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Background and Objectives: A predefined structure is usually employed for deep 
neural networks, which results in over- or underfitting, heavy processing load, and 
storage overhead. Training along with pruning can decrease redundancy in deep 
neural networks; however, it may lead to a decrease in accuracy. 
Methods: In this note, we provide a novel approach for structure optimization of 
deep neural networks based on competition of connections merged with brain-
inspired synaptic pruning. The efficiency of each network connection is 
continuously assessed in the proposed scheme based on the global gradient 
magnitude criterion, which also considers positive scores for strong and more 
effective connections and negative scores for weak connections. But a connection 
with a weak score is not removed quickly; instead, it is eliminated when its net 
score reaches a predetermined threshold. Moreover, the pruning rate is obtained 
distinctly for each layer of the network. 
Results: Applying the suggested algorithm to a neural network model of a 
distillation column in a noisy environment demonstrates its effectiveness and 
applicability. 
Conclusion: The proposed method, which is inspired by connection competition 
and synaptic pruning in the human brain, enhances learning speed, preserves 
accuracy, and reduces costs due to its smaller network size. It also handles noisy 
data more efficiently by continuously assessing network connections. 
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Introduction 

The parallel-distributed nature of neural networks gives 

them a great capacity for learning and generalization. 

They have therefore been used to address a variety of 

issues, including modelling in automatic control. During 

training, information is stored in the weighted 

connections between the neurons, just like in the human 

brain. In a network, the number of hidden layers and their 

corresponding weights determine its structure, which is a 

major factor in its performance. Large and small networks 

both have a number of disadvantages. The contrast 

between curve fitting and neural network training helps 

to explain why networks with fewer free parameters 

perform better in terms of generalization, as shown by 

theory [1] and experience [2]. Moreover, the knowledge 

included in the small trained networks is easier to be 

understood and thus the abstraction of simple rules can 

be facilitated [3]. Finally, small networks require very little 

resources to construct in any physical computer 

environment. Larger networks suffer from the overfitting 

issue and are less able to generalize. They are also quite 

costly and complex. Therefore, choosing the appropriate 

size is crucial to having an efficient and quick network. 

Deep Networks and Pruning 

Deep neural networks (DNNs) have been the main 

reason for recent improvements in machine learning. 

http://jecei.sru.ac.ir/
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Numerous of these networks require a large amount of 

memory space and computing power [4]. These features 

make it impossible to implement networks in situations 

where resources are few, like mobile phones [5]. 

Therefore, along with the high potential and computing 

power of deep networks, it is necessary to solve the 

limitations of these popular networks so that they can be 

used optimally, at a lower cost, and at a high speed in real 

applications. In this regard, providing a new suitable 

method for this problem and reaching a network with a 

suitable size is the main topic of this work. 

Neural network pruning—the targeted removal of 

parameters from an existing network—is a well-liked 

method for lowering these resource requirements. The 

objective is to build a smaller network with the same 

degree of precision, despite the fact that the original 

network was huge and precise. The pruning notion has 

attracted much attention in the last decade, and its 

popularity has increased due to the emergence of deep 

neural networks [6]. We need to be clear about the most 

important thing in order to prune effectively: which 

connections are the best candidates for pruning? Taking 

into account the pruning process in the human brain 

provides useful solutions [7]. During learning, frequently 

used synapses become stronger, while rarely used 

synapses become weaker and more likely to 

disappear [8]. On the other hand, to avoid accuracy 

falling, consideration must be given to the values of the 

connections.  

Therefore, the approach presented in this work solves 

the usual weaknesses. In this way, it uses a more accurate 

criterion instead of a traditional weight factor, and 

secondly, it examines the behavior of connections in 

successive stages and It looks at strong, medium and 

weak connections differently. Instead of immediate 

removal, it measures the existence of multiple warnings 

regarding the connection's effectiveness. 

In short, the abovementioned features are combined 

here to develop an efficient pruning technique. In the 

proposed algorithm: 

First, network connections are evaluated initially 

based on a global gradient magnitude criterion. This 

evaluation also lasts for the next steps, and the scores are 

updated continuously. This criterion gives encouraging 

points for effective connections and destructive points for 

weak connections. 

