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Background and Objectives: Compressed sensing (CS) of analog signals in shift-
invariant spaces can be used to reduce the complexity of the matched-filter (MF) 
receiver, in which we can be approached the standard MF performance with fewer 
filters. But, with a small number of filters the performance degrades quite rapidly 
as a function of SNR. In fact, the CS matrix aliases all the noise components, 
therefore the noise increases in the compressed measurements. This effect is 
referred to as noise folding. In this paper, an approach for compensating the noise 
folding effect is proposed.  
Methods: An approach for compensating of this effect is to use a sufficient number 
of filters. In this paper the aim is to reach the better performance with the same 
number of filter as in the previous work. This, can be approached using a weighting 
function embedded in the analog signal compressed sensing structure. In fact, 
using this weighting function we can remedy the effect of CS matrix on the noise 
variance.   
Results: Comparing with the approach based on using the sufficient number of 
filters to counterbalance the noise increase, experimental results show that with 
the same numbers of filters, in terms of probability of correct detection, the 
proposed approach remarkably outperforms the rival’s. 
Conclusion: Noise folding formation is the main factor in CS-based matched-filter 
receiver. The method previously presented to reduce this effect demanded using 
the sufficient number of filters which comes at a cost. In this paper we propose a 
new method based on using the weighting function embedded in the analog signal 
compressed sensing structure to achieve better performance. 
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Introduction 
In many emerging and important applications, the 

Nyquist sampling rate, a rate equals to twice the highest 

frequency, is so high that we encounter with far too many 

samples that must be processed and stored in high-

capacity memory. Meanwhile, in applications in which 

inputs are wideband signals, it is so costly and mostly 

physically impossible to build analog to digital convertor 

capable of acquiring samples at Nyquist rate [1], [2]. So, 

in the past few years the vast interest in the area of 

compressed sensing (CS) caused the sampling theory has 

again been revived [3]-[5]. Compressed sensing is a 

framework for sensing and compression of finite-

dimensional vectors simultaneously [3], [4], [6].  The main 

idea in CS is that, instead of sampling at a high rate and 

then compressing the samples, we want to have a way to 

measure the data in a compressed form directly [7]. For 

this, the finite-dimensional signal must have a sparse or 

compressible representation in a known basis [3]. In this 

way, we capture only the essential information 

embedded in a signal. Formerly, the CS was a 

mathematical theory for measuring finite-dimensional 
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vector. In fact, CS was a framework for sampling of 

discrete-time signals and reconstruction from a finite 

number of samples. Despite the widespread literature in 

the area of extending the ideas of CS to analog domain, it 

remains a difficult challenge [8]-[11]. Eldar extended the 

CS to consider sub-Nyquist sampling of continuous-time 

signals in shift-invariant spaces via combining ideas from 

compressed sensing with analog sampling results [7]. A 

shift-invariant (SI) subspace is a space in which signals can 

be represented as a linear combination of shifts of a set 

of generators [12]-[16]. The subspace of bandlimited 

signals, multiband signals, the spline functions, the 

communication transmission such as PAM (pulse 

amplitude modulation) and QAM (quadratic amplitude 

modulation) are some important examples of SI subspace 

[17]-[24].  So, the compressed sensing of analog signals in 

SI spaces leads to low-rate (sub-Nyquist) sampling of a 

broad set of analog signals. This sub-Nyquist samples can 

be processed directly without having to upsample them 

back to the Nyquist rate, leading to low-rate processing 

as well. 

The idea of analog CS can be used to standard 

detection problem, concerned in communication 

systems, for reducing the receiver complexity [7], [25], 

[26]. In fact, analog CS enables us to convey more 

information over the channel with the same receiver. It is 

a well-known result that the MF receiver which consists 

the same number of filters (correlators) as the number of 

transmitted signals, say 𝑵, maximize the probability of 

correct detection. Nevertheless, it can be shown that, 

using the idea of analog CS and in a noise-free 

environment, regardless of the number of signals for 

transmission, only two filters is required to detect the 

transmitted signal exactly [7]. In the presence of noise, in 

order to achieve good performance, the number of 

correlators must be increased. In fact, when noise is 

present, for strictly maximizing the probability of correct 

detection we require 𝑵 filters. However we can get very 

good performance with fewer correlators. But with a 

smaller number of filters the performance degrades quite 

rapidly as a function of SNR. In fact, the CS matrix aliases 

all the noise components, therefore the noise increases 

in the compressed measurement. This effect is referred 

to as noise folding [27]. An approach for compensating 

this effect is to use sufficient number of filters. It is shown 

that approximately 𝐥𝐨𝐠 𝑵 filters are needed to 

countervail this increase in noise [28]. 

