
J. Electr. Comput. Eng. Innovations, 13(1): 43-56, 2025 

 

 

 

Doi: 10.22061/jecei.2024.10814.737            43 

Journal of Electrical and Computer Engineering Innovations 

(JECEI) 

Journal homepage: http://www.jecei.sru.ac.ir 

Research paper 

A Fast and Accurate Yield Optimization Method for Designing 
Operational Amplifier Using Multi-Objective Evolutionary Algorithm 
Based on Decomposition  

A. Yaseri 1, M. H. Maghami 2,*, M. Radmehr 1  

1 Department of Electrical Engineering, Sari Branch, Islamic Azad University, Sari, Iran. 
2 Research Laboratory for Integrated Circuits, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training 
University, Tehran, Iran. 
 

Article Info                         Abstract 

 

Article History: 
Received 06 May 2024 
Reviewed 20 July 2024 
Revised 13 August 2024 
Accepted 24 August 2024 

 

 

Background and Objectives: In recent years, the electronics industry has experienced 
rapid expansion, leading to increased concerns surrounding the expenses associated 
with designing and sizing integrated circuits. The reliability of these circuits has 
emerged as a critical factor influencing the success of production. Consequently, the 
necessity for optimization algorithms to enhance circuit yield has become increasingly 
important. This article introduces an enhanced approach for optimizing analog circuits 
through the utilization of a Multi-Objective Evolutionary Algorithm based on 
Decomposition (MOEA/D) and includes a thorough evaluation. The main goal of this 
methodology is to improve both the speed and precision of yield calculations. 
Methods: The proposed approach includes generating initial designs with desired 
characteristics in the critical analysis phase. Following this, designs that exceed a 
predefined yield threshold are replaced with the initial population that has lower yield 
values, generated using the classical MOEA/D algorithm. This replacement process 
results in notable improvements in yield efficiency and computational speed compared 
to alternative Monte Carlo-based methods. 
Results: To validate the effectiveness of the presented approach, some circuit 
simulations were conducted on a two-stage class-AB Op-Amp in 180 nm CMOS 
technology. With a high yield value of 99.72%, the approach demonstrates its ability 
to provide a high-speed and high-accuracy computational solution using only one 
evolutionary algorithm. Additionally, the observation that modifying the initial 
population can improve the convergence speed and yield value further enhances the 
efficiency of the technique. These findings, backed by the simulation results, validate 
the efficiency and effectiveness of the proposed approach in optimizing the 
performance of the Op-Amp circuit. 
Conclusion: This paper presents an enhanced approach for analog circuit optimization 
using MOEA/D. By incorporating critical analysis, it generates initial designs with 
desired characteristics, improving yield calculation efficiency. Designs exceeding a 
preset yield threshold are replaced with lower yield ones from the initial population, 
resulting in enhanced computational speed and accuracy compared to other Monte 
Carlo-based methods. Simulation results for a two-stage class-AB Op-Amp in 180 nm 
CMOS technology show a yield of 99.72%, highlighting the method's effectiveness in 
achieving high speed and accuracy with a single evolutionary algorithm. 
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Introduction 

With the continuous development of the electronics 

industry in recent decades, there has been a growing 

concern regarding the cost associated with designing and 

sizing integrated circuits. Consequently, the yield value of 

these circuits has garnered significant attention. Yield is 

defined as the proportion of products that satisfy all 
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design constraints to the total number produced [1]-[3], 

and plays a crucial role in determining the overall success 

of circuit production. Therefore, the development of 

optimization algorithms that effectively enhance the yield 

value has become of utmost importance. The process of 

yield optimization typically encompasses several key 

steps, as shown in Fig. 1 [4]. These steps involve specifying 

design variables while considering desired constraints, 

generating initial designs using dedicated design tools 

based on the defined specifications, evaluating the yield 

value of the designs through simulation tools, iterating if 

the desired yield value is not achieved, and considering 

the optimization process complete once the desired yield 

value is attained.  

 

Circuit Topology

Design 
Specifications

Technology 
Parameters

Design Variables

Optimization Core

New Solution

Yield EvaluationSimulation Tools

 
 

Fig. 1: General flowchart for yield optimization. 
 

In general, yield optimization methods can be broadly 

categorized into two main categories [5]: statistical 

methods, such as Monte Carlo (MC) based methods and 

response-surface-based (RSB) methods, and non-

statistical methods, including corner-based methods and 

performance-specific worst-case design (PSWCD) 

methods. Non-statistical methods offer advantages such 

as a lower number of simulations, simplicity, and faster 

sensitivity analysis. However, they have weaknesses such 

as design overhead at corner points and lower accuracy in 

estimation [5]. On the other hand, statistical methods 

provide good accuracy in calculating yield value and 

perform better at corner points compared to non-

statistical methods. However, their main weakness lies in 

the large number of simulations required, which can be 

time-consuming [5]. 

Typically, yield optimization methods aim to maximize 

the yield value while minimizing computational time. 

Recent efforts have been made to optimize yield using 

evolutionary algorithms, which have shown promising 

results in increasing yield [6]-[9]. Additionally, some new 

methods have been proposed for yield estimation using 

machine learning instead of SPICE simulations including 

the work presented in [10]. However, it is important to 

note that this technique may not apply to all types of 

circuits, as in this method, numerous designs are 

generated from a circuit, and then a machine learning 

algorithm is trained using these designs. Therefore, when 

faced with other circuits that have not been trained by the 

algorithm, this method may not provide suitable 

responses.  

The MC method is widely acknowledged as the most 

precise and commonly used approach for simulations. 

However, it does have a significant drawback, which is the 

extensive number of simulation iterations required, 

resulting in longer optimization process times. To address 

this challenge, various methods have been proposed to 

improve the efficiency of MC-based techniques. Examples 

of such methods include Latin Hypercube Sampling (LHS) 

[11] and Quasi MC simulation (QMC) [12]. The primary 

objective of speeding up MC simulations is to reduce the 

computational budget while maintaining yield accuracy. 

Therefore, yield optimization algorithms need to fulfill the 

following conditions: reducing the number of simulations, 

minimizing computational steps, and improving overall 

efficiency. 

In this work, a combination of critical analysis and a 

Multi-Objective Evolutionary Algorithm [6], [13] based on 

Decomposition (MOEA/D) [14]-[15] is introduced. Indeed, 

to improve the efficiency of the optimization process, the 

conventional MOEA/D framework has been adapted by 

integrating critical analysis. This integration of critical 

analysis into the MOEA/D framework results in reduced 

simulation time and increased efficiency. The use of 

critical analysis helps to identify critical solutions that 

have a significant impact on yield improvement, while 

non-critical solutions are separated. To refine the 

simulation process further, this paper additionally utilizes 

the integration of optimal computing budget allocation 

(OCBA) [6] alongside critical analysis. This strategy 

controls the number of simulations needed for each 

design, thereby minimizing the simulation budget. As a 

result, the entire optimization process is accelerated. 

