
J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

Doi: 10.22061/jecei.2024.11110.767 209

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

A Fast and Accurate Tree-based Approach for Anomaly Detection in
Streaming Data

K. Moeenfar, V. Kiani *, A. Soltani, R. Ravanifard

Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.

Article Info Abstract

Article History:
Received 26 July 2024
Reviewed 17 September 2024
Revised 28 October 2024
Accepted 17 November 2024

Background and Objectives: In this paper, a novel and efficient unsupervised
machine learning algorithm named EiForestASD is proposed for distinguishing
anomalies from normal data in data streams. The proposed algorithm leverages a
forest of isolation trees to detect anomaly data instances.
Methods: The proposed method EiForestASD incorporates an isolation forest as
an adaptable detector model that adjusts to new data over time. To handle
concept drifts in the data stream, a window-based concept drift detection is
employed that discards only those isolation trees that are incompatible with the
new concept. The proposed method is implemented using the Python
programming language and the Scikit-Multiflow library.
Results: Experimental evaluations were conducted on six real-world and two
synthetic data streams. Results reveal that the proposed method EiForestASD
reduces computation time by 19% and enhances anomaly detection rate by 9%
compared to the baseline method iForestASD. These results highlight the efficacy
and efficiency of the EiForestASD in the context of anomaly detection in data
streams.
Conclusion: The EiForestASD method handles concept change using an intelligent
strategy where only those trees from the detector model incompatible with the
new concept are removed and reconstructed. This modification of the concept
drift handling mechanism in the EiForestASD significantly reduces computation
time and improves anomaly detection accuracy.

Keywords:
Anomaly detection

Data streams

Concept drift

Sliding window

Isolation tree

*Corresponding Author’s Email
Address: v.kiani@ub.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

The detection of anomalies in data streams has become

an increasingly significant research area, driven by the

exponential growth in the volume and velocity of

streaming data across diverse domains such as finance,

healthcare, Internet of Things (IOT), and computer

networks [1]-[3]. Anomalies, which are data instances

that deviate significantly from the norm, can provide

valuable insights into abnormal events, fraud, or potential

risks in various applications [4]-[6]. However, traditional

anomaly detection methods designed for static datasets

are ill-suited for streaming data due to the dynamic

nature of data streams and their inherent challenges.

Anomaly detection is a classification task

encompassing supervised, semi-supervised, and

unsupervised learning approaches [7]. Supervised

learning methods are constrained in their ability to detect

new anomalies and can only identify those resembling

previously encountered data anomalies. Conversely,

unsupervised methods offer the advantage of discovering

novel anomalies without the need for training labels,

which is particularly valuable considering the cost

associated with acquiring and labeling training data.

Given this rationale, the primary focus of this research lies

in the identification of anomalies within data streams

through the unsupervised learning methods.

http://jecei.sru.ac.ir/
mailto:v.kiani@ub.ac.ir
http://creativecommons.org/licenses/by/4.0/

K. Moeenfar et al.

210 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

Fig. 1: Conceptual framework of the proposed method for anomaly detection in data streams.

A data stream is a massive, continuous, unbounded

and ordered sequence of incoming data at high

speed [8]-[10]. In the context of data streams, anomaly

data refers to a data instance that significantly deviates

from the expected or normal behavior of the data

stream [11]. It is an observation that stands out from the

majority of the data points and exhibits characteristics

that are unusual or unexpected. Anomalies can represent

abnormalities, irregularities, or rare events in the data

stream, which may hold valuable information or indicate

potential issues in the underlying process generating the

data [3]. While outliers are often identified using

statistical methods, anomaly detection techniques can be

more advanced and include methods like machine

learning, time-series analysis, and clustering, which may

consider temporal patterns and relationships in data

streams.

An ideal anomaly detection method for data streams

must possess several key characteristics [9]. Firstly, it

should be capable of processing massive and never-

ending streams of data in real time, as the volume and

velocity of streaming data necessitate efficient and timely

analysis. Secondly, the method should be adaptable to

potential changes in the underlying data distribution over

time, as data streams often exhibit concept drift, where

the statistical properties of the data may evolve. Thirdly,

the method should exhibit high accuracy in identifying

anomaly data instances, as the consequences of missing

or misclassifying anomalies can be significant in critical

applications.

To address these challenges, this research paper

introduces a novel and efficient method called Enhanced

Isolation Forest Adapted for Streaming Data

(EiForestASD). Conceptual framework of the proposed

anomaly detection method EiForestASD is shown in Fig. 1.

The proposed method leverages a forest of isolation

trees, a popular technique in anomaly detection, to

effectively distinguish anomalies from normal data

instances in streaming environments. In addition,

EiForestASD integrates an adaptable detector model that

dynamically adjusts to accommodate new data over time.

Rather than completely discarding the detector model

when encountering a concept drift, the proposed method

employs a manipulation strategy to effectively manage

the concept change. Specifically, only invalid and weak

detectors are removed instead of entirely eliminating the

set of detectors. This approach facilitates the high-speed

processing of data streams and enhances the accuracy of

anomaly detection within the data stream. The

contributions of this article are as follows:

1. Introducing a novel and efficient method named

EiForestASD for anomaly detection in streaming

data.

2. Addressing the challenges posed by streaming data

by developing a method that is fast, capable of

processing massive and endless data streams,

adaptable to potential changes in data distribution

over time, and exhibits high accuracy in identifying

anomaly data instances.

3. Incorporating an adaptable detector model that

Anomaly

Anomaly Anomaly

Data Stream

Start Sliding Window Future Incoming Data

Anomaly Detection Model (iForest)

Anomaly Detection
Anomaly
Report

Concept Drift
Detection

Model Update

Search each data instance in iForest

Current Sliding Window

Anomaly
Store

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 211

adjusts to new data over time, discarding only those

isolation trees that are incompatible with the new

concept in the event of concept drift.

4. Conducting experimental evaluations on both real-

world and synthetic data streams.

Overall, this research contributes to the field of

anomaly detection in data streams by introducing a novel

method that addresses the main challenges posed by

streaming data. The findings highlight the efficacy and

efficiency of EiForestASD in handling massive and

perpetual data streams with high speed, adapting to

concept drift, and accurately identifying anomalies. The

proposed method holds great promise for various

applications that require real-time and accurate anomaly

detection in streaming data.

The remainder of this article is organized as follows:

Initially a comprehensive literature review of

unsupervised methods for anomaly detection in data

streams is presented. Subsequently, an extensive review

of related works is conducted, concentrating exclusively

on methodologies that utilize isolation trees and isolation

forests for unsupervised anomaly detection within data

streams, given that our proposed method is founded on

isolation forests. Then the notion of isolation trees, the

proposed method EiForestASD, and its mechanism for

handling concept drift are explained. After that, reports

and analyzes of the experimental results on the

benchmark datasets is provided. Finally, the article is

concluded and directions for future research are

introduced.

