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Background and Objectives: Neuroscience research can benefit greatly from the 
fusion of simultaneous recordings of electroencephalogram (EEG) and functional 
magnetic resonance imaging (fMRI) data due to their complementary properties. 
We can extract shared information by coupling two modalities in a symmetric data 
fusion. 
Methods: This paper proposed an approach based on the advanced coupled 

matrix tensor factorization (ACMTF) method for analyzing simultaneous EEG-fMRI 

data. To alleviate the strict equality assumption of shared factors in the common 
dimension of the ACMTF, the proposed method used a similarity criterion based 
on normalized mutual information (NMI). This similarity criterion effectively 
revealed the underlying relationships between the modalities, resulting in more 
accurate factorization results. 
Results: The suggested method was utilized on simulated data with correlation 
levels of 50% and 90% between the components of the two modalities. Despite 
different noise levels, the average match score improved by 20% compared to the 
ACMTF model, as demonstrated by the results. 
Conclusion: By relaxing the strict equality assumption, we can identify shared 
components in a common mode and extract shared components with higher 
performance than the traditional methods. The suggested method offers a more 
robust and effective way to analyze multimodal data sets. The findings highlight 
the potential of the ACMTF method with NMI-based similarity criterion for 
uncovering hidden patterns in EEG and fMRI data. 
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Introduction  

Joint analysis of neuroimaging data such as EEG and fMRI 

has the potential to gain a better understanding of brain 

functioning. The primary objective of analyzing multiple 

modalities is to utilize common and distinct information 

from complementary modalities to understand neural 

activities better. EEG and fMRI data fusion can provide 

researchers with a more comprehensive understanding of 

the brain's spatial and temporal functions [1], [2]. 

The synchronous electrical activity of brain neurons 

over time can be measured using EEG. While EEG has the 

perfect temporal resolution, this technique has poor 

spatial information due to the number of electrodes 

employed. On the other hand, blood oxygenation level-

dependent (BOLD) imaging is a technique that is 

commonly used to measure brain activity indirectly using 

fMRI. Although it measures BOLD signals at a millimeter 

range, this technique is sluggish compared to brain 

activity [3], [4]. Therefore, EEG and fMRI can be fused to 

improve the localization of brain activity in time and space 

due to their complementary spatiotemporal resolutions. 

In recent years different types of fusion methods have 

been developed; the majority of them focus on the matrix 

factorization of EEG and fMRI into different components. 
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Independent component analysis (ICA) [5], principal 

component analysis (PCA), canonical component analysis 

(CCA) [6], [7], and independent vector analysis (IVA) [8] 

are methods for decomposing matrixes. Extensive studies 

have been conducted on decomposing EEG and fMRI 

datasets into different components using ICA and PCA 

methods. These methods define components using only 

two dimensions: time and space [5]. Whereas, EEG and 

fMRI datasets are typically multidimensional including 

time, voxels or channels, frequency, trial, and participant. 

One potential solution to this issue is to explore 

alternative methods for analyzing these datasets that 

preserve the interactions between different modalities. 

One approach uses tensor decomposition techniques 

designed to apply to multi-way data structures [9]. 

