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Background and Objectives: To overcome the disadvantages of the traditional 
two-level inverters, especially in electric drive applications, multi-level inverters 
(MLIs) are the widely accepted solution. Diode-Clamped Inverters (DCIs) are a well-
known structure of multi-level inverters. In DCIs, the voltage balance of the DC-
link capacitors and the Common Mode (CM) voltage reduction are two important 
criteria that should be considered.  
Methods: This paper concentrates on the current control of 3-phase 4-level DCI 
with finite control set model predictive control (MPC) strategy. Current tracking 
performance, DC-link capacitor voltage balance, switching frequency 
minimization, and CM voltage control have been considered in the objective 
function of the MPC. Moreover, the multistep prediction method has been applied 
to improve the performance of the DCI.  
Results: The effectiveness of the proposed multistep prediction control for the 4-
level DCI has been evaluated with different horizon lengths. Moreover, the effect 
of several values of weighting factors has been studied on the system behavior.  
Conclusion: Results validate the accuracy of current tracking and voltage balancing 
in the suggested multistep MPC for the 4-level DCI. In addition, CM voltage control 
and switching frequency reduction can be included in the predictive control. 
Decreasing the CM voltage and switching frequency will oppositely affect the 
dynamic behavior and voltage balancing of the DCI. Therefore, selection of 
weighting factors depends on the system needs and requirements. 
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Introduction 

Nowadays, multilevel converters (MLCs) are widely 

utilized in medium- and high-voltage applications for 

generating high-quality voltage and current [1], [2]. In 

comparison with the conventional two-level converter, 

MLCs can operate at higher voltage ratings for the same 

switching frequency and with lower dv/dt. 

Therefore, MLCs are used in high-power drives [3], 

active filters [4], electric transportation systems [5]-[7], 

and other industrial applications such as fans, blowers, 

and pumps. 

Three well-known topologies of multi-level inverters 

(MLIs) are the diode-clamped inverter (DCI), flying 

capacitor inverter [8], and cascaded H-bridge 

inverter [9]-[11]. Diode-clamped inverters offer high 

efficiency, low number of capacitors, and low stress on 

power electronic switches. Therefore, they are popular in 

various industrial applications. This paper concentrates 

on the 4-level diode-clamped inverter.  

Traditional control approaches for producing the 

switching pulses of the DCI are the linear control [12] and 

the space vector modulation [13], [14]. Also, modulation 

techniques have also been presented in low frequency 

applications for reducing the common mode (CM) 

voltage, decreasing the output THD of the inverter and 
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harmonics elimination, and reducing the switching 

frequency of the inverter [15]-[17]. 

In recent years, new control approaches have been 

studied to control the power and current of inverters. 

Among them is the Model Predictive Control 

(MPC) [18]-[20]. The MPC offers desirable advantages 

such as fast response dynamics and compatibility with the 

system nonlinearity and various restrictions [21]-[28]. The 

MPC uses the mathematical model of the system to 

predict the system’s behavior in future horizons. A cost 

function is defined according to the desired behavior of 

the system. In fact, the MPC is an optimization method 

that obtains the optimal switching state of the inverter by 

minimizing the cost function. Finally, the best switching 

state is applied to the inverter.  

Since all calculations are repeated in each sampling 

period, for a large number of switching states, the 

computation burden is high. In the practical applications 

of the MPC for the MLIs, it is important to reduce the 

number of switching states. Recently, different strategies 

have been proposed for moderating the computation 

burden in MLIs with MPC [29]-[37]. Sometimes, this issue 

is solved by using the offline method. For this purpose, all 

possible states of the system are calculated offline. 

Accordingly, a look-up table is prepared and given as input 

to the system so that they can be used in each interval 

instead of many calculations [38], [39]. 

The MPC of DCI has been investigated in the literature 

for different applications [40]-[47]. However, the 

research in this field has not yet been completed. In [41], 

the MPC of 4-level DCI has been investigated for wind 

turbine systems. Different criteria have been included in 

the objective function of MPC such as switching states 

and CM voltage. In this work, the prediction has been only 

carried out with a horizon of N=2. Moreover, the effect of 

different weighting factors has not been studied in this 

work. The MPC for grid-connected 4-level DCI has been 

evaluated in [44]. Active and reactive power, capacitor 

voltage balancing, and switching frequency have been 

considered in the objective function. The delay-

compensation method has been applied. But the CM 

voltage has not been minimized. Furthermore, multi-step 

prediction has not been utilized in the control scheme. 