Second, inspired by the brain pruning strategy, a 

connection with a weak score is not removed 

immediately; instead, it is eliminated when its net score 

reaches a certain number with less than a certain 

threshold.  

Third, dividing the connections in the network into 

three categories: connections with high impact, medium 

impact and weak impact, the first category will receive 

rewards and their chances of survival will increase, and 

the third category will be penalized and their chances of 

being pruned will increase. 

Fourth, to enhance the network's accuracy and quality, 

the pruning rate is explicitly determined for each specific 

layer of the network.  

The structure of this document is as follows: Section 2 

is an overview of the related prior research. Furthermore, 

we provide our approach in Section 3. Comparative 

simulation results are shown in Section 4, and we 

conclude the paper in Section 5. 

Related Works 

This section presents some relevant works on network 

architecture optimization. Differently from shallow 

networks, which have only one hidden layer, deep 

networks have two or more hidden layers, which help to 

store and organize data efficiently; namely, they serve a 

more precise purpose than a superficial one. Deep 

networks' capacity for memorization greatly aids in 

managing uncertainties. Training a smaller neural 

network to mimic the bigger model is one method of 

lowering the neural network's computational complexity. 

Network distillation is a method that Hinton et al. [9] 

suggested. The primary flaw with this process is the need 

to predefine the smaller model's structure. Pruning, 

which is the process of eliminating individual neurons that 

provide less effect on the output of a trained network, is 

another method for shrinking and speeding up a model. 

Therefore, compared to the above two approaches, 

the pruning method is usually preferred. Assuming a tight 

relationship between weight size and significance, the 

traditional and simple method is to select a threshold and 

prune those synapses whose weights are below it [10]. 

Several studies have cast doubt on this tactic [11]. 

Actually, by employing this method, certain advantageous 

synapses whose weights happen to fall below the 

threshold may be pruned. Some studies concentrate on 

creating suitable standards for assessing the significance 

of connections and eliminating the least important ones. 

Molchanov et al. considered the l2-norm of the kernel 

weights in addition to the feature map's mean, standard 

deviation, and percentage activation [12]. They also 

compared activations and predictions using mutual 

information as a criterion. 

Molchanov et al. introduced first-degree Taylor 

expansion as a tool for evaluating synaptic significance. In 

order to determine synaptic significance, LeCun et al. [13] 

and Hassibi and Stork [14] employed a diagonal Hessian 

matrix and concentrated on the second-order term of a 

Taylor expansion. In order to eliminate the most 

replaceable filters that include extraneous data, He et al. 

proposed a geometric median-based filter-cutting 

approach [15]. The neuron significance score (NISP) 

method [16] propagates the final answers' relevance 
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ratings to each neuron in the network, as suggested by Yu 

et al. The least important neurons were then eliminated 

in order to prune the convolutional neural network. In 

addition to the feature maps they connected, Li et al. 

eliminated the filters with relatively low weights [17]. He 

et al.'s gentle pruning approach allows the model to be 

trained utilizing the trimmed filters after the pruning [18]. 

Transmits the relevance scores of the final replies to every 

neuron in the network, as proposed by Yu et al. The 

convolutional neural network was then pruned by 

removing the least significant neurons. Li et al. removed 

the filters with relatively low weights in addition to the 

feature maps they linked [19]. During training, every 

neuron in dropout is probabilistically eliminated, but 

during inference, they are allowed to rebound. A 

network's complexity does not go down while using this 

method. By randomly changing a portion of a neural 

network's weights to zero, Drop Connect is used to 

regularize neural networks [20]. Though it occasionally 

surpassed dropout, it learned more slowly than both the 

original network and the dropout network. One of its 

drawbacks is that it increases the amount of time needed 

for training. A dropout network often requires two to 

three times as long to train as a neural network with the 

same design that is used normally. MeProp altered a 

relatively small portion of the settings for each back-

propagation phase [21]. These methods do not introduce 

any fundamental changes to the structure of the 

network.  

