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Background and Objectives: When dealing with high-volume and high-
dimensional datasets, the distribution of samples becomes sparse, and issues such 
as feature redundancy or irrelevance arise. Dimensionality reduction techniques 
aim to incorporate correlation between features and map the original features 
into a lower dimensional space. This usually reduces the computational burden 
and increases performance. In this paper, we study the problem of predicting 
heart disease in a situation where the dataset is large and (or) the proportion of 
instances belonging to one class compared to others is significantly low. 
Methods: We investigated the prominent dimensionality reduction techniques, 
including Principal Component Analysis (PCA), Information Bottleneck (IB), t-
distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold 
Approximation and Projection (UMAP) and Variational Autoencoder (VAE) on 
popular classification algorithms. To have adequate samples in all classes to 
properly feed the classifier, an efficient data balancing technique is used to 
compensate for fewer positives than negatives. Among all data balancing 
methods, a SMOTE-based method is selected, which generates new samples at the 
boundary of the samples distribution and avoids the synthesis of noise and 
redundant data.  
Results: We used UCI and Kaggle datasets to simulate and evaluate the model. The 
experimental results show that VAE-based method outperforms other 
dimensionality reduction algorithms in the performance measures. The proposed 
hybrid method improves accuracy to 97.7% and sensitivity to 99.4%. Also, a 
feature importance analysis is provided to show insights into the factors driving 
the predictions and help understand the underlying mechanisms of heart disease. 
Conclusion: Finally, it can be concluded that the combination of VAE with 
oversampling algorithms can significantly enhance system performance as well as 
computational time.  
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Introduction 
Heart disease or cardiovascular disease is one of the 

leading causes of death in humans and its early diagnosis 

is quite challenging. Many studies are performed to 

improve the early detection of heart disease and reduce 

mortality. These studies aim to develop computer-aided 

diagnostic systems using emerging technologies. These 

systems predict heart disease based on data classification 
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algorithms; thus, the application of efficient algorithms 

plays an essential role in their accuracy. Many researchers 

have employed machine learning algorithms to construct 

diverse models and have attained remarkable 

accomplishments [1], [2]. To incorporate correlation 

between features, dimensionality reduction methods can 

be used. These methods can map the initial features into 

a space with fewer dimensions and extract effective 

features to feed the classification models. Many 

researchers have emphasized that feature reduction can 

improve performance and lead to faster processing per 

record.  

Recently, AEs have excelled in unsupervised machine 

learning works for denoising data, compression and 

feature reduction. These networks can represent features 

in complex and large datasets with exceptional 

performance [3]. AEs can be considered as feedforward 

networks that their hidden layers have fewer neurons 

than the input and output layers. An AE is an encoder-

decoder pair that generates an encoded representation 

and then reconstructs the input with encoded knowledge.  

Usually, most dataset instances are normal and only a 

small percentage of them are related to abnormal or 

patient cases, as a result, the lack of patient instances may 

cause the model to not be properly fed and fully trained 

to recognize patients. Therefore, we use a data balancing 

phase to compensate for fewer patient instances than 

normal ones. 

 The Synthetic Minority Oversampling Technique 

(SMOTE) has promising results in addressing imbalanced 

data [4]. However, SMOTE has limitations, as it can 

generate noise and redundant data that do not 

significantly enhance the performance parameters. To 

overcome these limitations, improved versions of SMOTE, 

such as the Borderline Synthetic Minority Oversampling 

Technique (BSM) are proposed [5]. This technique focuses 

on generating samples at the boundary of the sample 

distribution to avoid the synthesis of noise and redundant 

samples.  

When the training data has a large volume or high 

sample dimensions, there are problems such as the 

feature redundancy or feature irrelevance. In such a 

situation, SMOTE-based sampling methods lead to failure. 

Therefore, dimensional reduction methods can be helpful 

to implement sampling methods in low-dimensional 

space. The traditional dimension reduction method 

creates a great deal of redundancy in the feature space 

and the distribution of samples between the categories is 

mixed. This is a challenge for data synthesis with edge 

samples. 

In this paper, a hybrid system is proposed that uses 

dimensionality reduction techniques namely, PCA, 

Information bottleneck (IB), t-distributed Stochastic 

Neighbor Embedding (t-SNE), Uniform Manifold 

Approximation and Projection (UMAP) and variational AE 

(VAE) to incorporate the correlation between features 

and extract the most essential features. Then, new 

samples are synthesized using BSM, especially at the 

boundary of the sample distribution. Finally, the 

combined samples are applied to train classification 

algorithms, including MLP, SVM and Logistic regression 

(LR) algorithms. We analyze the impact of dimensionality 

reduction and data balancing techniques on the 

performance of the classification algorithms. The 

experimental results show that VAE outperforms PCA and 

IB, besides, PCA has better computational time than VAE 

and IB. Also, data augmentation improves performance 

metrics. It can be concluded that the use of deep learning 

methods increases performance and efficiency, especially 

in large data sets. The results show that the proposed 

model using AE-based dimensionality reduction and BSM 

oversampling methods provides better performance, 

accuracy of 97.7% and sensitivity of 99.4%. The main 

contributions of the paper are as follows: 

• Investigating the impact of applying three 

dimensionality reduction methods, PCA, IB, t-SNE, 

UMAP and VAE, on several classification algorithms 

using performance measures (accuracy, sensitivity, F1-

score, precision, ROC- AUC score). 

• Applying an improved SMOTE algorithm, BSM, after 

dimensionality reduction. This has a significant effect 

on the performance in two ways: First, essential 

features are restored and the synthesized data is 

generated based on these features. Second, after 

reducing the dimension, the problem of synthesis of 

noise data is solved. 

• Proving the higher performance of VAE rather than the 

other dimensionality reduction techniques. 

• Studying the effect of dimensionality reduction on 

computational time of large datasets. 

• Proposing a hybrid model based on VAE and BSM with 

high accuracy and sensitivity 97.7% and 99.4%. 

The rest of the paper is organized as follows: Section 

"Methodology" reviews the building blocks of the 

proposed model including dimensionality reduction 

techniques, oversampling methods and machine learning 

algorithms. The proposed model is described in Section 

"Architecture of the Model". Section "Experimental 

Results" shows experimental results and performance 

analysis. Finally, the paper concludes in Section 

"Conclusion". 

Related Work 

Bhatt et al. [6] examined the efficacy of several 

machine learning algorithms in predicting heart disease. 

They proposed a k-mode clustering algorithm that utilizes 

random forest, decision tree, multilayer perceptron, and 

XGBoost. Khan et al. [7] presented a hybrid machine 

learning method and performed experimental analysis. 
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Hassan et al. [8] proposed a system with combining a pre-

trained Deep Neural Network (DNN) for feature 

extraction, Principal Component Analysis (PCA) for 

dimensionality reduction, and Logistic Regression (LR) for 

classification. The system demonstrated accuracy rates of 

91.79% and 93.33% on the Cleveland dataset. In [9], 

authors developed a system based on machine learning 

and feature selection algorithms to achieve acceptable 

results. In [10], a system was developed that combines 

ensemble deep learning and feature fusion methods. This 

system utilized two algorithms, information gain and 

conditional probability, to reduce the number of features 

and assign specific weights to heart disease features. 

Following this, an ensemble deep learning classifier was 

trained to forecast heart disease in patients. 

PCA is a common statistical technique that has found 

applications for finding patterns in high-dimensional data.  