Pole-Zero analysis is also conducted to assess the stability 

of the circuit. Furthermore, this study considers a broader 

range of design characteristics compared to existing 

methods. In summary, the contributions of this work can 

be summarized as follows: enhancement of the classical 

MOEA/D method through the combination of critical 

analysis and MOEA/D, improvement of the yield value by 

replacing designs generated in both critical analysis and 

classical MOEA/D, acceleration of the yield calculation by 

reducing computational steps, and inclusion of circuit 

stability analysis and consideration of additional design 

characteristics. 

The remainder of this paper is structured as follows. 

Initially, the background knowledge pertinent to this 
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study will be discussed in detail. Next, the specifics of the 

proposed method will be explored. This will be followed 

by an examination of the simulation results derived from 

the experiments. To wrap up, the key findings of the 

research presented will be summarized. 

Background Knowledge of the Presented 

Technique 

Since the proposed approach for yield optimization in 

this work is established based on OCBA, Multi-Objective 

Optimization (MOO), and MC simulation, these 

techniques are briefly reviewed in the following sub-

sections. It should be noted that in the process of yield 

optimization, the goal is to identify a point that maximizes 

the yield value [5]. Therefore, the formula for calculating 

the yield can be expressed as follows: 

* arg max{ ( )}d Dd Y d  (1) 

where d is the design parameters such as transistor’s 

dimensions, resistor and capacitor values, bias voltages, 

and current values. For each design parameter, an 

acceptable range of variations (upper and lower bands) is 

selected. The selection of this range of acceptable values 

is dependent on design knowledge, technological 

processes, or user preferences. In (1), the design space 

denoted by D. 
*d represents the optimal point within the 

design space D that leads to maximizing the yield value. It 

is important to note that maximizing the yield is not 

always the goal; in some cases, the opposite is pursued, 

and the objective is to minimize the yield value (e.g., chip 

area in the case of yield-aware sizing). Accordingly: 

( )  { ( ,  ,  )   ( )}Y d E YS d s pdf s  (2) 

where E is the expected value,  indicates the 

environmental variables, and s represents the space of 

statistical parameters. In the case where all specifications 

are satisfied, YS(d, s, )  is set to 1, but if not, YS(d, s, )  

is set to 0. 

Optimal Computing Budget Allocation 

The OCBA is one of the popular methods for ranking 

and selection in optimization methods [16]. In this 

method, the necessary number of iterations for each 

design is intelligently allocated based on the calculated 

mean value and variance for the designs. This enables a 

substantial reduction in the simulation budget by 

judiciously assigning simulation iterations to each design. 

With OCBA, the subsequent simulation step aims to 

identify the best solution by maximizing the likelihood of 

its discovery. 

Multi-Objective Optimization  

In the MOO technique, unlike single-objective 

optimization, multiple objective functions are employed 

to attain more accurate optimal solutions [17]. 

Consequently, in MOO, a set of solutions is obtained 

based on predefined objective functions. The 

optimization of multi-objective analog circuits is 

grounded in the use of multi-objective evolutionary 

algorithms (MOEAs). The MOO equation is given by: 

Min/max  1 2( ), ( ),..., ( )nf x f x f x                                       

Subject to:     x U  
(3) 

where the number of objective functions indicated by 

n , U is a set of feasible solutions, in this case, and 

( )nf x  represents nth objective function. There are two 

types of object operations: min/max and x represents the 

solution. The proposed approach uses the MOEA/D multi-

objective algorithm, which is discussed later. 

Monte-Carlo Simulation  

MC simulation delineates the process of translating 

uncertainties from a model's input to uncertainties in its 

output [6]-[9]. By employing statistical sampling, the MC 

method offers approximations for quantitative problems, 

facilitating an explicit and quantitative simulation of 

uncertainty. In MC simulation, inputs are designated as 

probability distributions, allowing for a clear 

representation of uncertainty. The predictability of 

system performance becomes uncertain when the inputs 

describing a system are uncertain. The outcome of any 

analysis involving inputs represented by probability 

distributions is likewise presented as a probability 

distribution. Typically, more than 1000 simulations are 

executed in the MC method, with each run referred to as 

a realization. Each realization involves sampling the 

distribution of each uncertain parameter, and selecting a 

random value for each parameter. Subsequently, specific 

input parameters are employed to simulate the system 

over time. This simulation yields performance metrics for 

the system. Ultimately, the system will traverse a 

potential path, and outputs are presented in the form of 

probability distributions.  

Presented Method 

After brief introduction of MC simulation, OCBA, and 

MOO technique, the presented method is described in 

this section. Fig. 2 shows the flowchart of the proposed 

method, which uses improved MOEA/D for yield 

optimization. Referred to Fig. 2, the combination of 

MOEA/D and critical analysis is employed to improve the 

classical MOEA/D and each is described separately here.  

Critical Analysis 

As previously mentioned, the MC method stands out 

as one of the most widely used techniques for calculating 

yield. Nevertheless, a significant challenge associated 

with this method is the extensive number of simulations, 

which can lead to system slowdown. 
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Fig. 2: Flowchart of the proposed approach for yield optimization. 
 

A proposed solution to expedite the MC method 

involves reducing or eliminating simulation iterations 

assigned to non-critical solutions [6]. Critical solutions 

refer to designs that have a substantial impact on 

increasing the yield value, while non-critical solutions 

have a lesser effect on this calculation. Accordingly, the 

OCBA technique is employed to identify critical and non-

critical solutions, intelligently allocating an appropriate 

number of simulation iterations to each [18], [19]. 

Consequently, this method of budget allocation between 

solutions leads to a reduction in computational time. The 

utilization of OCBA also contributes to a decrease in the 

yield estimator's variance. As a result, more simulation 

iterations are directed toward critical solutions, 

minimizing the time spent on non-critical ones. The 

details of this approach are outlined in Algorithm 1 [6]. 

Based on algorithm 1, T , K  and b  are the total 

budget of simulations, the number of competing designs 
and the best design, respectively. The variance and mean 

of the k solutions indicated by 2

i , iJ . Every candidate 

solution runs 0n simulations initially. iN  and 
jN  are the 

number of simulation replications allocated to design i , 

j  respectively and 
,b i b iJ J   . 