Literature Review

Anomaly detection is defined as the process of

identifying patterns within data that deviate from

expected behavior. Unlike static datasets, which typically

contain labeled examples suitable for model training,

real-time data streams often lack such annotations,

thereby rendering unsupervised methods particularly

advantageous. This literature review emphasizes

unsupervised techniques that utilize the inherent

structure of the data to identify anomalies in the absence

of prior labeling. Prior research on unsupervised anomaly

detection in data streams can be categorized into seven

primary groups: statistical methods, distance-based

methods, density-based methods, clustering methods,

tree-based methods, deep learning methods, and hybrid

approaches.

The statistical or parametric approach to anomaly

detection assumes that data instances in a data stream

conform to a specific statistical distribution, with

significant deviations from this distribution identified as

anomalies. Various methodologies illustrate this

approach. In [12], the outlier score for each data point is

calculated based on the Gaussian mixture model (GMM).

In [13], correlation of two or more correlated features

is computed and an ellipsoidal boundary around these

features is constructed as the model of normal data.

In [14], the effects of seasonality and trend is first

removed from the data stream, and then RobustSTL and

RobustScaler methods are used to detect anomalies

based on mean, variance, median, and interquartile range

of data. In [15], the kernel density estimation (KDE) is

used to generate and continually update a real-time

statistical model of the data stream, and the likelihood

estimates are then used to detect anomalies. In [16],

considering high-dimensional medical data streams, the

information entropy and an efficient pruning technique

are combined in a novel sliding window model to judge

whether the data is anomalous or not.

The distance-based approach considers the distance of

each data point to its nearest neighbors. For example,

considering k and R parameters, a data is known as an

outlier if less than k data in the input data are within R

distance from this data point. Exact-Storm [17] and

Direct-Update [18] algorithms are two common

algorithms in the group of distance-based methods.

Recently, most research works in this group are focused

on the efficient computation of distance-based methods.

In [19], data points at similar locations are grouped and

the detection of outliers or inliers is handled at the set

level. In [20], micro-clustering technique is integrated

with adaptive thresholding of Thresh-LEAP algorithm.

In [21], a grid-based index is proposed to effectively

manage summary information of streaming data, and a

min-heap algorithm is employed to efficiently calculate

the distance bounds between objects and their k nearest

neighbors. In [22], a method based on subspaces is

proposed for explaining anomalies and describing

relevant dimensions in the unsupervised distance-based

outlier detection.

In the density-based approach to outlier detection, the

local density of each data point serves as a fundamental

criterion for identifying anomalies [11]. A prominent

method within this framework is the Local Outlier Factor

(LOF), which introduces the notion of comparing the local

densities of neighboring data points with that of the

target data point [23]. Data points exhibiting a high LOF

are deemed outliers. The concept of LOF is then

integrated with a sliding window approach to effectively

manage data streams. This integration has established a

fundamental principle that underpins various subsequent

research endeavors, including iLOF [24], DiLOF [25],

CLOF [26], and GiLOF [27]. Recently, LOF method is

enhanced by leveraging ensemble techniques and GPU

acceleration on data streams [28]. In [29], LOF is

combined with PCA-based dimensionality reduction to

infer data stream anomalies in real time. In [30], using

information entropy for feature selection, clustering for

K. Moeenfar et al.

212 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

memory reduction, and data insertion for density

computation, the detection accuracy of LOF is enhanced

while its memory requirements is reduced for high-

dimensional data streams.

Clustering techniques have proven effective for

detecting anomalies by identifying groups of similar data

points. Methods like k-means and DBSCAN can be

adapted for anomaly detection in data streams. Among

preliminary algorithms that fall into this category, we can

mention DenStream [31], DBStream [32], and

EvoStream [33]. Several recent methods for anomaly

detection in data streams are based on clustering. For

example, in [34], a clustering technique is used to

summarize data before applying anomaly detection

methods on the summary. In [35], several clustering

algorithms including K-means clustering, Mixture of

Gaussian models, density-based clustering, and self-

organizing maps are employed on stream data for online

anomaly detection and monitoring of ship machinery

systems. In [36], a streaming sliding window local outlier

factor coreset clustering algorithm (SSWLOFCC) is

proposed, which integrates local outlier factor,

agglomerative clustering, and PCA for efficient outlier

detection in large datasets. In [37], a dynamic micro-

clustering scheme is proposed, generating macro-clusters

from interconnected micro-clusters to identify anomalies

by assessing both global and local density perspectives.

Tree-based methods are commonly employed for

unsupervised anomaly detection in both static datasets

and data streams [38]. In a tree-based anomaly detection

method for data streams, an ensemble of tree-based

anomaly detection models such as half-space tree,

random-space tree, or isolation tree is often combined

with a sliding window mechanism to detect anomalies in

stream data and update anomaly detector

continually [39], [40]. For example, in [41], an ensemble

of random half-space trees called Streaming HS-Trees

method is employed to detect anomalies in stream data.

It offers several advantages, including constant amortized

time complexity, constant memory requirements, and

favorable detection accuracy. In [42], to leverage the

benefits of fully randomized-space trees, the RS-Forest

utilized multiple fully RS-Trees to create a density

estimator that is both fast and accurate. Then, the

incoming instances in a data stream are scored based on

the density estimates averaged over all trees in the forest

and the anomalies are identified. In [43], an ensemble of

isolation-Trees known as Isolation Forest (iForest) is

proposed for detecting anomalies in static datasets. To

compute the anomaly score for a particular data point,

the path lengths of the trees containing that point are

averaged. In [44], the isolation forest technique was

extended to effectively handle the unique characteristics

of streaming data by incorporating sliding windows

mechanism. Some recent extensions of isolation forest to

streaming data include applying ADWIN to

iForestASD [45], Historical Isolated Forest (HIF) [46], and

Bilateral-Weighted Online Adaptive Isolation Forest

(BWOAIF) [47].

Deep learning has opened new avenues for anomaly

detection in data streams. In [48], the LSTM networks is

used as a predictor of future data, and anomalies are

detected by comparing the predicted value and actual

value of current data point. A similar scheme is employed

in [49] where Temporal Convolutional Neural Networks

(TCN) provided higher accuracy than LSTM and GRU

models. Another approach is to employ deep learning

models in an auto-encoder network to reconstruct the

output based on previous sequence of inputs, and detect

anomalies based on reconstruction loss. In this regard,

in [50] an LSTM-based auto-encoder network is designed

for anomaly detection in vibration data of wind turbines.

In [51], an auto-encoder anomaly detector is equipped

with concept drift detection module based on the Mann-

Whitney U Test to adapt nonstationary environments.

In [52], to reduce network complexity and computational

requirements, the encoder network is constructed from

LSTM layers, while the decoder network is comprised

from fully connected layers. Lastly, Generative

Adversarial Networks (GANs) have been applied to

anomaly detection by generating normal data samples for

comparison with observed data [53]-[56].

Hybrid approaches combine multiple methods to

improve anomaly detection accuracy and robustness [57].