An architecture for a network is optimized by 

evolutionary approaches. Both the topology and the 

weights are optimized concurrently in evolving neural 

networks. Numerous network structure-related factors 

found in the genome have been refined via evolution. An 

evolutionary approach evaluates a network's 

performance using a fitness function.  

Typically, one of these functions is accurate 

classification [22], the other is the size of the network, 

which comprises factors like the quantity of connections 

or neurons [23]. After several rounds, an artificial neural 

network with evolutionary capabilities can identify the 

optimal network architecture. An evolutionary 

optimization approach was proposed by Zhao et al. [24]. 

A network was pruned to the ideal topology using genetic 

algorithms [25]. These approaches focus on network 

design optimization to achieve the optimal trade-off 

between accuracy and complexity; nonetheless, there is a 

significant degree of unpredictability in both approaches, 

and significant side trips may occur due to the lengthy 

development process. 

In summary, all of the mentioned techniques assess 

connections in a single phase without keeping track of 

connections' behavior over time or allocating different 

pruning rates for different layers. As explained with 

reasons and references, the weighted criterion is not 

accurate and other single-factor criteria have 

weaknesses. The very important point is that we classify 

the connections in three categories (weak, medium and 

strong) and in addition to gradually reducing the weaker 

connections scores, we also gradually strengthen the 

strong connections, which is not the case in previous 

works in this format. 

Therefore, the continuous control of connections, 

using our proposed criteria, which is different from the 

usual criteria, and on the other hand, considering the 

positive and negative points for network connections are 

the main differences between the present work and 

previous studies. A brain-inspired competitive synaptic 

pruning technique is introduced in place of the traditional 

omission technique.  

Proposed Method  

A novel brain-inspired competitive pruning technique 

is developed in this section. Network connections are 

supposed to compete for survival, and the basis of this 

competition is based on the weighted average score that 

each connection gets. Like other evolutionary-based 

ones, the proposed algorithm starts with an initial 

population (here the initial at the beginning).  

Minimal-value deletion prunes all synapses whose 

weights are below a threshold. Magnitude-based 

approaches are common baselines in the literature. 

However, this method may prune some useful synapses 

whose weights are incidentally below the threshold. 

Gradient-based methods are less common but are more 

accurate, simple to implement, and have recently gained 

popularity.  

The key idea is that after considering “Weight × 

Gradient” as the appraisal criterion, connections are 

classified into three categories: down (for example, the 

lower 20%), top (for example, the upper 20%), and the 

area between them. In each step, connections in the top 

class get a positive score, connections in the lowest 

category get a negative score, and connections in the 

middle set get zero points. In this way, we set a reward 

for good connections and a penalty for poor connections. 

At each stage, the net score of each connection is 

determined by adding the current score to the previous 

one. Therefore, we have updated net scores for all 

connections. Inspired by the human brain [26], the next 

important fact is that whenever the net score of a 

connection reaches a certain threshold—in other words, 

it receives a certain number of warnings—that 

connection is removed from the network. 

It is worth noting that using the gradient in the 

evaluation criterion, as weight × gradient adds the rate of 

change to it and because of its dynamic nature increases 

the accuracy of the method. 
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Fig. 1 shows how synaptic pruning works. This issue is 

an important part of the presented method and it is more 

accurate and better than the usual methods, as inspired 

by the human brain, the removal of network connections 

happens gradually and step by step. In this way, if a 

connection gets lower scores several times, it is 

concluded that its importance for the network is low and 

therefore it is removed.  It is clear that in synaptic pruning, 

there are two important parameters that we need to 

specify. The weight threshold shows which connections 

could benefit from pruning. The maximum allowed 

warning specifies how long the associated connection will 

be active before being erased. After establishing a 

threshold value, we keep an eye on the connection 

scores. In Fig. 2, the procedure of the proposed pruning 

technique is depicted. In the case of reaching the net 

score of a given connection to the threshold, it is pruned. 

 
Fig. 1:  Schematic of the synaptic pruning concept. 