Results of recent research demonstrate that utilization 

of deep learning methods enhances the accuracy of 

predictions. For example, in [11], some machine learning 

techniques, including logistic regression (LR), SVM, deep 

neural network, decision tree, Nave Bayes, random forest 

and k-nearest neighbor are investigated and it concluded 

that DNN had the best performance with 98.15%  

accuracy and 98.68% sensitivity. Deep learning has been 

used successfully in various fields, especially in image 

analysis, visualization and working with large volumes of 

data. It is an evolving technique that is capable of 

representation of multi-level records [12]. DNN is a 

complex neural network with several hidden layers 

between the input and output layers. The input data is 

converted to nonlinear or activation functions to 

generate classes. In [2], a hybrid DNN is proposed to 

utilize convolutional neural network (CNN) and long 

short-term memory jointly. This method can predict heart 

disease with an accuracy of 93.7%. 

For example, in [13], the authors used various feature 

selection techniques to forecast heart disease. In 

particular, they employed an SVM classifier for forward 

feature extraction, along with back-elimination feature 

selection. Their results demonstrated a reduction in the 

number of input variables, leading to an improvement of 

accuracy up to 85%. In another paper, Shao et al. [14] 

proposed a rough set strategies and multivariate adaptive 

regression splines to optimize the number of descriptive 

features and achieve an accuracy of 82.14%.  

In recent research, applying newer feature selection 

algorithms such as fuzzy-based systems or DNN has 

significantly improved performance metrics. In [15], a 

hybrid model based on Fuzzy C-means and ANN along 

with PCA was proposed. PCA was used to select important 

features of the dataset. The extracted data from PCA was 

clustered using fuzzy C-means and finally, ANN was 

applied to predict cardiovascular disease. Its simulation 

results showed the effectiveness of the method with an 

accuracy value 99.55%, however, the precision is 33.27% 

and it requires a significant improvement. 

In [16], the authors proposed a two-phase method in 

which the first phase involved sparse AE training to learn 

the best representation of training data. The second 

phase utilized ANN to predict health status based on 

trained records. Its experimental results showed that the 

model’s accuracy is 90%, which shows a better 

performance than some traditional machine learning and 

neural network approaches. Authors of [17] proposed a 

system based on two deep neural networks that consist 

of one PCA and four deep learning models, including two 

variational AE and two DNN models. Ebiaredoh-Mienye et 

al. [18] proposed a model consisting of feature selection 

and classification phases that integrate an improved 

sparse AE and Softmax regression. They showed that the 

model has a robust feature learning algorithm and a high-

performance classification. 

Methodology 

In this subsection, we briefly review the algorithms 

used in the proposed model, including data balancing 

techniques, dimensionality reduction methods and 

machine learning algorithms. 

A.  Data Balancing 

The classification of imbalanced datasets is a 

challenging issue. When imbalanced data appear in the 

classification, the problem of overfitting arises and the 

result will be biased toward the majority class. In such 

situations, the data should be balanced either by 

oversampling or undersampling techniques to improve 

the performance. An oversampling technique increases 

the number of samples of the minority class, such as 

ADYSAN, SMOTE, SMOTE-TOMKE, etc. An undersampling 

technique reduces the number of samples of the majority 

class, like Dense Nearest Neighbor, Edited Nearest 

Neighbor and so on. We can apply a hybrid method such 

that oversampling is applied to the minority class to 

improve the model detection for the minority class 

samples, and undersampling is performed on the majority 

class to reduce the bias in the majority class samples. 

SMOTE is an extended method that builds upon the 

random oversampling algorithm. Initially, it computes the 

Euclidean distance between 𝐾 neighboring samples 

belonging to the same category surrounding each sample 

𝑥𝑖  in the minority class. Subsequently, a neighbor is 

randomly chosen, and a synthetic sample is created with 

a probability that falls on the line connecting the sample 

and its neighbor. The formula for synthesis can be 

represented as below: 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟 ∗ (𝑥𝑖̂ − 𝑥𝑖)                                      (1) 

where 𝑟 is a random number between [0,1], 𝑥𝑖  is a sample 
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to be oversampled and 𝑥𝑖̂ is a random neighbor sample. 

The SMOTE method is one of the widely used methods 

for data synthesis, for which many improvements have 

been proposed so far. But most of them are either 

complicated or only focus on one of SMOTE's weakness. 

Among the proposed methods, the BSM approach is an 

approach that, in addition to removing noise data and 

detecting main features, also considers border data.  

BSM categorizes the samples into safe, noisy and 

dangerous samples, where the dangerous samples are 

those that are on the boundary of the distribution. By 

generating synthetic data for these samples, the ability of 

the method to identify patient samples is significantly 

increased. Applying BSM can help the method to predict 

heart disease to a great extent, especially when minority 

samples are difficult to detect. 

B.  Dimensionality Reduction 

Dimensionality reduction is a preprocessing step that 

reduces high-dimensional data to a controllable size while 

retaining the original information intact. It is a common 

step used for pattern recognition, classification 

applications and compression schemes. The 

dimensionality reduction has been effective in multiple 

aspects: first, the reduced representation combines 

different features of the records. Second, reducing the 

dimension speeds up the execution of the algorithm and 

improves the performance of the system in some cases. 

In this paper, several common dimensionality reduction 

methods have been used: PCA, IB and AE. AE-based model 

is shown to provide better performance while PCA-based 

model improves speed compared to IB and AE. 

    I)  Principal Component Analysis (PCA) 

PCA is a linear transformation that reduces the 

dimensionality of the input data, keeping its most 

significant parts. To achieve this, one must calculate the 

eigenvalues and eigenvectors of the data covariance 

matrix, then arrange the eigenvectors based on the 

eigenvalues in a descending manner and ultimately 

project the original data onto the directions of the 

eigenvectors. This method is suitable for fully correlated 

data. In practice, the only important PCA parameter that 

needs to be adjusted is the dimension of the projection 

space. This can be conveniently determined by examining 

the variance ratios of the principal components. Several 

types of improvements have been introduced for PCA. For 

example, possible principal component analysis (PPCA) 

was introduced to address the problem of missing values 

of features [19] or an extended PCA [20] was presented 

for applying on big data.  

    II)  Information Bottleneck (IB) 

IB introduced as an information-theoretic principle for 

extracting a compressed representation of the input data 

that maximizes a target prediction. It can be considered 

as an optimization problem that minimizes the mutual 

information I(Z; X ) between the input variable X and its 

latent representation Z and it maximizes the mutual 

information I(Z;Y ) between the output variable Y and the 

latent representation Z. In other words, it intends to 

maximize the following objective function: 

ɸIB
Ө = I(Z;Y|θ)-βI(Z;X|θ)                                              (2) 

where β ∈ [0, 1] manages the size of IB and θ is a Lagrange 

multiplier. 

    III)  t-SNE 

t-SNE represents a non-linear, unsupervised, and 

manifold-based feature extraction technique. It can map 

the high-dimensional data into a lower-dimensional 

space, typically comprising two or three dimensions, 

while maintaining the significant structure of the original 

data. Its primary application lies in the realms of data 

exploration and visualization. Although various feature 

extraction algorithms exhibit robust performance, they 

often struggle with visualizing high-dimensional data 

effectively and frequently fail to maintain both local and 

global data structures. In this context, t-SNE proves to be 

an advantageous tool for visualizing high-dimensional 

data by preserving the important structural attributes. 

The process begins with the application of Stochastic 

Neighbor Embedding (SNE), which transforms high-

dimensional Euclidean distances into conditional 

probabilities that denote similarities between each pair of 

data points. Subsequently, a student t-distribution with 

one degree of freedom, similar to Cauchy distribution, is 

utilized to derive the second set of probabilities in the 

lower-dimensional space. Consequently, t-SNE aims to 

minimize the divergence between these two sets of 

probabilities across the high-dimensional and low-

dimensional spaces [21]. 