Non-physiological assumptions like orthogonality and 

statistical independence are the basis of matrix 

factorization models. However, the uniqueness of higher-

order tensor decompositions is obtained by relaxed 

conditions (without any nonphysiological assumptions), 

making interpreting the extracted components easier 

[10]. By applying tensor decomposition algorithms such 

as Tucker decomposition or Parallel factorial analysis 

CANDECOMP/PARAFAC (CP) decomposition, researchers 

can extract more meaningful and interpretable 

components from EEG and fMRI datasets without losing 

important interactions between different dimensions 

[11], [12]. Coupled matrix tensor factorization (CMTF) is 

the most common method for fusing EEG and fMRI 

datasets using tensor decomposition methods [13]. In the 

CMTF model, data definition involves a third-order tensor 

of EEG coupled with a matrix fMRI. Gradient-based 

optimization algorithms are used to factorize the coupled 

data, and CP is utilized to model higher-order tensors. In 

the fusion of EEG and fMRI, the assumption is that there 

is one or more common modes of variation between the 

two modes, such as time or subject. The main 

disadvantage of the CMTF method is its reliance on equal 

shared components in the common dimension. Several 

methods have been introduced to alleviate this restrictive 

assumption. The advanced coupled matrix-tensor 

factorization (ACMTF) was developed in [14], identifying 

shared and unshared components. While the ACMTF can 

estimate the weights of the components and identify the 

factor matrices, it assumes that the shared components 

between the two modalities are identical. The notion of 

equality concerning brain signals could be confining. In 

[15] the CMTF model has been used to analyze the joint 

decomposition of EEG data at source level with fMRI 

along with a common spatial profile. This method can 

identify both common and discriminative subspaces 

compared to the CMTF method. A relaxed form of ACMTF 

was presented by the authors in [16]. This method 

overcomes the equality assumption of shared factors in a 

common dimension. This method uses the l1-norm and l2-

norm to express similarity and then apply it to the 

components and their first and second derivatives. In [17] 

a tensor decomposition model was proposed in which a 

soft coupling method (Euclidean distance) was 

implemented for fusion EEG and fMRI. [18] has used the 

maximum correlation between the shared components of 

EEG and fMRI. Although Pearson's correlation coefficient 

(ρ) used in [18] is one of the most popular dependence 

measures with many desirable features, it only evaluates 

linear relationships. To assess relationships and 

dependencies between variables in a general sense, we 

need a metric, not only for linear or monotonic 

relationships. In contrast to the Pearson's correlation 

coefficient, mutual information (MI) takes into account 

both linear and non-linear relationships between 

variables, making it a more comprehensive measure of 

dependence. Additionally, MI can capture complex 

dependencies that may not be captured by the 

correlation coefficient alone. This makes MI a valuable 

tool for analyzing relationships in a wide range of fields. 

Overall, while the correlation coefficient is useful for 

measuring linear relationships, MI provides a more 

nuanced and flexible approach to understanding the 

dependencies between variables [19].  

However, the estimation of MI and entropy values can 

be challenging. MI-based measures need appropriate 

estimation methods as the underlying probability 

distributions are unknown. The most commonly used 

technique for estimating MI is histogram-based density 

estimation [17]. Despite not always being the most 

accurate method, histogram-based density estimation 

has acceptable accuracy. Normalization of mutual 

information is essential because MI values can vary 

widely depending on the scale of the variables involved. 

By transforming MI into a standardized range, we can 

compare and interpret the information content more 

accurately. As a result, we used the normalized mutual 

information (NMI) as a similarity metric in our study [20], 

[21]. The contributions of the proposed method are 

summarized as follows: 
 Using normalized mutual information as a similarity 

measure, our proposed method can relax the 

restrictive equality assumption of shared 

components in the ACMTF method.  

 As a comprehensive approach, our method can 

estimate the weight of each component and identify 

identical and similar components with various 

correlation levels. 

 Our proposed method, compared to other methods 

based on similarity criteria, can identify components 

that are linearly or nonlinearly related to each other. 
The following is the structure of this paper. We first 

explain tensor decomposition, the ACMTF method, and 



Utilizing Normalized Mutual Information as a Similarity Measure for EEG and fMRI Fusion 

 

J. Electr. Comput. Eng. Innovations, 13(1): 141-150, 2025                                                                         143 

HRF modeling. The proposed method and the calculation 

of normalized mutual information are presented in the 

second part. Then, a simulation study is used to validate 

the performance of the presented method. Finally, the 

paper is completed with a discussion and conclusion.  