For example, a hybrid Model of One-class SVM and

Isolation Forest (HMOI) has been proposed in [58] for

wireless sensor data, where isolation forest is employed

for anomaly labeling of unlabeled data, and one-class

SVM is utilized for final classification of anomalies. In [59],

to detect anomaly in surveillance videos, a Convolutional

Neural Network (CNN) is employed to extract spatial

information, combined with a vision transformer to learn

long-term temporal relationships. In [60], a hybrid

approach based on deep learning is proposed that

combines CNN and LSTM models in the encoder and

decoder parts of an auto-encoder model to detect

anomalies in spatio-temporal data.

In conclusion, the domain of unsupervised anomaly

detection in data streams presents a rich and diverse

landscape of methodologies, each tailored to address the

unique challenges posed by the absence of labeled data

and the dynamic nature of real-time information. By

categorizing existing techniques into seven distinct

groups—statistical, distance-based, density-based,

clustering, tree-based, deep learning, and hybrid

approaches—we can appreciate the breadth of strategies

developed to tackle this complex problem. Advances in

these areas continue to enhance detection accuracy and

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 213

computational efficiency, paving the way for real-time

applications across various fields, including finance,

healthcare, and cybersecurity.

Related Works on Isolation Forests

Similar to our research work, numerous other scholars

have employed the concepts of isolation trees and

isolation forest for the identification of anomalous data in

data streams. Accordingly, in this section a detailed

review of the related works to application of isolation

forest and isolation trees for anomaly detection in data

streams is presented.

In the realm of streaming data analysis, Ding et al. [44]

extended the Isolation Forest technique to effectively

handle the unique characteristics of streaming data, such

as high speed, large volume, and concept drift. Their

proposed method, known as iForest Adapted for

Streaming Data (iForestASD), incorporates sliding

windows to cope with the continuous flow of data and

adapt to concept drift. By employing bootstrap sampling,

an initial anomaly detection model is constructed for the

streaming dataset, and iTrees are built based on the

randomly sampled data. The trained iForest model is

continuously updated as new data arrives, ensuring the

detection of evolving anomalies. Moreover, iForestASD is

equipped to detect and handle concept drifts by

monitoring the anomaly rate within a sliding window. If

the anomaly rate exceeds a predefined threshold,

concept drift is identified, and a new iForest model is

constructed to accommodate the latest data window.

With the increasing popularity of the Python

programming language in the data science, Togbe et

al. [61] implemented the iForestASD method under the

Python programming language and the Scikit-Multiflow

machine learning framework.

Togbe et al. [45] extended the iForestASD method to

handle drifting data by introducing three new algorithms.

These algorithms utilize two primary drift detection

methods: ADWIN and KSWIN. By calculating and

analyzing the average statistics in two sub-windows,

ADWIN identifies concept drift. Similarly, the KSWIN

method employs the Kolmogorov-Smirnov test to identify

changes in data distribution. In addition, Togbe et al.

introduced N-Dimensional KSWIN (NDKSWIN) to adapt

KSWIN for multidimensional data streams, declaring a

drift if a change is detected in at least one dimension.

Madkour et al. [46] enhanced the existing IForestASD

methodology by introducing a Historical Isolated Forest

(HIF) framework and reusing previously constructed

iForests. Their proposed method retains previously

constructed isolation forests and utilizes the isolation

forest most analogous to the current concept drift

distribution as its operational model. Additionally, it

maintains the mean and standard deviation of the

training data chunk alongside each isolation forest within

the ensemble pool to facilitate the assessment of

similarity between the current concept drift distribution

and earlier data distributions. Evaluations revealed that

while the HIF approach achieved reduced computational

times compared to IForestASD, it often did not improve

and sometimes decreased anomaly detection accuracy.

Hannak et al. [47] improved the IForestASD by adding

timestamps for each isolation tree (iTree) and using a

bilateral weighting mechanism for calculating anomaly

scores. Their approach, called the Bilateral-Weighted

Online Adaptive Isolation Forest (BWOAIF), assigns

weights to iTrees to reduce the impact of outdated trees

in changing data distributions. The anomaly score

calculation employs bilateral weighting, where one

component mitigates the influence of iTrees built from

differing distributions, while the other emphasizes more

recent trees. Empirical results showed that BWOAIF

effectively adapts to various concept drift situations,

including slow and fast shifts, splits, and the emergence

or disappearance of concepts.

Yang et al. [62] proposed ASTREAM method which

integrates Locality-Sensitive Hashing (LSH) into isolation

Forest (iForest) to achieve better anomaly detection

performance. The underlying model used in ASTREAM is

called LSHiForest. ASTREAM addresses the limitations of

existing approaches by incorporating sliding window,

model updates, and change detection strategies into

LSHiForest. The sliding window mechanism effectively

handles the continuous flow of data streams, while

Principal Component Analysis (PCA) considers the

correlations between different dimensions and

transforms a set of relevant dimensions to a set of

irrelevant dimensions. Extensive experiments conducted

on the KDDCUP99 dataset have demonstrated the

superior performance of ASTREAM in terms of accuracy,

efficiency, and scalability compared to baseline methods.

Another study by Yang et al. [63] introduces

DLSHiForest, which combines Locality-Sensitive Hashing

(LSH), Isolation Forest, and the time window technique to

achieve accurate and efficient anomaly detection in data

streams from wireless sensors. DLSHiForest takes into

account correlations between different dimensions and

detects anomaly based on Locality-Sensitive Hashing.

Each streaming data point is treated as a

multidimensional vector, and the hash functions consider

all the dimension information while hashing the data

points, thereby accounting for the cross-correlation

among different dimensions. The hashing process

involves the dot product of two vectors, which represents

the comprehensive consideration of all dimensional

information of the data point. The efficient partitioning of

data points and the detection of anomaly in DSLHiForest

heavily rely on the hashing technique.

Li et al. [64] introduced an innovative human-machine

K. Moeenfar et al.

214 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

interactive streaming anomaly detection approach,

referred to as ISPForest, which is capable of being

adaptively updated in real time through the integration of

human feedback. In their framework, the feedback

mechanism plays a critical role in recalibrating both the

computation of anomaly scores and the architecture of

the detector itself, thereby enhancing the accuracy of

future anomaly score assessments. The empirical findings

from their study indicate that the inclusion of feedback

significantly improves the performance of anomaly

detection systems with minimal human intervention.

A detailed review of existing literature in the domain

of tree-based unsupervised anomaly detection using

isolation forests has revealed that isolation forest exhibits

notable efficiency and scalability in the detection of

anomaly within data streams. In contrast to the majority

of such tree-based methods that fail to adequately

address the challenge of concept drift in data, the

iForestASD algorithm employs continual monitoring of

the anomaly rate to identify concept drift and

subsequently reconstructs the entire detector model

upon detecting a change in the concept. The approach

employed by newer tree-based methods, which utilize

isolation forest, closely mirrors that of iForestASD in

terms of identifying and handling concept drift.

