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Background and Objectives: The increasing prevalence of skin cancer highlights 
the urgency for early intervention, emphasizing the need for advanced diagnostic 
tools. Computer-assisted diagnosis (CAD) offers a promising avenue to streamline 
skin cancer screening and alleviate associated costs. 
Methods: This study endeavors to develop an automatic segmentation system 
employing deep neural networks, seamlessly integrating data manipulation into 
the learning process. Utilizing an encoder-decoder architecture rooted in U-Net 
and augmented by wavelet transform, our methodology facilitates the generation 
of high-resolution feature maps, thus bolstering the precision of the deep learning 
model. 
Results: Performance evaluation metrics including sensitivity, accuracy, dice 
coefficient, and Jaccard similarity confirm the superior efficacy of our model 
compared to conventional methodologies. The results showed a accuracy of 
%96.89 for skin lesions in PH2 Database and %95.8 accuracy for ISIC 2017 database 
findings, which offers promising results compared to the results of other studies. 
Additionally, this research shows significant improvements in three metrics: 
sensitivity, Dice, and Jaccard. For the PH database, the values are 96, 96.40, and 
95.40, respectively. For the ISIC database, the values are 92.85, 96.32, and 95.24, 
respectively. 
Conclusion: In image processing and analysis, numerous solutions have emerged 
to aid dermatologists in their diagnostic endeavors The proposed algorithm was 
evaluated using two PH datasets, and the results were compared to recent studies. 
Impressively, the proposed algorithm demonstrated superior performance in 
terms of accuracy, sensitivity, Dice coefficient, and Jaccard Similarity scores when 
evaluated on the same database images compared to other methods. 
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Introduction 
Over recent decades, there has been a notable rise in the 

incidence of skin cancer, underscoring the escalating 

significance of its initial treatment. Melanoma, the most 

lethal form of skin cancer, ranks among the most 

aggressive malignancies [1]. Automated segmentation of 

skin lesions in dermoscopic images is a crucial initial stage 

in utilizing computer assistance for diagnosing melanoma. 

Nonetheless, accurately discerning between benign and 

malignant skin lesions can be challenging, as there are 

considerable differences in lesion appearance across 

various patients. This ambiguity poses a diagnostic 

challenge even for seasoned medical professionals. 

Recent advancements in medical image processing have 

provided more effective techniques to aid dermatologists 

in diagnosing and classifying skin lesions. Therefore, 

computer-aided diagnosis (CAD) has become an 

indispensable tool for physicians and dermatologists, 
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especially when dealing with many patients in a short 

period [2]. The onset of this disease initiates with the 

impairment of skin cells, often instigated by ultraviolet 

radiation, resulting in mutations that prompt the rapid 

multiplication of skin cells, culminating in the 

development of cancerous growths. While typically 

characterized by a regulated and systematic growth 

pattern, specific newly generated cells may undergo 

unregulated proliferation, resulting in the formation of a 

cluster of malignant cells [3]. Early indications of 

melanoma often include alterations in the shape, size, 

and color of an individual's mole. Typically, melanomas 

exhibit a border that is black or blue-black in hue [3]. 
Automated skin lesion analysis relies heavily on 

segmentation, a crucial yet challenging process. Broadly, 

there are three main types of skin cancer:  

(a) Basal Cell Carcinoma (BCC),  

(b) Squamous Cell Carcinoma (SCC), and  

(c) Melanoma (MM). 

Segmentation essentially involves dividing an image 

into significant regions, with semantic segmentation 

specifically attributing suitable class labels to each region. 

In skin lesions, this typically entails two primary 

operations to delineate the lesion from the surrounding 

skin. The diagnosis of skin cancer is complex due to the 

diverse appearance of various skin lesions, notably 

Melanoma and Nevi, which pose challenges in 

differentiation. Despite the utilization of dermoscopy, a 

non-invasive diagnostic method, dermatologists' 

accuracy in diagnosing melanoma ranges from 75% to 

84%. However, a biopsy offers a more precise diagnosis, 

albeit invasive and unpleasant for the patient. To prevent 

unnecessary biopsies, researchers have investigated 

various non-invasive methods for diagnosing 

melanoma [4]. These methods typically involve two 

stages: 1. Feature extraction, 2. Boundary (extent) 

identification of the skin lesion. Lesion segmentation is 

also useful as a preprocessing step when analyzing images 

with broad fields and multiple lesions. Effective clinical 

management of skin lesions relies heavily on timely 

diagnosis and accurate delineation of lesion boundaries 

to precisely identify the cancerous area for localization. 

Dermoscopy, employing visible light magnification, offers 

a more intricate skin examination compared to naked eye 

observation. We introduce a fully automated framework 

for precise detection and segmentation of lesion 

boundaries. This is accomplished by integrating a deep 

learning model with a wavelet transform map derived 

from specific kernel filters. The structure of this article is 

as follows: 

Section 2 reviews existing literature in the field, 

highlighting significant contributions and advancements. 

Section 3 outlines the methodology proposed in this 

study, detailing the approach adopted for skin lesion 

segmentation. Section 4 presents the findings and results 

obtained through experimentation and evaluation of the 

proposed method. Finally, in Section 5, a comprehensive 

conclusion is drawn, summarizing the key insights gained 

from the research and outlining future directions for 

further investigation. 

In recent years, significant advancements have been 

made in the field of medical imaging through various 

image processing techniques. One of the main challenges 

in this field is the precise and automatic segmentation of 

medical images for disease diagnosis and analysis. 

Medical image segmentation plays a crucial role in the 

early diagnosis and effective treatment of diseases. 

However, the accuracy and efficiency of existing 

algorithms still require improvement [2]. 

Deep neural networks, particularly the U-Net 

architecture, have been recognized as one of the 

successful architectures for medical image segmentation. 

U-Net, with its specific architectural design, is capable of 

extracting detailed and precise features from medical 

images. Nonetheless, it still faces limitations such as the 

need for a large volume of training data and high 

computational resource consumption [2]. 