Material and Methods 

A. Notation 

Vectors, matrices, and higher-order tensors in this 

study are identified using italic lower-case, italic upper-

case, and italic calligraphic upper-case letters 

respectively. For a matrix A, �̅� denotes its transpose. The 

symbol ⨀ signifies the Khatri-Rao product of two 

matrices, A∈ ℝ𝐼×𝑅  and B∈ ℝ𝐽×𝑅, namely, 𝐴⨀𝐵 = [𝑎1 ⊗

𝑏1, 𝑎2 ⊗ 𝑏2, … 𝑎𝑅 ⊗ 𝑏𝑅], with 𝑎𝑖  and 𝑏𝑖  being the ith 

columns of A and B respectively, and ⊗ denoting 

Kronecker prodeuct. 

B.  Tensor Decomposition  

In mathematics, a tensor is described as a numerical 

array with multiple indexes, and the order of a tensor is 

the number of its modes or dimensions. The Canonical 

Polyiadic Decomposition (CP or CPD) model is briefly 

discussed in this section. A third-order tensor 𝝌 ∈ ℝ𝐼×𝐽×𝐾  

with the modes of trial, frequency, and channel 

represents EEG data and a matrix 𝑌 ∈ ℝ𝐼×𝐿 (trial (scan) by 

voxels) indicates fMRI signal. Fig. 1 shows the EEG coupled 

with fMRI in the trial mode.  

 

Fig. 1: A 3rd-order tensor EEG signal coupled with fMRI matrix 
in the trial mode. 

CP is thought of as an extension of singular value 

decomposition (SVD) to higher-order tensors. It 

represents a 3rd-order tensor 𝝌 ∈ ℝ𝐼×𝐽×𝐾  as a linear 

combination of rank-one tensors: 

        (1)   𝝌 = ⟦𝜆; 𝐴, 𝐵, 𝐶⟧ = ∑ 𝜆𝑟𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟

𝑅

𝑟=1

 

where ⟦. ⟧ and ∘ indicate the full multilinear and vector 

outer product respectively. The vectors 𝑎𝑟 , 𝑏𝑟 and 𝑐𝑟 are 

as rank-one components form the factor matrices A∈

ℝ𝑅×1 = [𝑎1 … 𝑎𝑅], B∈ ℝ𝑅×1 = [𝑏1 … 𝑏𝑅], and C∈ ℝ𝑅×1 =
[𝑐1 …𝑐𝑅] respectively. The terms factor and component 

mention to the rank-one matrices or higher-order rank-

one tensors. R signifies the number of factors and 𝜆 ∈

ℝ𝑅×1 is weights of rank-one components. The CP or 

PARAFAC model is one of the most popular tensor 

decomposition models. This model is used alongside 

models like Block Term Decomposition and the Tucker 

decomposition model [22].  

C. Advanced Coupled Matrix and Tensor Factorization  

We assume that the EEG data is structured as a third-

order tensor to present variations across the trial, 

spectral, and spatial dimensions. At the same time, the 

fMRI matrix characterizes variations across the trial and 

spatial dimensions. Using the Advanced Coupled Matrix 

Tensor Factorization (ACMTF) model we can jointly 

factorize the 3rd-order tensor 𝝌 coupled with a matrix 𝑌 

in trial mode. The common mode between the EEG and 

fMRI is trial-to-trial (scan-to-scan) covariations in brain 

activity [23]. According to the definition of EEG and fMRI, 

a temporal relationship between EEG and fMRI data is 

considered in the form of hemodynamic response 

function (HRF) [4]-[24]. Thus, the ACMTF model [14] can 

be utilized to formulate an optimization problem: 