As can be seen in the flowchart, continuous evaluation 

of connections and obtaining a net score for each 

connection leads to a decision regarding removal or 

retention. Algorithm 1 provides a detailed presentation of 

the pruning pseudocode. As discussed, it is insufficient to 

rely just on the weighted domain, and there is a significant 

chance that some crucial network connections will be 

overlooked. Sorting the connections addressed this 

problem since, after the connections that may be deleted 

are identified, the value is not decreased all at once to 

complete the removal process. Actually, we warn the 

pruning candidates one after the other and prune them in 

response to these cautions. The threshold limit is chosen 

by trial and error. All connections at each stage are 

evaluated by the considered criterion and sorted based 

on the scores they get. The summary of the approach is 

that after sorting the scores of the connections, we have 

three categories: connections whose score are in the top 

20%, as well as connections that are in the bottom 20% 

and connections whose scores are between these two 

areas. At each stage, one unit is added to the connections 

with them, and the connections with the lowest 20% are 

fined; i.e. their score are reduced by one unit. Therefore, 

the strong ones are strengthened and the weak ones are 

weakened, and they are candidate for pruning. There is a 

threshold value, if the connection score is less than that, 

a warning will be given, and after specified warnings, it 

will be pruned. Concisely, each link in the network is 

evaluated based on network error. Unless otherwise 

stated, we compute the errors resulting from omitting 

each link and, upon sorting according to the error, identify 

the connections with the highest number of errors. 

Connections are eliminated depending on the pruning 

rate, which is set by the designer considering factors such 

as layer percent. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2:  Flowchart of proposed pruning. 

The key idea is that, in addition to evaluation of each 

connection, the contribution of the layers is also taken 

into account in the pruning; in this way, the layer value is 

defined as the sum of all connection weights in the 

mentioned layer, and we also compute the layer percent, 

by dividing layer value into the total values of the network 

layers, as follows: 

𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑠 = ∑ 𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟 𝑖

𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟
𝑖=0                         (1)                              

𝑙𝑎𝑦𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖 =
𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑖

𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑠
                                             (2) 

  𝑖 = 0 , . . . , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠     

Many of pruning techniques are predicated on the idea 

that there is a significant correlation between a weight's 

magnitude and significance. Recent researches have 

questioned this assumption and shown a notable 

discrepancy in the association between empirically 

optimum one-step decisions and weight-based pruning 

judgments [11]. 

Start 

𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = [0] 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑤𝑎𝑟𝑛𝑖𝑛𝑔
= 𝑁𝑢𝑚𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑔𝑒𝑡 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑚𝑜𝑣𝑒 

𝐸𝑟𝑟𝑜𝑟𝑖,𝑗 = 0 

𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 𝐻𝑜𝑤 𝑚𝑢𝑐ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑝𝑟𝑢𝑛𝑛𝑒𝑑 

𝑠𝑖𝑚(𝐴𝑁𝑁, 𝑖𝑛𝑝𝑢𝑡𝑠) 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 ∗ ∇𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 

𝑙𝑜𝑜𝑝 𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

𝑠𝑜𝑟𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑐ℎ𝑒𝑐𝑘 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑟𝑢𝑛𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑟𝑢𝑛𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑛 𝑏𝑜𝑡𝑡𝑜𝑚 
𝑝𝑟𝑢𝑛𝑒% 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑛 𝑡𝑜𝑝 
𝑝𝑟𝑢𝑛𝑒% 

𝑃𝑟𝑢𝑛𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗

= 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑟𝑢𝑛𝑒  

𝑃𝑟𝑢𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗  
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𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜 𝑃𝑟𝑢𝑛𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 
 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑠𝑖𝑧𝑒 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑤𝑎𝑟𝑛𝑖𝑛𝑔
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑒 𝑤𝑎𝑛𝑡  𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑛𝑜𝑡 𝑏𝑒 𝑐𝑢𝑡𝑡𝑒𝑑. 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐸𝑟𝑟𝑜𝑟𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 0 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 20% ,

𝑠ℎ𝑜𝑤𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝𝑟𝑢𝑛𝑖𝑛𝑔,  
Consider 20 top and down for reward as penalty domain 