In [44], the MPC of 4-level DCI has been investigated for 

wind energy systems. The capacitor voltage balancing and 

the number of switching states have been included in the 

objective function of MPC. However, the CM voltage has 

not been considered. In addition, the MPC of a 4-level DCI 

has been performed with a prediction horizon of N=1. 

In [47], a simplified MPC has been proposed for 4-level 

DCIs. The suggested method yields lower computational 

burden and total harmonic distortion (THD) in compare to 

the traditional MPC. However, only the current tracking 

and capacitor voltage balancing have been included in the 

objective function of the proposed MPC. In addition, the 

prediction has been only carried out with a horizon of 

N=1. This paper proposes a multistep MPC strategy for 

the current control of the 3-phase 4-level DCI, considering 

different cost functions. Current control, DC-link capacitor 

voltage balance, switching frequency minimization, and 

CM voltage control have been considered in the 

prediction method. The delay compensation with the 

multistep prediction method has been applied to improve 

the performance of DCI. The main contributions of this 

paper are as follows: 

 Presenting a multistep predictive current control for 

the 3-phase 4-level DCI 

 Evaluating several horizon lengths in multistep 

prediction control of the 4-level DCI 

 Including various objectives in the predictive 

controller such as current tracking, DC-link voltage 

balance, reduction of the CM voltage, and 

decreasing the switching frequency 

 Evaluating the effect of different values of weighting 

factors on the system performance 

Mathematical Model of 4-Level DCI 

Fig. 1 illustrates the topology of the three-phase 4-

level DCI. Eighteen IGBT switches with anti-parallel 

diodes, eighteen clamping diodes, and three capacitors 

are used to generate four voltage levels. The switches are 

placed in up and down groups and receive 

complementary firing pulses. A 4-level DCI has 43=64 

switching states. Table 1 shows all feasible switching 

conditions of the single-phase 4-level DCI and the related 

voltage level.  

According to Table 1, the DCI voltages can be written 

as [43], [44]: 

       (1) 

𝑣𝑎𝑂 = 𝑣𝐶1. 𝑆𝑎1 + 𝑣𝐶2. 𝑆𝑎2 + 𝑣𝐶3. 𝑆𝑎3 

𝑣𝑏𝑂 = 𝑣𝐶1. 𝑆𝑏1 + 𝑣𝐶2. 𝑆𝑏2 + 𝑣𝐶3 . 𝑆𝑏3 

𝑣𝑐𝑂 = 𝑣𝐶1. 𝑆𝑐1 + 𝑣𝐶2. 𝑆𝑐2 + 𝑣𝐶3. 𝑆𝑐3 

where vcj is the voltage of j-th capacitor (𝑗 ∈ {1,2,3}). Sxy 

is the switching state of the y-th IGBT (𝑦 ∈ {1,2,3}) in 

phase x (𝑥 ∈ {𝑎, 𝑏, 𝑐}) of the DCI (as shown in Fig. 1). In 

the 4-level DCI, the CM voltage can be calculated as [41]: 

        (2) 𝑣𝑛𝑂 = 𝑣𝐶𝑀 =
𝑣𝑎𝑂 + 𝑣𝑏𝑂 + 𝑣𝑐𝑂

3
 

where O is the negative DC-Link and n is the neutral point 

of the load.  

The phase voltage with respect to the load neutral can 

be written as [41]: 

(3) 

𝑣𝑎𝑛 = 𝑣𝑎𝑂 − 𝑣𝑛𝑂  

𝑣𝑏𝑛 = 𝑣𝑏𝑂 − 𝑣𝑛𝑂  

𝑣𝑐𝑛 = 𝑣𝑐𝑂 − 𝑣𝑛𝑂 
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Fig. 1:  Structure of 3-phase 4-level DCI [49].  