Nevertheless, the iForestASD method is impeded by the

time-intensive process of rebuilding the detector model,

resulting in significant algorithmic slowdown and delays

in identifying anomaly data. Hence, it is imperative to

explore alternative methods that offer more efficient

management of concept drift. To address this objective,

in this research work, the EiForestASD technique is

introduced which integrates a mechanism to manage

concept drift without discarding the entire detector

model. This approach requires less time to update the

model, making it highly adaptable to data changes and

particularly suitable for resource-constrained devices.

EiForestASD Method

This research aims to develop a method that can

detect anomalies in data streams and update the detector

model efficiently when the concept drifts occur. The

proposed method, named Enhanced Isolation Forest

Algorithm for Stream Data (EiForestASD), is an

enhancement of the iForestASD algorithm proposed

by [44], [61], but with more smartness in handling

concept drifts and updating the detector model. The

EiForestASD is a partitioning-based anomaly detection

method for data streams, which employs a forest of

isolation trees (iTrees) to isolate anomalies. The

EiForestASD continuously updates the forest of iTrees on

the data stream and uses it to detect anomalies in each

window of data. The steps of the proposed method

EiForestASD are depicted in Fig. 2.

Fig. 2: Steps of the proposed method EiForestASD for anomaly

detection in data streams.

The proposed method EiForestASD begins by receiving

a window of data and constructing the initial iForest

detector model. Subsequently, for each incoming data

point, the algorithm searches the input data point in all

isolation trees and uses the isolation forest to compute

anomaly score of the input data point and report anomaly

data points. After reporting anomaly data instances,

EiForestASD computes the anomaly rate in the last

window of data and compares it with a predefined

threshold to determine if there is a concept drift. If a

concept drift is detected, the EiForestASD identifies weak

and obsolete isolation trees in the current detector model

and replaces them with new ones constructed on the last

window of data. The following sections will explain the

details of the proposed method.

A. Isolation Tree

An isolation tree (iTree) is a binary tree that recursively

partitions the data space in a hierarchical manner. Each

node of the iTree represents a subset of the data, and

each branch represents a split of the subset into two

smaller subsets. The construction of an iTree is done

randomly. In the randomization process, to expand an

arbitrary node of the tree, a feature is randomly selected

from the data, and then a split point is randomly selected

from the range of values of that feature. Then, the

selected feature and the split point are used to split the

start

Collect a window
of data points

Generate an initial
forest of isolation trees

Search all trees for each
given data instance

Calculate the outlier
score for each data

instance

Report anomalies in the
current window

thuu >
Collect a window

of data points

Replace invalid
isolation trees with
new isolation trees

Yes (concept drift)

NoAnomaly report

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 215

data of the current node into two subsets. Data points

that have higher values than the split point for the

selected feature form the right child of the current node,

and those that have lower values form the left child. The

construction of an iTree starts from the root node, which

contains the whole dataset. The randomization process is

applied to the current node to split it into two children,

and this process is repeated on the children. This process

continues until a leaf node is created that contains a small

number of data points or a maximum depth is reached.

Fig. 3 illustrates an example of partitioning a dataset using

an iTree, where this sample dataset has only two features

and five data points. In Fig. 3, the data instance “a” is

isolated from other data instances at the first level of the

iTree, and would be a proper candidate for anomaly.

Fig. 3: Using an isolation tree to partition dataset and separate

data points.

B. Anomaly Detection

An isolation forest, also known as an iForest, is a group

of isolation trees. The concept of isolating anomalies

instead of profiling normal instances is introduced in the

isolation forest [43], [65], resulting in a more efficient sub-

sampling method and a linear time complexity algorithm

with low memory requirements. The isolation forest

constructs a collection of isolation trees, with each tree

randomly selecting a subset of instances and creating

splits based on randomly selected attributes. The

anomaly score of an instance is measured by its average

path length in the isolation trees, with shorter path

lengths indicating higher anomaly scores.

In an iTree, the leaves that have smaller depths are

isolated from the rest of the data with only a few

partitioning steps. Therefore, the leaves that are located

at a lower depth are likely to be anomalous. After an iTree

is constructed, for each new data point, we search it in

the tree to reach a leaf. The depth of that leaf node

determines the anomaly score of the new data point. The

deeper the leaf node, the lower the anomaly score should

be. Fig. 4 demonstrates the difference in leaf node depth

and the number of partitioning steps for anomaly and

non-anomaly data points.

Fig. 4: It takes five steps to separate the inlier data X0, while
the anomaly data X1 is separated much faster in just two steps.

In the proposed method EiForestASD, a forest of iTrees

is used as a detector model. The iForest is built from the

first observed data window, and updated as subsequent

windows arrive. For each new data point, its anomaly

score must be computed by the current detector model.

To this end, the new data point is searched in all the trees

of the iForest, and based on its depth in the trees, an

anomaly score 𝑠(𝑥) is calculated for the new data point.

Data points that have an anomaly score higher than the

anomaly threshold, denoted by 𝑠𝑡ℎ, are reported as

anomalous.

Assume that the size of the sliding window is equal to

𝑀 samples. Also, suppose that the number of iTrees in the

iForest detector model is 𝑁 trees. In this case, the

anomaly score 𝑠(𝑥) of the data point 𝑥 is calculated with

the following equation:

 (1) 𝑠(𝑥) = 2
−

𝐸(ℎ(𝑥))

𝑐(𝑀)

where the symbol 𝑐(𝑀) represents the expected average

value of the path length ℎ(𝑥) for all data points in the

current window. If the window length 𝑀 is greater than 2,

the value of 𝑐(𝑀) is calculated according to the following

equation:

e

c

d
a

10

15

20

30 60 120

b

X > 60

Y > 10

X > 30

Y

a

b

c Y > 15

d e

N

YN

YN

YN

X0

X1

K. Moeenfar et al.

216 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

 (2) 𝑐(𝑀) = 2𝐻(𝑀 − 1) − (𝑀 − 1)/𝑀

where 𝐻(𝑀) represents the harmonic number, which can

be estimated by the relation 𝐻(𝑀) = 𝑙𝑛(𝑀) + 𝛾 and the

value of 𝛾 = 0.5772156649. Also, the symbol 𝐸(ℎ(𝑥))

shows the average depth of the leaf node containing 𝑥 in

the isolation trees of the current iForest detector model,

which is calculated according to the following equation:

 (3) 𝐸(ℎ(𝑥)) =
1

𝑁
∑ ℎ𝑖(𝑥)

𝑁

𝑖=1

C. Concept Drift Detection and Handling

The EiForestASD method handles the concept drifts in

the data streams by monitoring a typical anomaly rate.

The anomaly rate in each data window is computed by

calculating the ratio of the number of data points

detected as anomalous to the total number of data points

in the window. If the anomaly rate of the window exceeds

the concept drift threshold, then a concept drift has

occurred. In case of a concept drift, the baseline algorithm

iForestASD would discard its current forest of isolation

trees and start building a new forest using all the data

points. However, in the proposed method EiForestASD,

we use a more intelligent approach. To reduce the

computation time of the algorithm, in the EiForestASD

method, when a concept drift occurs, instead of removing

all the isolation trees, we remove only weak iTrees, the

trees that classify most of the data points of the current

window as anomalies. The procedure of concept drift

detection and handling in the proposed method

EiForestASD is outlined by Algorithm 1.