Construct an evaluate table as below: 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑡𝑎𝑏𝑙𝑒 = [
𝑒𝑟𝑟𝑜𝑟 𝜏 𝑚𝑟𝑜𝑤 𝑚𝑐𝑜𝑙 𝑙𝑟𝑜𝑤 𝑙𝑐𝑜𝑙

⋮ ⋮ ] 

In which: 

𝜏 = 1 𝜏 = 2 𝜏 = 3 

𝑏𝑖𝑎𝑠 𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑎𝑛𝑑  
𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 

𝑏𝑖𝑎𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠  
𝑓𝑜𝑟 𝑚𝑟𝑜𝑤𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 

𝑚𝑐𝑜𝑙 = 1 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓  
𝑚𝑟𝑜𝑤𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 

𝑚𝑐𝑜𝑙 = 1 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟  
𝑙𝑎𝑦𝑒𝑟 𝑚𝑟𝑜𝑤𝑡𝑜 𝑚𝑐𝑜𝑙 

𝑟𝑜𝑤 𝑙𝑟𝑜𝑤𝑜𝑓  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑙𝑐𝑜𝑙 = 1 

𝑙𝑟𝑜𝑤  𝑎𝑛𝑑 𝑙𝑐𝑜𝑙𝑠ℎ𝑜𝑤𝑠  
𝑤𝑒𝑖𝑔ℎ 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑙𝑟𝑜𝑤 = 1 

𝑙𝑐𝑜𝑙𝑠ℎ𝑜𝑤𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 

 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 [0,1] 𝑟𝑎𝑛𝑔𝑒 
𝑙𝑜𝑜𝑝 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

Initialize 𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 

𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑖𝑎𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡0,𝑖,𝑗 

𝑤𝑒𝑖𝑔ℎ𝑡ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 × 𝛻𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 
𝑠𝑜𝑟𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛  𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 

𝒇𝒐𝒓  𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗  = 1 𝑡𝑜 𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ×

𝑐𝑜𝑢𝑛𝑡(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑎𝑛)  
𝑃𝑟𝑢𝑛𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 − 1  

𝒇𝒐𝒓 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = (1 − 𝑃𝑟𝑢𝑛𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡) ×

𝑐𝑜𝑢𝑛𝑡(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)𝑡𝑜 𝑐𝑜𝑢𝑛𝑡(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)  
𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 + 1 

𝒇𝒐𝒓 (𝑙𝑎𝑦𝑒𝑟, 𝑖, 𝑗) = 𝑃𝑟𝑢𝑛𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 =

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑤𝑎𝑟𝑛𝑖𝑛𝑔   
𝑤𝑒𝑖𝑔ℎ𝑡𝑙𝑎𝑦𝑒𝑟,𝑖,𝑗 = 0 

𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑠 = ∑ 𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑖

𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑢𝑛𝑡

𝑖=0

 

𝑙𝑎𝑦𝑒𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖 =
𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑖

𝑣𝑎𝑙𝑢𝑒𝑙𝑎𝑦𝑒𝑟𝑠
 𝑖 = 0 . . 𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 

 

 

Algorithm 1: Pruning Pseudo code 

 

 

The use of the gradient somehow adds the rate of 

change to the criterion and dynamically increases the 

accuracy Our method, which is more accurate than other 

baselines, prunes the weights with the lowest absolute 

value of (weight * gradient), evaluated on a batch of 

inputs. Therefore, it is very significant and important that, 

firstly, our proposed criterion is much more accurate and 

dynamic than the simple weight criterion, and on the 

other hand, in addition to reducing the score of weak 

connections, we also give points to strong connections, 

and besides all this, we also use synaptic pruning in an 

innovative setting. 

Results and Discussion 

We verify the merits of the presented technique by 

two practical examples: identification of a refinery 

distillation tower and also adjusting the coefficients of a 

PID controller, which is the most famous and widely used 

controller in process industries. For the first one we use a 

deep feedforward neural networks as the system model, 

and for the second one a deep recurrent neural network 

as the online tuner of the controller.  