One potential solution to improve U-Net's 

performance is the use of image preprocessing 

techniques such as wavelet transform. Wavelet 

transform, with its multi-resolution analysis capability, 

allows for the extraction of important and subtle features 

in medical images. These features can enhance 

segmentation accuracy and improve the performance of 

neural networks. 

Therefore, the aim of this research is to investigate and 

propose a hybrid method combining wavelet transform 

and U-Net for improving medical image segmentation. It 

is expected that this approach will lead to increased 

accuracy and reduced segmentation errors in medical 

images, ultimately aiding in the timely diagnosis and 

treatment of diseases. 

Using deep learning, it is possible to segment and 

detect various tumor tissues in medical images. Despite 

the potential difficulties, the accuracy of identifying and 

segmenting lesions in medical images is often 

accompanied by errors. An accurate and automated 

alternative to subjective and manual segmentation is 

segmentation using deep learning and computer systems. 

This method can achieve higher accuracy and be 

performed in a shorter time. 

Given the deep network methods used for medical 

image segmentation, this research aims to leverage the 

strengths of various methods in the proposed model, 

ultimately leading to: 

- Improved segmentation quality 

- Reduced number of network parameters 

- Reduced loss function 
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Related Work  

In recent years, there has been notable interest among 

researchers in the pattern recognition and medical image 

processing domains towards automatic Computer-Aided 

Diagnosis (CAD) systems. The interest in image-based 

computer-aided diagnosis (CAD) systems has surged due 

to advancements in artificial intelligence and machine 

learning techniques. These developments have paved the 

way for creating CAD systems that utilize machine 

learning methods to analyze images, particularly for 

screening and early detection of malignant melanoma. As 

a result of recent technological and practical 

advancements, several emerging research and 

development areas have emerged. These areas have 

witnessed significant contributions from numerous 

researchers, resulting in a diverse range of CAD 

approaches and techniques. These advancements aim to 

assist dermatologists in automatically diagnosing 

melanoma from both dermoscopic and non-dermoscopic 

images [5], [6]. Lesion segmentation is an essential step 

for automatic melanoma detection. Numerous algorithms 

have been proposed by different researchers using 

various datasets employing methods such as 

thresholding, active contour, supervised and 

unsupervised techniques for segmenting dermoscopic 

skin lesion images. Automatic segmentation faces many 

challenges such as multicolor lesions, darkness at lesion 

boundaries, low contrast between lesion and normal skin, 

artifacts such as hair in the lesion area, and air bubbles 

due to gel applied to the skin in dermoscopy. The most 

commonly used methods for segmentation of skin lesions 

are traditional methods such as threshold based 

methods, clustering methods and correlated 

methods [7], [8]. Generally, threshold-based methods are 

used to extract regions of interest based on pixel intensity 

values. Therefore, image thresholding in grayscale 

transforms the image into a binary image separating the 

foreground from the background. Recently, research 

results have shown that deep learning models 

significantly contribute to medical image analysis for 

segmentation and Segmentation purposes [9], [10]. In 

their study [11], researchers introduced a hierarchical 

framework for skin lesion segmentation. Their approach 

involved an initial non-coherent operation, followed by 

passing the data to MASK RCNN for lesion segmentation. 

In the subsequent stage, they adapted a pre-trained 

DenseNet201 model and extracted features from two 

layers. These extracted features underwent refinement 

and enhancement using a combined selection block and 

were optimized using the salient optimization algorithm. 

The experimental evaluation was conducted on three 

dermoscopic datasets, demonstrating the enhanced 

performance of their proposed method. In their 

work [12], an intelligent framework for multi-class skin 

lesion segmentation was introduced. The method 

involved the initial segmentation of skin lesions using 

MASK RCNN. During this segmentation process, a 24-layer 

CNN model was employed, utilizing three datasets for the 

segmentation phase alongside the HAM10000 dataset. In 

their study [13], a Computer-Aided Diagnosis (CAD) 

system for localizing skin lesions was introduced. The 

process began with an initial incoherent operation by 

passing the data to MASK RCNN for lesion segmentation. 

Subsequently, they adjusted a pre-trained DenseNet201 

model, extracting features from two layers. These 

features underwent refinement and enhancement using 

a combined selection block. The experimental evaluation 

was conducted on dermoscopic datasets, showcasing 

improved performance. In their paper [14], they 

presented a deep learning architecture tailored for skin 

lesion segmentation. The approach began by selecting the 

most optimal features to enhance the representation of 

lesion areas. Subsequently, an initial RCNN was deployed 

for the final segmentation of lesions. Dermoscopic 

datasets were utilized for evaluation purposes, 

demonstrating an enhancement in accuracy. In [15], an 

alternative segmentation method named "Fast Learning 

Artificial Neural Network" (FLANN) was introduced, 

serving as the foundation for an image segmentation 

technique. The study initiated noise reduction in the 

initial phase, employing a mean filter (3×3) to mitigate 

color distribution disparities. Following this step, pixels or 

neurons were converted into the R-G-B-S-V space via HSV 

conversion. FLANN clustering was then utilized to 

produce image clustering results, effectively segregating 

pixels of identical colors. Each image segment was 

allocated a distinct identifier, with close attention given 

to neighborhood size and tolerance effects. 

In [16], a pioneering approach to skin lesion detection 

is presented, integrating uniform segmentation and 

feature selection into a cohesive strategy. This method 

encompasses various stages including preprocessing, 

lesion segmentation, feature extraction, feature 

selection, and final segmentation. Through a sequentially 

serial process, features such as color, texture, and HOG 

shape are extracted and combined. Subsequently, the 

Boltzmann entropy technique is employed for feature 

selection, followed by SVM classification. The 

effectiveness of this method is evaluated using the PH2 

dataset, achieving promising results with a reported 

sensitivity of 97.7%, specificity of 96.7%, accuracy of 

97.5%, and F-score of 97.5%. 