 

 
Table 1: Switching states of the 4-level DCI [40] 
 

Sx 
Output  

Voltage Level  

Switching Pulse 

Sx1 Sx2 Sx3 

0 0 0 0 0 

1 𝑣𝑐3 0 0 1 

2 𝑣𝑐2 + 𝑣𝑐3 0 1 1 

3 𝑣𝑐1 + 𝑣𝑐2 + 𝑣𝑐3 1 1 1 

 

The discrete-time model of the capacitor voltages can 

be written as [48]: 

(4) 𝑣𝑐1(𝑘 + 1) = 𝑣𝑐1(𝑘) +
𝑇𝑠

𝐶1

𝑖𝑐1(𝑘) 

(5) 𝑣𝑐2(𝑘 + 1) = 𝑣𝑐2(𝑘) +
𝑇𝑠

𝐶2

𝑖𝑐2(𝑘) 

(6) 𝑣𝑐3(𝑘 + 1) = 𝑣𝑐3(𝑘) +
𝑇𝑠

𝐶3

𝑖𝑐3(𝑘) 

in which 𝑣𝑐1(𝑘), 𝑣𝑐2(𝑘), and 𝑣𝑐1(𝑘) are the capacitor 

voltages. 𝑖𝑐1(𝑘), 𝑖𝑐2(𝑘), and 𝑖𝑐1(𝑘) are the capacitor 

currents and can be computed as [49]: 

(7) 

𝑖𝐶1(𝑘) = −𝑖1(𝑘) 

 𝑖𝐶2(𝑘) = −𝑖1(𝑘) − 𝑖2(𝑘) 

𝑖𝐶3(𝑘) = −𝑖1(𝑘) − 𝑖2(𝑘) − 𝑖3(𝑘) 

where 

(8) 

𝑖1(𝑘) = 𝐾𝑎1𝑖𝑎(𝑘) + 𝐾𝑏1𝑖𝑏(𝑘) + 𝐾𝑐1𝑖𝑐(𝑘) 

𝑖2(𝑘) = 𝐾𝑎2𝑖𝑎(𝑘) + 𝐾𝑏2𝑖𝑏(𝑘) + 𝐾𝑐2𝑖𝑐(𝑘) 
 

𝑖3(𝑘) = 𝐾𝑎3𝑖𝑎(𝑘) + 𝐾𝑏3𝑖𝑏(𝑘) + 𝐾𝑐3𝑖𝑐(𝑘) 

where 𝐾𝑥𝑦  (𝑥 ∈ {𝑎, 𝑏, 𝑐}, 𝑦 ∈ {1,2,3}) can be defined 

as [49]: 

        (9) 

𝐾𝑥1 =  𝑆𝑥1 𝑆𝑥2 𝑆𝑥3 

𝐾𝑥2 =  𝑆�̅�1 𝑆𝑥2 𝑆𝑥3 

𝐾𝑥3 =  𝑆�̅�1 𝑆�̅�2 𝑆𝑥3 

in which 𝑆𝑥  is defined in Table 1. 

For the resistive-inductive load, the discrete-time 

model of the DCI load current can be written as [48]: 

     (10a) 𝑖𝑎(𝑘 + 1) = (1 −
𝑅𝑇𝑠

𝐿
) 𝑖𝑎(𝑘) +

𝑇𝑠

𝐿
𝑣𝑎𝑛(𝑘) 

     

     (10b) 𝑖𝑏(𝑘 + 1) = (1 −
𝑅𝑇𝑠

𝐿
) 𝑖𝑏(𝑘) +

𝑇𝑠

𝐿
𝑣𝑏𝑛(𝑘) 

 

     (10c) 𝑖𝑐(𝑘 + 1) = (1 −
𝑅𝑇𝑠

𝐿
) 𝑖𝑐(𝑘) +

𝑇𝑠

𝐿
𝑣𝑐𝑛(𝑘) 

in which k is the sampling instant and Ts represents the 

sampling time. R and L are the load resistance and 

inductance, respectively. 𝑣𝑎𝑛(𝑘), 𝑣𝑏𝑛(𝑘), and 𝑣𝑐𝑛(𝑘) are 

the phase voltages and can be obtained from (1)-(3) using 

the measured capacitor voltages and optimal switching 

states. 

Single-Step Model Predictive Control of the 4-Level 
DCI 

Fig. 2 represents the block diagram of the MPC 

strategy for a 4-level three-phase DCI. The main aim is to 

predict the load current and capacitor voltages in the next 

sampling instant. Accordingly, all 64 switching states of 

the 4-level DCI are searched to find the optimal switching 

state that minimizes the objective function. In the single-

step MPC method and without the delay compensation, 

the predictions were made in the (k+1)-th sampling 

instant.  



P. Hamedani  

120  J. Electr. Comput. Eng. Innovations, 13(1): 117-128, 2025 

 

 
Fig. 2:  MPC of the 4-level three-phase DCI with delay compensation method [40]. 