    IV)  UMAP 

The UMAP algorithm stands out as a strong competitor 

to t-SNE in terms of visualization quality, often 

demonstrating a greater ability to maintain global 

structure while offering enhanced computational 

efficiency. Additionally, UMAP imposes no limitations on 

the embedding dimension, rendering it a versatile option 

for dimension reduction in machine learning applications. 

While UMAP is similar to t-SNE, it also possesses 

significant differences that have led many practitioners to 

favor it for dimension reduction tasks. UMAP optimizes 

performance utilizing cross-entropy as the loss function in 

contrast to t-SNE's use of KL divergence, and employing 

stochastic gradient descent to optimize the cost function 

rather than the more time-consuming gradient descent 

method. 

    V)  Autoencoder (AE) 

The methods such as PCA may not fully succeed in 
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extracting the complex features of nonlinear datasets. In 

order to address this issue, AE as a deep learning model 

can be used. AE is trained to learn how to generate the 

original input with a minimum reconstruction error. It 

comprises two steps: the encoder, which transforms the 

d-dimensional input data into a latent representation, 

and the decoder, which reconstructs the representation 

to a vector resembling the original input. This process is 

known as reconstruction, with the difference between 

the decoder's output and the original input termed as 

reconstruction error. 

Node layers identify input data patterns and use them 

to generate encrypted data representations. The network 

training algorithm adjusts the behavior of each node to be 

close to the configuration of the input data. If a linear 

activation function is applied, the AE becomes similar to a 

simple linear regression or PCA. But a nonlinear activation 

function, such as a rectified linear unit (ReLU) or a sigmoid 

function, makes the AE different from the PCA. The 

multiple types of AEs can be combined or modified to 

obtain new models for various applications. Among their 

widely used types, we can mention the types of 

variational AE (VAE), denoising AE (DAE) and sparse AE 

(SAE). VAE is enhanced with variational inference and 

parameterization to increase the model’s ability in 

feature extraction and retain the diversity of the 

generated data. DAE takes a noisy input while training to 

recover the original undistorted input. By this means, the 

encoder can extract the most essential features and learn 

a robust representation of the input data. In SAE a sparsity 

constraint is imposed on the hidden nodes to mine 

essential information and avoid redundancy in large-scale 

datasets.  

In this paper, we use a hybrid model based on VAE to 

enhance the model’s ability in feature extraction while 

preserving the diversity of the generated data. The 

experimental results indicate that even with a 3 layered 

VAE, the model outperforms both IB and PCA.  

C.  Classifier Techniques 

In the following, we review some common classifier 

methods that have high performance results, including 

MLP, SVM and Logistic Regression (LR) algorithms. 

    I)  Multi-Layer Perceptron (MLP) 

MLP is an artificial neural network that consists of an 

input layer, an output layer and multiple hidden layers 

instead of a single hidden layer. It is a feedforward 

network, meaning that each layer feeds the subsequent 

layer through a series of weights. MLP uses the 

backpropagation technique which is a supervised learning 

method. It has the capability to learn nonlinear models. 

Its multiple hidden layers and nonlinear activation 

function differentiate it from a linear perceptron. For 

applying MLP, several hyperparameters such as the 

number of hidden neurons, layers, and iterations must be 

adjusted. 

    II)  Support Vector Machine (SVM) 

SVM is a supervised machine learning technique used 

for classification regression and outliers detection. In 

SVM, a hyper-plane is created for separating different 

types of data. One of the advantages of SVM is that its 

training is computationally simple and unlike neural 

networks, it does not suffer from the problem of a local 

minimum. To accurately control the error rate, the kernel 

function and C parameter should be chosen correctly. 

    III)  Logistic Regression 

Logistic regression is a statistical method to classify an 

observation into one of two classes, or into one of many 

classes. It models the relationship between the 

independent features and the binary dependent variable 

(target) using the logistic function.  

Architecture of the Model 

Our proposed model combines feature reduction and 

data balancing. First, the initial data is preprocess to 

normalize. Then, the prepared data is employed in 

training the VAE, (t-SNE, UMAP, IB or PCA). After training, 

VAE (t-SNE, UMAP, IB or PCA) can differentiate between 

classes in the latent space, utilize BSM for interpolation of 

latent variables and synthesis new data. Finally, 

combination of the original and synthesized data is used 

for classification. The general architecture of the model is 

demonstrated in Fig. 1. 

Since, VAE is a generative model, it can provide better 

performance and contribute for generating new samples 

using the latent variables. Therefore, we input the latent 

variables to the decoder to synthesis data. Subsequently, 

the decoder is eliminated and the encoder output is 

connected to the classifier and a combined network is 

created. The original data along with synthesized data are 

used to train the network. Algorithm 1 shows the pseudo 

code of the model based on VAE and BSM. 
 

Algorithm 1. The proposed model based on VAE and BSM. 

Input: Training data 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛};  

             Test data 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} 

Output: predicated labels: 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}  

1. Initialize VAE network; 

2. Data preprocessing: remove missing data and 
normalize features to [0,1]. Output 𝑇′ and 𝑆′; 

3.  Feed 𝑇′ to VAE's encoder and output 𝑍 =
{𝑧1, 𝑧2, … , 𝑧𝑛}. 

4. Run BSM using input 𝑍 and output 𝑍′. 

5. Feed 𝑍′ to VAE's decoder and output new samples 
𝑇𝑛𝑒𝑤; 

6. 𝑇′ =  𝑇′ 𝑈 𝑇𝑛𝑒𝑤; 

7. Train the combined classification network by 𝑇′ 

8. For each 𝑠𝑖 , 𝑖 = 1,2, … , 𝑚:  

    Return the prediction 𝑝𝑖; 
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 In detail, the proposed model has mainly four phases: 

1. Data preprocessing phase: this phase includes 

handling missing values, normalizing and shuffling data. 

The dataset contains missing values that are handled 

by K-Nearest Neighbors imputation technique [22]. In the 

splitting data stage, we utilized 70% − 30% train-test data 

partitioning approach. The dimensionality reduction and 

data balancing steps are applied only to the training data. 

2. Dimensionality reduction: In this phase, several 

dimensionality reduction methods, including PCA, IB, t-

SNE, UMAP and VAE are applied to incorporate 

correlation between features. These dimensionality 

reduction methods are selected according to their 

performance and efficiency on heart disease prediction 

problem and the type of dataset. 

3. Data balancing: Of all instances, 3596 are negative 

and 644 are positive. The lack of negative instances leads 

to low accuracy in predicting these cases (i.e., a high 

number of false negatives). Thus, we use an oversampling 

technique to generate samples of the minority class. 

However, most of these methods have limitations, as it 

can generate noise and redundant samples. Therefore, 

we use BSM which generates samples at the boundary of 

the sample distribution and avoids the synthesis of noise 

and redundant samples. 

After balancing data, the performance of the models is 

improved. Since in most oversampling methods, the 

classification type data is discarded or examined 

separately, we balance the data after the dimensionality 

reduction. 

4. Classification: At the end of the prediction process, 

the combined data is used as input to classification 

models. Among the classification methods, we selected 

three widely used categories that had higher 

performance than the others, MLP, SVM and LR. 

5. Evaluation of methods: The performance of the 

models is evaluated and compared by the evaluation 

measures: accuracy, sensitivity, precision, F1-score. These 

measures are defined as follows:  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
 (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (4) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (5) 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (6) 

TN and 𝑇𝑃 denote true negative and true positive, i.e., 

they represent the number of patients and normal 

instances that are classified correctly. While 𝐹𝑃 and 𝐹𝑁 

denote false positive and false negative, i.e., they 

represent the number of patients and normal instances 

that are incorrectly predicted. 