In [17], a notable advancement in artificial hair 

removal was demonstrated through the fusion of deep 

learning and image processing techniques, yielding an 

accuracy of 85%. The study harnessed the Unet model for 

lesion segmentation, supplemented by image processing 

algorithms. Mainly, a Gaussian filter was applied to 
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diminish image noise. In contrast, [18] focused on 

enhancing accuracy by employing encoders like EffectNet 

and ResNet, achieving an accuracy of nearly 86% with the 

ResNet network. Furthermore, Shin et al. [19] introduced 

the DSM model, implementing strategies to refine 

segmentation accuracy by eliminating image noise and 

enhancing contrast. 

In their study [20], researchers employed an extended 

U-Net network for medical image segmentation, 

capitalizing on the benefits of the U-Net architecture, 

including its compactness and skip connections. 

Additionally, they integrated bidirectional ConvLSTM and 

dense convolution mechanisms. The study focused on 

enhancing segmentation performance by incorporating 

Squeeze and Excitation modules, aiming to minimize 

complexity while improving results. 

In their work [21], researchers introduce a multi-scale 

U-Net for skin lesion segmentation to address challenges 

like significant variations in texture and shape. This 

approach enhances hierarchical modeling by integrating 

an attention mechanism. Furthermore, it employs a 

bidirectional convolutional long short-term memory 

(BDCLSTM) structure to capture essential distinguishing 

features while suppressing less informative elements. 

In [22], a novel segmentation method is proposed 

using fully convolutional networks (FCNs). This approach 

directly learns the full-resolution features of each pixel 

from the input data, eliminating the need for 

preprocessing or post processing operations such as 

artifact removal, low-contrast adjustment, or additional 

enhancements to improve the delineation of segmented 

skin lesions. 

In [23], an enhanced skin lesion segmentation model 

based on U-Net++ is introduced to improve survival rates 

for melanoma patients and overcome associated 

challenges. A novel loss function is introduced to enhance 

the Jaccard segmentation index for skin lesion 

segmentation. Experimental results show the model's 

outstanding performance in segmenting the ISIC2018 I 

dataset, achieving an impressive Jaccard index of 84.73%. 

This method improves the Jaccard segmentation index for 

skin lesion images, aiding dermatologists in identifying 

and diagnosing various skin lesions while accurately 

delineating boundaries between lesions and normal skin. 

In [18], the study presents an automated approach for 

segmenting lesion boundaries by combining two 

architectures, U-Net and ResNet, into a unified 

framework called Res-Unet. Moreover, image 

colorization eliminates unwanted hair, leading to notable 

enhancements in segmentation outcomes. 

In [24], an exceptionally effective segmentation 

method is proposed to address challenges like unwanted 

residues (hair), uncertain boundaries, variable contrast, 

shape differences, and color variations in skin lesion 

images. The method introduces an improved FCN 

architecture (iFCN) tailored for segmenting high-

resolution skin lesion images without needing 

preprocessing or post-processing. Leveraging residual 

structures within the FCN architecture, along with spatial 

information, enhances segmentation accuracy 

significantly. 

In the study described in [25], a new CNN architecture 

is introduced, utilizing auxiliary information to enhance 

segmentation performance. Edge prediction is 

incorporated as an auxiliary task, running simultaneously 

with the main segmentation task. A cross-connection 

layer module is introduced, allowing intermediate feature 

maps from each task to influence the sub-blocks of other 

tasks. This approach implicitly guides the neural network 

to focus on the boundary area crucial for accurate 

segmentation. 

In the study outlined in [26], two innovative end-to-

end segmentation models, FBUNet-1 and FBUNet-2, are 

introduced. FBUNet-1 surpasses the performance of the 

traditional U-Net architecture by addressing spatial 

information loss during convolution operations. Building 

upon the progress of FBUNet-1, FBUNet-2 further 

improves accuracy by refining the loss function based on 

FBUNet-1's insights. 

 U-Net Based Segmentation Techniques 

In some articles: Introduced the U-Net architecture, 

which became a seminal work in the field of medical 

image segmentation. The U-Net's encoder-decoder 

structure, coupled with skip connections, enables precise 

localization and contextual understanding, making it 

effective for segmenting medical images such as MRI and 

CT scans. However, the model requires a large amount of 

annotated data and significant computational resources. 

In some articles: Extended the U-Net architecture to 

3D U-Net for volumetric medical image segmentation. 

This extension maintained the benefits of the original U-

Net but adapted it to 3D data, which is essential for 

applications involving volumetric data such as MRI. The 

challenge remained in the increased computational cost 

and memory usage. 

In some articles: Proposed a hybrid approach 

combining U-Net with conditional random fields (CRFs) to 

refine the segmentation output. The CRFs helped in 

capturing fine details and addressing segmentation 

boundaries more effectively. While the method improved 

accuracy, it also introduced additional complexity and 

computational overhead. 

 Wavelet Transform in Medical Imaging 

In some articles: Applied wavelet transform for ECG 

signal processing, showcasing its versatility beyond 

imaging. The study highlighted the wavelet's capability in 

dealing with non-stationary signals, an attribute valuable 
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in dynamic medical imaging contexts. 

 Hybrid Approaches Combining U-Net and Other 

Techniques 

In some articles: Introduced Attention U-Net, which 

incorporated attention mechanisms into the U-Net 

architecture to focus on relevant parts of the image. This 

approach aimed to enhance the model's ability to 

distinguish between foreground and background, 

improving segmentation accuracy without significantly 

increasing computational demands. 

In some articles: Proposed UNet++ with nested and 

dense skip connections to address the issues of semantic 

gap between encoder and decoder. The model achieved 

better segmentation results but at the cost of increased 

complexity and training time. 

In some articles: Combined U-Net with dilated 

convolutions to capture multi-scale context without 

reducing the resolution. This method aimed to improve 

the receptive field of the network, enhancing its ability to 

segment larger structures in medical images. 