In this paper the aim is to reach the better 

performance with the same number of filter as in the 

previous work in [28], [7]. This, can be approached using 

a weighting function embedded in the analog signal 

compressed sensing structure. In fact, using this 

weighting function we can remedy the effect of CS matrix 

on the noise variance.   

This paper is organized as follows. The second section 

reviews the fundamentals of analog signal compressed 

sensing. The third section presents the proposed method 

for amending the noise folding effect. Comparisons with 

the rival method are presented in the fourth section, and 

the end section concludes the paper. 

Compressed Sensing of Analog Signals and CS 

based Matched-filter Receiver 

This section shortly explains the theory of analog 

signal compressed sensing [7], [29]. The formulation 

provided in this section will be utilized in the third section 

to develop the proposed method. 

A.  Sampling and Reconstruction in SI Spaces 

A mentioned in the previous section, SI signals are 

specified by a set of generators {ℎℓ(𝑡), 1 ≤ ℓ ≤ 𝑁}, 

where 𝑁 may be finite or infinite. So, any signal in SI space 

can be written as 

𝑥(𝑡) = ∑ ∑ 𝑑ℓ[𝑛]ℎℓ(𝑡 − 𝑛𝑇)

𝑛∈ℤ

𝑁

ℓ=1

 (1) 

where 𝑑ℓ[𝑛] ∈ ℓ2, 1 ≤ ℓ ≤ 𝑁, ℓ2 is the space of discrete-

time finite-energy signals and 𝑇 is the period. It is well 

known that such signals can be recovered from sample at 

a rate of 𝑁 𝑇⁄ . Sampling and reconstruction of signals in 

SI space have been depicted in Fig. 1.  
 

 

(a) 

 
(b) 

Fig. 1: (a) Sampling, (b) Reconstruction in shift- invariant 

spaces [7]. 

In this sampling method, 𝑥(𝑡) is passed through a bank 

of 𝑁 filters, each with almost arbitrary impulse response 
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of 𝑎ℓ(−𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅. Then, the outputs are sampled with period 𝑇 

unformly, resulting the sample sequnces 𝑐ℓ[𝑛]. The 

vector containing the DTFTs of 𝑐ℓ[𝑛], 1 ≤ ℓ ≤

𝑁, denoted by 𝐜(𝑒𝑗𝜔), and the vector collecting the 

DTFTs of 𝑑ℓ[𝑛], 1 ≤ ℓ ≤ 𝑁, denoted by 𝐝(𝑒𝑗𝜔). 

It can be shown that 

𝐝(𝑒𝑗𝜔) = 𝐌𝐴𝐻
−1(𝑒𝑗𝜔)𝐜(𝑒𝑗𝜔)  (2) 

where 𝐌𝐴𝐻(𝑒𝑗𝜔) is an 𝑁 × 𝑁 matrix, with entries  

[𝐌𝐴𝐻(𝑒𝑗𝜔)]𝑖ℓ = 

1

𝑇
∑ 𝐴𝑖 (

𝜔

𝑇
−

2𝜋𝑘

𝑇
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑘∈ℤ

𝐻ℓ (
𝜔

𝑇
−

2𝜋𝑘

𝑇
) 

     (3) 

𝐴𝑖(𝜔) and 𝐻ℓ(𝜔) are the CTFTs of 𝑎𝑖(𝑡) and ℎℓ(𝑡) 

respectively, and 𝐌𝐴𝐻
−1(𝑒𝑗𝜔) is the inverse of 𝐌𝐴𝐻(𝑒𝑗𝜔). 

The reconstruction of 𝑥(𝑡) is accomplished via 

modulating each output sequence 𝑑ℓ[𝑛] by a periodic 

impulse train ∑ 𝛿(𝑡 − 𝑛𝑇)𝑛∈ℤ  with period 𝑇, followed by 

filtering with analog filter ℎℓ(𝑡). Similar to finite 

interpolation in the Shannon-Nyquist theorem, if ℎℓ(𝑡) 

decay fast enough, interpolation with finitely many 

samples leads to sufficiently accurate reconstruction. 