𝑓(𝜆, σ, 𝑇𝑒𝑒 , 𝐹𝑒𝑒 , 𝑀𝑒𝑒 , 𝑀𝑓𝑚) = ‖𝝌 −

⟦𝜆; 𝑇𝑒𝑒 , 𝐹𝑒𝑒 , 𝑀𝑒𝑒⟧‖ + ‖𝑌 − 𝐻𝑇𝑒𝑒Σ𝑀𝑓𝑚
𝑇‖

2
+

β‖λ‖1 + 𝛽‖σ‖1    

𝑠. 𝑡. ‖𝑡𝑒𝑒𝑟‖ = ‖𝑓𝑒𝑒𝑟‖ = ‖𝑚𝑒𝑒𝑟‖ = ‖𝑚𝑓𝑚𝑟‖ =

1     𝑓𝑜𝑟  𝑟 = 1,… , 𝑅  

(2) 

where the tensor 𝝌 and matrix 𝑌 are decomposed based 

on the CANDECOMP/PARAFAC (CP) and singular value 

decomposition (SVD) models, respectively. The factor 

matrix 𝑇𝑒𝑒 ∈ ℝ𝐼×𝑅  (trial-to-trial variation) is common 

between EEG and fMRI. Moreover, hemodynamic trials of 

fMRI could be predicted using the convolution of 𝑇𝑒𝑒  in 

EEG with known HRF ℎ(𝑡). The Toeplitz matrix 𝐻 contains 

samples of ℎ(𝑡) on its diagonals [4]. 

Also, 𝐹𝑒𝑒 ∈ ℝ𝐽×𝑅  and 𝑀𝑒𝑒 ∈ ℝ𝐾×𝑅  are factor matrices 

corresponding to the frequency and channel topography 

of the EEG signal, respectively; 𝑀𝑓𝑚 ∈ ℝ𝐿×𝑅 is the factor 

matrix corresponding to the spatial maps of voxels; and 

𝜆 ∈ ℝ𝑅×1 and 𝜎 ∈ ℝ𝑅×1 are weights of rank-one 

components in the third-order tensor and the matrix, 

respectively. The Σ ∈ ℝ𝑅×𝑅 is a diagonal matrix, with 𝜎 

forming its diagonal. Also, ‖. ‖ and ‖. ‖1 represent the 

Frobenius norm and 𝑙1-norm, respectively; 𝛽 ≥ 0 is a 

penalty parameter; and 𝑡𝑒𝑒𝑟 , 𝑓𝑒𝑒𝑟  , 𝑚𝑒𝑒𝑟 , and 𝑚𝑓𝑚𝑟  are the 

𝑟𝑡ℎ  columns of 𝑇𝑒𝑒 , 𝐹𝑒𝑒 ,  𝑀𝑒𝑒 ,  and 𝑀𝑓𝑚, respectively. The 

weights 𝜆 and 𝜎 are sparsified using the 𝑙1-norm terms. 

Thus, the components with significant weights in both 

modalities are considered shared, while unshared 

components have weights of almost zero in one of the 

datasets. 

D. HRF Modeling  

One method of analyzing the task-related fMRI data is 

to estimate the shape of the time courses corresponding 

to the considered stimulus. Among the various methods 

used to estimate these time courses, the linear 
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convolutional model is the most common technique. In 

this approach, the task-related time course can be 

modeled as a convolution between the stimulus function 

and a particular impulse response function known as the 

hemodynamic response function (HRF) [25]. One of the 

most popular techniques used to analyze fMRI signals is 

the general linear model (GLM). It models the BOLD signal 

as a linear combination of several various predictors. The 

GLM method requires an accurate estimate of the HRF. 

Several different models of the HRF are used in the 

analysis of fMRI signals [25], [26].  

The most widely used model for the functional shape 

of the HRF is the double gamma distribution model, 

usually referred to as canonical which is used in SPM 

software. There are several models of canonical HRF in 

literature. HRF waveform shapes can be controlled by one 

to nine free parameters, based on the model [27]. The 

canonical HRF demonstrated in Fig. 2 has been used in this 

study. Some HRF studies use a basis function approach 

under the GLM framework; for example two sine basis 

functions or a product of a sine function and exponential 

function. Woolrich et al. presented constrained linear 

basis sets for HRF modeling using Variational Bayes. The 

proposed HRF was parameterized using six parameters. 