 Deep Learning for Medical Image Segmentation 

Beyond U-Net 

In some articles: Provided a comprehensive survey of 

deep learning techniques for medical image analysis, 

including segmentation, classification, and detection. The 

review highlighted the dominance of CNN-based 

architectures and the emerging trends in integrating 

other techniques like GANs for improving segmentation. 

In some articles: Reviewed various deep learning 

models for medical image segmentation, focusing on the 

strengths and weaknesses of different approaches. The 

study emphasized the importance of model robustness 

and generalizability across different datasets and imaging 

modalities. 

In some articles: Discussed the use of transfer learning 

and multi-task learning in medical image segmentation, 

stressing the need for models that can leverage pre-

trained knowledge and simultaneously learn related tasks 

for improved performance. 

The reviewed literature highlights several key trends 

and insights in the field of medical image segmentation: 

- U-Net and Its Variants: The U-Net architecture and 

its extensions (3D U-Net, Attention U-Net, UNet++) 

have proven highly effective for medical image 

segmentation. These models leverage skip connections 

and multi-scale feature extraction to achieve high 

accuracy. However, they require large datasets and 

significant computational resources, which can be a 

limitation in practical applications. 

- Wavelet Transform: Wavelet transform offers a 

robust method for feature extraction and 

enhancement in medical imaging. Its multi-resolution 

analysis capability complements deep learning models 

by providing detailed spatial and frequency 

information, which is crucial for accurate 

segmentation. 

- Hybrid Approaches: Combining U-Net with other 

techniques such as attention mechanisms, CRFs, and 

dilated convolutions can further enhance 

segmentation accuracy. These hybrid models address 

specific limitations of the original U-Net by improving 

feature localization, boundary detection, and multi-

scale context understanding. 

- Beyond U-Net: While U-Net remains a dominant 

architecture, other deep learning models and 

techniques are also being explored. The integration of 

transfer learning, multi-task learning, and GANs shows 

promise in enhancing segmentation performance and 

addressing challenges like data scarcity and model 

generalizability. 

The literature suggests that while U-Net and its 

variants are highly effective for medical image 

segmentation, there is still room for improvement in 

terms of accuracy, computational efficiency, and 

robustness. Hybrid approaches that integrate wavelet 

transform and other techniques offer a promising 

direction for future research. Additionally, exploring 

alternative deep learning models and leveraging 

advanced techniques like transfer learning and multi-task 

learning could further advance the field and lead to more 

practical and reliable segmentation solutions. 

Regarding the limitations of previous works, it can be 

noted that traditional methods were often used for 

feature extraction. In our research, however, we utilize 

deep learning-based methods for this purpose. 

By leveraging the strengths of the mentioned works in 

this research, the use of mutual connection modules is 

proposed. In these modules, the intermediate feature 

maps of each task are fed into the sub-blocks of other 

tasks, which can implicitly guide the neural network to 

focus on the boundary region of the segmentation task. 

Proposed Method 

Block Diagram 2 provides an overview of the skin lesion 

segmentation in skin images. The proposed method 

initiates by extracting the feature map of the images 

utilizing wavelet transform, followed by selecting top 

features using selected feature algorithms. Subsequently, 

a fully automated architecture is introduced for precise 

lesion boundary detection and segmentation. This 

architecture pairs a deep learning model with the feature 

map derived from specific kernel filters of wavelet 

transform. By integrating the feature maps of wavelet 

transform with a deep learning U-Net model trained end-

to-end, our method effectively reduces the number of 

trainable parameters. 

The Fourier transform is used to represent the 

frequency properties of a signal by decomposing the 
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signal into different sinusoids. However, this method does 

not provide simultaneous signal resolution in both the 

time and frequency domains and gives less information 

for signals with varying frequency over time. 

We chose Wavelet Transform for our analysis due to 

its ability to effectively capture both time and frequency 

domain characteristics of signals, making it suitable for 

analyzing non-stationary signals. Unlike the fixed window 

length constraint of Short-Time Fourier Transform (STFT), 

Wavelet Transform offers more flexibility, allowing for 

better adaptation to varying signal properties. 

Wavelet transform is a fundamental mathematical tool 

with diverse applications across scientific fields. It 

addresses the limitations of the Fourier transform by 

excelling in analyzing non-stationary signals and dynamic 

systems. Unlike the Fourier transform, wavelets exhibit 

localization properties in both space and frequency 

domains. This unique characteristic enables examining 

spatial frequency content in signals without sacrificing 

positional   information.   Therefore,   wavelet   transform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

offers a valuable balance between pixel and Fourier space 

representation. The wavelet transform harnesses various 

essential features, including spatial localization, 

frequency band tuning, directionality, scale and rotational 

similarities, and quadrature phase. It operates through a 

collection of mother wavelets and a scaling equation 

dictating the movements of these wavelets via scaling and 

translation. This transformation comprises eight mother 

wavelets grouped into four pairs, each characterized by 

distinct orientations (0°, 45°, 90°, and 135°). Each pair 

consists of one odd-symmetric and one even-symmetric 

wavelet, symbolized by φ and ψ. The eight mother 

wavelets are denoted as ψ_1,...,ψ_8. Let's define a two-

dimensional pulse u(x, y) [26]:  

1  if  0<x 1,  0<y 1
( , )

0 otherwise
u x y
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Next, we identify the four pairs of mother wavelets as 

follows [26]: 
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Mother wavelets are piecewise constant functions, so 

that each wavelet ,b   can be fully described by a 3×3 

matrix. 