Subsequent to processing the most recent window of

data points, Algorithm 1 is employed to identify and

address any occurrence of concept drift. Initially, in lines

1 to 4, the anomaly status of all data points within the last

window of data, denoted as W, is examined, enabling the

computation of the anomaly rate associated with W.

Subsequently, in line 5, the concept drift is determined by

comparing the anomaly rate, referred to as u, of the

window W of most recent data points with the predefined

threshold for concept drift, known as uth. If the anomaly

rate surpasses the concept drift threshold, it implies the

occurrence of concept drift, necessitating the execution

of appropriate steps outlined in lines 6 to 15.

To effectively address the concept drift, a for loop is

initiated in line 7, inspecting each isolation tree within the

current ensemble model for obsoleteness. In the event

that a tree is deemed invalid, it is replaced with a newly

generated isolation tree model, crafted based on the

latest data points obtained from window W. The

obsoleteness checking process is carried out in lines 8 to

11, involving the computation of the anomaly rate

associated with the current isolation tree t in relation to

the data points present within the latest window W.

Subsequently, this anomaly rate is compared with the

specified anomaly threshold, uth. If the anomaly rate of

isolation tree t exceeds the anomaly threshold, the tree t

is considered to be obsolete and invalid, consequently

requiring substitution with a newly created isolation tree

as delineated in lines 11 to 14.

Algorithm 1 Concept drift detection and handling in EiForestASD

Inputs: W – window of latest data points, F – ensemble of iTrees,

 sth – anomaly threshold, uth – concept drift threshold

Outputs: F – updated ensemble of isolation trees

1: Search each data point x ∈ W in all isolation trees t ∈ F

2: Compute anomaly score s(x) for each data point x ∈ W using all

 isolation trees t ∈ F

3: Count the number of anomaly points in the last window of data W

4: Compute anomaly rate u of the last window of data W

5: if u > uth

6: // Concept drift happened

7: for each isolation tree t ∈ F

8: Compute the anomaly score for each data point x ∈ W using

 only one isolation tree t

9: Count the number of anomaly points detected by isolation

 tree t in the last window of data W

10: Compute anomaly rate of isolation tree t as utree

11: if utree > uth

12: // This tree is not valid and should be replaced

13: replace isolation tree t ∈ F with a new iTree trained on

 the last window of data P

14: end if

15: end for

16: end if

17: return updated ensemble of isolation trees F

In this way, in the proposed method EiForestASD, only

obsolete iTrees are removed from the current detector

model. The removed iTrees are replaced with new iTrees

constructed based on all the data points in the current

window.

Evaluation and Results

In this section, the performance of the proposed

method EiForestASD in identifying anomalies in the data

stream will be evaluated and compared with the baseline

iForestASD method in [44]. For this purpose, the

proposed method was implemented using Python

programming language and with the help of the Scikit-

Multiflow library and compared with the Python

implementation of the iForestASD method in this

library [61].

In the experiments of this section, the actual anomaly

rate of each data set was used to value the anomaly rate

threshold parameter in the concept drift detection

section. The value of parameter 𝑀, which determines the

size of the window, was considered equal to 100. For the

parameter 𝑁, which determines the number of isolation

trees in the detector model, values of 30, 50, and 100

were tested. The anomaly threshold 𝑠𝑡ℎ for each data

point was set to 0.5. In this case, a data point is considered

an anomaly by the detector model if its average depth in

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 217

the detector trees is less than half of the expected value

for the depth of the leaf nodes. The concept drift

threshold 𝑢𝑡ℎ was considered equal to the actual anomaly

rate of each data set. In other words, we assume that the

anomaly rate in each window is the same as the anomaly

rate of the entire dataset.

A. Evaluation Metrics

This research will compare anomaly detection

methods in terms of computation time and accuracy. The

main objective of the proposed method EiForestASD is to

reduce the computation time of the algorithm by

intelligently managing the concept drifts. Therefore, the

computation time will be the primary and most important

evaluation criterion. To compare the computation time,

the amount of CPU time spent by each algorithm on each

dataset will be measured and reported in seconds.

Besides the computation time, the accuracy of

anomaly detection is also crucial for each algorithm. To

evaluate the accuracy of anomaly detection by each

algorithm, the F1 score will be used as a performance

measure. Specifically, the anomaly detection problem will

be treated as a binary classification problem. Anomalies

will be considered as the positive class and non-anomalies

as the negative class. Let 𝑃 denote the precision and 𝑅

denote the recall. Then, the F1 score, which is a suitable

metric for imbalanced classification problems, will be

computed using the following equation:

(4) F1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅

B. Benchmark Datasets

The proposed method and the competing algorithm

were evaluated using two sets of real and synthetic data

sets, which are commonly used as benchmarks for

anomaly data identification in streaming data. The real

datasets were obtained from the Anomaly Detection

Datasets (ODDS)1 library. Synthetic datasets were

generated by the Scikit-MultiFlow library using different

data generators. Table 1 summarizes the characteristics

of the benchmark datasets, which were treated as data

streams.

The synthetic data streams included Mulcross, which

followed a multivariate normal distribution, and SEA,

which had four blocks and abrupt concept drifts between

them. The real data streams included HTTP and SMTP,

which involved computer networks attack detection and

computer networks intrusion prediction tasks,

respectively; Forest Cover, which involved vegetation

classification based on soil information; Shuttle, which

involved deciding how to land a spacecraft; Sat Image,

which involved pixel classification of satellite images; and

MNIST, which involved image classification of English

1 http://odds.cs.stonybrook.edu/about-odds/

handwritten digits. The consecutive samples of each

dataset were considered as a data stream.

Table 1: Characteristics of the benchmark datasets

Dataset Number of
Instances

Number of
Attributes

Anomaly
Rate

SEA 10000 3 0.10 %

Mul Cross 262144 4 10 %

HTTP 567498 3 0.39 %

SMTP 976175 3 0.03 %

Forest Cover 286048 10 0.96 %

Shuttle 49097 9 7 %

Sat Image 7603 100 9 %

MNIST 5803 36 1.22 %

C. Evaluation of Computation Time

The primary objective of the EiForestASD method is to

enhance the efficiency of anomaly detection in data

streams by reducing the required computation time. To

assess the effectiveness of the proposed method in

achieving this goal, an experiment was conducted to

compare the computation time of the proposed method

EiForestASD with the baseline iForestASD method across

different datasets.

The EiForestASD method incorporates two crucial

parameters: the sliding window size and the ensemble

size. Therefore, the experiment was performed with

varying window sizes of 50, 100, and 500, and different

numbers of trees including 30, 50, and 100.

The results of the experiment are presented in Table 2,

Table 3, and Table 4 for window size of 50, 100, and 500

data instances, respectively. The CPU time of each

method is reported in seconds. In Table 2, for each

dataset, CPU time of the proposed method EiForestASD

and the baseline method iForestASD is reported for

window size of 50 data instances.