Distillation Tower (Refinery) 

The effectiveness of the proposed strategy is evaluated 

using a neural network model of the distillation tower in 

a refinery operation. The goal is to find out how this 

algorithm may improve identification accuracy and 

convergence speed while dealing with ideal and noisy 

data. Refineries are incomplete without the distillation 

tower, a multi-input, multi-output (MIMO) nonlinear 

system. One tool for separating solution components is a 

distillation column. Actually, the boiling point difference 

and volatility of the constituents of a solution are used to 

separate them in the distillation tower. Crude oil refining 

is one of the principal applications for industrial 

distillation towers, which are widely utilized in many 

process sectors. The distillation process is used in the oil 

business to separate various hydrocarbons according to 

how volatile they are. One of the most commonly utilized 

towers is the ethane-ethylene distillation column. The 

production of high-purity ethylene is necessary because 

of its importance. Our data comes from an identification 

experiment using an ethane-ethylene distillation 

column [27]. The data contains four series:  
U_dest, Y_dest: without noise (ideal series) 
U_dest_n10, Y_dest_n10:  
10 percent additive white noise 
U_dest_n20, Y_dest_n20:  
20 percent additive white noise 
U_dest_n30, Y_dest_n30:  
30 percent additive white noise 

There are 180 samples for neural network training. The 

following describes the inputs and outputs:   

The inputs of the systems are: 1) the proportion 

between feed flow and reboiler duty; 2) the relationship 

between feed flow and reflux rate; 3) the proportion 

between the feed flow and the distillate; 4) the 

composition of the input ethane; and 5) the top pressure. 

Outputs of the system are: 1) top ethane composition; 2) 

bottom ethylene composition; and 3) top-bottom 

differential pressure. So, we employ a deep network with 

90 connections, 5 inputs, and 3 outputs (Fig. 3). If we first 

have the proper weights training, it can be utilized the 

deep network's capabilities. Secondly, we can use our 

structural optimization approach to discover the optimal 

structure for the network and prevent over-fitting, which 

will speed up the network. 

Fig. 3:  Applied deep neural network. 
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Using the available data, we first train the network. Fig. 

4 illustrates how the network's performance varies after 

each training epoch. Our performance function is the 

mean square error (MSE). Three curves with various 

colors are included for the test, validation, and training 

sets of data. The label on the horizontal axis shows the 

number of training cycles (epochs) of the network. The 

network performed its best in the 9th epoch, as 

evidenced by the validation data. Furthermore, Fig. 5 

displays the regression curves for the test, validation, and 

training sets of data. 

 
Fig. 4:  Performance of the deep neural network. 

More information from the training is shown in the 

training state visualization (Fig. 6); for instance, the "val 

fail" graph indicates the epoch in which the validation 

data evaluation was rejected. The cumulative number of 

failed assessments is displayed on this graph. When the 

network fails six consecutive assessments, training ends. 

Two important measures are usually used for 

comparison to the simple dropout method [20]: The new 

size divided by the original size is defined as the 

compression ratio. The theoretical speedup is defined as 

the ratio of the initial number of multiplications and 

additions to the new number. Comparison statistics for 

two circumstances are reported in Table 1. Note that the 

weight × gradient is employed here. 

 
Fig. 5:  Regression for the training, validation and test data. 

 

 
Fig. 6:  Training state. 

Also, in Table 2, the proposed pruning method is 

compared to the conventional dropout method wherein 

only weight is used. It verifies the superiority of the 

proposed scheme. 
 

Table 1: Comparison to dropout method with weight × gradient 
 

NN Type 
Shallow 

(1 hidden layer) 
Deep 

(3 hidden layers) 
 Initial Dropout Proposed Initial Dropout Proposed 

Accuracy 
(%) 

76.6 77.1 77.9 82.6 83.8 86.3 

Compression 
(%) 

- 47 47.2 - 58 59.5 

Execution 
Time (ms) 

15 17.4 13.5 17.5 19.2 16.3 

 

Table 2: Comparison to dropout method with only weight 
 

NN Type 
Shallow 

(1 hidden layer) 
Deep 

(3 hidden layers) 
 Initial Dropout Proposed Initial Dropout Proposed 

Accuracy 
(%) 

76.6 78.2 77.9 82.6 84.8 86.3 

Compression 
(%) 

- 48.3 47.2 - 59.4 59.5 

Execution 
Time (ms) 

15 17.3 13.5 17.5 18..2 16.3 
 

As seen, our pruning strategy leads to a speedup in 

training and network performance. The suggested 

pruning strategy may be easily extended to other 

intelligent process industries. One of the most important 

problems in measurement and control is noisy data, 

which is frequently found in actual industrial settings. 