 

In practice, the computational delay due to the 

microprocessor’s operation affects the accuracy of the 

prediction. Therefore, the delay compensation strategy is 

proposed to compensate the perdition error. In the delay 

compensation strategy, the predictions are made for the 

(k+2)-th sampling instant.  

The prediction of load currents in the (k+2)-th sampling 

instant gives [49]:  

      (11) 
𝑖𝑥(𝑘 + 2) = (1 −

𝑅𝑇𝑠

𝐿
) 𝑖𝑥(𝑘 + 1)

+
𝑇𝑠

𝐿
𝑣𝑥𝑛(𝑘 + 1) 

where 𝑥 ∈ {𝑎, 𝑏, 𝑐}. 

Furthermore, the capacitor voltages are predicted for 

the (k+2)-th sampling instant [49]:  

    (12) 

𝑣𝑐1(𝑘 + 2) = 𝑣𝑐1(𝑘 + 1) +
𝑇𝑠

𝐶1

𝑖𝑐1(𝑘 + 1) 

𝑣𝑐2(𝑘 + 2) = 𝑣𝑐2(𝑘 + 1) +
𝑇𝑠

𝐶2

𝑖𝑐2(𝑘 + 1) 

𝑣𝑐3(𝑘 + 2) = 𝑣𝑐3(𝑘 + 1) +
𝑇𝑠

𝐶3

𝑖𝑐3(𝑘 + 1) 

The overall objective function can be defined as: 

(13) 

𝑔(𝑘 + 2) = 𝑔𝑖(𝑘 + 2) + 𝜆𝑉 𝑔𝑣𝑐
(𝑘 + 2)

+ 𝜆𝑆 𝑔𝑠𝑤(𝑘 + 2)

+ 𝜆𝐶𝑀 𝑔𝐶𝑀(𝑘 + 2) 

where  𝑔𝑖,  𝑔𝑣𝑐
,  𝑔𝑠𝑤, and  𝑔𝐶𝑀 are the terms of the 

objective function to control current tracking, capacitor 

voltage balance, CM voltage, and switching frequency, 

respectively. λV, λS, and λcm are the weighting factors that 

adjust the capacitor voltages, CM voltage, and switching 

frequency, respectively. 

𝑔𝑖  and  𝑔𝑣𝑐
 can be written as [44]: 

(14) 

𝑔𝑖(𝑘 + 2) = 

∑ (𝑖𝑥
∗(𝑘 + 2) − 𝑖𝑥(𝑘 + 2))

2

𝑥=𝑎,𝑏,𝑐

 

(15) 𝑔𝑣𝑐
(𝑘 + 2) = ∑ (𝑣𝑐𝑗

∗ − 𝑣𝑐𝑗(𝑘 + 2))
2

𝑗=1,2,3

 

Moreover, 𝑣𝑐1
∗ , 𝑣𝑐2

∗ , and 𝑣𝑐3
∗  are the final capacitor 

voltages: 

(16) 𝑣𝑐1
∗ = 𝑣𝑐2

∗ = 𝑣𝑐3
∗ =

𝑉𝑑𝑐

3
 

𝑖𝑎
∗ , 𝑖𝑏

∗ , and 𝑖𝑐
∗ are the current references. The future 

current references of the (k+2)-th sampling instant can be 

computed using extrapolation [48]: 

    (17) 
𝑖𝑥

∗(𝑘 + 2) = 6 𝑖𝑥
∗(𝑘) − 8 𝑖𝑥

∗(𝑘 − 1) 

+3 𝑖𝑥
∗(𝑘 − 2) 

where 𝑥 ∈ {𝑎, 𝑏, 𝑐}. 

Moreover,  𝑔𝑠𝑤 can be calculated as [44]: 

(18) 

𝑔𝑠𝑤(𝑘 + 2) = 

∑ ∑|𝑆𝑥𝑗(𝑘 + 2) − 𝑆𝑥𝑗(𝑘 + 1)|

3

𝑗=1𝑥=𝑎,𝑏,𝑐

 

     
Note that 𝑔𝑠𝑤 is related to the number of switching 

commutations that directly affect the average switching 

frequency of the DCI. 

 𝑔𝐶𝑀  can be extracted using (2): 

(19) 𝑔𝐶𝑀(𝑘 + 2) = 𝑣𝐶𝑀(𝑘 + 2) 

Fig. 3 illustrates the flowchart of the MPC strategy for 

a 4-level DCI with the prediction horizon of N=1 and delay 

compensation. 