For each dataset, the experiment was carried out for

30, 50, and 100 iTrees in the anomaly detector model and

the results are reported. The column Ratio indicates the

ratio of the CPU time of EiForestASD with respect to the

CPU time of iForestASD.

These findings indicate that the EiForestASD method

consistently outperforms the baseline iForestASD

algorithm in terms of computation time across all

datasets and for different number of iTrees. For window

size of 50 data instances, in average, the proposed

method EiForestASD achived a reduction of 19% in

computation time with respect to the baseline method

iForestASD.

K. Moeenfar et al.

218 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

Table 2: Reduction of computation time (seconds) by the
proposed method EiForestASD for window size of 50 data points

Dataset # Trees iForestASD EiForestASD Ratio

SEA
30 173 132 0.76
50 183 150 0.82
100 226 184 0.82

MulCross
30 4527 3851 0.85
50 7563 6632 0.88
100 14287 12387 0.87

HTTP
30 657 300 0.46
50 777 663 0.85
100 2640 2037 0.77

SMTP
30 453 384 0.85
50 498 396 0.80
100 898 729 0.81

ForestCover
30 4884 4103 0.84
50 7238 6195 0.86
100 8921 7834 0.88

Shuttle
30 6849 5540 0.81
50 7853 6628 0.84
100 11187 9249 0.83

SatImage
30 1531 1246 0.81
50 2502 2131 0.85
100 5121 4321 0.84

MNIST
30 1838 1371 0.75
50 3002 2344 0.78
100 6145 4753 0.77

Average 4165 3482 0.81

Table 3: Reduction of computation time by the proposed
method EiForestASD for window size of 100 data points

Dataset # Trees iForestASD EiForestASD Ratio

SEA
30 172 132 0.77
50 191 142 0.74
100 243 198 0.82

MulCross
30 4655 3908 0.84
50 7885 6818 0.86
100 16131 14292 0.89

HTTP
30 1269 1128 0.89
50 7505 6291 0.84
100 11978 10344 0.86

SMTP
30 1051 900 0.86
50 2103 1945 0.92
100 4897 4507 0.92

ForestCover
30 5775 4895 0.85
50 7824 6975 0.89
100 10647 9233 0.87

Shuttle
30 8948 7368 0.82
50 12381 10374 0.84
100 15254 12531 0.82

SatImage
30 3161 2610 0.83
50 5776 4975 0.86
100 10595 9022 0.85

MNIST
30 3793 2871 0.76
50 6932 5472 0.79
100 12714 9924 0.78

Average 6745 5702 0.84

To determine the effect of window size on the

performance of the algorithms under evaluation, the

same experiment was repeated for window size of 100

data instances and the results are reported in Table 3.

Similarly, the proposed method EiForestASD consistently

outperforms the baseline iForestASD algorithm in terms

of CPU time. For window size of 100 data instances, in

average, the proposed method EiForestASD achived a

reduction of 16% in computation time. Table 4 presents

the results of the same experiment for window size of 500

data instances. While the computation time of the

algorithms is significantly increased with respect to

window size of 100 and 50 data instances, the

EiForestASD still consistently outperforms the baseline

iForestASD algorithm in terms of CPU time. For window

size of 500 data instances, in average, the proposed

method EiForestASD achived a reduction of 15% in

computation time. These findings demonstrate that the

proposed method EiForestASD is capable of processing

input data streams more efficiently than the baseline

method iForestASD.

Table 4: Reduction of computation time by the proposed
method EiForestASD for window size of 500 data points

Dataset # Trees iForestASD EiForestASD Ratio

SEA
30 266 174 0.66
50 274 200 0.73
100 305 278 0.91

MulCross
30 9112 7800 0.86
50 16927 14579 0.86
100 36584 32001 0.87

HTTP
30 26850 24843 0.93
50 30234 28950 0.96
100 38981 37275 0.96

SMTP
30 9321 8425 0.90
50 13803 12972 0.94
100 26842 25840 0.96

ForestCover
30 9035 7959 0.88
50 16535 14113 0.85
100 30005 25825 0.86

Shuttle
30 14811 12176 0.82
50 19868 16253 0.82
100 31793 26081 0.82

SatImage
30 12087 10122 0.84
50 19854 17069 0.86
100 37401 32215 0.86

MNIST
30 14504 11134 0.77
50 23824 18776 0.79
100 44881 35437 0.79

Average 20171 17521 0.85

The effect of the number of trees {30, 50, 100} in the

detector model on the computation time of each of the

EiForestASD and iForestASD algorithms for different

window sizes is illustrated in Fig. 5. The computation time

increased for both algorithms as the number of trees

increased, and the rate and pattern of this increase were

similar for both algorithms. Moreover, EiForestASD

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 219

reduced the computation time for all datasets compared

to the baseline method iForestASD. Therefore, the

proposed method EiForestASD achieved a strong saving in

computation time.

D. Evaluation of Anomaly Detection Accuracy

The accuracy of anomaly detection in data streams

serves as a crucial criterion for evaluating the

performance of anomaly detection algorithms. In this

experiment, the anomaly detection accuracy of the

proposed method EiForestASD was compared with the

basic iForestASD algorithm across various datasets. The

experiment encompassed different window sizes of 50,

100, and 500, as well as varying numbers of trees

including 30, 50, and 100. The results obtained from this

experiment are presented in Table 5.

Table 5: Improvement of anomaly detection accuracy by the
proposed method EiForestASD compared with the baseline
method iForestASD according to the F1 criterion

Win Size =

50
Win Size =

100
Win Size =

500

Dataset

Trees

iF
o

re
st

A
SD

iF
o

re
st

A
SD

iF
o

re
st

A
SD

iF
o

re
st

A
SD

iF
o

re
st

A
SD

iF
o

re
st

A
SD

SEA
30 0.37 0.41 0.39 0.45 0.42 0.51
50 0.37 0.41 0.39 0.47 0.43 0.51

100 0.38 0.44 0.39 0.48 0.49 0.56

MulCross
30 0.63 0.69 0.69 0.75 0.76 0.82
50 0.64 0.71 0.69 0.78 0.78 0.82

100 0.65 0.71 0.69 0.78 0.78 0.84

HTTP
30 0.19 0.25 0.26 0.33 0.31 0.41
50 0.20 0.26 0.29 0.36 0.31 0.44

100 0.18 0.29 0.29 0.38 0.31 0.45

SMTP
30 0.39 0.43 0.40 0.46 0.42 0.49
50 0.39 0.43 0.40 0.47 0.43 0.51

100 0.40 0.44 0.41 0.47 0.43 0.52

ForestCover
30 0.24 0.30 0.31 0.36 0.52 0.59
50 0.24 0.31 0.32 0.37 0.53 0.61

100 0.25 0.31 0.32 0.39 0.55 0.61

Shuttle
30 0.67 0.72 0.73 0.76 0.81 0.86
50 0.67 0.73 0.73 0.78 0.82 0.86

100 0.68 0.73 0.74 0.78 0.84 0.88

SatImage
30 0.22 0.29 0.24 0.33 0.28 0.40
50 0.23 0.30 0.24 0.33 0.28 0.40

100 0.22 0.31 0.24 0.34 0.29 0.40

MNIST
30 0.38 0.49 0.41 0.55 0.44 0.59
50 0.39 0.52 0.42 0.55 0.45 0.62

100 0.39 0.54 0.44 0.57 0.47 0.62

Average 0.39 0.46 0.43 0.51 0.51 0.60

The values reported in the Table 5 demonstrate that

the proposed method EiForestASD exhibits a substantial

improvement in anomaly detection accuracy compared to

the baseline algorithm. Unlike the basic iForestASD

method that discards all isolation trees in the event of a

concept change, the proposed method EiForestASD

retains the isolation trees that remain compatible with

the new concept. This smart approach contributes to the

increased accuracy of the proposed method EiForestASD.