Multi-Objective Evolutionary Algorithm based on 
Decomposition  

The MOEA/D [20], [21], developed by Jang in 2007, 

decomposes a multi-objective problem into multiple 

subproblems and optimizes them concurrently. This 

method combines the objective functions using a weight 

vector defined for each subproblem. Each individual in 

the population represents a solution obtained through an 

aggregation vector, with the population size matching the 

number of problems, so each solution corresponds to a 

member of the population. By the end of the search, each 

problem yields a Pareto-front answer, which is the best 

solution discovered for the respective subproblem 

constituting the population in each generation. The 

proximity between aggregation vectors establishes 

neighbor relations among sub-problems. During the 

search, a neighborhood member plays a role in 

contributing to the solution of the problem, marking this 

stage as the collaboration stage. For each subproblem 

following the current one in the neighborhood, a 

weighted aggregation vector is provided. If the solutions 

to the neighbors' problems surpass the original answers, 

these should replace the initial answers, constituting the 

competition stage. The processes of cooperation and 

competition are applied to all sub-problems, ensuring a 

continuous exchange of information between neighbors. 

The subproblems within its neighborhood are 

leveraged to optimize each subproblem in the algorithm. 

The general framework of the MOEA/D can be considered 

as follows: 
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Algorithm 1. Critical Analysis 

Initializing design variables and specifying a reasonable range for each of the design 
specifications. 

Initializing 0,T,n ,K  and let 0l  . Then performing 0n  simulation replications for all 

designs. 

              1 2 0...l l l

kN N N n   
 

Calculate sample means and standard deviation, then finding the best design according to 

argmin ( )i ib J
. 

Construct solution set by critical solutions. 
If the termination condition is satisfied, then, end the algorithm. Otherwise, increase the 

computing budget by   and calculate the new budget allocation. 
1 1 1 1
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Perform additional 1max( ,0)l l

i iN N   simulations for the design i , 1,2,..., ; 1i k l l    

Go to step 3 

1 2Minimize( ( ), ( ),..., ( ))mf x f x f x  
Subject to ( ) 0, L Hg x X x X                                              

(4) 

A given objective function is called fi(x), i = 1...m, m is 

the number of objectives, and x is the design variable. 

There are XL and XH for the lower and upper bounds, 

respectively. The vector g(x) ≥ 0 represents the design 

constraints.  

Each non-dominated solution to the multi-objective 

optimization problem aligns with an optimal single-

objective solution when utilizing a specific weight vector. 

Within MOEA/D, distinct weight vectors guide diverse 

searches across various regions of the objective space, 

forming a comprehensive set of weight vectors. In the 

context of a multi-objective optimization problem, the 

Tchebycheff method allows for the definition of N 

subproblems. In this method, the objective function of 

the jth (j=1, 2, ..., N) sub-problem is as follows: 

 * *

1
( | , ) max | ( ) |te j j

i i i
i m

g x z f x z 
 

 
 

(5) 

where  1 ,...,
T

j j j

m   demonstrates a weight vector, 

* * *

1( ,..., )T

mz z z represents the vector of reference 

points. For each Pareto optimal point x* there exists a 

weight vector so that x* is the optimal solution of (5). 

There are related references such as the work presented 

in [15] that describe methods for determining the weight 

vector. There are Pareto optimal solutions to the problem 

of (4) for each solution of (5). Some methods [14], [20] 

have pointed to the weakness of the MOEA/D when 

facing more complex circuits and a higher number of 

objectives in comparison with the NSGA-II. However, 

others [12], [21] have emphasized the capability of the 

MOEA/D in multi-objective optimization problems. Given 

this, the main goal of the proposed method in this article 

is to enhance the convergence speed of the algorithm 

while upholding a high level of accuracy. This goal is 

achieved through an effective integration of the critical 

analysis method and the MOEA/D algorithm. The 

comparison of the yield histogram between the proposed 

method and the classic MOEA/D, serves as evidence of 

the method's efficacy. Furthermore, in contrast to the 

CSNM [6] employing the NSGA-III, the proposed method, 

by integrating solution responses, demonstrates both 

remarkable speed and accuracy, as will be expounded 

upon in the upcoming simulation results section. It is 

essential to note that alternative methods, such as 

epsilon constraint methods or lexicographical methods, 

can also be considered valuable techniques for objective 

weighting. 

The critical analysis section begins by generating a set 

of designs aiming to optimize the desired specifications, 

which serve as the objectives. These objectives include DC 

voltage gain, unity-gain bandwidth (UGBW), phase 

margin, common-mode rejection ratio (CMRR), total 

harmonic distortion (THD), output voltage swing, slew 

rate (SR), and power dissipation. Additionally, the stability 

of each solution is assessed through pole-zero analysis. 

The design variables governing the solutions encompass 

capacitor capacitance, transistor dimensions, the number 

of parallel transistors, and bias voltages. The designer 

selects the initial population size, the number of 

subproblems, the maximum iteration limit to conclude 

the algorithm, and values associated with critical analysis 
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parameters. In the multi-objective optimization 

algorithm, the goals involve the simultaneous 

minimization of THD and power consumption, while 

maximizing other specified objectives. It should be noted 

that as illustrated in Fig. 3, design parameters often trade 

off against each other, turning the design process into a 

multi-dimensional optimization. Successfully navigating 

these challenges requires a combination of intuition and 

experience to reach an acceptable compromise [22]. It 

seems that having too many objectives in an optimization 

problem hinders a multi-objective algorithm’s ability to 

improve them simultaneously, especially if they all are 

correlated. Therefore, it may be beneficial to remove 

objectives that are of lesser importance in amplifier 

design. However, to achieve a highly effective design that 

excels in all aspects, it is crucial to consider all important 

objectives. In this particular design, parameters such as 

input resistance, output resistance, and noise were not 

included in the optimization problem to address the 

aforementioned issue. 

Linearity

Gain

Supply 
Voltage

Voltage 
Swings

Speed

Power 
Dissipation

Noise

I/O 
Impedance

 

Fig. 3: Analog design octagon [22]. 
 

In this work, the optimization procedure begins by 

using critical analysis and OCBA to identify designs that 

meet the desired specifications. Concurrently, a 

decomposition-based optimization algorithm generates 

the initial population. A comparative analysis is then 

conducted to evaluate the production yield of the 

population generated by MOEA/D against that found 

through critical analysis. Solutions identified through 

critical analysis that exhibit higher yield values than those 

in the MOEA/D production population are subsequently 

substituted. At this stage, the population formed is 

anticipated to contain more optimal solutions than the 

initial production population. This iterative substitution 

process continues until the algorithm's stopping criteria 

are met. Specifically, the stopping criterion for the critical 

analysis phase is achieved when the cumulative number 

of simulations assigned to the designs meets or exceeds 

the total computational budget. Meanwhile, the 

termination criterion for the MOEA/D algorithm is 

reached when the predefined maximum number of 

iterations, set at the algorithm's inception, is attained. 

It is important to note that if designs with yield values 

below the designer's desired threshold are replaced and 

the stop conditions are not met, these solutions will be 

redirected to the critical analysis section for reassessment 

of simulations. Through these iterations, the process 

helps generate a more optimal set of solutions in this 

phase. Conversely, if the designs produced in the 

MOEA/D section have yield values exceeding the desired 

threshold, there is no need for replacement, and the 

critical analysis step can be skipped. This approach not 

only accelerates computational speed but also improves 

production efficiency by preserving solutions generated 

in the MOEA/D stage during previous iterations. 