Experimental Results  

In this section, we use two publicly available datasets, 

Fig. 1: Diagram of the proposed model. 
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Kaggle heart dataset [23] and UCI heart disease 

repository  [24]. First dataset consists of 4238 samples 

and 16 features. The second dataset consists of 597 

samples and 13 features. Every feature is a risk factor that 

may be behavioral, demographic or medical. The features 

include age, knee joint pain status, waist circumference, 

neutral fat, BMI, SBP, TC, obesity status, frequency of 

eating out, HDL, weight change in one-year status, and 

marital status. 

The heart disease database includes 15 features as 

input and its output is classified into two groups patient 

and normal. Since there is no general rule to adjust the 

parameters such as the number of hidden layers and the 

number of neurons in various layers, it is vital to obtain a 

good network structure with optimal performance. 

D.  Experiment Setup 

We implemented the proposed model and determined 

the values of the parameters which provide optimal 

performance as follows: 

VAE: The number of layers and neurons in the VAE is 

chosen based on a grid search over batch size (20, 30, 40), 

epochs (25, 50, 100, 200), neural network depth (2, 3, 4) 

and the dimensionality of the first hidden layer (40, 30, 

20,12). we use Tanh and ReLU as activation functions and 

consider reduction size 4, 6, 8, 10 and 8. Also, we assume 

that the learning rate is 0.01, and ‘‘Adam’’ is used as the 

gradient descent algorithm. For example, we find the best 

architectures with two hidden layers listed in Table 1. 

Table 1: The network structure parameters for VAEs with 
reduction sizes 4, 6, 8, 10 

Reduction size Architecture 

4 15-30-10-4-10-40-15 

6 15-20-8-6-8-20-15 

8 15-20-10-8-10-20-15 

10 15-20-12-10-12-20-15 

 

IB: we consider the size of IB and Lagrange multiplier 

(θ) are 8 (size of reduction) and 0.95, respectively. Our 

implementation of IB is based on the Neural Network 

model for nonlinear information bottleneck [25]. 

PCA: it is enough to determine the optimal size to 

reduce the dimension. 

t-SNE: We consider number of iterations and the value 

of 𝛼 are 1000, respectively. Also, the perplexity is set to 

30 to determines the number of nearest neighbors 

considered. 

UMAP: We consider number of neighbors is 6 to 

balances local versus global structure in the data. Also, 

minimum distance is set to 0.3 to controls the minimum 

distance between points in the low-dimensional 

embedding. 

MLP network: we apply five hidden layers with sizes 

24, 30, 20, 15, 10, respectively. Also, the activation 

function and solver are selected Tanh and Adam, 

respectively. 

 However, in this method, adjusting the parameters is 

difficult and requires trial and error. 

SVM: we use RBF as kernel function and consider 

parameters C = 1, gamma = 100000. With these 

selections, good results have been achieved. 

LR algorithm: we apply it with the training parameter 

ridge estimator. 

E.  Performance Evaluation 

In the following, we show performance measures with 

respect to the possible dimensionality reduction 

methods, data balancing, classification algorithms and the 

size of reduction. Observing the results of the methods 

with various reduction sizes, it was found that reduction 

size 8 has best performance measures values. Therefore, 

we have shown the performance parameters results of 

algorithms for reduction size 8.  

Table 2-4 show the results of the performance 

measures obtained from models based on various 

dimensionality reduction methods, PCA, IB, t-SNE, UMAP 

and VAE, before and after data balancing for each UCI 

dataset and Kaggle dataset.  We have shown the names 

of different methods as a combination of the dimension 

reduction method and classifier, so the possible methods 

will be the combination of PCA, IB, t-SNE, UMAP and VAE 

with MLP, PCA and LR. 

Table 2 demonstrates the results using the MLP 

network. It can be seen, applying dimensionality 

reduction methods on MLP not only does not increase the 

performance, but also has a negative effect on it. 

However, data balancing improved performance 

significantly and the t-SNE-based method is better than 

other dimensional reduction algorithms.  Table 3 

indicates that the VAE-based method improves 

performance metrics of SVM algorithm, with an accuracy 

of 81.3, while the other dimensionality reduction 

algorithms, PCA and IB, have a negative effect on the 

performance. The BSM data balancing method, due to the 

synthesis of minority class samples in the boundary, 

reduces the value of FN and significantly strengthens the 

performance parameters. 

As can be seen in Table 4, the effect of dimensionality 

reduction on LR method is similar to SVM, and VAE-based 

method improves the performance metrics. Also, 

applying data balancing on VAE-LR increases performance 

measures such as accuracy to 91.7 and sensitivity to 97.3. 

Comparing all the results in Table 2-4, shows that the best 

performance is achieved with the VAE-SVM method after 

data balancing. It improves accuracy to 97.1% and 

sensitivity to 99.2%.  
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Dataset  Methods 
Accuracy 

(%) 
F1-score 

(%) 
Precision (%) 

ROC-AUC 
score (%) 

Sensitivity 
(%) 

Kaggle 

Original data 

PCA-MLP 77.1 49.06 46.2 58.9 52.3 

IB-MLP 76.0 48.33 45.3 57.6 51.8 

tSNE-MLP 84.1 24.5 33.1 50.4 32.4 

UMAP-MLP 83.1 21.8 28.1 48.2 30.7 

VAE-MLP 79.0 50.18 47.1 60.4 53.7 

MLP 86.0 70.26 80.91 68.38 62.08 

Balanced data 

PCA-MLP 88.5 89.29 86.3 83.4 92.5 

IB-MLP 86.6 82.07 77.2 74.1 87.6 

tSNE-MLP 95.5 95.1 95.1 95.5 95.1 

UMAP-MLP 89.1 88.3 95.4 89.5 79.1 

VAE-MLP 89.2 88.7 94.6 89.0 92.8 

UCI 

Original data 

PCA-MLP 73.2 47.9 45.8 58.2 51.8 

IB-MLP 72.1 46.5 44.6 54.6 50.7 

tSNE-MLP 83.2 23.5 32.7 49.6 31.2 

UMAP-MLP 82.6 21.1 27.6 48.1 30.2 

VAE-MLP 77.3 48.2 47.3 58.3 52.2 

MLP 82.7 69.3 78.5 67.9 61.0 

Balanced data 

PCA-MLP 87.8 89.1 84.6 85.3 90.5 

IB-MLP 86.2 81.5 76.7 75.3 86.5 

tSNE-MLP 944.4 93.9 93.8 93.9 94.5 

UMAP-MLP 88.6 87.5 93.1 88.5 78.0 

VAE-MLP 87.9 86.5 86.8 86.9 91.1 

 

Table 2: Performance comparison between methods based on different dimension reduction techniques before and afterdata 
balancing while we use MLP classification and reduction sizes 8, 8, 8, 6, 3 for PCA, IB, VAE, UMAP and t-SNE, respectively 

Table 3: Performance comparison between methods based on different dimension reduction techniques before and after data 
balancing while we use SVM classification and reduction sizes 8, 8, 8, 6, 3 for PCA, IB, VAE, UMAP and t-SNE, respectively 

Dataset  Methods Accuracy (%) F1-score (%) Precision (%) 
ROC-AUC 
score (%) 

Sensitivity 
(%) 