When working with noisy data that has 10%, 20%, and 

30% noise, the outcomes of the shallow network and the 

deep network, which is pruned using the introduced 

algorithm, are compared in Fig. 7. It is clear that the 

suggested structure works much better, especially with 

noisy data. 

 
Fig. 7:  Deep and shallow networks comparison in the noisy 

data treatment. 
 

Briefly, the distillation tower is modelled using a deep 

network pruned using the suggested approach, and its 

effectiveness was shown in comparison to the shallow 

network. In order to compare the suggested model with 

other neural network-based models, we also compared 

the RMSE criteria between the model and three other 

structures in Table 3. The two structures that are being 

discussed are NARX structure-based neural networks 
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(which use both the Levenberg-Marquardt and the 

Steepest Descent algorithms) and nonlinear auto-

regressive with exogenous inputs (NARX)-based 

ANFIS [28]-[30]. The comparison of errors clearly shows 

that the proposed technique is better than the other 

structures. 
 

Table 3: RMSE for neural networks models, ANFIS, and the 
proposed CONCOMP 
 

Outputs 
Steepest 
Descent 

Levenberg 
Marquardt 

ANFIS CONCOMP 

Top 
Composition 

0.639 0.2090 0.0421 0.0222 

Bottom 
Composition 

1.3127 0.4913 0.031 0.021 

Pressure 
Difference 

1.0053 0.2480 0.0189 0.0112 

 

PID Controller  
PID controllers are frequently mistuned, particularly in 

unreliable situations. Intelligent techniques are used 

recently to develop adaptive PID controllers. In order to 

mitigate the effects of uncertainties in the closed-loop 

control system, a deep dynamic neural network is used 

here to tune the parameters of the traditional PID 

controller. By using the proposed pruning method, 

simpler tuner is achieved and consequently the 

computational load is decreased.  

Fig. 8: Closed loop PID control with neural network tuner. 

 
Fig. 9: RMSEs with shallow and pruned deep neural network 

tuner. 
 

The transfer function of the plant in Fig. 8 is as follows: 

H(s)  =
− (1.308)𝑒−4.896𝑠

(13.515𝑠+1)(6.241𝑠+1)
                                                 (3)       

The results of the Monte Carlo simulation with 100 

iterations are reported in Fig. 9. At the end of the pruning 

process, we lost 43.5% of initial connections and reached 

a fast network.  As can be seen, a controller with a pruned 

deep recurrent network tuner has superior performance 

compared to a shallow one. Regarding the stochastic 

nature of noise, deep networks better compensate for its 

effects.  

Conclusion 

This paper suggests a novel method for optimizing 
deep neural network topology. The weight multiplied by 
the gradient is employed as the criterion rather than the 
net weight index. Moreover, the low and high scores of 
connections are classified to determine the importance of 
the connections which compete for survival. We 
evaluated our method using two examples from control 
literature: neural network modelling of the distillation 
column and intelligent tuning of PID controller. We 
discovered that it eliminated over-fitting issues, 
enhanced learning speed, preserved accuracy, and 
reduced cost due to a smaller network size. Additionally, 
we demonstrated that deep neural networks in the right 
size and setting can handle noisy data more efficiently. 
This approach's main advantage over the previous ones is 
that a connection with a low score is not immediately 
terminated, and it continually assesses the effectiveness 
of network connections using the proposed criterion. 
Subsequent studies could focus on how to integrate the 
developed strategy with other advanced techniques like 
neural architecture search or automated machine 
learning.  
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