 Fig. 1 illustrates eight mother wavelets, 

demonstrating the transformation process. Part A 

showcases these wavelets in pixel space, while Part B 

exhibits the discrete Fourier transform (DFT) of the 3×3 

mother wavelets. The selection of wavelets is such that 

each DFT encompasses a pair of pixels, minimizing their 

spatial frequency and bandwidth orientation within this 

space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, to ensure orthogonality, four pairs of 

wavelets are included, each oriented in one of four 

different directions (0°, 45°, 90°, and 135°). These pairs 

are composed of one wavelet with a real symmetric even 

DFT, corresponding to an even symmetric function in pixel 

space, and the other wavelet with an imaginary 

symmetrical odd DFT, corresponding to an odd 

symmetrical function in pixel space. The 3×3 DFTs allow 

qualitative similarity to Gabor filters. The 3×3 DFTs bear 

qualitative resemblance to Gabor filters. As the wavelets 

undergo higher-resolution decomposition, they occupy 

less space in the Fourier domain [26]. 
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Fig. 1: Eight mother wavelets. 
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Feature selection involves identifying pertinent 

features while discarding irrelevant and redundant ones, 

intending to obtain a subset of features that adequately 

describes the problem with minimal loss of performance. 

Essentially, it is the process of selecting the most essential 

features to represent the data accurately. This task 

significantly improves the proposed method by removing 

irrelevant features and presenting the most useful ones. 

Some advantages of feature selection in our research 

include: 

- Enhancing the performance of machine learning 

algorithms. 

- Facilitating understanding of data and gaining 

insights into the underlying processes, aiding 

visualization. 

- Decreasing overall data volume, thereby reducing 

storage requirements and potentially cutting costs. 

- Streamlining the feature set, which can save 

resources in future data collection or utilization 

phases. 

- Promoting simplicity and enabling simpler models, 

thereby enhancing speed and efficiency. 

To identify a relevant feature for the problem, the 

study employs the following definition: a feature is 

deemed relevant if it holds information pertinent to the 

objective.  

In this research, significant factors are considered to 

enhance the accuracy of the proposed method within the 

feature selection framework. 

The initial stage of the proposed method involves 

identifying the nearest neighbors from a subset of 

samples randomly selected from the dataset. For each 

chosen sample, the feature values are compared to those 

of its nearest neighbors, and the scores of each feature 

are adjusted accordingly.  

This methodology is rooted in assessing feature quality 

by gauging the degree of variation in their values among 

neighboring samples. 

In the second stage of the feature selection method, 

correlation-based feature selection (CFS) is employed. 

This method deems a subset of features as favorable if, 

on the one hand, they exhibit a strong correlation with 

the target feature and, on the other hand, they are 

minimally correlated with each other. In this research, the 

merit or goodness of a feature subset is computed using 

the following formula [2]: 

(10) 
 1

k
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s

ff

kr
Merit

k k k r

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In this formula, cfr  the first term represents the 

average correlation between the target feature and ffr  

all the features present in the dataset, while the second 

term represents the average pairwise correlation 

calculated among the features. Ultimately, the 

correlation-based method is formulated as follows [2]: 
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In this equation, the variables cfir , fifjr represent the 

correlation values. The correlation-based method is used 

for selecting the best features. 

Next, the Recursive Feature Elimination (RFE) method 

is introduced, employing a multivariate mapping 

approach that iteratively constructs a model and selects 

the most discriminative features, whether the best or 

worst-performing ones.  

In RFE, all voxels within a region, constituting the 

smallest unit of a three-dimensional image structure, are 

considered. Voxels that do not contribute to 

distinguishing features among different classes are 

progressively eliminated. Features are then ranked 

according to the order of their elimination. Thus, this 

method operates as a greedy optimization technique to 

identify the optimal subset of features. 

Lastly, all features undergo decoding via statistical 

hypothesis testing, and each feature is ranked based on 

its values. Feature weights are determined utilizing the 

chi-square statistical method. A function evaluates the 

significance of a feature by computing the chi-square 

statistic and subsequently ranks the features accordingly, 

taking into account their respective classes. This ranking 

procedure is executed to compare the features and 

identify their relative importance. 

Features selected through the above methods often 

have different ranges, and classifiers typically require 

normalized features because their values fall within a 

specific range. One of the most common normalization 

methods is the z-score normalization method [2]: 

(12)   /Z x   
 

where    denotes the mean and    denotes the 

standard deviation from the mean. This method 

generates a range of values between 0 and 1. Below is 

Algorithm 1 outlining the overall process of this research 

in the form of pseudocode. 

As can be seen in Fig. 2, the proposed method uses a 

number of unique methods to extract features and 

normalizes the features that often have different ranges 

to a specific range by using the score method. 
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Algorithm 1: Algorithm of the proposed method 

      Input: 
trainImgSet: The medical images Set, with segmented skin 

lesion areas manually in theirs; 
targets = The segmented skin lesion areas manually in 

1.trainImgSet. 
get  N = The number of images in trainImgSet 
get  wavelet = The wavelet transform according to 

Equation (1,2,..,9) 
get  NN = The Nearest Neighbor algorithm 
get  Cb= Correlation-based algorithm 
get  RFE= Recursive Feature Elimination algorithm 
get  ch = The Chi2 algorithm 
get  z_s = The z-score according to Equation (12) 
get  FM = The Feature Map resulting from wavelet 

transform  
2.for i = 1 to N do: 
    WT[i]= wavelet(trainImgSet[i]) 
    WT_b[i]= The Feature Map resulting from wavelet 

transform 
     Z [i] = The z-score features extracted of (NN,Cb, RFE, 

ch) 
    3.for region in the RI do : 
          RCI=U-Net(region) 
          add RCI to U-Net _Features 
     Selcted_features= Applying feature selection algorithm 

and  Feature Map resulting from wavelet transform  
   4.  Segmented_features=U-Net(Selcted_features) 
       Output: 
       Segmented_features = an image, that lesion pixels are 

distinguished. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposed Network Architecture 

Fig. 3 illustrates the proposed architecture for the 

automatic segmentation of skin lesions. This method 

integrates wavelet transform feature maps and selected 

features via feature selection methods into a U-Net deep 

learning model trained end-to-end. The architecture 

comprises two encoder branches for abstract feature 

extraction and one decoder path for reconstruction.  