Kaggle 

Original data 

PCA-MLP 77.1 49.06 46.2 58.9 52.3 

IB-MLP 76.0 48.33 45.3 57.6 51.8 

tSNE-MLP 84.1 24.5 33.1 50.4 32.4 

UMAP-MLP 83.1 21.8 28.1 48.2 30.7 

VAE-MLP 79.0 50.18 47.1 60.4 53.7 

MLP 86.0 70.26 80.91 68.38 62.08 

Balanced data 

PCA-MLP 88.5 89.29 86.3 83.4 92.5 

IB-MLP 86.6 82.07 77.2 74.1 87.6 

tSNE-MLP 95.5 95.1 95.1 95.5 95.1 

UMAP-MLP 89.1 88.3 95.4 89.5 79.1 

VAE-MLP 89.2 88.7 94.6 89.0 92.8 

UCI 

Original data 

PCA-MLP 73.2 47.9 45.8 58.2 51.8 

IB-MLP 72.1 46.5 44.6 54.6 50.7 

tSNE-MLP 83.2 23.5 32.7 49.6 31.2 

UMAP-MLP 82.6 21.1 27.6 48.1 30.2 

VAE-MLP 77.3 48.2 47.3 58.3 52.2 

MLP 82.7 69.3 78.5 67.9 61.0 

Balanced data 

PCA-MLP 87.8 89.1 84.6 85.3 90.5 

IB-MLP 86.2 81.5 76.7 75.3 86.5 

tSNE-MLP 944.4 93.9 93.8 93.9 94.5 

UMAP-MLP 88.6 87.5 93.1 88.5 78.0 

VAE-MLP 87.9 86.5 86.8 86.9 91.1 
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Also, it can be seen, in all experiments, performance 

parameters were enhanced after data balancing. The 

reason is that, besides increasing the samples of the 

minority class, the applied data balancing algorithm 

(BSM) does not consider the noise data. Furthermore, 

applying the model to both datasets has the similar effect 

on performance. But since the number of samples of 

Kegel dataset is more than other dataset, the results are 

more reliable. 

Fig. 2 shows comparison of accuracy values between 

various sizes of dimension reduction while VAE algorithm 

is used. It can be found that the accuracy of all methods 

is greatly enhanced after increasing the reduction size to 

4 and it is maximized in 8.  

F.  Time Complexity 

In this section, we provide experiments for 

computational efficiency. For each combination of the 

dimensionality reduction methods with the mentioned 

ML algorithms, the computational time of the network 

training is calculated. We use a computer with this 

specification: Intel Core i7 7700HQ, 2.60GHz, and 8GB 

RAM and also, we utilize Python 3.9 as  the  programming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
language. We also emphasized that the execution 

conditions are the same for all methods. 

 

 

Fig. 2: Comparison of accuracy measure between various sizes 
of dimension reduction using VAE-based method for Kaggle 

dataset. 

As can be seen in Fig. 4, the computational time for the 

LR in all cases is lower than the other classification 

methods. In addition, reducing dimension by using VAE 

usually improves computational time of the training while 

also increasing the performance. 

Table 4: Performance comparison between methods based on different dimension reduction techniques before and after 
data balancing while we use LR classification and reduction sizes 8, 8, 8, 6, 3 for PCA, IB, VAE, UMAP and t-SNE, respectively 

Dataset  Methods Accuracy (%) F1-score (%) Precision (%) 
ROC-AUC 
score (%) 

Sensitivity 
(%) 

Kaggle 

Original data 

PCA-LR 77.9 47.69 47.1 48.0- 48.3 

IB-LR 76.3 45.75 45.7 46.8 45.8 

tSNE-LR 68.8 78.3 73.2 50.0 69.9 

UMAP-LR 71.8 80.1 74.8 50.5 71.8 

VAE-LR 79.6 54.6 55.0 54.1 54.2 

LR 78.5 55.98 61.6 55.3 53.0 

Balanced data 

PCA-LR 83.2 84.65 99.8 78.5 73.5 

IB-LR 81.6 87.65 82.8 77.6 93.1 

tSNE-LR 85.4 84.7 83.2 73.9 85.1 

UMAP-LR 86.4 85.1 84.6 75.0 86.4 

VAE-LR 91.7 93.07 89.2 89.4 97.3 

UCI 

Original data 

PCA-LR 75.8 46.2 45. 46.2 46.2 

IB-LR 74.5 44.2 43.9 44.8 44.1 

tSNE-LR 71.3 80.0 73.9 50.0 70.9 

UMAP-LR 79.2 54.1 54.0 53.9 54.1 

VAE-LR 79.2 53.8 54.2 53.6 53.0 

LR 77.1 53.5 60.2 53.5 51.7 

Balanced data 

PCA-LR 81.2 83.1 99.1 77.3 71.8 

IB-LR 80.8 86.5 81.3 76.2 91.8 

tSNE-LR 85.1 83.6 82.9 73.3 84.5 

UMAP-LR 85.8 84.7 84.5 74.2 86.1 

VAE-LR 90.5 92.1 88.4 88.3 96.0 
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For large training sets, it was found that the difference 

in processing time is considerable. Also, t-SNE greatly 

increases the computational time. 

Fig. 3 shows the impact of reduction size on 

computational time and indicates that in general, 

reducing the dimension decreases computational time, 

especially when the dataset is large.  

 

machine learning algorithms, especially deep learning 

algorithms, as they often produce models that are 

difficult to understand. These models, commonly known 

as black-box models, offer improved performance at the 

expense of complexity, making it challenging to 

comprehend the underlying mechanisms. Without it, 

even if accuracy is enhanced, the lack of transparency and 

accountability in the model may not be acceptable in 

medical settings. Research on interpretability has evolved 
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Fig. 3: The impact of reduction size on computational time using VAE (left) and PCA (right) for Kaggle dataset. 

Fig. 5: Drop-column importance analysis on the proposed model for Kaggle dataset. 

Fig. 4: Evaluation of time efficiency in the proposed model using various classifiers for Kaggle dataset 
while reduction sizes are 8, 8, 8, 6, 3 for PCA, IB, VAE, UMAP and t-SNE, respectively. 

    I)  Interpretability 

Interpretability   is   a crucial  aspect  when  it comes  

to 
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significantly due to the intricate nature of deep learning 

models, with various methods being employed to shed 

light on how these models operate. These methods 

include estimating feature importance, analyzing feature 

interactions, determining the contribution of specific 

layers or neurons, and interpreting models using high-

level concepts that are more understandable to humans 

than low-level input features. We employed drop-column 

importance values to interpret the importance of the 

features in the proposed model, which has provided 

essential insights into the underlying mechanisms of 

disease prediction.   

This information has the potential to assist clinicians in 

developing personalized treatment plans and risk 

management strategies for patients, ultimately leading to 

improved clinical outcomes. Fig. 5 shows the visualization 

results through drop-column importance on the VAE-

based method and SVM method. The results indicate key 

features such as glucose, heartRate, diaBP, totChol and 

sysBP possess the highest importance value in VAE-based 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to highlight that a direct comparison of 

the results may not be accurate due to application of 

different data pre-processing and training/testing 

methods. Moreover, the effectiveness of the prediction 

model is influenced by various factors including feature 

selection, data types and size, noise reduction, 

hyperparameters, data sampling, and model selection. 

Therefore, the overall comparison provided in Table 5 

should not be solely relied upon to assess the 

performance of the prediction models. Instead, it can 

serve as a general comparison between the proposed 

model and previous research studies. 

Conclusion and Future Work 

Dimensionality reduction is a feature selection method 

that    usually   increases    performance    measures    and 

It indicates that these variables play a crucial role in 

predicting heart disease. Similarly, variables heartRate, 

diaBP, totChol, glucose and sysBP have high importance 

value in SVM method. Therefore, the feature importance 

analysis discovered a consistent set of top 6 features, 

namely, glucose, heartrate, diaBP, totChol and sysBP 

which were very important in the prediction process. The 

results of the test indicate that there is no notable 

variance among the algorithms tested, as the dataset is 

limited and the supervised algorithms used are effective 

in yielding similar results. 