Minimization 

of 

cost function

Predictive 

model

Model Predictive  Controller
Three-phase 4-Level 

Diode Clamped Inverter
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Fig. 3:  Flowchart of the MPC of a 4-level DCI with a prediction horizon of N=1.  
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Multistep MPC in 4-Level DCI 

The main aim of the multistep MPC is to predict the 

system behavior in more than one sampling instant. In the 

multistep prediction strategy, the total objective function 

in the horizon of N can be defined as: 

(20) 𝑔𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑔(𝑘 + 𝑙)

𝑁+1

𝑙=2

 

 

 

 

 

 
 

 

 

 

In a specific switching condition, if the objective 

function 𝑔𝑡𝑜𝑡𝑎𝑙  becomes lower than the optimal value 

𝑔𝑜𝑝𝑡, the switching condition will be saved as 𝑚𝑜𝑝𝑡. The 

optimum switching condition 𝑚𝑜𝑝𝑡  will be applied to the 

DCI in the next sampling instant. 

The future current references of the (k+3), (k+4), and 

(k+5)-th sampling instant can be calculated as [48]: 

(22) 
𝑖𝑥

∗(𝑘 + 3) = 10 𝑖𝑥
∗(𝑘) − 15 𝑖𝑥

∗(𝑘 − 1)

+ 6 𝑖𝑥
∗(𝑘 − 2) 

where N is the horizon of prediction. With the prediction 

horizon of N=1, the prediction index is (k+2), and the 

objective function becomes the same as in (13).    

By substituting (13)-(19) in (20), the total objective 

function in the horizon of N can be written as in (21). Fig. 

4 represents the main part of the multistep MPC 

algorithm with a prediction horizon of N=3, which has the 

task of minimizing the objective function. All 643 switching 

possibilities will be searched.  

 

 

 

 

 

 
 

 

 

 

(23) 
𝑖𝑥

∗(𝑘 + 4) = 15 𝑖𝑥
∗(𝑘) − 24 𝑖𝑥

∗(𝑘 − 1)

+ 10 𝑖𝑥
∗(𝑘 − 2) 

(24) 
𝑖𝑥

∗(𝑘 + 5) = 21 𝑖𝑥
∗(𝑘) − 35 𝑖𝑥

∗(𝑘 − 1)

+ 15 𝑖𝑥
∗(𝑘 − 2) 

where 𝑥 ∈ {𝑎, 𝑏, 𝑐}. 

 
Fig. 4:  Main part of the multistep MPC algorithm for the 4-level DCI with a prediction horizon of N=3. 

 

Results and Discussion 

The effectiveness of the suggested multistep MPC 

method is verified by simulating a 4-level DCI with 

Matlab/Simulink. The total DC-link voltage is 520 V. The 

DC-link capacitors are C1=C2=C3=2.2 mF. The load 

resistance and inductance are R= 10 Ω and L= 10 mH, 

respectively.  

Fig. 5 illustrates the simulation results in the 4-level DCI 

with multistep MPC for prediction horizon of N=2. The 

weighting factor λV is set to 0.5. The weighting factors λS 

and λCM are set to zero. The sampling time Ts is 50 µsec. A 

50 µsec delay time has been applied to the controller for 

modeling the computational delay in the practical 

conditions. To validate the tracking performance of the 

multistep MPC strategy, the reference currents are 

changed from 10 A to 5 A at t=0.06 sec. Fig. 5(a) shows the 

current tracking performance in the 4-level DCI with 

multistep MPC. It is visible that the currents follow their 

references properly. Fig. 5(b) presents the line-to-line 

    (21) 

    𝑔𝑡𝑜𝑡𝑎𝑙 = ∑( ∑ (𝑖𝑥
∗(𝑘 + 𝑙) − 𝑖𝑥(𝑘 + 𝑙))

2

𝑥=𝑎,𝑏,𝑐

+ 𝜆𝑉 ∑ (𝑣𝑐𝑗
∗ − 𝑣𝑐𝑗(𝑘 + 𝑙))