Simulation Results 

The proposed algorithm is tested on a two-stage class-

AB Operational Amplifier (Op-Amp) shown in Fig. 4 [23] in 

a standard 0.18µm CMOS technology with a supply 

voltage of 1.8V. For performing MC simulations and 

evaluation of circuit performance parameters, MATLAB 

R2020 and Synopsys HSPICE are used, respectively. It 

should be noted that Op-Amp proposed in [23] is a fully 

differential two-stage amplifier employing a positive 

feedback technique and split-length transistors to 

increase the DC voltage gain without affecting the UGBW, 

stability, power dissipation, and output voltage swing 

compared to the conventional two-stage Op-Amp. A 

comprehensive analysis of the Op-Amp shown in Fig. 4 is 

provided in [23]. In Fig. 4, the first stage is a folded-

cascade and the second stage is a common-source 

amplifier. Transistor pairs of M16-19 and M20-23 are used to 

build split-length transistors and by applying the output 

signal Vout + to the drain terminal of M22 and Vout − to the 

drain terminal of M18, a positive feedback loop is created. 

Fig. 5 illustrates the MATLAB-HSPICE link, which is 

employed for implementing the algorithm presented in 

this work. In this process, the user defines the design 

variables and circuit specifications in MATLAB. MATLAB 

then prepares the circuit netlist parameters and initiates 

the simulation of the circuit using HSPICE. Following the 

HSPICE circuit simulation, MATLAB scans the output file 

generated by HSPICE and extracts various metrics of the 

simulated circuit, such as SR, CMRR, and output voltage 

swing. This step involves MATLAB analyzing the 

simulation results and making adjustments to the circuit 

parameters in the subsequent iteration if the desired 

values for the output parameters are not achieved. 

Table 1 shows the desired specifications for the Op-

Amp shown in Fig. 4. The compensation capacitance, bias 

voltages, transistor dimensions, as well as parallel 

transistor count are the design variables in this work. 

According to the utilized technology file, the transistor’s 

width ranges from 0.54μm to 100μm and their length can 

range from 0.18μm to 20μm. Moreover, the 

compensation capacitance which is utilized for stability 

concerns is set to be from 0.1pF to 10pF.  
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Fig. 5: Utilized MATLAB-HSPICE link. 

 
 

In the presented work, critical analysis should be 

initiated by creating some random designs, based on the 

design specifications and design variables mentioned 

above. Next, critical analysis is used to select designs that 

comply with the design constraints. All the settings 

related to the critical analysis method are done exactly as 

the [24], [25], where n0 is set to be 5 and 5  . 

Moreover, T is determined by:  

1 aveT M sim                                                              (6) 

where avesim represents the average budget for each 

candidate and M1 denotes the number of critical 

solutions, which are set to be 50 and 100, respectively. 

In the next step, random solutions are generated by 

the MOEA/D algorithm. Then, the necessary simulations 

are performed to evaluate the desired goals. The number 

of MOEA/D population is equal to 100 and also the 

maximum number of iterations to reach appropriate 

goals is equal to 100. Alternative critical analysis solutions 

with a yield value higher than 90% are substituted for 

solutions with yield values less than 90% in the set of the 

current MOEA/D population. If the set of solutions 

generated in the critical analysis section does not have a 

sufficient number of solutions with a yield value greater 

than the designer's desired value, solutions with a yield 

value greater than the solutions generated by the 

MOEA/D algorithm are replaced. At the end, the stop 

condition is checked and if the stop condition is not 

satisfied, the cycle of production and replacement of 

solutions will continue. 

As mentioned above, after the replacement of the 

design produced in the MOEA/D section with a yield value 

of less than 90%, if the stop conditions are not met, this 

set of solutions will be sent to the critical analysis section 

Table 1: Desired specifications of the two-stage class AB-OP-

Amp 

 

Specifications Desired value 

DC Voltage Gain (dB) 80≤ 

Phase Margin (deg) 60°≤ PM≤ 80° 

Power Dissipation (mW) ≤ 10 

Slew Rate (V/µs) 600  ≤  

Unity-Gain Bandwidth (MHz) 300  ≤  

Common Mode Rejection Ratio (dB) 90  ≤  

Power Supply Rejection Ratio (dB) 60  ≤  

Output Voltage Swing (V) 2.5  ≤  

Bandwidth (KHz) 1  ≤  

Total Harmonic Distortion (dB) ≤ -30 

Pole-Zero Analyze 
Pole: Z=a+bj, 

Re(Z) < 0 
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to reassign simulations to these designs. It is obvious that 

if the solutions created in the MOEA/D section have a 

yield value greater than the desired yield value by the 

designer, there is no need to replace the solutions. At this 

condition, the critical analysis step is removed at the next 

iteration. By replacing the selected solutions between 

two steps, the calculation speed and the yield value 

calculation accuracy will be increased.  

Obtained from a presented algorithm, the values of 

the passive components, bias voltages, and transistors 

dimensions used in the two-stage class-AB Op-Amp can 

be found in Table 2.  

Moreover, Table 3 provides the simulation results for 

the DC gain, UGBW, phase margin, power dissipation, 

output voltage swing, CMRR, Power Supply Rejection 

Ratio (PSRR), amplifier Bandwidth (BW), THD, and SR of 

the designed two-stage class-AB Op-Amp in different 

process and temperature corners. As stated in Table 3, 

the simulation results for the two-stage class-AB Op-Amp 

 

indicate the following values: DC gain of 109.81dB, UGBW 

of 403.37MHz, phase margin of 62.49°, power dissipation 

of 7.94mW, output voltage swing of 3.4V, CMRR of 

148.56dB, PSRR of 61.41dB, BW of 1.26 kHz, THD of -

42.14dB, and SR of 667.93 V/μs. Fig. 6 illustrates the open-

loop frequency responses of the two-stage class AB Op-

Amp that has been designed using the values specified in 

Table 2. It's crucial to emphasize that the simulation 

results illustrated in Table 3 align with the expected 

outcomes. Additionally, Fig. 7, Fig. 8, and Fig. 9 show the 

plots for CMRR, PSRR, and output voltage swing of the 

designed Op-Amp, respectively. According to Fig. 10(a), 

the designed two-stage class-AB Op-Amp is utilized as a 

unity gain capacitor buffer to measure its slew rate [23], 

[26]. In this configuration, a square wave with 1Vpp 

amplitude and a frequency of 5 MHz was applied to the 

circuit, and the result is given in Fig. 10(b). The measured 

slew rate value of the two-stage class-AB Op-Amp is 

667.93 V/μs. 

 