Comparison 

Now, we performed comparison study of our proposed 

model with the results from previous studies. The 

comparison results of the proposed model compared to 

the results given in other similar studies on Kaggle dataset 

is shown in Table 5. It can be seen that the proposed 

model demonstrated the high accuracy compared to 

previous studies results. In conclusion, our method 

outperformed most of these studies in accuracy, 

sensitivity, precision, F1-score, and AUC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computational speed of training. In this paper, we 

investigate the impact of some dimensionality reduction 

methods, including PCA, IB and VAE, on several machine 

learning algorithms in terms of performance measures 

and computational time. After implementing the model 

and reviewing the obtained results, we found that deep 

learning methods such as VAEs enhance the efficiency 

and the performance of the system. However, the effect 

of applying feature reduction on performance is negligible 

in some models. In addition, applying dimensionality 

reduction sometimes improves speed up to five times and 

sometimes does not affect. In an effort to better balance 

our training data, we use BSM data augmentation 

method. Finally, the hybrid model based on VAE and SVM 

achieves accuracy and sensitivity of 97.7% and 99.4% 

using Kaggle dataset. 

Table 5: Comparison the proposed model with other methods in recent studies 

 Authors Approach  Accuracy Precision Sensitivity F1-score AUC 

Saqlain et al. [26] MFSFSA  SVM 81.19 - 72.92 0.85 0.83 

Mohan et al. [27] HRFLM 88.4 90.1 92.8 90.0 - 

Gupta et al. [28] FAMD –RF 93.44 - 89.28 92.59 0.93 

Fitriyani et al. [29] DBSCAN-SMOTEE- XGBOOST 98.40 98.57 98.33 98.32 1.00 

Bharti  et al. [30] DL-based Classifier 94.2 93.1 82.3 - - 

Hossain et al. [31] Hybrid CNN-LSTM 74.15 81.82 72.04 76.62 73.95 

Manikandan  et al. [32] Boruta feature selection 88.52 87.88 90.62 89.23 - 

Proposed model VAE- BSM - SVM 97.7 95.8 99.4 97.5 96.3 
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In future works, the performance of the method can 

be enhanced to handle huge numbers of features and 

large volume of records.  Additionally, the increasing 

emphasis on privacy, security, and time-sensitive 

applications shows the need to explore deeper into edge 

computing in order to enhance medical clinical decision 

support system. 
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Abbreviations  

PCA Principal Component Analysis 

IB  Information Bottleneck 

t-SNE t-distributed Stochastic Neighbor 

Embedding  

UMAP Uniform Manifold Approximation 

and Projection  

VAE Variational Autoencoder  

SMOTE The Synthetic Minority 

Oversampling Technique  

BSM the Borderline Synthetic Minority 

Oversampling Technique  

LR Logistic regression  

DNN Deep Neural Network  

SVM Support Vector Machine 

KNN K-Nearest Neighbor 

RF Random Forest 

DT Decision Tree 

AUC Area Under the ROC Curve 

CM Confusion Matrix 

ROC Receiver Operating Characteristic 

DCNN Deep CNN 

MLP Multi-Layer Perceptron 

AE Autoencoder  

TP True Positive 

FN False Negative 

FP False Positive 

TN True Negative 

References 

[1] U. Kose et al., "A practical method for early diagnosis of heart 
diseases via deep neural network," in Deep Learning for Medical 
Decision Support Systems, pp. 95-106, 2021. 

[2] A. A. Ali, H. S. Hassan, E. M. Anwar, A. Khanna, "Hybrid technique 
for heart diseases diagnosis based on convolution neural network 
and long short-term memory," in Applications of Big Data in 
Healthcare: Elsevier, pp. 261-280, 2021. 

[3] D. Pratella, S. Ait-El-Mkadem Saadi, S. Bannwarth, V. Paquis-
Fluckinger, S. Bottini, "A survey of autoencoder algorithms to pave 
the diagnosis of rare diseases," Int. J. Mol. Sci., 22(19): 10891, 
2021. 

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, "SMOTE: 
synthetic minority over-sampling technique," J. Artif. Intell. Res., 
16: 321-357, 2002. 

[5] H. Han, W. Y. Wang, B. H. Mao, "Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning," in Proc.  
International Conference on Intelligent Computing: 878-887, 2005.  

[6] C. M. Bhatt, P. Patel, T. Ghetia, P. L. Mazzeo, "Effective heart 
disease prediction using machine learning techniques," 
Algorithms, 16(2): 88, 2023. 

[7] A. Khan, M. Qureshi, M. Daniyal, K. Tawiah, "A novel study on 
machine learning algorithm‐based cardiovascular disease 
prediction," Health Social Care Community, 2023(1): 1406060, 
2023. 

[8] D. Hassan, H. I. Hussein, M. M. Hassan, "Heart disease prediction 
based on pre-trained deep neural networks combined with 
principal component analysis," Biomed. Signal Process. Control, 
79: 104019, 2023. 

[9] S. Kabirirada, H. Kardanmoghaddamb, V. Afshin, "Heart disease 
prediction by using artificial neural networks," Int. J. Comput. Sci. 
Inf. Secur., 14(1), 2016. 

[10] A. Ahmed, S. A. Hannan, "Data mining techniques to find out heart 
diseases: an overview," Int. J. Innovative Technol. Exploring Eng. 
(IJITEE), 1(4): 18-23, 2012. 