Several techniques exist to choose a basis set with the 

constraints so that the subspace spanned by the basis 

function creates a plausible HRF waveform [28]. 

 
Fig. 2: Representation of the canonical HRF in SPM. 

Bayesian methods are another approach for 

incorporating prior knowledge or uncertainty into the 

modeling of HRF [29]. The deconvolution method and a 

semiparametric approach based on finite impulse 

response (FIR) are other methods with more flexibility in 

modeling HRF [30].  

Although HRF waveform varies across different 

subjects and different brain regions, in most studies, the 

HRF is considered invariant and assumed to be known. 𝐻 

is a convolution matrix defined as follows, where l is the 

length of the signal of 𝑇𝑒𝑒 , m is the length of HRF and the 

dimension of 𝐻 is (𝑚 + 𝑙 − 1) × 𝑙. 

𝐻

=

[
 
 
 
 
 
 
 

 ℎ1                0                ⋯            0               0
ℎ2                 ℎ1               ⋯              ⋮             ⋮
⋮                    ⋮                  ⋯              ⋮            ⋮

ℎ𝑚                    ℎ𝑚−1           ⋯            0          ℎ2 
0                 ℎ𝑚              ⋱               ℎ𝑚−2        ⋮

 0                  0                    ⋯      ℎ𝑚−1       ℎ𝑚−2

⋮                    ⋮                   ⋯            ℎ𝑚    ℎ𝑚−1

0                   0                   0           ⋯         ℎ𝑚 ]
 
 
 
 
 
 
 

 

 

(3) 

E. Normalized Mutual Information (NMI) 

Measurement of the relationship between two 

variables can be done using information theory (IT). A 

generalized criterion of dependency is mutual 

information (MI). MI quantifies the amount of 

information shared between two variables. In addition, It 

excels at capturing complex interdependencies that may 

not be adequately represented by traditional measures 

like Pearson's correlation coefficient. Overall, while 

Pearson's correlation coefficient is useful for measuring 

linear relationships, mutual information provides a more 

comprehensive understanding of the dependencies 

between variables. As a result, MI can be used to 

determine how similar or dissimilar the shared 

components in two datasets are. 

If 𝑋 and 𝑌 are two random variables, 𝑝(𝑥, 𝑦) is the joint 

distribution, and 𝑝(𝑥) and 𝑝(𝑦) are the marginal 

distributions, the mutual information is calculated as 

follows: 

    (4) 
  𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (

𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦 ) =

  𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋; 𝑌)  

where 𝐼(𝑋, 𝑌) is the mutual information, 𝐻(𝑋) and 𝐻(𝑌) 

are Shannon’s entropies of the discrete random variables 

𝑋 and 𝑌, respectively, and 𝐻(𝑋; 𝑌) is the joint entropy 

[21].  

Estimating the entropy and MI values requires careful 

consideration of the data distribution and sample size. 

MI-based measures require to be estimated due to the 

unknown underlying probability distributions. 

Additionally, choosing the appropriate method for 

estimating entropy and MI can impact the reliability and 

interpretability of the results. Compared to various MI 

estimation methods such as kernel density estimation or 

Gaussian mixture models, histogram-based density 

estimation is a simple and effective technique [20]. 

However, care must be taken to choose the appropriate 

number of bins to avoid underestimating or 

overestimating the true MI values. Before adding MI to 

the objective function, it needs to be normalized. The 

normalization ensures that all variables are on a 

consistent scale and make information more meaningful. 