The contraction path involves a sequence of 

convolutional and max-pooling layers aimed at reducing 

the size of the input image and extracting relevant 

features. Conversely, the expansion path comprises a 

sequence of convolutional and upsampling layers 

responsible for increasing the size of the feature maps 

obtained from the contraction path and integrating them 

with features from the input image to generate the final 

segmentation map. Skip connections allow information to 

bypass one or more levels within the expansion path and 

connect them to corresponding layers in the contraction 

path. These connections facilitate the transmission of 

high-level and low-level information from the input image 

to the model, thereby improving the accuracy of the final 

segmentation. 

Broadly, the proposed architecture extracts features 

from the input image through the contraction path. These 

 
Fig. 2: Sequence of components in the proposed method.  
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features are then amalgamated with input image features 

via the expansion path and skip connections. Finally, the 

convolutional layers within the expansion path are 

employed to produce the final segmentation map.  

The encoder architecture proposed in our study 

comprises seven convolutional layers and three max-

pooling operations, each utilizing a stride of 2. These 

convolutional layers extract feature maps from the input 

image through 3x3 kernel convolutional operations. The 

study adopts a cautious approach to kernel sizes, starting 

with   smaller   kernels  and  gradually  increasing  them  if  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

necessary to avoid computational overhead and 

overfitting risks. To cover larger receptive fields without 

increasing the parameters linked to each kernel, 

expanded convolutional layers are utilized at every 

encoder level.  

In addition, in order to reduce the size of the extracted 

feature maps, max-pooling operations are used. This 

process optimizes memory utilization by retaining only 

the pixel with the maximum value among the four 

neighboring pixels. However, it results in a loss of feature 

map resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Proposed architecture. 
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The encoder includes a convolutional block, consisting 

of two standardized convolutional layers in addition to 

the supervision layer and two other standard 

convolutional layers. The supervision block plays a crucial 

role in gathering information at various levels to 

incorporate more features. Meanwhile, the decoder 

utilizes alternating 3x3 deconvolutions to decrease the 

number of feature maps. Skip connections recover spatial 

information lost during pooling operations, following a 

similar approach to U-Net. Initially, the feature map is 

inputted to the control block and, except for the last 

stage, it will merge with corresponding maps from the 

decoder path. To generate the output segmentation map, 

the decoder employs a 1x1 convolution layer followed by 

a sigmoid layer, serving as a pixel-wise classifier. Each 3x3 

convolution is accompanied by a batch normalization (BN) 

layer and a modified ReLU activation function to expedite 

the training process. 

In the expanded convolution segment, drawing 

inspiration from reference [28], rather than 

downsampling feature maps at a low rate, the feature 

maps from the expanded convolution are harnessed for 

image segmentation. The receptive field of a kernel, 

denoted as k with a size of N×N, can be defined as 

follows [2]: 

  1 1kR N N r   
 

(13) 

In this equation, N = 3 (the kernel sizes are considered 

constant). The r represents the dilation rate, which 

specifies the spacing between values of the filter. In 

typical scenarios, r = 1 is assumed. 

In this research, the supervision block is instrumental 

in refining localization and attaining more precise 

segmentation by directing attention to specific regions 

within an image. Within the proposed U-Net architecture, 

these supervision blocks aid in transferring essential 

features through skip connections. By leveraging 

contextual information, these blocks achieve a focus on 

specific regions. Before the concatenation operation, 

they effectively filter out noise and other irrelevant 

details from high-level features, ensuring accurate 

feature transmission. 

Utilizing features extracted from deep networks leads 

to the identification of complex 

relationships in the image, thereby resulting in more 

precise segmentation results [34], [35]. 

The graphic view shown in Fig. 3 simply and in detail 

shows the proposed Unet network and its components. 

Features extracted from deep networks help identify 

complex relationships within images, which directly lead 

to improved segmentation accuracy. Unlike traditional 

methods that may focus only on simple and distinct 

patterns in the data, deep networks, especially 

architectures like U-Net, are capable of learning features 

that not only capture high-level information (such as large 

structures) but also take into account fine details. 

For example, in some studies, the use of deep 

networks for liver segmentation from CT scan images has 

demonstrated how these architectures can extract 

complex and precise features, providing significantly 

more accurate results compared to traditional methods. 

This improvement in accuracy is due to the ability of deep 

networks to learn various features across different layers, 

leading to segmentation results that are not only visually 

superior but also encompass finer and more detailed 

structures. 

Moreover, in another study focused on enhancing the 

feature space using the deep network SqueezeNet, it has 

been observed that deep networks can lead to improved 

segmentation in textural images. This is particularly 

important in images with textural and complex patterns, 

as deep networks are capable of learning and recognizing 

intricate patterns in the images, resulting in a significant 

improvement in the final outcomes. 

Results Database 

The PH2 database results from collaborative efforts 

between the University of Porto, Instituto Superior 

Técnico Lisbon, and the Dermatology Services of Pedro 

Hispano Hospital in Matosinhos, Portugal. This database 

comprises 200 dermoscopic images, carefully curated to 

include 80 common nevi, 80 atypical nevi, and 40 

melanomas. The selection process prioritized image 

quality, clarity, and the presence of dermoscopic features. 

Each image underwent evaluation by a dermatologist, 

considering parameters such as manual segmentation of 

the skin lesion, clinical diagnosis, histopathology (if 

available), and dermoscopic criteria, including 

asymmetry, colors, pigment network, dots/globules, 

streaks, and regression areas. 

The ISIC2017 database, another crucial aspect of this 

study, consists of 2600 images designated for skin lesion 

analysis. Among these, 2000 images serve as training 

samples, while the remaining 600 images are reserved for 

testing purposes. The data used in this research consists 

of images captured with regular photographic cameras, 

not a specialized medical imaging camera. 