https://link.springer.com/chapter/10.1007/978-981-15-6325-6_6
https://link.springer.com/chapter/10.1007/978-981-15-6325-6_6
https://link.springer.com/chapter/10.1007/978-981-15-6325-6_6
https://www.sciencedirect.com/science/article/abs/pii/B9780128202036000096
https://www.sciencedirect.com/science/article/abs/pii/B9780128202036000096
https://www.sciencedirect.com/science/article/abs/pii/B9780128202036000096
https://www.sciencedirect.com/science/article/abs/pii/B9780128202036000096
https://www.mdpi.com/1422-0067/22/19/10891
https://www.mdpi.com/1422-0067/22/19/10891
https://www.mdpi.com/1422-0067/22/19/10891
https://www.mdpi.com/1422-0067/22/19/10891
https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://link.springer.com/chapter/10.1007/11538059_91
https://link.springer.com/chapter/10.1007/11538059_91
https://link.springer.com/chapter/10.1007/11538059_91
https://www.mdpi.com/1999-4893/16/2/88
https://www.mdpi.com/1999-4893/16/2/88
https://www.mdpi.com/1999-4893/16/2/88
https://onlinelibrary.wiley.com/doi/full/10.1155/2023/1406060
https://onlinelibrary.wiley.com/doi/full/10.1155/2023/1406060
https://onlinelibrary.wiley.com/doi/full/10.1155/2023/1406060
https://onlinelibrary.wiley.com/doi/full/10.1155/2023/1406060
https://www.sciencedirect.com/science/article/abs/pii/S1746809422004979
https://www.sciencedirect.com/science/article/abs/pii/S1746809422004979
https://www.sciencedirect.com/science/article/abs/pii/S1746809422004979
https://www.sciencedirect.com/science/article/abs/pii/S1746809422004979
https://d1wqtxts1xzle7.cloudfront.net/49637036/310816155_IJCSIS_Camera_Ready_pp._181-189-libre.pdf?1476616986=&response-content-disposition=inline%3B+filename%3DHeart_Disease_Prediction_by_Using_Artifi.pdf&Expires=1727883581&Signature=Wttz3KPKpj7ETCv5MiuvsfE4y-heynymjMYDdSDQW7TnxwW52ILY-zZJwTWLAoD4uRAxKLcy4kn3AxhsbCBraDNzC5t69tps5HDbEKHs0dXkvhicXB5eba1rgEdyCWAhcfNTXiZ1hlSy9K5ARQWzcOeQ3LM89FYAGBF94Gns6neqw-tdMXNTVxGRudKUmbexO1on4CYjxksGv96GEGsdxn4A1QXETYre7toIFH~yaBAtH1s8ayR17ZfK77sDzwyNGDs97ZymH8ONxP5pYihG5VtpCe4RBvH7wtTt6OJDnHyRdUPt2iv9MAV7vaGL6sReEBmGJmC9yQWO2uAF1-ev9w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/49637036/310816155_IJCSIS_Camera_Ready_pp._181-189-libre.pdf?1476616986=&response-content-disposition=inline%3B+filename%3DHeart_Disease_Prediction_by_Using_Artifi.pdf&Expires=1727883581&Signature=Wttz3KPKpj7ETCv5MiuvsfE4y-heynymjMYDdSDQW7TnxwW52ILY-zZJwTWLAoD4uRAxKLcy4kn3AxhsbCBraDNzC5t69tps5HDbEKHs0dXkvhicXB5eba1rgEdyCWAhcfNTXiZ1hlSy9K5ARQWzcOeQ3LM89FYAGBF94Gns6neqw-tdMXNTVxGRudKUmbexO1on4CYjxksGv96GEGsdxn4A1QXETYre7toIFH~yaBAtH1s8ayR17ZfK77sDzwyNGDs97ZymH8ONxP5pYihG5VtpCe4RBvH7wtTt6OJDnHyRdUPt2iv9MAV7vaGL6sReEBmGJmC9yQWO2uAF1-ev9w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/49637036/310816155_IJCSIS_Camera_Ready_pp._181-189-libre.pdf?1476616986=&response-content-disposition=inline%3B+filename%3DHeart_Disease_Prediction_by_Using_Artifi.pdf&Expires=1727883581&Signature=Wttz3KPKpj7ETCv5MiuvsfE4y-heynymjMYDdSDQW7TnxwW52ILY-zZJwTWLAoD4uRAxKLcy4kn3AxhsbCBraDNzC5t69tps5HDbEKHs0dXkvhicXB5eba1rgEdyCWAhcfNTXiZ1hlSy9K5ARQWzcOeQ3LM89FYAGBF94Gns6neqw-tdMXNTVxGRudKUmbexO1on4CYjxksGv96GEGsdxn4A1QXETYre7toIFH~yaBAtH1s8ayR17ZfK77sDzwyNGDs97ZymH8ONxP5pYihG5VtpCe4RBvH7wtTt6OJDnHyRdUPt2iv9MAV7vaGL6sReEBmGJmC9yQWO2uAF1-ev9w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/49637036/310816155_IJCSIS_Camera_Ready_pp._181-189-libre.pdf?1476616986=&response-content-disposition=inline%3B+filename%3DHeart_Disease_Prediction_by_Using_Artifi.pdf&Expires=1727883581&Signature=Wttz3KPKpj7ETCv5MiuvsfE4y-heynymjMYDdSDQW7TnxwW52ILY-zZJwTWLAoD4uRAxKLcy4kn3AxhsbCBraDNzC5t69tps5HDbEKHs0dXkvhicXB5eba1rgEdyCWAhcfNTXiZ1hlSy9K5ARQWzcOeQ3LM89FYAGBF94Gns6neqw-tdMXNTVxGRudKUmbexO1on4CYjxksGv96GEGsdxn4A1QXETYre7toIFH~yaBAtH1s8ayR17ZfK77sDzwyNGDs97ZymH8ONxP5pYihG5VtpCe4RBvH7wtTt6OJDnHyRdUPt2iv9MAV7vaGL6sReEBmGJmC9yQWO2uAF1-ev9w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b5ba68f682b265caa212444f0610ac2255e4c171
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b5ba68f682b265caa212444f0610ac2255e4c171
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b5ba68f682b265caa212444f0610ac2255e4c171


An Effective Heart Disease Prediction Model Using Deep Learning … 

J. Electr. Comput. Eng. Innovations, 13(2): 317-330, 2025                                                                       329 

[11] S. I. Ayon, M. M. Islam, M. R. Hossain, "Coronary artery heart 
disease prediction: A comparative study of computational 
intelligence techniques," IETE J. Res., 68(4): 2488-2507, 2022. 

[12] K. Li, A. Zhu, W. Zhou, P. Zhao, J. Song, J. Liu, "Utilizing deep 
learning to optimize software development processes," arXiv 
preprint arXiv:2404.13630, 2024. 

[13] S. Shilaskar , A. Ghatol, "Feature selection for medical diagnosis: 
Evaluation for cardiovascular diseases," Expert Syst. Appl., 40(10): 
4146-4153, 2013. 

[14] Y. E. Shao, C. D. Hou, C. C. Chiu, "Hybrid intelligent modeling 
schemes for heart disease classification," Appl. Soft Comput., 14: 

47-52, 2014. 

[15] R. R. Ema, P. C. Shill, "Integration of fuzzy C-Means and artificial 
neural network with principle component analysis for heart 
disease prediction," in Proc. 2020 11th International Conference 
on Computing, Communication and Networking Technologies 
(ICCCNT): 1-6, 2020.  

[16] I. D. Mienye, Y. Sun, Z. Wang, "Improved sparse autoencoder based 
artificial neural network approach for prediction of heart disease," 
Inf. Med. Unlocked, 18: 100307, 2020. 

[17] T. Amarbayasgalan, V. H. Pham, N. Theera-Umpon, Y. Piao, K. H. 
Ryu, "An efficient prediction method for coronary heart disease 
risk based on two deep neural networks trained on well-ordered 
training datasets," IEEE Access, 9: 135210-135223, 2021. 

[18] S. A. Ebiaredoh-Mienye, E. Esenogho, T. G. Swart, "Integrating 
enhanced sparse autoencoder-based artificial neural network 
technique and softmax regression for medical diagnosis," 
Electronics, 9(11): 1963, 2020. 

[19] S. M. S. Shah, S. Batool, I. Khan, M. U. Ashraf, S. H. Abbas, S. A. 
Hussain, "Feature extraction through parallel probabilistic 
principal component analysis for heart disease diagnosis," Physica 
A, 482: 796-807, 2017. 

[20] T. Zhang, B. Yang, "Big data dimension reduction using PCA," in 
Proc. 2016 IEEE International Conference on Smart Cloud 
(SmartCloud): 152-157, 2016.  

[21] F. Anowar, S. Sadaoui, B. Selim, "Conceptual and empirical 
comparison of dimensionality reduction algorithms (pca, kpca, lda, 

mds, svd, lle, isomap, le, ica, t-sne)," Comput. Sci. Rev., 40: 100378, 
2021. 

[22] S. Zhang, "Nearest neighbor selection for iteratively kNN 
imputation," J. Syst. Software, 85(11): 2541-2552, 2012. 

[23] "Kaggle Cardiovascular Disease Dataset," Accessed 1 November 
2022. 

[24] "UCI Machine Learning Repository. Uci.edu.," Accessed 14 June 
2022. 

[25] A. Kolchinsky, B. D. Tracey, D. H. Wolpert, "Nonlinear information 
bottleneck," Entropy, 21(12): 1181, 2019. 

[26] S. M. Saqlain et al., "Fisher score and Matthews correlation 
coefficient-based feature subset selection for heart disease 
diagnosis using support vector machines," Knowl. Inf. Syst., 58: 
139-167, 2019. 

[27] S. Mohan, C. Thirumalai, G. Srivastava, "Effective heart disease 
prediction using hybrid machine learning techniques," IEEE Access, 
7: 81542-81554, 2019. 

[28] A. CS, S. Lal, V. PRABHU GURUPUR, P. P. Saxena, "Multi-modal 
medical image fusion with adaptive weighted combination of NSST 
bands using chaotic grey wolf optimization," IEEE Access, 7: 40782-
40796, 2019. 