For signals that can be represented by 𝑘 generator, 

𝑘 < 𝑁, chosen from a finite set of 𝑁 functions, we have 

𝑥(𝑡) = ∑ ∑ 𝑑ℓ[𝑛]ℎℓ(𝑡 − 𝑛𝑇)

𝑛∈ℤ|ℓ|=𝑘

 (4) 

 If we know the 𝑘 active generators then we can 

uniformly sample the output of 𝑘 appropriate filters with 

sampling period of 𝑇 as in Fig. 1, resulting a sampling rate 

of 𝑘 𝑇⁄ . On the other hand, if we know that only 𝑘 out of 

𝑁 generators are active but don’t know in advance which 

one, then the minimal sampling rate is at least 2𝑘 𝑇⁄ . 

Thus the lack of knowledge about the exact subspace to 

which 𝑥(𝑡) belongs, leads to an increase of at least a 

factor 2 in the minimal sampling rate [7]. By combining 

ideas from analog sampling and CS, this minimal rate has 

been achieved [29]. 

B.  Compressed Sensing in Sparse Unions 

Suppose that 𝐝[𝑛] is a vector whose ℓth component is 

given by 𝑑ℓ[𝑛], in which only 𝑘 out of the 𝑁 sequences  

𝑑ℓ[𝑛] are nonzero. Compressively measuring the vector 

sequence 𝐝[𝑛] can be accomplished by a 𝑝 × 𝑁 sensing 

matrix 𝐀, 𝑝 < 𝑁, that allows recovery of 𝑘-sparse 

vectors. The choice 𝑝 < 𝑁, reduces the sampling rate 

below the Nyquist rate. In fact, a compressive sampling 

system produces a vector of low-rate samples 𝐲[𝑛] =

 [𝑦1[𝑛], … , 𝑦𝑝[𝑛]]
𝑇

satisfying the relation 

𝐲[𝑛] = 𝐀𝐝[𝑛],       ‖𝐝[𝑛]‖0 ≤ 𝑘 (5) 

where ‖𝐝[𝑛]‖0 is the number of nonzero elements of 

𝐝[𝑛]. For each 𝑛,  

𝐲[𝑛] = 𝐀𝐝[𝑛],    𝑛 ∈ ℤ (6) 

Equation (6) is an infinite measurement vector (IMV) 

problem and for each 𝑛, 𝐝[𝑛] is 𝑘-spares [7], [29]. 

Meanwhile, the infinite set of vectors {𝐝[𝑛], 𝑛 ∈ ℤ} 

shares a joint sparsity pattern: at most 𝑘 of the sequences 

𝑑ℓ[𝑛] are nonzero. These set of equations can be 

transformed into an equivalent multiple measurement 

vector (MMV) problem using the continuous to finite 

(CTF) block technique [7]. The perfect recovery of 𝐝[𝑛] 

(or recovery with high probability) is guaranteed because 

𝐀 was designed to enable CS techniques.    

The frequency-domain counterpart of (6) is as follows,  

𝐲(𝑒𝑗𝜔) = 𝐀𝐝(𝑒𝑗𝜔),    0 ≤ 𝜔 ≤ 2𝜋 (7) 

where 𝐲(𝑒𝑗𝜔), 𝐝(𝑒𝑗𝜔) are the vectors containing the 

DTFTs 𝑌ℓ(𝑒𝑗𝜔), 𝐷ℓ(𝑒𝑗𝜔) respectively. 𝐝[𝑛] may also be 

recovered from  

𝐲(𝑒𝑗𝜔) = 𝐖(𝑒𝑗𝜔)𝐀𝐝(𝑒𝑗𝜔),    0 ≤ 𝜔 ≤ 2𝜋      (8) 

where 𝐖(𝑒𝑗𝜔) is any invertible 𝑝 × 𝑝 matrix with 

elements 𝑊𝑖ℓ(𝑒𝑗𝜔).  In this way we can generalize the 

class of sensing operators. This extra freedom can be 

used in the proposed method for noise folding 

compensation as we will see in the following sections. 