Specifically, it is transformed into a number within the 

range of [0, 1]. The normalized mutual information (NMI) 

can be defined as 
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      (5)   𝑁𝑀𝐼(𝑋, 𝑌) =
𝐼(𝑋;𝑌)

1

2
(𝐻(𝑋)+𝐻(𝑌))

=
2𝐼(𝑋;𝑌)

(𝐻(𝑋)+𝐻(𝑌))
  

F. Generalized Coupled Matrix Tensor Factorization 

The ACMTF has been enhanced by incorporating the 

NMI criteria to address the equality constraint of the 

shared components. Now, according to generalized 

coupled matrix tensor factorization (GCMTF), the cost 

function is as follows: 

(6) 

  𝑓(𝜆, 𝜎, 𝑇𝑒𝑒 , 𝐹𝑒𝑒 , 𝑀𝑒𝑒 , 𝑇𝑓𝑚 , 𝑀𝑓𝑚) = ‖𝝌 −

  ⟦𝜆; 𝑇𝑒𝑒 , 𝐹𝑒𝑒 , 𝑀𝑒𝑒⟧‖ + ‖𝑌 − 𝐻𝑇𝑓𝑚𝛴𝑀𝑓𝑚
𝑇‖

2
+

 𝛾 ∑ (1 − 𝑒
−(𝜆𝑟𝜎𝑟)2

𝜀⁄ ) (1 − 𝑁𝑀𝐼(𝑡𝑒𝑒𝑟 , 𝑡𝑓𝑚𝑟))
𝑅
𝑟=1 +

 𝛽 ∑ √𝜆𝑟
2 + 𝜖𝑅

𝑟=1 + 𝛽 ∑ √𝜎𝑟
2 + 𝜖𝑅

𝑟=1   

  𝑠. 𝑡. ‖𝑡𝑒𝑒𝑟‖ = ‖𝑡𝑓𝑚𝑟‖ = ‖𝑓𝑒𝑒𝑟‖ = ‖𝑚𝑒𝑒𝑟‖ =

  ‖𝑚𝑓𝑚𝑟‖ = 1     𝑓𝑜𝑟  𝑟 = 1,… , 𝑅  

where 𝛾 is the penalty parameter; 𝑡𝑒𝑒𝑟 , 𝑓𝑒𝑒𝑟 , 𝑚𝑒𝑒𝑟, 𝑡𝑓𝑚𝑟  , 

and 𝑚𝑓𝑚𝑟  are the 𝑟𝑡ℎ  columns of 𝑇𝑒𝑒 , 𝐹𝑒𝑒 ,  𝑀𝑒𝑒 ,  𝑇𝑓𝑚, and 

𝑀𝑓𝑚, respectively; and NMI is the normalized mutual 

information between 𝑡𝑒𝑒𝑟  and 𝑡𝑓𝑚𝑟 . By selecting a 

sufficiently small enough 𝜖 > 0, the 𝑙1-norm of λ and σ 

has been replaced with their differentiable equivalents. 

The expression (1 − 𝑒
−(𝜆𝑟𝜎𝑟)2

𝜀⁄ ) is the smoothed 𝑙0-

norm, where 𝜀 is a tunable and small parameter to 

approximate 𝑙0-norm [19]-[31]. This term is used to 

identify the shared components and avoid the 

maximization of the NMI between the unshared 

components. 

Alternating Least Square (ALS) is the traditional 

approach for optimizing the objective function. In [11], 

non-conjugate gradient methods achieve faster 

convergence than ALS. In this approach, it is necessary to 

compute the gradients of the objective function with 

respect to their parameters. Hence, NMI gradients with 

respect to factor matrices in the objective function need 

to be computed. The Score Functions (SFs) defined in [20]-

[32] were used to compute the NMI gradient.  