[29] N. L. Fitriyani, M. Syafrudin, G. Alfian, J. Rhee, "HDPM: an effective 
heart disease prediction model for a clinical decision support 
system," IEEE Access, 8: 133034-133050, 2020. 

[30] R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, P. Singh, 
"Prediction of heart disease using a combination of machine 
learning and deep learning," Comput. Intell. Neurosci., 2021(1): 
8387680, 2021. 

[31] M. M. Hossain et al., "Cardiovascular disease identification using a 
hybrid CNN-LSTM model with explainable AI," Inf. Med. Unlocked, 
42: 101370, 2023. 

[32] G. Manikandan, B. Pragadeesh, V. Manojkumar, A. Karthikeyan, R. 
Manikandan, A. H. Gandomi, "Classification models combined with 
Boruta feature selection for heart disease prediction," Inf. Med. 
Unlocked, 44: 101442, 2024. 

Biographies 

Saiedeh Kabirirad is an Assistant Professor in 
the Department of Computer Science, at 
Birjand University of Technology. She received 
her M.Sc. and Ph.D. in Computer Science from 
Shahid Beheshti University in 2010 and 2019, 
respectively. Her research area includes 
cryptography, information security, and data 
mining. 

 

 Email: kabiri@birjandut.ac.ir 

 ORCID: 0000-0003-1503-138X 

 Web of Science Researcher ID: NA 

 Scopus Author ID: 57204363739 

 Homepage: NA   

 Vahidreza Afshin received the B.S. and M.S. 
degrees in Electrical Engineering in 2005 and 
2012 from Islamic Azad University 
respectively. He is currently pursuing the 
Ph.D. degree in the Department of Electronics 
Engineering, University of Birjand, Iran. His 
research interest includes soft computing and 
optimization of control systems by machine 
learning algorithms. 
 

 Email: vahidreza.afshin@birjand.ac.ir 

 ORCID: 0000-0003-2621-515X 

 Web of Science Researcher ID: NA 

 Scopus Author ID:NA 

 Homepage: NA   

Seyed Hamid Zahiri received the B.Sc., M.Sc. 
and Ph.D. degrees in Electronics Engineering 
from Sharif University of Technology, Tehran, 
Tarbiat Modarres University, Tehran, and 
Mashhad Ferdowsi University, Mashhad, 
Iran, in 1993, 1995, and 2005, respectively. 
Currently, he is a Professor with the 
Department of Electronics Engineering, 
University of Birjand, Birjand, Iran. His 
research interests include pattern 

recognition, evolutionary algorithms, swarm intelligence algorithms, 
and soft computing. 

 Email: hzahiri@birjand.ac.ir 

 ORCID: 0000-0002-1280-8133 

 Web of Science Researcher ID: NA 

 Scopus Author ID:NA 

 Homepage: NA   

 

https://www.tandfonline.com/doi/abs/10.1080/03772063.2020.1713916
https://www.tandfonline.com/doi/abs/10.1080/03772063.2020.1713916
https://www.tandfonline.com/doi/abs/10.1080/03772063.2020.1713916
https://arxiv.org/abs/2404.13630
https://arxiv.org/abs/2404.13630
https://arxiv.org/abs/2404.13630
https://www.sciencedirect.com/science/article/abs/pii/S0957417413000456
https://www.sciencedirect.com/science/article/abs/pii/S0957417413000456
https://www.sciencedirect.com/science/article/abs/pii/S0957417413000456
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003141
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003141
https://www.sciencedirect.com/science/article/abs/pii/S1568494613003141
https://ieeexplore.ieee.org/abstract/document/9225366/
https://ieeexplore.ieee.org/abstract/document/9225366/
https://ieeexplore.ieee.org/abstract/document/9225366/
https://ieeexplore.ieee.org/abstract/document/9225366/
https://ieeexplore.ieee.org/abstract/document/9225366/
https://www.sciencedirect.com/science/article/pii/S2352914820300447
https://www.sciencedirect.com/science/article/pii/S2352914820300447
https://www.sciencedirect.com/science/article/pii/S2352914820300447
https://ieeexplore.ieee.org/abstract/document/9555589
https://ieeexplore.ieee.org/abstract/document/9555589
https://ieeexplore.ieee.org/abstract/document/9555589
https://ieeexplore.ieee.org/abstract/document/9555589
https://www.mdpi.com/2079-9292/9/11/1963
https://www.mdpi.com/2079-9292/9/11/1963
https://www.mdpi.com/2079-9292/9/11/1963
https://www.mdpi.com/2079-9292/9/11/1963
https://www.sciencedirect.com/science/article/abs/pii/S0378437117304260
https://www.sciencedirect.com/science/article/abs/pii/S0378437117304260
https://www.sciencedirect.com/science/article/abs/pii/S0378437117304260
https://www.sciencedirect.com/science/article/abs/pii/S0378437117304260
https://ieeexplore.ieee.org/abstract/document/7796166
https://ieeexplore.ieee.org/abstract/document/7796166
https://ieeexplore.ieee.org/abstract/document/7796166
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000186
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000186
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000186
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000186
https://www.sciencedirect.com/science/article/abs/pii/S1574013721000186
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://www.sciencedirect.com/science/article/abs/pii/S0164121212001586
https://www.kaggle.com/datasets/sulianova/cardiovascular-diseasedataset
https://www.kaggle.com/datasets/sulianova/cardiovascular-diseasedataset
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.mdpi.com/1099-4300/21/12/1181
https://www.mdpi.com/1099-4300/21/12/1181
https://link.springer.com/article/10.1007/s10115-018-1185-y
https://link.springer.com/article/10.1007/s10115-018-1185-y
https://link.springer.com/article/10.1007/s10115-018-1185-y
https://link.springer.com/article/10.1007/s10115-018-1185-y
https://ieeexplore.ieee.org/abstract/document/8740989
https://ieeexplore.ieee.org/abstract/document/8740989
https://ieeexplore.ieee.org/abstract/document/8740989
https://ieeexplore.ieee.org/abstract/document/8678905
https://ieeexplore.ieee.org/abstract/document/8678905
https://ieeexplore.ieee.org/abstract/document/8678905
https://ieeexplore.ieee.org/abstract/document/8678905
https://ieeexplore.ieee.org/abstract/document/9144587
https://ieeexplore.ieee.org/abstract/document/9144587
https://ieeexplore.ieee.org/abstract/document/9144587
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/8387680
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/8387680
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/8387680
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/8387680
https://www.sciencedirect.com/science/article/pii/S2352914823002162
https://www.sciencedirect.com/science/article/pii/S2352914823002162
https://www.sciencedirect.com/science/article/pii/S2352914823002162
https://www.sciencedirect.com/science/article/pii/S2352914823002885
https://www.sciencedirect.com/science/article/pii/S2352914823002885
https://www.sciencedirect.com/science/article/pii/S2352914823002885
https://www.sciencedirect.com/science/article/pii/S2352914823002885
mailto:kabiri@birjandut.ac.ir
mailto:vahidreza.afshin@birjand.ac.ir
mailto:hzahiri@birjand.ac.ir


 S. Kabirirad et al. 

330  J. Electr. Comput. Eng. Innovations, 13(2): 317-330, 2025 

 

 

 

 

 

 

 

How to cite this paper: 
S. Kabirirad, V. Afshin, S. H. Zahiri, “An effective heart disease prediction model using deep 
learning-based dimensionality reduction on imbalanced data,” J. Electr. Comput. Eng. 
Innovations, 13(2): 317-330, 2025. 

DOI: 10.22061/jecei.2024.10847.742 

URL: https://jecei.sru.ac.ir/article_2208.html  

https://jecei.sru.ac.ir/article_2208.html