The analog compressed sampling can be seen in Fig. 2. 
 

 
Fig. 2: Analog compressed sampling [7]. 

  

The inputs in Fig. 2 come from Fig. 1(a). Though the 

sampling method of Fig. 2 leads to compressed 

measurements {𝑦ℓ[𝑛]}, the sampling rate is still 𝑁 𝑇⁄ . 

Eldar reduced this rate to 𝑝 𝑇⁄  where 2𝑘 ≤ 𝑝 < 𝑁 via 

proving the following theorem [29], 

Theorem 1. {𝑦ℓ[𝑛]}, 1 ≤ ℓ ≤ 𝑝, in Fig. 2 can be obtained 

by filtering 𝑥(𝑡) in (4) with 𝑝 filters {𝑠ℓ(−𝑡)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and sampling 

the outputs at rate 1 𝑇⁄  , where 

𝐬(𝜔) = 𝐖(𝑒𝑗𝜔𝑇)𝐀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐯(𝜔)

= 𝐖(𝑒𝑗𝜔𝑇)𝐀𝐌𝐴𝐻
−1(𝑒𝑗𝜔𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐚(𝜔) 

(9) 

where 𝐬(𝜔), 𝐚(𝜔) are the vectors with ℓ𝑡ℎ elements 

𝑆ℓ(𝜔), 𝐴ℓ(𝜔) respectively, and 𝑉ℓ(𝜔), the components of 

𝐯(𝜔), are Fourier transform of generators 𝑣ℓ(𝑡) such that 
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{𝑣ℓ(𝑡 − 𝑛𝑇)} are biorthogonal to {ℎℓ(𝑡 − 𝑛𝑇)}. In the 

time domain we have,  

𝑠𝑖(𝑡) = ∑ ∑ ∑ 𝑤𝑖𝑟[−𝑛]𝐀𝑟𝓵
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛∈ℤ

𝑝

𝑟=1

𝑁

ℓ=1

𝑣ℓ(𝑡 − 𝑛𝑇)  (10) 

in which 𝑤𝑖𝑟[𝑛] is the inverse DTFT of 𝑊𝑖𝑟(𝑒𝑗𝜔), the 

elements of matrix 𝐖(𝑒𝑗𝜔), and  

𝑣𝑖(𝑡) = ∑ ∑ 𝜑𝑖𝓵[−𝑛]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑎𝓵(𝑡 − 𝑛𝑇)

𝑛∈ℤ

𝑁

ℓ=1

  (11) 

here 𝜑𝑖𝓵[𝑛] is the inverse DTFT of [𝐌𝐴𝐻
−1(𝑒𝑗𝜔𝑇)]𝑖ℓ. When 

𝐖(𝑒𝑗𝜔) = 𝐈,  

𝑠𝑖(𝑡) = ∑ 𝐀𝑖ℓ
̅̅ ̅̅

𝑁

ℓ=1

𝑣ℓ(𝑡).        (12) 

Fig. 3 shows the compressed sensing of analog signals 

with sampling rate of 𝑝 𝑇⁄ .  

 

 

 
Fig. 3: Compressed sensing of analog signal [7]. 

C.  Compressed-Sensing Based Matched- Filter Receiver 

Suppose that a basic communication system transmits 

digital data to a receiver by sending one of a set of 𝑁 

linearly independent known signals {ℎ𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑁} 

over a symbol duration of T. The channel add a zero-mean 

white Gaussian noise 𝑛(𝑡) with variance 𝜎2 to the signal, 

so the received signal is as 

𝑦(𝑡) = ℎℓ(𝑡) + 𝑛(𝑡) (13) 

for some index ℓ. The goal is to determine the index ℓ in 

order to decode the transmitted symbol. Demodulator 

for a typical matched-filter receiver is shown in Fig. 4 in 

which 𝑠ℓ(−𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℎℓ(−𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅. 

It is well known that a MF receiver is a sufficient 

statistic for detection; that is, the optimal detector can be 

computed based on the MF output providing the noise is 

Gaussian. The maximum-likelihood detector for MF 

receiver is as 

ℓ = arg max
𝑖

ℛ{𝑦𝑖}    (14) 

where ℛ{𝑦𝑖} is the real part of 𝑦𝑖 .  
 