2

𝑗=1,2,3

𝑁+1

𝑙=2

+ 𝜆𝑠𝑤 ∑   ∑|𝑆𝑥𝑗(𝑘 + 𝑙) − 𝑆𝑥𝑗(𝑘 + 𝑙 − 1)| +

3

𝑗=1𝑥=𝑎,𝑏,𝑐

𝜆𝑐𝑚𝑣𝑐𝑚(𝑘 + 𝑙)) 
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voltage (Vab) in the 4-level DCI with multistep MPC. The 

voltage amplitude corresponds to the step change in the 

load current. Fig. 5(c) shows the capacitor voltages (𝑣𝐶1, 

𝑣𝐶2, 𝑣𝐶3) in the 4-level DCI. The distortion in the voltage 

balance of the capacitors is low and is not affected by the 

step change in the reference currents. Fig. 5(d) illustrates 

the CM voltage (𝑣𝑐𝑚) in the 4-level DCI with multistep 

MPC for prediction horizon of N=2. The CM voltage and 

the switching frequency are high since they are not 

included in the objective function.  

 
Fig. 5:  Simulation results of the 4-level DCI with multistep MPC 
for N=2: (a) current; (b) line voltage; (c) capacitor voltages; (d) 

CM voltage.  
 

Fig. 6 compares the load current, phase voltage (Van), 

and line-to-line voltage (Vab) of the MPC strategy in 2-level 

VSI with 4-level DCI. Simulation parameters are the same 

as in Fig. 5. It is obvious that the harmonic distortion is 

much lower in 4-level DCI than in 2-level VSI. The current 

THD is reduced from 15.47% in 2-level VSI to 1.82% in 4-

level DCI.  

Figs. 7(a)-(d) show the load current in the 4-level DCI 

with traditional MPC without delay compensation, single-

step MPC with a horizon of N=1, and multistep MPC with 

a horizon of N=2 and N=3, respectively. In multistep MPC 

methods, the future prediction of reference currents can 

be obtained from (22)-(24). Simulation parameters are 

the same as in Fig. 5. The sampling time Ts is 100 µsec. A 

100 µsec delay time has been applied to the controller. It 

is evident that the lowest current distortion belongs to 

the multistep MPC with a horizon of N=3 (as shown in Fig. 

7(d)) and the highest current distortion refers to the 

traditional MPC without delay compensation (as shown in 

Fig. 7(a)).  

Figs. 8(a)-(d) present the capacitor voltages in the 4-

level DCI with traditional MPC without delay 

compensation, single-step MPC with a horizon of N=1, 

and multistep MPC with a horizon of N=2 and N=3, 

respectively. It is visible that the capacitor voltage balance 

is higher in the multistep MPC (as shown in Fig. 8(d)) than 

in the traditional MPC without delay compensation (as 

shown in Fig. 8(a)). The voltage balance with a horizon of 

N=2 (according to Fig. 8(c)) is almost similar with the 

horizon of N=3 (according to Fig. 8(d)). Further increase in 

the prediction horizon will increase the computational 

burden and the simulation time, while the DCI 

performance does not improve significantly. Thus, it is not 

preferable.  

In the next part, the effect of different weighting 

factors on the system performance is investigated. The 

multistep MPC with a horizon of N=2 has been applied to 

control the 4-level DCI. The sampling time Ts is 100 µsec 

and a 100 µsec delay time has been applied to the 

controller.  

Fig. 9 shows the effect of two different values of λV on 

the performance of 4-level DCI. The weighting factors λS 

and λCM are set to zero. λV is changed from zero to 0.5 at 

t=0.06 sec. Figs. 9(a)-(b) show the currents and line 

voltage in the 4-level DCI with multistep MPC with a 

horizon of N=2. The tracking performance is not affected 

in the steady-state condition. Fig. 9(c) presents the 

capacitor voltages (𝑣𝐶1, 𝑣𝐶2, 𝑣𝐶3) in the 4-level DCI. As can 

be seen, increasing λV balances the DC link capacitor 

voltages. Figs. 9(d)-(e) illustrate the CM voltage and gate 

pulse Sa1 in the 4-level DCI with multistep MPC. The CM 

voltage and the switching frequency increase significantly 

in higher values of the weighting factor λV. 

Fig. 10 presents the comparative results of the system 

behavior with three different values of λS. The value of λS 

is changed from zero to 0.1 at t=0.04 sec and from 0.1 to 

0.3 at t=0.08 sec. Moreover, λV=0.5 is selected, and λCM is 

set to zero. Figs. 10(a)-(b) show the currents and line 

voltage in the 4-level DCI with multistep MPC with a 

horizon of N=2. The tracking performance is not affected 

in different values of λS. Fig. 10(c) presents the capacitor 

voltages (𝑣𝐶1, 𝑣𝐶2, 𝑣𝐶3) in the 4-level DCI. As can be seen, 

increasing λS results in a higher voltage unbalance. Figs. 