Table 2: One solution of a two-stage class-AB Op-Amp (Fig. 4) based on transistor dimensions and passive components 

 

Parameter Value Parameter Value 

1,2( / )W L
 

2 22.92 / 0.18m m   38,39( / )W L
 

1 20.25 / 0.18m m   

3,4( / )W L
 

3 25.17 / 0.18m m   40,41( / )W L
 

1 20.88 / 0.18m m   

5,6( / )W L
 

1 35.68 / 0.18m m   sC
 

1.05pF  

7,8( / )W L
 

4 44.44 / 0.18m m   LC
 

1pF  

9,10( / )W L
 

2 90.5 / 0.18m m   aC
 

1pF  

11,12( / )W L
 

4 43.51 / 0.36m m   1,2,3,4C
 

1.5 pF  

13,14( / )W L
 

1 59.01 / 0.36m m   1,2,3,4R
 

20K  

15( / )W L
 

5 29.4 / 0.18m m   1V
 

0.6V  

16,17,20,21( / )W L
 

1 2 / 0.18m m   2V
 

1V  

18,19,22,23( / )W L
 

1 2.58 / 0.18m m   3V
 

0.77V  

24( / )W L
 

1 40.5 / 0.18m m   4V
 

1.2V  

25,26( / )W L
 

1 22.03 / 0.18m m   5V
 

0.685V  

27,28( / )W L
 

1 38.11 / 0.18m m   6V
 

1.14V  

29,30( / )W L
 

2 10.43 / 0.18m m   7V
 

0.276V  

31,32( / )W L
 

1 19.6 / 0.18m m   8V
 

1.2V  

33( / )W L
 

1 44.2 / 0.18m m   9V
 

0.5V  

34,35( / )W L
 

1 19.7 / 0.18m m   10V
 

0.59V  

36,37( / )W L
 

1 4.37 / 0.18m m     

 

 

 

 

 

 

 

 

 



 A Fast and Accurate Yield Optimization Method for Designing Operational Amplifier Using Multi-Objective …  

J. Electr. Comput. Eng. Innovations, 13(1): 43-56, 2025                                                                             51 

 

 

Specifications temperature corners 

TT (27oC) FF (-40oC) SS (90oC) 

DC-Gain (dB) 109.81 87 96.4 

Phase Margin (  ) 62.49 61.14 62.11 

Power Dissipation (mW) 7.94 9.1 7.34 

Slew Rate (V/µs) 667.93 843.87 575.1 

UGBW (MHz) 403.37 511.6 321.65 

CMRR (dB) 148.56 127.1 136.89 

Output Swing (V) 3.4 3.4 3.4 

THD (dB) -42.14 -40.5 -41.9 

PSRR (dB) 61.41 59.7 60 

BW (KHz) 1.26 1.07 1.19 

 

 

  

(a) (b) 

Fig. 6: Frequency response of the two-stage class-AB Op-Amp: a) magnitude, b) phase. 
 

 

Fig. 7: CMRR behavior of the simulated two-stage class-AB Op-
Amp. 

 
 

 

Fig. 8: PSRR behavior of the simulated two-stage class-AB Op-
Amp. 

 

 

Table 3: Specifications of the two-stage class-AB Op-Amp 
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Fig. 9: Output Swing of the two-stage class-AB Op-Amp. 

 
 

(a) (b) 

Fig. 10: (a) Circuit schematic of a unity gain capacitive buffer [23], [26], (b) Op-amps large signal step responses. 

  

(a) (b) 

Fig. 11: (a) Circuit schematic of designed flip-around sample-and-hold [27], [28], (b) FFT plot of the output of the designed 

sample-and-hold. 

Moreover, the designed two-stage class-AB Op-Amp in 

this work is used in a switched-capacitor flip-around 

sample-and-hold (SH) circuit shown in Fig. 11(a) [27], [28] 

to study its linearity in a closed-loop configuration. Fig. 

11(b) depicts the circuit-level simulation outcome of the 

output voltage spectrum, showcasing the large signal 

transient response of the circuit to a 1Vpp input step 

voltage with two non-overlapping clocks at a frequency of 

3.125MHz. According to the performed simulations, the 

output spectrum of the SHA shows a THD of -42.14dB. 

The stability of the designed two-stage class-AB Op-

Amp is thoroughly examined and verified through the 

implementation of Pole-Zero analysis, a powerful 

technique used to assess the system's stability 

characteristics. By analyzing the Pole-Zero plot, which is 

visually depicted in Fig. 12, valuable insight into the 

location and behavior of the poles and zeros of the Op-

Amp's transfer function has been gained. This 

comprehensive analysis ensures that the Op-Amp 

operates within stable and desirable parameters, 

guaranteeing reliable and accurate performance in 

various applications. 

To attain a more precise yield simulation, this study 

conducted the MC simulation with 2000 replications, as 

indicated by the values presented in Table 2. Fig. 13(a) 

shows a histogram of yields. According to Fig. 13(a), the 
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mean value for yield is 99.72%, with a standard deviation 

of 0.03%. In Fig. 13(b), a histogram of yields for the classic 

MOEA/D algorithm is depicted. According to Fig. 13(b), 

the mean value for yield is 89.95%, with a standard 

deviation of 0.03%. By comparing the two Figs, it is 

evident that in the proposed method, which combines 

critical analysis and MOEA/D, not only higher accuracy is 

achieved but also the issue of objective aggregation 

present in classic MOEA/D [14], [20] has been addressed. 

To assess the effectiveness of the proposed method, 

the CSNM [6], Freeze-Thaw Bayesian optimization [30], 

and Mirzaei [7] algorithms were evaluated on the circuit 

shown in Fig. 4. To have a more accurate comparison 

between the methods examined, all of these methods 

have been implemented by the authors and the 

simulations performed on a workstation equipped with a 

CPU: Intel Core i7-4790K @4GHz, 16GB RAM, and a 64-bit 

operating system with an x64-based processor. The 

improved MOEA/D algorithm used in the proposed 

approach demonstrated faster performance compared to 

the other three algorithms, as shown in Table 4. 

Additionally, the proposed approach required fewer 

computational steps compared to the other three 

methods.  

 

Based on these findings, it can be concluded that when 

combined with critical analysis, the proposed method can 

decrease the number of simulations needed for solutions 

with minimal effects on yield. Furthermore, replacing 

critical analysis with MOEA/D solutions can significantly 

enhance efficiency and reduce simulation time. However, 

it is worth noting that the CSNM, which utilizes OCBA, 

critical analysis, and two evolutionary algorithms, 

achieved a higher yield value compared to the proposed 

approach. So, the proposed approach, compared to three 

other existing methods, demonstrates lower complexity, 

fewer steps, and reduced computational time. 