 
Fig. 4: Demodulator for a matched-filter receiver [7]. 

 

By exploiting the ideas of analog CS, we can reduce the 

number of filters in demodulator part of the MF receiver. 

Reformulation of the detection problem as a CS recovery 

problem is as follows. Any signal ℎℓ(𝑡) can be written in 

the form ℎℓ(𝑡) = 𝐻𝐱, where 𝐻: ℝ𝑁 → 𝐿2 is the set 

transformation corresponding to {ℎ𝑖(𝑡)} and 𝐱 is a vector 

containing a 1 in the ℓth position. Thus, in term of the 

basis defined by the transformation 𝐻, the transmitted 

signal is sparse. This scenario is a special case of (4) in 

which 𝑘 = 1, where we consider only one symbol 

interval. So, we can recover 𝐱 using 𝑝 < 𝑁 filters chosen 

according to Theorem 1. For that, let 𝐀 be an arbitrary 

𝑝 × 𝑁 CS matrix for a 1-spares vector. Then, according to 

Theorem 1 the demodulator consists of filters  

{𝑠ℓ(−𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅, 1 ≤ ℓ ≤ 𝑝}, 

𝑠ℓ(𝑡) = ∑ 𝐀ℓ𝑚
̅̅ ̅̅ ̅̅

𝑁

𝑚=1

𝑣𝑚(𝑡) (15) 

where {𝑣𝑚(𝑡)} are the biorthogonal functions defined as 

𝑣𝑚(𝑡) = ∑ ∅𝑚𝑖ℎ𝑖(𝑡)

𝑁

𝑖=1

 (16) 

with 𝚽 = (𝐻∗𝐻)−1.  In operator notation, 𝑆 = 𝑉𝐀∗ =

𝐻(𝐻∗𝐻)−1𝐀∗ and 𝑉∗𝐻 = 𝐼 where 𝑆, 𝑉 are set 

transformation corresponding to {𝑠𝑖(𝑡)} and {𝑣𝑖(𝑡)} 

respectively. 

Suppose a noise-free case in which 𝑦(𝑡) = ℎℓ(𝑡) = 𝐻𝐱 

for some index ℓ. After applying the 𝑝 filters on 𝑦(𝑡), the 

output vector is as follows 

𝐜 = 𝑆∗𝑦(𝑡) = 𝐀(𝐻∗𝐻)−1𝐻∗𝑦(𝑡) = 𝐀𝐱      (17) 

So, the problem reduces to recovery of a 1-sparse 

vector 𝐱 from compressed measurement 𝐜. From the 

theory of uniqueness sparse recovery, we know that for 

recovery of a 𝑘-sparse vector the spark of the sensing 

matrix must be greater than 2𝑘. In particular, for 
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uniqueness we must have that 𝑝 ≥ 2𝑘. So, 𝐀 may be a 

2 × 𝑁 matrix in which no two columns are multiple of 

each other. The support of 𝐱 can be recovered by 

choosing 

ℓ = arg max
𝑖

ℛ{⟨𝒂𝑖 , 𝐜⟩}      (18) 

where 𝒂𝑖 is the 𝑖th column of 𝐀. So, only two correlators 

are required to detect the transmitted signal exactly. The 

overall receiver is depicted in Fig. 5.  

 
(a) 

 
(b) 

Fig. 5: A noise-free detector based on analog compressed 

sensing [7]. 

 

But, in noisy environment the number of correlator 

must be increased in order to achieve good performance. 

In fact we can get very good performance with 2 < 𝑝 <

𝑁  correlators. It can be shown that the selection rule is 

identical to the one in the noise-free case as expressed in 

(14).  

The Proposed Method  

In noisy environment, strictly maximizing the 

probability of correct detection will require 𝑁 correlators, 

but as mentioned before, by using 𝑝 < 𝑁 filters, we can 

get pretty good performance. With a small number of 

filters the performance degrades quite rapidly as a 

function of SNR. In fact, the CS matrix aliases all the noise 

components, therefore the noise increases in the 

compressed measurements. This effect is referred to as 

noise folding which is the main problem in this type of 

receiver. The Noise folding compensation can be 

accomplished by employing a sufficient number of filters. 