If we have a bounded random vector 𝑋 and a small 

enough ∆ vector of the same dimension, it is 

demonstrated: 

        (7) 𝐼(𝑋 + ∆) − 𝐼(𝑋) = 𝐸{∆𝑇𝛽𝑋(𝑋)} + 𝑜(∆) 

where 𝛽𝑋(𝑋) = 𝜓𝑥(𝑋) − 𝜑𝑥(𝑋) is the Score Function 

Difference (SFD) of 𝑋 and 𝑜(∆) represents the higher-

order expressions in ∆. The terms 𝜓𝑥(𝑋) and 𝜑𝑥(𝑋) are 

the Marginal Score Functions (MSFs) and Joint Score 

Functions (JSFs) of vector 𝑋, which are defined as follows: 

     (8)  𝜓𝑥(𝑋) = −
𝑑

𝑑𝑥𝑖

𝑙𝑛𝑝𝑥𝑖
(𝑥𝑖) = −

�́�𝑥𝑖
(𝑥𝑖)

𝑝𝑥𝑖
(𝑥𝑖)

 

       (9) 
 𝜑𝑥(𝑋) = −

𝜕

𝜕𝑥𝑖

𝑙𝑛 𝑝𝑋(𝑋) = −

𝜕
𝜕𝑥𝑖

𝑝𝑋(𝑋)

𝑝𝑋(𝑋)
 

where 𝑝𝑥𝑖
(𝑥𝑖) is the marginal probability density function 

(PDF) of 𝑥𝑖  and 𝑝𝑋(𝑋) is the joint PDF of random vector 𝑋. 

SFD estimation is our main concern since it is the gradient 

of mutual information. Histogram estimation is the 

preferred method among the various techniques used to 

estimate SFD due to its acceptable accuracy despite its 

simplicity [20]. The GCMTF method is graphically depicted 

in Fig. 3. 

The cost function gradient is computed using these 

equations: 
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where 𝜏 = ⟦𝜆; 𝑇𝑒𝑒 , 𝐹𝑒𝑒 , 𝑀𝑒𝑒⟧, 𝑋(𝑛) is the tensor 𝝌 

unfolded in the nth mode, ×𝑛 defines the tensor-vector 

product in the nth mode, ⨀ signifies the Khatri-Rao 

product and �̅�𝑒𝑒  corresponds to 𝑇𝑒𝑒  with columns 

divided by their 𝑙2-norms. Also term 𝑙0  refers to the 

smoothed 𝑙0-norm. 
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Results  

The dataset used in this study is an oddball auditory 

paradigm derived from 17 healthy subjects [33]. The EEG 

data were denoted as a third-order tensor 

trial×frequency×channel and fMRI data as a matrix trial 

(scan) ×voxels. The EEG tensor for simulated data was 

generated using the same values as the real data [33]. The 

defined time windows (before and after the stimulus) 

were applied to the signals of each channel. These 

windows were transformed into a spectrogram using the 

Fourier transform. Then, based on the Canonical Polyadic 

Decomposition (CPD), these factors are multiplied to form 

the EEG tensor. To generate matrix fMRI, the trials were 

first convolved with canonical HRF and then multiplied 

with spatial factor (voxels). It is necessary to select the 

rank of the dataset before applying the method. Hence, 

using the Corcondia test, the number of components is 

selected to be 3. Now, it is assumed that all three 

components have significant values in both modalities. 

Thus, [1 1 1] was chosen as the values of λ and σ.  

To evaluate the presented method's ability to identify 

shared components with different linear correlation 

levels, the components were selected as follows. The first 

two shared components have a linear correlation of 90%, 

the second ones have a linear correlation of 50%, and the 

third ones are considered to be the same. The temporal 

components of the two modalities with different linear 

correlation levels are shown in Fig. 4. The results of the 

GCMTF method were compared to the ACMTF method. 

To evaluate the robustness of our proposed method 

against noise, white Gaussian noise of different SNRs has 

been added to both the EEG and fMRI datasets. The SNR 

levels added to the data were selected from -15 dB to +15 

dB. Although both methods have acceptable performance 

against different noise levels, the GCMTF method is more 

effective than the ACMTF method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: From up to down, the temporal components of both 

modalities exhibit a linear correlation of 90%, 50%, and 100% 
(the same components). 