In Fig. 14, two diagrams related to the Pareto-front 

evaluation of the generated solutions (phase margin 

versus voltage gain, and UGBW versus voltage gain) are 

reported.  As shown in Fig. 14(a) and according to Table 1, 

a voltage gain value greater than 80 dB and a phase 

margin range between 60 to 80 degrees are obtained. 

Also, the simulation results for the plot of UGBW versus 

voltage gain also comply with the conditions stated in 

Table 1. It should be noted that based on what is 

observable in Fig. 14, the simulation results show more 

scattering in regions with a voltage gain of around 110 dB, 

a phase margin of 63 degrees, and an UGBW of 400 MHz. 

 

Computer Run time (h) Mean Worst Best Technique 

CPU Intel 

Core i7-

4790K 

@4GHz with 

16GB RAM 

19 99.23 99.13 99.24 Freeze–Thaw Bayesian [30] 

20 99.87 98.77 99.97 CSNM [6] 

22 99.01 98.91 99.11 Mirzaei method [7] 

16 99.72 99.62 99.82 Proposed Method 

  

 

Fig. 12: Pole-Zero plot of the designed Op-Amp. 
 

   Table 4: Yield simulation results and the run time for different techniques applying to the two-stage class-AB Op-Amp of Fig. 4 
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(a) (b) 

Fig. 13: The yield histogram for the MC simulation with 2000 iterations of the utilized Op-Amp, (a) Propose approach, (b) Classic 

MOEA/D. 

 

  

(a) (b) 

Fig. 14: Pareto front of the generated solutions, (a) DC gain versus Phase Margin, (b) DC gain versus UGBS. 

Conclusion 

In this paper, an enhanced approach for MOEA/D 

based on Decomposition, utilizing critical analysis is 

presented to enhance the computational speed and 

accuracy of yield calculation in analog circuit 

optimization. The critical analysis generates initial designs 

with desired characteristics. Subsequently, designs 

surpassing a predefined yield threshold are replaced with 

the initial population having lower yield values, which is 

generated using the classical MOEA/D. This approach 

significantly improves yield efficiency and computational 

speed compared to other MC-based methods. The 

simulation results for a two-stage class-AB Op-Amp in 180 

nm CMOS technology demonstrate a yield value of 

99.72%. This computational approach stands out as a 

high-speed and high-accuracy technique, employing only 

one evolutionary algorithm. Furthermore, by modifying 

the initial population, improvements in both the 

convergence speed and yield value of the evolutionary 

algorithm have been observed. The efficiency of the 

proposed technique is validated through extensive 

simulation results. 
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Abbreviations  

MC Monte Carlo 

RSB response-surface-based 

PSWCD performance-specific worst-case 

design 

LHS Latin hypercube sampling 

QMC Gaussian Monte Carlo simulation 



 A Fast and Accurate Yield Optimization Method for Designing Operational Amplifier Using Multi-Objective …  

J. Electr. Comput. Eng. Innovations, 13(1): 43-56, 2025                                                                             55 

MOEA/D Multi-Objective Evolutionary 

Algorithm based on Decomposition 

OCBA optimal computing budget 

allocation 

MOO Multi-Objective Optimization 

MOEA multi-objective evolutionary 

algorithm 

CA Critical Analysis 

UGBW unity-gain bandwidth 

CMRR common-mode rejection ratio 

THD total harmonic distortion 

SR slew rate 

PSRR Power Supply Rejection Ratio 

BW Bandwidth 

References 

[1] E. D. Sandru, E. David, I. Kovacs, A. Buzo, C. Burileanu, G. Pelz, 
“Modeling the dependency of analog circuit performance 
parameters on manufacturing process variations with applications 
in sensitivity analysis and yield prediction,” IEEE Trans. Comput.-
aided Des. Integr. Circuits Syst., 41(1): 129-142, 2022. 

[2] N. Mirzaie, H. Shamsi, G. S. Byun, “Automatic design and yield 
enhancement of data converters,” J. Circuits Syst. Comput., 
26(01): 1750018, 2017. 

[3] S. Kondamadugula, S. R. Naidu, “Parameter-importance based 
Monte-Carlo technique for variation-aware analog yield 
optimization,” in Proc. the 26th edition on Great Lakes Symposium 
on VLSI, 2016. 

[4] M. Fakhfakh, E. Tlelo-Cuautle, Computational intelligence in 
analog and mixed-signal (AMS) and radio-frequency (RF) circuit 
design. Springer International Publishing, 2015. 

[5] N. Mirzaie, H. Shamsi, G. S. Byun, “Yield-aware sizing of pipeline 
ADC using a multiple-objective evolutionary algorithm: Yield-
aware sizing of pipeline ADC,” Int. J. Circuit Theory Appl., 45(6): 
744-763, 2017. 

[6] A. Yaseri, M. H. Maghami, M. Radmehr, “A four‐stage yield 
optimization technique for analog integrated circuits using optimal 
computing budget allocation and evolutionary algorithms,” IET 
Comput. Digit. Tech., 2022. 

[7] N. Mirzaie, G. S. Byun, “An optimal design methodology for yield-
improved and low-power pipelined ADC,” IEEE Trans. Semicond. 
Manuf., 31(1): 130-135, 2018. 

[8] A. Canelas et al., “Hierarchical yield-aware synthesis methodology 
covering device-, circuit-, and system-level for radiofrequency 
ICs,” IEEE Access, 9: 124152-124164, 2021. 

[9] A. Canelas, R. Povoa, R. Martins, “FUZYE: A fuzzy c -means analog 
IC yield optimization using evolutionary-based algorithms,” IEEE 
Trans. Comput. Aided Des. Integr. Circuits Syst., 39(1): 1-13, 2020. 

[10] G. İslamoğlu, T. O. Çakıcı, Ş. N. Güzelhan, E. Afacan, G. Dündar, 
“Deep learning aided efficient yield analysis for multi-objective 
analog integrated circuit synthesis,” Integration, 81: 322-330, 
2021. 

[11] M. Stein, “Large sample properties of simulations using Latin 
hypercube sampling,” Technometrics, 29(2): 143, 1987. 

[12] M. Pak, F. V. Fernandez, G. Dundar, “Comparison of QMC-based 
yield-aware pareto front techniques for multi-objective robust 
analog synthesis,” Integration, 55: 357-365, 2016. 

[13] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective 
optimization: NSGA-II,” in Parallel Problem Solving from Nature 
PPSN VI, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 849-
858, 2000. 

[14] E. Saǧlican, E. Afacan, “MOEA/D vs. NSGA-II: A comprehensive 
comparison for multi/many objective analog/RF circuit 
optimizations through a generic benchmark,” ACM Trans. Des. 
Automat. Electron. Syst., 29(1): 1-23, 2024. 

[15] Q. Xu, Z. Xu, T. Ma, “A survey of multiobjective evolutionary 
algorithms based on decomposition: Variants, challenges and 
future directions,” IEEE Access, 8: 41588-41614, 2020. 