It is shown that approximately log 𝑁 filters are needed to 

countervail this increase in noise [28]. In this paper we 

propose a new method based on using the weighting 

function embedded in the analog signal compressed 

sensing structure, 𝐖(𝑒𝑗𝜔), to achieve better 

performance.  According to Theorem 1 and in operator 

notation we have  

𝑆 = 𝑉𝐃∗ (19) 

where 𝑆, 𝑉 are set transformation corresponding to 
{𝑠𝑖(𝑡)} and {𝑣𝑖(𝑡)} respectively and 𝐃 is a 𝑝 × 𝑁 matrix 

with elements  

𝑑𝑖ℓ = IDFT (𝐵𝑖ℓ(𝑒𝑗𝜔))  (20) 

in which 𝐵𝑖ℓ(𝑒𝑗𝜔) are the elements of the matrix 

𝐁(𝑒𝑗𝜔) = 𝐖(𝑒𝑗𝜔)𝐀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (21) 

From (9), we have that 

𝐬(𝜔) = 𝐁(𝑒𝑗𝜔𝑇)𝐯(𝜔)       (22) 

In the time domain and in terms of 𝑑𝑖ℓ  we can write   

𝑠𝒊(𝑡) = ∑ ∑ 𝑑𝑖ℓ[𝑛]

𝑛∈ℤ

𝑁

ℓ=1

𝑣ℓ(𝑡 − 𝑛𝑇)     (23) 

So, we have 𝑆 = 𝑉𝐃∗. Using this and the fact that 

𝑉∗𝐻 = 𝐼 we have   

𝐜 =  𝑆∗𝑦(𝑡) = 𝐃𝑉∗ℎℓ(𝑡) + 𝐃𝑉∗𝑛(𝑡) = 

𝐃𝑉∗𝐻𝐱 + 𝐃𝑉∗𝑛(𝑡) = 𝐃𝐱 + 𝐰 
(24) 

where 𝐰 = 𝐃𝑉∗𝑛(𝑡) is the noise component. We can 

write 

E[〈𝑣𝑗(𝑡), 𝑛(𝑡)〉〈𝑣𝑖(𝑡), 𝑛(𝑡)〉] = 

∬ 𝑣𝑗(𝑡)𝑣𝑖(𝜏)𝐸[𝑛(𝑡)𝑛(𝜏)] = 𝜎2〈𝑣𝑗(𝑡), 𝑣𝑖(𝑡)〉 
 (25) 

Therefore, 

𝐑𝑤 = 𝐸[𝐰𝐰∗] = 𝜎2𝐃𝑉∗𝑉𝐃∗ 

= 𝜎2𝐃(𝐻∗𝐻)−1𝐃∗ 
  (26) 

In general, the noise is not white, but if the signals 

ℎℓ(𝑡) are orthonormal and the rows of 𝐃 are orthogonal 

then 𝐑𝑤 = 𝜅𝜎2𝐈 where 𝜅 is the squared-norm of rows of 

𝐃.  

The problem is reduced to recovery of 1-spares vector 

𝐱 from noisy measurements = 𝐃𝐱 + 𝐰. The standard CS 

algorithms can be used for solving this problem provided 

the 𝐵𝑖ℓ(𝑒𝑗𝜔) are constant functions or equivalently, 

𝑑𝑖ℓ = 𝑑𝑖ℓ[𝑛]𝛿[𝑛]. Otherwise, we should develop a MAP 

detector [26], [30]. Assume that the 𝑃(ℓ|𝐜) be the 

probability that 𝑥ℓ, the ℓ𝑡ℎ elements of  𝐱, is nonzero, 

given 𝐜. The goal is to choose the ℓ that maximize this 

probability. Using the Bayes rule and the fact that 𝑃(ℓ) =

1 𝑁⁄ , the problem will be the maximizing 𝑃(𝐜|ℓ). The 

vector 𝐜 is a Gaussian vector with mean 𝐃∗𝐱 and 

covariance 𝐑𝑤 = 𝜎2𝐃(𝐻∗𝐻)−1𝐃∗. We have  

ln 𝑃(𝐜|ℓ) = 
−Υ(𝐜 − 𝐝𝓵)∗(𝐃(𝐻∗𝐻)−1𝐃∗)−1(𝐜 − 𝐝𝓵) 

