.71%, 88.53%, 87.8%, 

and 87.4% respectively for each of These parameters are 

obtained in the proposed method. 

Some limitations that can be mentioned. The proper 

setting of learning automata parameters is the proper 

selection of basic classifiers and the existence of 

appropriate databases for training basic classifiers. In the 

future, it is possible to perform tasks such as fuzzing or 

optimizing the control parameters of learning automata 

for better convergence, using intelligent methods for the 

optimal selection of parameters, and using the proposed 

method in the face of incomplete and missing databases. 
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DF Data Fusion 
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CNN Convolutional Neural Network 

ML Machine Learning 
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R-LFMD Late Fusion Model with Resnet 
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LAA Learning Automata Algorithm 

LAP Learning Automata Parameter 
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ROC Receiver Operating Characteristic 
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