[16] D. Q. Mayne, “Yu-chi ho, Qian-Chuan Zhao and Qing-Shan Jia: 
Ordinal optimization: Soft optimization for hard problems: 
Springer, 2007,” J. Optim. Theory Appl., 145(3): 613-615, 2010. 

[17] K. Deb, Multi-Objective Optimization using Evolutionary 
Algorithms. Chichester, England: John Wiley & Sons, 2014. 

[18] C. H. Chen, J. Lin, E. Yücesan, S. E. Chick, “Simulation budget 
allocation for further enhancing the efficiency of ordinal 
optimization,” Discrete Event Dyn. Syst., 10(3): 251-270, 2000. 

[19] I. Guerra-Gomez, E. Tlelo-Cuautle, L. G. de la Fraga, “OCBA in the 
yield optimization of analog integrated circuits by evolutionary 
algorithms,” in Proc. 2015 IEEE International Symposium on 
Circuits and Systems (ISCAS), 2015. 

[20] N. Srinath, I. O. Yilmazlar, M. E. Kurz, K. Taaffe, “Hybrid multi-
objective evolutionary meta-heuristics for a parallel machine 
scheduling problem with setup times and preferences,” Comput. 
Ind. Eng., 185: 109675, 2023. 

[21] M. Nohtanipour, M. H. Maghami, M. Radmehr “A placement and 
routing method for layout generation of CMOS operational 
amplifiers using multi-objective evolutionary algorithm based on 
decomposition,” Inf. MIDEM, 51(3), 2021. 

[22] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed. New 
York, NY: McGraw-Hill Professional, 2016. 

[23] S. M. Anisheh, H. Shamsi, M. Mirhassani, “Positive feedback 
technique and split‐length transistors for DC‐gain enhancement of 
two‐stage op‐amps,” IET Circuits Devices Syst., 11(6): 605-612, 
2017. 

[24] C. H. Chen, L. H. Lee, Stochastic Simulation Optimization: 
Stochastic Simulation Optimization: An Optimal Computing Budget 
allocation. World Scientific Publishing, 2010. 

[25] B. Liu, F. V. Fernandez, G. G. E. Gielen, “Efficient and accurate 
statistical analog yield optimization and variation-aware circuit 
sizing based on computational intelligence techniques,” IEEE 
Trans. Comput.-aided Des. Integr. Circuits Syst., 30(6): 793-805, 
2011. 

[26] R. Assaad, J. Silva-Martinez, “Enhancing general performance of 
folded cascode amplifier by recycling current,” Electron. Lett., 
43(23): 1243, 2007. 

[27] S. M. Anisheh, H. Shamsi, “Placement and routing method for 
analogue layout generation using modified cuckoo optimization 
algorithm,” IET Circuits Devices Syst., 12(5): 532-541, 2018. 

[28] P. Gray, R. G. Meyer, P. J. Hurst, S. Lewis, Analysis and design of 
analog integrated circuits, 6th ed. Brisbane, QLD, Australia: John 
Wiley and Sons (WIE), 2024.  

[29] E. R. Ziegel, W. Winston, “Simulation modeling using 
@risk,” Technometrics, 39(3): 345, 1997. 

[30] X. Wang et al., “Analog circuit yield optimization via freeze–thaw 
Bayesian optimization technique,” IEEE Trans. Comput.-aided Des. 
Integr. Circuits Syst., 41(11): 4887-4900, 2022. 