     (27) 

where Υ is a constant and 𝐝𝓵 is the ℓ𝑡ℎ column of 𝐃. 
Maximizing ln 𝑃(𝐜|ℓ) is equivalent to minimizing the 
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following function  

Λ(ℓ) = (𝐜 − 𝐝𝓵)∗(𝐃(𝐻∗𝐻)−1𝐃∗)−1(𝐜 − 𝐝𝓵) (28) 

In the special case in which 𝐑𝑤 = 𝜅𝜎2𝐈, the 

minimization of Λ(ℓ) leads to the following selection rule 

ℓ = arg max
𝑖

ℛ{⟨𝒅𝑖 , 𝐜⟩}  (29) 

which is similar to the noise free case.  
The covariance of the noise in the proposed method is 

similar to the one in the rival method [7], [28]. In fact, the 

covariance in the rival method is as  

𝐑𝑤 = 𝐸[𝐰𝐰∗] = 𝜎2𝐀𝑉∗𝑉𝐀∗ = 𝜎2𝐀(𝐻∗𝐻)−1𝐀∗  (30) 

So, the only change is the substitution of matrix 𝐀 in 

the previous method with the matrix 𝐃. But, note that 

this substitution has a great impact on the variance of the 

noise in measurements 𝐜. Unlike the matrix 𝐀, the 

elements of matrix 𝐃 are sequences, not scalars. 

According to (23) the weighting function 𝐖(𝑒𝑗𝜔) 

introduces extra freedom when designing the 

corresponding analog sampling filters. Meanwhile, 

according to (20), (21), (26), 𝐖(𝑒𝑗𝜔) has great impact on 

the variance of the noise. We show this impact with a 

simple example.  

Suppose that the signals {ℎ𝑖(𝑡)} are orthonormal, so 

we have 𝐻∗𝐻 = 𝐼 and from (30), 𝐑𝑤 = 𝜎2𝐀𝐀∗. Also, 

suppose that 𝐀 is chosen as random rows of a Fourier 

matrix. This means that 𝐴𝑖ℓ = (1 √𝑝⁄ )exp{−𝑗2𝜋𝑠𝑖ℓ 𝑁⁄ } 

where 𝑠𝑖 is the 𝑖th row chosen. In this case, 𝐀𝐀∗ =
(𝑁 𝑝⁄ )𝐈. So, the noise variance is increased by a factor of 

𝑁 𝑝⁄ . In this example we see simply that choosing 

𝐖(𝑒𝑗𝜔) = (𝑝 𝑁⁄ )𝐈, results in 𝐑𝑤 = 𝜎2 according to (26). 

But, the cases are not as simple as the previous 

example, and choosing the appropriate 𝐖(𝑒𝑗𝜔) is a 

difficult problem. But, as we can see in the next section, 

we can simply bypass this problem. 

The Experimental Results 

In this section we will examine the ability of the proposed 
method in compensation of the noise folding problem. 
For that, we demonstrate the effect of additive noise on 
the proposed method and the rival method as expressed 
by (18) [28], [7]. There are no comparable works since 
2015. 

We consider a receiver with 𝑁 = 100 different 

transmitted signals given by  

ℎ𝓵(𝑡) = {
1,    (ℓ − 1) ≤ 𝑡 ≤ ℓ
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       ℓ = 1,2, … , 𝑁 
 (31) 

and 𝑝 correlators. For the rival method, the sensing 

matrix 𝐀 is chosen to be equal to 𝑝 random rows of the 

𝑁 × 𝑁 Fourier matrix in which the columns normalized to 

have unit norm. For the proposed method we need a 

matrix  

𝐃 = IDFT (𝐖(𝑒𝑗𝜔)𝐀̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   (32) 

with orthogonal rows.  We do not involve ourselves with 

the problem of selecting appropriate 𝐖(𝑒𝑗𝜔) and 𝐀 

matrix. Instead, we simply generate synthetically a 𝑝 × 𝑁 

matrix as the matrix 𝐃. As mentioned before, the main 

difference between matrix 𝐀 and matrix 𝐃 is that in the 

former the elements of the matrix are scalars and in the 

latter are sequences. 