10(d)-(e) illustrate the CM voltage and gate pulse Sa1 in 

the 4-level DCI. It is visible that increasing λS reduces the 

switching frequency; however, the CM voltage is high 

since it is not included in the objective function. 

Fig. 11 illustrates the effect of three different values of 

λCM on the system performance. λCM is changed from zero 

to 0.05 at t=0.04 sec and from 0.05 to 0.1 at t=0.08 sec. 

λV=0.5 is selected, and λS is set to zero. Figs. 11(a)-(b) show 

the currents and line voltage in the 4-level DCI with 

multistep MPC with a horizon of N=2. As can be seen, 

increasing λS reveals a higher harmonic distortion in the 

current and voltage waveforms. Fig. 11(c) presents the 
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capacitor voltages (𝑣𝐶1, 𝑣𝐶2, 𝑣𝐶3) in the 4-level DCI. 

Reducing the CM voltage leads to a significant decrease of 

the voltage balance. Figs. 11(d)-(e) illustrate the CM 

voltage and gate pulse Sa1 in the 4-level DCI. It is obvious 

from the results that increasing λCM reduces of CM 

voltage.  

 

 
Fig. 6:  Load current, phase voltage, and line voltage with MPC strategy in: (a) 2-level VSI; (b) 4-level DCI. 

 

 

 
Fig. 7:  Phase ‘a’ current in the 4-level DCI: (a) MPC without 

delay compensation; (b) single-step MPC with a horizon of N=1; 
(c) multistep MPC with a horizon of N=2; (d) multistep MPC 

with a horizon of N=3. 

 
Fig. 8:  Capacitor voltages in the 4-level DCI: (a) MPC without 

delay compensation; (b) single-step MPC with a horizon of N=1; 
(c) multistep MPC with a horizon of N=2; (d) multistep MPC 

with a horizon of N=3. 
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Fig. 9:  Effect of weighting factor λV on the behavior of 4-level DCI with multistep MPC for N=2: (a) current; (b) line voltage; (c) 

capacitor voltages; (d) CM voltage; (e) gate pulse Sa1. 
 

 
Fig. 10:  Effect of weighting factor λS on the behavior of 4-level DCI with multistep MPC for N=2: (a) current; (b) line voltage; (c) 

capacitor voltages; (d) CM voltage; (e) gate pulse Sa1. 
 

λV = 0 λV = 0.5

λS = 0 λS = 0.1 λS = 0.3
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Fig. 11:  Effect of weighting factor λCM on the behavior of 4-level DCI with multistep MPC for N=2: (a) current; (b) line voltage; (c) 

capacitor voltages; (d) CM voltage; (e) gate pulse Sa1. 
 

Conclusion 

This work has proposed a multistep predictive current 

control for the 3-phase 4-level DCI. The suggested method 

has succeeded in controlling the load current, while other 

objectives were easily included in the predictive 

controller. In addition to the current tracking, this paper 

has evaluated the DC-link voltage balance, reduction of 

the CM voltage, and decreasing the switching frequency 

in the prediction strategy. In this regard, the multistep 

prediction control with different horizon lengths has been 

applied to the 4-level DCI. Moreover, the effect of 

different values of weighting factors has been studied on 

the system performance.  

Simulation results have revealed the excellent dynamic 

response and DC-link voltage balancing in the 4-level DCI 

controlled by the multistep predictive method with a 

horizon of N=2. However, in long prediction horizons, the 

simulation time and computational burden will increase. 

Therefore, current tracking quality and voltage balancing 

may not be obtained. On the other hand, decreasing the 

CM voltage and the switching frequency has the opposite 

effect on the current tracking quality and voltage 

balancing in the DCI. Generally, dynamic response and 

voltage balancing are the main requirements of the DCI. 

Therefore, a trade-off will be imposed when selecting the 

weighting factors of the objective function depending on 

the system requirements. The future work will focus on 

the multistep model predictive control of motor drives 

supplied with 4-level diode-clamped inverter including 

various objectives in the predictive controller. 

Furthermore, the effect of different values of weighting 

factors on the system performance will be investigated. 
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