On average, the proposed method achieved an

improvement in anomaly detection accuracy of

approximately 7% for a window size of 50, 8% for a

window size of 100, and 9% for a window size of 500.

E. Limitations and Future Works

This research has several limitations that could be a

basis for future investigations. Firstly, in the proposed

methodology, the threshold value (uth) for each data

stream was established based on the pre-determined

anomalous data rate. However, such a rate is typically

unknown in real-world scenarios. Addressing this issue

may involve developing a method to compute the

threshold value of uth based on the statistical distribution

and inherent characteristics of the data, with the capacity

for dynamic updates over time. Secondly, the proposed

approach employed a fixed window size. A more adaptive

strategy, where the window size is calibrated according to

the properties of the data stream and adjusted

periodically, could potentially enhance the accuracy of

anomalous data detection. Similarly, the number of trees

in the anomaly detection model can also computed

atomically and updated dynamically. In this study, the

iTree was chosen as the base model for anomaly

detection; however, investigating alternative base

models may yield valuable insights for future research.

Lastly, considering that data streams represent an

unbounded sequence of data points, summarizing the

previous data points and the aggregation and analysis of

these data summaries could significantly contribute to

improving the efficacy of anomaly detection outcomes in

a hybrid method.

Discussion

The findings of this study highlight the effectiveness of

the proposed EiForestASD algorithm in the realm of

anomaly detection within data streams. By employing a

specialized adaptive detection mechanism that discards

only those isolation trees incompatible with new

concepts, EiForestASD not only reduces computational

overhead but also enhances detection accuracy. This

distinguishes the proposed method from traditional

algorithms such as the baseline iForestASD, which blindly

eliminates all isolation trees upon encountering concept

drift. In examining the computational efficiency of

EiForestASD, the results indicate a consistent 19%

improvement in computation time across varied datasets

and configurations. By utilizing a window-based approach

that maintains only relevant isolation trees, the algorithm

adapts comprehensively to concept drift while sustaining

high processing speeds. Furthermore, the evaluated

datasets confirm that the proposed method significantly

K. Moeenfar et al.

220 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

surpasses iForestASD in both computation time and

anomaly detection accuracy, achieving up to a 9%

improvement in the latter. The nuanced handling of

concept changes contributes to this achievement,

supporting the hypothesis that targeted tree removal is

more efficient than blind destruction.

(a) window size of 50 samples

(b) window size of 100 samples

(c) window size of 500 samples

Fig. 5: Reduction of computation time by the proposed method EiForestASD compared with the baseline method iForestASD for:
(a) window size of 50 samples, (b) window size of 100 samples, and (c) window size of 500 samples.

While the results are encouraging, several limitations

necessitate further investigation. First, the reliance on a

predetermined anomalous data rate to establish the

threshold value (uth) for anomaly detection poses

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 221

questions regarding the algorithm’s applicability to real-

world scenarios where such information is often

unavailable. Future work should focus on devising a more

dynamic thresholding system that can adaptively

compute uth based on the statistical characteristics of

incoming data streams. Additionally, the static window

size employed within this study may not optimally

capture the differences of all data streams. An adaptive

strategy that permits adjustment of window sizes based

on real-time data analysis could yield substantial

enhancements in detection performance. The proposed

EiForestASD framework can be further enhanced to

accommodate the detection of both incremental and

recurring concept drift, enabling it to adopt distinct

behaviors in response to each type of drift. In addition,

development of a noise-resilient version of the

EiForestASD algorithm is crucial, particularly for

applications in dynamic environments where data quality

can fluctuate considerably.

Conclusion

In this paper, the EiForestASD method is introduced as

a means of identifying anomalies in data streams using a

forest of isolation trees over time. The algorithm detects

anomalies in the current window of data and updates the

detector model, the forest of isolation trees, with each

new window of data. The EiForestASD method handles

concept change by removing and reconstructing only

those trees from the detector model that are

incompatible with the new concept, labeling most of the

current window data as anomalies. This approach is more

intelligent than the baseline iForestASD method, which

discards all isolation trees when faced with concept

change. The modification of the concept drift handling

mechanism in the EiForestASD not only reduced

computation time of the anomaly detection, but also

improved anomaly detection accuracy. Since various

types of concept drift exist in data streams, future

research should focus on extending the proposed method

to address gradual, recurring, and incremental drifts more

effectively. The algorithm's robustness against these drift

types could be evaluated using simulated drifts in

synthetic datasets. Furthermore, the application of our

proposed algorithm or its enhanced variants to real-world

scenarios, such as human activity monitoring, presents an

interesting area of research for exploration. Another

critical challenge in data stream analysis is the presence

of noise. Future versions of the proposed method should

aim to enhance the resilience of both anomaly detection

and concept drift detection mechanisms against noise,

thereby improving overall performance in dynamic, real-

world environments.

Author Contributions

V. Kiani supervised the research and did the necessary

work to achieve the research goals; he sketched the

research framework and the roadmap, analyzed the

results, wrote the manuscript, and prepared revisions. K.

Moeenfar implemented the main idea, performed

experiments, and prepared experimental results. A.

Soltani was research advisor and analyzed the results. R.

Ravanifard analyzed the results and revised the

manuscript. All authors read and approved the final

version.

Acknowledgment

The authors would like to thank the editor and

anonymous reviewers.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Abbreviations

ADWIN Adaptive Window

BWOAIF Bilateral-Weighted Online Adaptive
Isolation Forest

CLOF Composite Local Outlier Factor

CNN Convolutional Neural Network

DLSHiForest Dynamic Anomaly Detection based
on Locality-Sensitive Hashing
Isolation Forest

DiLOF Density Summarizing Incremental
LOF

EiForestASD Enhanced iForestASD

GAN Generative Adversarial Networks

GiLOF Genetic-based incremental LOF

GMM Gaussian Mixture Model

HIF Historical Isolated Forest

HMOI Hybrid Model of One-class SVM and
Isolation Forest

HS-Tree Half-space Tree

iForest Isolation Forest

iForestASD iForest Algorithm for Stream Data

iLOF Incremental Local Outlier Factor

ISPForest Interactive Space Partitioning
Forest

KDE Kernel Density Estimation

KSWIN Kolmogorov–Smirnov Window

LOF Local Outlier Factor

K. Moeenfar et al.

222 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

LSH Locality-Sensitive Hashing

LSTM Long Short-term Memory Network

ODDS Outlier Detection Data Sets

PCA Principal Component Analysis

RS-Tree Randomized-space Tree

SSWLOFCC Streaming Sliding Window LOF
Coreset Clustering

TCN Temporal Convolutional Neural
Network

References

[1] R. Al-amri, R. K. Murugesan, M. Man, A. F. Abdulateef, M. A. Al-
Sharafi, A. A. Alkahtani, “A review of machine learning and deep
learning techniques for anomaly detection in IoT data,” Appl. Sci.,
11(12): 5320, 2021.