We saw that when noise is present, for strictly 

maximizing the probability of correct detection we 

require 𝑁 = 100 coorelators. Although with fewer filters 

we can get very good performance, the performance 

degrades quite rapidly as a function of SNR. This is due to 

noise folding phenomenon. In fact, the use of the CS 

matrix reduces the SNR, i.e. the CS matrix aliases all the 

noise component in the compressed measurement, even 

those corresponding to zero element in sparse vector 𝐱, 

leading to a noise increase in the compressed 

measurements. 

Fig. 6 to Fig.12 show the probability of correct 

detection in both methods as a function of the number of 

correlators for different value of the SNR. The probability 

is estimated by running 1000 Monte Carlo simulations. In 

each iteration, the transmitted signal and the noise are 

chosen randomly. As we can see, as long as the SNR is 

high enough, perfect detection is achieved in both 

methods using a much smaller filters compared to the MF 

receiver consists of 100 correlators and the proposed 

method needs smaller filters compared to the rival 

method to achieve the same performance. This in turn 

shows that the proposed method can remedy the noise 

folding problem with fewer filters than the rival method. 
 

 
 

Fig. 6: Probability of correct detection as a function of the 
number of correlators for SNR=40. 

 
 

Fig. 7: Probability of correct detection as a function of the 
number of correlators for SNR=30. 
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Fig. 8: Probability of correct detection as a function of the 
number of correlators for SNR=25. 

 
 

Fig. 9: Probability of correct detection as a function of the 

number of correlators for SNR=20. 
 

 
 

Fig. 10: Probability of correct detection as a function of the 
number of correlators for SNR=15. 

 

 
Fig. 11: Probability of correct detection as a function of the 

number of correlators for SNR=10. 

 
 

Fig. 12: Probability of correct detection as a function of the 
number of correlators for SNR=5. 

Results and Discussion 

The simulation results show that the proposed 

method has the ability to compensate the noise folding 

problem more effectively than the rival method. i.e. with 

fewer correlators. This is due to the fact that the 

elements of matrix 𝐃 are sequences rather than scalars.  

Conclusion 

Noise folding is the main problem in compressed 

sensing based MF receiver. An approach for 

compensating this effect is to use sufficient number of 

coorelators. The proposed method achieves better 

performance with the same number of filters as in the 

previous work. This goal is achieved through the use of 

weighting function embedded in the analog signal 

compressed sensing structure. This weighting function 

can remedy the effect of CS matrix on the noise variance.  

As stated in the previous sections, choosing the 

appropriate weighting functions is a difficult problem. In 

this paper we bypass this problem via generating 

synthetically a 𝑝 × 𝑁 matix as the matrix 𝐃 with 

orthogonal rows.  In this way, there is no notable 

difference between the proposed method and the rival’s 

method from the point of time and space complexity.  

Systematically computing of matrix 𝐃 can be suggested 

for future work in which the time and space complexity is 

a major concern because of existence of long sequences 

as elements of the matrix 𝐃. 

Author Contributions 

M. Kalantari has written the whole paper without 

participation of anybody. All parts of this work have been 

accomplished by the author as the single author and the 

corresponding author of the paper.  

Acknowledgments 

This work was supported by Shahid Rajaee Teacher 

Training University under contract number 11980. 

Conflict of Interests 

The author declares that there is no conflict of 

interests regarding the publication of this manuscript.  

Abbreviations 

CS Compressed sensing 

MF Matched filter 

SNR Signal to noise ratio 

PAM Pulse amplitude modulation 

QAM Quadratic amplitude modulation 

SI Shift invariant 

DTFT Discrete time Fourier transform 

MMV Multiple Measurement vector 

CTF Continuous to finite block 

𝐀 Sensing matrix 

ℛ{. } Real part of argument 

𝐖(𝑒𝑗𝜔) Weighting matrix 
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𝑛(𝑡) Noise signal 

𝐑𝑤 Noise covariance matrix 

MAP Maximum a posteriori 

𝐜 Noisy measurement vector 

𝐚𝑖 𝑖th column of 𝐀 

𝑥(𝑡) A SI signal 

𝑥(𝑡)̅̅ ̅̅ ̅̅  Complex conjugate of 𝑥(𝑡) 

ℎℓ(𝑡) SI generator or a known transmitted signal 

𝑦(𝑡) Received signal 

𝐱 A sparse vector 

IDFT Inverse discrete Fourier transform 
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