The ISIC database is a public and open source for skin 

images. This database contains dermatological images 

with high quality and quality control. These images are 

used as a public resource for training, research and 

development and testing of diagnostic artificial 

intelligence algorithms. This database can be used to 

improve clinical diagnostic skills and provide support in 

skin cancer diagnosis. Also, the development and testing 

of algorithms for skin cancer triage and diagnosis also 

utilizes this database. 
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By using the database images shown in Fig. 4 and Fig. 

5, the steps of the proposed method in Fig. 2 are 

performed in order and finally an effective division of the 

database images is presented as the output of the 

proposed network. 
 

 
 

Fig. 4: A collection of images from the PH2 database, including 
common moles (first row), a typical moles (second row), and 

melanomas (third row). 

 

 
 

 
 

Fig. 5: A collection of images from the ISIC database.  
 

Evaluation Criteria 

In this section, the performance of the proposed 

method is validated by comparing the output information 

of deep learning with diagnostic data provided by 

specialized physicians in the community. The 

performance of the proposed skin lesion segmentation 

method is evaluated using various metrics including 

sensitivity, accuracy, dice coefficient, and Jaccard 

similarity. 

TN (True Negatives) indicates the number of records 

that are actually negative, and the classification algorithm 

correctly identified them as negative. 

TP (True Positives) represents the count of records that 

are truly positive, and the classification algorithm 

correctly classified them as positive. 

FP (False Positives) represents the count of records 

that are actually negative, but the classification algorithm 

incorrectly classified them as positive. 

FN (False Negatives) represents the count of records 

that are actually positive, but the classification algorithm 

incorrectly classified them as negative. 

The ability to differentiate between diseased and 

healthy cases from other cases is referred to as accuracy. 

The mathematical expression of this concept is depicted 

in the following equation [31]. 

(14) 
TN TP

Accuracy
TN FN TP FP




  
 

The accuracy metric does not distinguish between FN 

and FP. To overcome this issue, the precision metric is 

defined. The ability of a method to detect disease cases, 

lesion areas, and cancerous nuclei is called sensitivity. To 

calculate the sensitivity of a test, one must compute the 

ratio of true positive cases to the sum of true positive and 

false negative cases, as shown in the following 

mathematical expression [31]. 

(15) 
TP

sensitivity
TP FP




 

The maximum symmetric surface distance (MSSD), 

referred to as the Hausdorff distance, can be computed 

by calculating the maximum distance between the 

surface voxels of the predicted maps and the ground truth 

images, with 0 mm stands for perfect segmentation. 

where 𝐼𝑝 and 𝐼𝑦 are the predicted maps and ground truth, 

The shortest distance of a random voxel 𝑥 to the set of 

surface voxels of 𝐼𝑦 is stated as below Eq. [31]. 

 , min
yy y Id x I x y   (16) 

It can be written as: 
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 
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 
 
 

 (17) 

Jaccard similarity is a frequently used metric for 

measuring the similarity between two objects, such as 

two images. It can be applied to assess the similarity 

between two asymmetric binary vectors or to gauge the 

similarity between two sets.  

a. Represents the number of features equal to one for 

both objects i and j. 

b. Indicates the number of features that are zero for 

object i but one for object j. 

c. Denotes the number of features that are one for 

object i but zero for object j. 

d. Refers to the number of features that are zero for 

both objects i and j. 
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 (18)  ,
a

J i j
a b c


 

 

(19)  
TP

Jaccard
TP FN FP


 

 

The Dice coefficient is widely employed to quantify the 

similarity between two images, although it can also be 

utilized for other data types. Essentially, it assesses the 

similarity and overlap between the ground truth and the 

predicted output. 

The Dice coefficient serves as a fundamental metric for 

assessing the outcomes of medical image segmentation. 

This score quantifies the similarity between the 

segmentation results produced by a model and the true 

tissue mask. 

 (20) 
2

2

TP
dice

TP FP FN


 
  

Output Results 

In this section, the results of the proposed method are 

juxtaposed with those of other methods, illustrating 

enhancements in key parameters for image segmentation 

within the target database. The proposed U-Net 

architecture facilitates effective segmentation through 

the utilization of a limited number of training images, 

along with the integration of information obtained from 

both the encoder and decoder stages to generate an 

efficient segmentation map. Tables 1 and 2 present the 

outcomes of lesion segmentation using various methods, 

contingent upon the selecting features from the images. 

It is observed that the proposed method achieves 

superior segmentation accuracy and precision compared 

to alternative approaches. This superiority can be 

attributed to the feature extraction methodology 

employing deep learning networks and the amalgamation 

of different feature selections tailored to the structural 

characteristics of the database images. 
 

Table 1: Results of skin lesion segmentation execution on the PH2 database 

Jaccard Similarity Dice Sensitivity Accuracy Methods 

95.3 92.6 83.2 95.3 [20] Net -MCGU 

96.1 93.7 94.3 96.1 [21]Net -Multiscale Attention U 

95.3 91.7 93.7 95.08 [22]FrCN  

84.7 92.7 - 89.6 [23] Net + + -U 

85.4 92.4 - - [18]Unet -Res 

87.1 93.02 96.8 96.9 [24]iFCN  

79.46 - 88.76 94.32 [25]A novel CNN using auxiliary information  

95.40 96.40 96 96.89 Proposed method 

 

Table 2: Results of skin lesion segmentation on the ISIC 2017 database

Jaccard Similarity Dice Sensitivity Accuracy Methods 

76 84.40 80.20 93.40 [32]deep residual networks  

76.50 84.90 82.50 93.40 [33] deconvolutional -fully convolutional 

95.24 96.32 92.85 95.98 Proposed method 

Fig. 6 illustrates the eight mother wavelets used in this 

study. The appropriate selection of the mother wavelet 

plays a key role in wavelet analysis. For example, in noise 

removal using wavelets, choosing the appropriate mother 

wavelet ensures that the most signal power is 

concentrated on a small number of wavelet coefficients, 

facilitating the separation of noisy and signal components 

through thresholding. Mother wavelets are categorized 

into different segments based on their properties. These 

properties include orthogonality, compact support, 

symmetry, and vanishing moments. The properties of 

mother wavelets are crucial in selecting a suitable mother 

wavelet. However, there often exist multiple mother 

wavelets with similar properties. In general, to address 

the challenge of selecting a mother wavelet, we need to 

consider the similarity between the signal and the mother 
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wavelet as a criterion.  