https://ieeexplore.ieee.org/document/9336035
https://ieeexplore.ieee.org/document/9336035
https://ieeexplore.ieee.org/document/9336035
https://ieeexplore.ieee.org/document/9336035
https://ieeexplore.ieee.org/document/9336035
https://www.worldscientific.com/doi/10.1142/S0218126617500189?srsltid=AfmBOorI3bu_-NUJwQ30s5TWXD50xDAvj2PuDBqetRX8u_mYnMK8zmzK
https://www.worldscientific.com/doi/10.1142/S0218126617500189?srsltid=AfmBOorI3bu_-NUJwQ30s5TWXD50xDAvj2PuDBqetRX8u_mYnMK8zmzK
https://www.worldscientific.com/doi/10.1142/S0218126617500189?srsltid=AfmBOorI3bu_-NUJwQ30s5TWXD50xDAvj2PuDBqetRX8u_mYnMK8zmzK
https://dl.acm.org/doi/10.1145/2902961.2903018
https://dl.acm.org/doi/10.1145/2902961.2903018
https://dl.acm.org/doi/10.1145/2902961.2903018
https://dl.acm.org/doi/10.1145/2902961.2903018
https://link.springer.com/book/10.1007/978-3-319-19872-9
https://link.springer.com/book/10.1007/978-3-319-19872-9
https://link.springer.com/book/10.1007/978-3-319-19872-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2279
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2279
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2279
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.2279
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cdt2.12048
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cdt2.12048
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cdt2.12048
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cdt2.12048
https://ieeexplore.ieee.org/document/8107589
https://ieeexplore.ieee.org/document/8107589
https://ieeexplore.ieee.org/document/8107589
https://ieeexplore.ieee.org/document/9530507
https://ieeexplore.ieee.org/document/9530507
https://ieeexplore.ieee.org/document/9530507
https://ieeexplore.ieee.org/document/8552427
https://ieeexplore.ieee.org/document/8552427
https://ieeexplore.ieee.org/document/8552427
https://www.sciencedirect.com/science/article/abs/pii/S0167926021000912
https://www.sciencedirect.com/science/article/abs/pii/S0167926021000912
https://www.sciencedirect.com/science/article/abs/pii/S0167926021000912
https://www.sciencedirect.com/science/article/abs/pii/S0167926021000912
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1080/00401706.1987.10488205
https://doi.org/10.1016/j.vlsi.2016.04.004
https://doi.org/10.1016/j.vlsi.2016.04.004
https://doi.org/10.1016/j.vlsi.2016.04.004
https://link.springer.com/chapter/10.1007/3-540-45356-3_83
https://link.springer.com/chapter/10.1007/3-540-45356-3_83
https://link.springer.com/chapter/10.1007/3-540-45356-3_83
https://link.springer.com/chapter/10.1007/3-540-45356-3_83
https://link.springer.com/chapter/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1145/3626096
http://dx.doi.org/10.1145/3626096
http://dx.doi.org/10.1145/3626096
http://dx.doi.org/10.1145/3626096
https://ieeexplore.ieee.org/document/8998284
https://ieeexplore.ieee.org/document/8998284
https://ieeexplore.ieee.org/document/8998284
https://ieeexplore.ieee.org/document/8998284
https://www.proquest.com/docview/196596166?sourcetype=Scholarly%20Journals
https://www.proquest.com/docview/196596166?sourcetype=Scholarly%20Journals
https://www.proquest.com/docview/196596166?sourcetype=Scholarly%20Journals
https://www.proquest.com/docview/196596166?sourcetype=Scholarly%20Journals
https://www.wiley.com/en-us/Multi-Objective+Optimization+using+Evolutionary+Algorithms-p-9780471873396
https://www.wiley.com/en-us/Multi-Objective+Optimization+using+Evolutionary+Algorithms-p-9780471873396
https://link.springer.com/article/10.1023/A:1008349927281
https://link.springer.com/article/10.1023/A:1008349927281
https://link.springer.com/article/10.1023/A:1008349927281
https://ieeexplore.ieee.org/document/7169051
https://ieeexplore.ieee.org/document/7169051
https://ieeexplore.ieee.org/document/7169051
https://ieeexplore.ieee.org/document/7169051
https://www.sciencedirect.com/science/article/abs/pii/S036083522300699X
https://www.sciencedirect.com/science/article/abs/pii/S036083522300699X
https://www.sciencedirect.com/science/article/abs/pii/S036083522300699X
https://www.sciencedirect.com/science/article/abs/pii/S036083522300699X
https://ojs.midem-drustvo.si/index.php/InfMIDEM/article/view/181
https://ojs.midem-drustvo.si/index.php/InfMIDEM/article/view/181
https://ojs.midem-drustvo.si/index.php/InfMIDEM/article/view/181
https://ojs.midem-drustvo.si/index.php/InfMIDEM/article/view/181
https://dl.acm.org/doi/10.5555/1594009
https://dl.acm.org/doi/10.5555/1594009
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2016.0416
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2016.0416
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2016.0416
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2016.0416
https://www.researchgate.net/publication/344473829_Stochastic_Simulation_Optimization_An_Optimal_Computing_Budget_Allocation
https://www.researchgate.net/publication/344473829_Stochastic_Simulation_Optimization_An_Optimal_Computing_Budget_Allocation
https://www.researchgate.net/publication/344473829_Stochastic_Simulation_Optimization_An_Optimal_Computing_Budget_Allocation
https://ieeexplore.ieee.org/document/5768139
https://ieeexplore.ieee.org/document/5768139
https://ieeexplore.ieee.org/document/5768139
https://ieeexplore.ieee.org/document/5768139
https://ieeexplore.ieee.org/document/5768139
https://digital-library.theiet.org/content/journals/10.1049/el_20072031
https://digital-library.theiet.org/content/journals/10.1049/el_20072031
https://digital-library.theiet.org/content/journals/10.1049/el_20072031
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2017.0111
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2017.0111
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-cds.2017.0111
https://www.wiley.com/en-ae/Analysis+and+Design+of+Analog+Integrated+Circuits%2C+6th+Edition-p-9781394220069
https://www.wiley.com/en-ae/Analysis+and+Design+of+Analog+Integrated+Circuits%2C+6th+Edition-p-9781394220069
https://www.wiley.com/en-ae/Analysis+and+Design+of+Analog+Integrated+Circuits%2C+6th+Edition-p-9781394220069
https://www.jstor.org/stable/1271163?origin=crossref
https://www.jstor.org/stable/1271163?origin=crossref
https://ieeexplore.ieee.org/document/9706275
https://ieeexplore.ieee.org/document/9706275
https://ieeexplore.ieee.org/document/9706275


A. Yaseri et al. 

56  J. Electr. Comput. Eng. Innovations, 13(1): 43-56, 2025 

 

Biographies 

Abbas Yaseri was born in 1979 and received the 
B.Sc. and M.Sc. degrees in Electrical Engineering 
from University of Mazandaran. He is a 
specializing in electronics, artificial intelligence 
and computer vision. He has joined the Hadaf 
Higher Education since 2009. 

 

 Email: abbas.yaseri@gmail.com 

 ORCID: 0000-0001-9136-4122 

 Web of Science Researcher ID: NA 

 Scopus Author ID: NA 

 Homepage: NA  

Mohammad Hossein Maghami was born in 
Mashhad, Iran, in 1984. He received the B.Sc. 
degree from Ferdowsi University of Mashhad, 
Mashhad, Iran, in 2006, the M.Sc. degree from 
Amirkabir University of Technology, Tehran, Iran, 
in 2009, and the Ph.D. degree from K. N. Toosi 
University of Technology, Tehran, Iran, in 2015, all 
in Electrical Engineering. He carried out part of his 
Ph.D. research work at Polytechnique Montreal as 

a visiting research scholar. Since September 2016 he is with Shahid 
Rajaee Teacher Training University, Tehran, Iran, as an Assistant 

Professor. His main areas of interests are implantable biomedical 
microsystems, high-speed low-power A/D converters, and mixed-mode 
integrated circuits. 

 Email: mhmaghami@sru.ac.ir   

 ORCID: 0000-0002-7932-9161 

 Web of Science Researcher ID: NA 

 Scopus Author ID: NA 

 Homepage: https://www.sru.ac.ir/en/faculty/school-of-electrical-
engineering/mohammad-hossein-maghami/  

Mehdi Radmehr was born in 1974 and received 
the B.Sc., M.Sc., and PhD degrees in Electrical 
Engineering from University of Tehran, Tarbiat 
Modares, and Islamic Azad University, Science and 
Research campus, Tehran, Iran, in 1996, 1998, and 
2006 respectively. He is a specializing in power 
electronics, motor drives and power quality. He 
has worked for Mazandaran Wood and Paper 
Industries as an advisor since 1997 before starting 

his Ph.D. study. He has joined the scientific staff of Islamic Azad 
University, Sari branch since 1998. 

 Email: maradmehr@gmail.com 

 ORCID: 0000-0003-1678-9758 

 Web of Science Researcher ID: NA 

 Scopus Author ID: NA 

 Homepage: NA 

 

How to cite this paper: 
A. Yaseri, M. H. Maghami, M. Radmehr, “A fast and accurate yield optimization method for 
designing operational amplifier using multi-objective evolutionary algorithm based on 
decomposition,” J. Electr. Comput. Eng. Innovations, 13(1): 43-56, 2025. 

DOI: 10.22061/jecei.2024.10814.737 

URL: https://jecei.sru.ac.ir/article_2195.html  

 

mailto:abbas.yaseri@gmail.com
mailto:mhmaghami@sru.ac.ir
https://orcid.org/0000-0002-7932-9161
https://www.sru.ac.ir/en/faculty/school-of-electrical-engineering/mohammad-hossein-maghami/
https://www.sru.ac.ir/en/faculty/school-of-electrical-engineering/mohammad-hossein-maghami/
mailto:maradmehr@gmail.com
https://orcid.org/0000-0003-1678-9758
http://www.dr-radmehr.com/
https://jecei.sru.ac.ir/article_2195.html