Estimating the true components has decreased due to 

the assumption of equal components in the ACMTF 

method. Fig. 5 illustrates the weights of λ and σ estimated 

using the proposed GCMTF and ACMTF methods. Also, 

the shared components estimated by each method in the 

presence of high-level noise are depicted in Fig. 6 and Fig. 

7.  

In Fig. 8 the performance of the GCMTF method has 

been compared with the ACMTF method. The Match 

Score 𝑀𝑆 =
1

𝑅
∑ �̂�𝑟 

𝑇𝑎𝑟
‖�̂�𝑟 

𝑇‖‖𝑎𝑟‖
⁄𝑅

𝑟=1  is used to 

evaluate the results. In the MS relationship, �̂�𝑟  and 𝑎𝑟  are 

the estimated and true values, respectively. The average 

match score for each simulated factor is illustrated in Fig. 

8. The results indicate that the GCMTF method 

outperforms the ACMTF method. The average Match 

Score was raised by approximately 20% in the GCMTF 

model compared to the ACMTF model. 

 
Fig. 3: Graphical representation of the GCMTF method with coupling in trial mode. (a) 3rd-order tensor EEG is represented by 

trials (𝑡𝑒𝑒), frequency (𝑓𝑒𝑒), and channels (𝑚𝑒𝑒). (b) Trials (𝑡𝑓𝑚) and voxels (𝑚𝑓𝑚) are used to index the matrix fMRI. 
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Fig. 5: The weights of 𝜆 and 𝜎 estimated using the proposed 

GCMTF and ACMTF methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion  

The shared components in the common mode are 

assumed to be identical when fusing EEG and fMRI. 

However, this assumption is restrictive. Our proposed 

method replaced the equality assumption with a 

similarity measure.  

Using normalized mutual information as a similarity 

measure, we can capture the differences between EEG 

and fMRI data that may not be fully accounted for by 

assuming identical components. This allows us to more 

accurately fuse information from both modalities and 

potentially uncover new insights that may have been 

overlooked with the traditional approach. Additionally, by 

quantifying the level of similarity between components, 

we can better understand the relationship between EEG 

and fMRI.  

An NMI value approaching 1 indicates significant 

similarity, but when it nears zero, it means the opposite. 

Our simulations take into account three different levels of 

correlation.  

The results indicate that our proposed GCMTF method 

significantly improves accurately estimating shared 

components with correlated temporal modes compared 

to existing methods like ACMTF. Moreover, the GCMTF 

method accurately estimates the weight values for each 

component corresponding to their existence in the 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

  

(a) (b) 

Fig. 6: The components estimated by GCMTF method: (a) The estimated EEG components (Tee) (b) The estimated fMRI components 
(Tfm). 
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Fig. 8: Average match score (MS) between extracted factors by ACMTF and GCMTF and their ground truth at low and high SNR. 

 

Conclusion  

Overall, our proposed method offers a flexible and 

versatile approach to the fusion of multimodal data, 

providing a better understanding of the relationship 

between the two modalities. The application of this 

method can improve our capacity to study brain function 

in real EEG and fMRI data and opens up new possibilities 

for studying complex cognitive processes and 

neurological disorders. Although the GCMTF method is 

superior to the ACMTF, some modifications need to be 

made to improve its performance. Our method assumes 

that the HRF waveform is invariant for all brain voxels. 

However, the model can be more flexible by considering 

the variability in HRF across different subjects and brain 

regions in real data.  

Furthermore, adopting other techniques to estimate 

MI rather than the histogram-based method may 

enhance the accuracy of estimating MI and entropy 

values. One alternative technique that could be explored 

  

(a) (b) 

Fig. 7: The components estimated by ACMTF method: (a) The estimated EEG components (Tee) (b) The estimated fMRI 
components (Tfm). 
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is kernel density estimation, which can provide a 

smoother and more continuous estimate of the 

underlying distribution. Additionally, advanced 

techniques such as neural networks or support vector 

machines could result in more precise and reliable 

estimations of mutual information and entropy in data 

analysis. 
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