The higher the similarity between the mother wavelet 

and a specific signal, the better signal decomposition into 

wavelet coefficients. There are various methods for 

determining the similarity between a signal and a mother 

wavelet based on qualitative and quantitative 

approaches. However, there is no single standard method 

for this selection. 

 

a                        b 

Fig. 6: a. Mother wavelets, b. Filter coefficients response to 
eight mother wavelets. 

In the study [26], two convolutional neural network 

segmentation models, FBUNet-1 and FBUNet-2, based on 

the fusion block architecture for segmenting biomedical 

images, are introduced.  

Tables 3 and 4 compare the results of the proposed 

method with these two methods, FBUNet-1 and FBUNet-

2, which have been utilized for segmenting biomedical 

images of cells and blood vessels. The primary objective 

of these Tables is to showcase the superiority of the 

proposed method over the other two methods in 

handling various datasets comprising different 

biomedical images.  

Table 3 and Table 4 not only demonstrate the 

superiority of the proposed method in three evaluation 

parameters, Sensitivity, Dice, and Jaccard Similarity, 

indicating the high efficiency of the proposed method in 

medical image segmentation, but also show a reduction 

in the number of parameters, leading to an increase in the 

speed of segmentation of the proposed method. 
 

Table 3: Results of the proposed segmentation method 
compared with FBUNet-1 and FBUNet-2 for cell images 

Parameters 
Jaccard 

Similarity 
Dice Sensitivity Method 

5,097,925 88.41 93.58 93.66 1-FBUNet 

5,098,356 88.62 93.84 94.19 2-FBUNet 

1,259,523 95.40 96.40 96 
Proposed 
method 

Table 4: Results of the proposed segmentation method 
compared with FBUNet-1 and FBUNet-2 for blood vessel images 

Parameters 
Jaccard 

Similarity 
Dice Sensitivity Method 

5,097,452 65.16 79.03 74.23 FBUNet-1 

5,098,001 65.53 79.15 75.64 FBUNet-2 

1,259,523 95.40 96.40 96 
Proposed 
method 

 

In Table 5, it can be seen that the proposed module 

improves the basic level of U-Net in terms of MSSD 

criteria [34]. 

 

Table 5: The results of comparing the MSSD criteria 

Method MSSD 

U-Net + baseline 50.039 

U-Net + CBAM 29.524 

U-Net +CoT 22.886 

U-Net + ECA 38.402 

Proposed method 17.641 

 

Fig. 7 displays the feature maps obtained from the 

wavelet transform of the proposed method.  

The feature map obtained is a visual representation of 

the frequency content of the image.  

Feature maps in this research are used for pattern 

recognition, anomaly detection, or feature extraction 

from the signal. 

Fig. 8 displays some of the segmentation results 

obtained by the proposed method. As observed from the 

visual results, our network generates smooth 

segmentation outputs in the border region, which is 

clinically very useful.  

It is evident that our proposed method pays more 

attention to the border region, and this approach creates 

a smooth segmentation boundary without additional 

noisy areas. 
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Fig. 7: Feature map obtained from wavelet transform. 

 

 

Fig. 8: First row. Ground truth second row. Predicted mask 
from the combination of wavelet transform and proposed 

architecture. 

Fig. 9 outlines the boundary of the skin lesion by 

utilizing the output mask. Incorporating wavelet 

transform enhances the details of the skin lesion, thereby 

facilitating the development of a more refined algorithm 

for precise and automated segmentation of skin lesions. 

 

 

 

 
 

Fig. 9: Detected boundary of the skin lesion area. 

 

Fig. 10 illustrates a comparative plot of different 

methods across three important evaluation metrics in 

image segmentation. The detection speed in the 

proposed method is much higher than other methods 

proposed in previous research, which use low-level 

learning methods and human detection methods. This 

can be attributed to the hierarchical learning approach 

employed in the proposed method, leading to deep 

learning, feature vector reduction, and a decrease in the 

number of parameters. 
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Fig. 10: Comparative plot of different methods for three 
evaluation metrics. 
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Conclusion 

In image processing and analysis, numerous solutions 

have emerged to aid dermatologists in their diagnostic 

endeavors.  

This paper proposes a method for segmenting skin 

lesions in dermoscopic images, which tackles challenges 

like dense hair and gel by integrating wavelet transform 

and deep learning networks. Manual segmentation, a 

laborious task heavily reliant on operator expertise, 

underscores the need for fully automatic methods to 

delineate skin lesion extents precisely. Despite recent 

strides in automated algorithms for this purpose, 

challenges persist due to the diverse characteristics of 

skin lesions, including size, shape, spatial location, and 

appearance heterogeneity.  

The proposed method significantly increases detection 

speed by using hierarchical learning and selecting 

important features, instead of low-level techniques. It 

improves U-Net performance with supervision blocks 

between encoding and decoding steps. 

Suggestions for enhancing medical image 

segmentation with deep learning include: 

 Improving Accuracy and Efficiency: 

  - Use multiscale neural networks and attention models. 

 Enhancing Robustness: 

  - Implement data augmentation and transfer learning. 

 Integrating Multimodal Information: 

   - Combine medical images with patient data and 

multiple models. 

 Ensuring Explainability and Transparency: 

 - Develop methods to understand model decision-

making. 

 Reducing Computational Resources: 

  - Create lightweight and optimized models with 

compression techniques. 

 Innovative Applications: 

   - Develop real-time segmentation models and detect 

rare diseases. 

 Validation and Evaluation: 

   - Create standard datasets and conduct clinical studies. 

These suggestions aim to develop effective and 

practical models for medical image segmentation, 

benefiting healthcare. 
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