[2] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio
Hashem, E. Ahmed, M. Imran, “Real-time big data processing for
anomaly detection: A Survey,” Int. J. Inf. Manag., 45: 289-307,
2019.

[3] M. Hosseini Shirvani, A. Akbarifar, “A survey study on intrusion
detection system in wireless sensor network: Challenges and
considerations,” J. Electr. Comput. Eng. Innovations, 12(2): 449-
474, 2024.

[4] A. A. Cook, G. Mısırlı, Z. Fan, “Anomaly detection for IoT time-series
data: A survey,” IEEE Internet Things J., 7(7): 6481-6494, 2020.

[5] L. Qi, Y. Yang, X. Zhou, W. Rafique, J. Ma, “Fast anomaly
identification based on multiaspect data streams for intelligent
intrusion detection toward secure industry 4.0,” IEEE Trans. Ind.
Inform., 18(9): 6503-6511, 2022.

[6] B. Steenwinckel, D. D. Paepe, S. V. Hautte, P. Heyvaert, M.
Bentefrit, P. Moens, A. Dimou, B. V. D. Bossche, F. D. Turck, S. V.
Hoecke, F. Ongenae, “FLAGS: A methodology for adaptive anomaly
detection and root cause analysis on sensor data streams by fusing
expert knowledge with machine learning,” Future Gener. Comput.
Syst., 116: 30-48, 2021.

[7] M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-González, M.
A. Medina-Pérez, J. C. Velazco-Rossell, K. K. R. Choo, “Semi-
supervised anomaly detection algorithms: A comparative
summary and future research directions,” Knowl. Based Syst., 218:
106878, 2021.

[8] A. Oloomi, H. Khanmirza, “Fault tolerance of RTMP protocol for live
video streaming applications in hybrid software-defined
networks,” J. Electr. Comput. Eng. Innovatons, 7(2): 241-250, 2019.

[9] T. Lu, L. Wang, X. Zhao, “Review of anomaly detection algorithms
for data streams,” Appl. Sci., 13(10): 6353, 2023.

[10] Z. Nouri, V. Kiani, H. Fadishei, “Rarity updated ensemble with
oversampling: An ensemble approach to classification of
imbalanced data streams,” Stat. Anal. Data Min. ASA Data Sci. J.,
17(1): e11662, 2024.

[11] I. Souiden, M. N. Omri, Z. Brahmi, “A survey of outlier detection in
high dimensional data streams,” Comput. Sci. Rev., 44: 100463,
2022.

[12] K. Yamanishi, J. Takeuchi, G. Williams, P. Milne, “On-line
unsupervised outlier detection using finite mixtures with
discounting learning algorithms,” Data Min. Knowl. Discov., 8(3):
275-300, 2004.

[13] F. Rollo, C. Bachechi, L. Po, “Anomaly detection and repairing for
improving air quality monitoring,” Sensors, 23(2): 640, 2023.

[14] C. Bachechi, F. Rollo, L. Po, “Detection and classification of sensor
anomalies for simulating urban traffic scenarios,” Clust. Comput.,
25: 2793-2817, 2022.

[15] A. Shylendra, P. Shukla, S. Mukhopadhyay, S. Bhunia, A. R. Trivedi,
“Low power unsupervised anomaly detection by nonparametric
modeling of sensor statistics,” IEEE Trans. Very Large Scale Integr.
VLSI Syst., 28(8): 1833-1843, 2020.

[16] Y. Yang, C. Fan, L. Chen, H. Xiong, “IPMOD: An efficient outlier
detection model for high-dimensional medical data streams,”
Expert Syst. Appl., 191: 116212, 2022.

[17] F. Angiulli, F. Fassetti, “Detecting distance-based outliers in
streams of data,” in Proc. ACM Conference on Information and
Knowledge Management: 811-820, 2007.

[18] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, Y.
Manolopoulos, “Continuous monitoring of distance-based outliers
over data streams,” in Proc. IEEE 27th International Conference on
Data Engineering: 135-146, 2011.

[19] S. Yoon, J. G. Lee, B. S. Lee, “NETS: extremely fast outlier detection
from a data stream via set-based processing,” in Proc. VLDB
Endow., 12(11): 1303-1315, 2019.

[20] M. J. Bah, H. Wang, M. Hammad, F. Zeshan, H. Aljuaid, “An
effective minimal probing approach with micro-cluster for
distance-based outlier detection in data streams,” IEEE Access, 7:
154922-154934, 2019.

[21] R. Zhu, X. Ji, D. Yu, Z. Tan, L. Zhao, J. Li, X. Xia, “KNN-based
approximate outlier detection algorithm over IoT streaming data,”
IEEE Access, 8: 42749-42759, 2020.

[22] T. Toliopoulos, A. Gounaris, “Explainable distance-based outlier
detection in data streams,” IEEE Access, 10: 47921-47936, 2022.

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, “LOF: identifying
density-based local outliers,” in Proc. ACM SIGMOD International
Conference on Management of Data: 93-104, 2000.

[24] D. Pokrajac, A. Lazarevic, L. J. Latecki, “Incremental local outlier
detection for data streams,” in Proc. IEEE Symposium on
Computational Intelligence and Data Mining: 504-515, 2007.

[25] G. S. Na, D. Kim, H. Yu, “DILOF: Effective and memory efficient local
outlier detection in data streams,” in Proc. ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining:
1993-2002, 2018.

[26] H. Yao, X. Fu, Y. Yang, O. Postolache, “An incremental local outlier
detection method in the data stream,” Appl. Sci., 8(8): 1248, 2018.

[27] O. Alghushairy, R. Alsini, X. Ma, T. Soule, “A genetic-based
incremental local outlier factor algorithm for efficient data stream
processing,” in Proc. ACM International Conference on Compute
and Data Analysis: 38-49, 2020.

[28] D. Barrish, J. Vuuren, “Enhancement of the local outlier factor
algorithm for anomaly detection in time series,” Easy Chair
Preprint: 14238, 2024.

[29] D. Apoji, K. Soga, “Soil clustering and anomaly detection based on
epbm data using principal component analysis and local outlier
factor,” in Proc. Geo-Risk 2023: 1-11, 2023.

[30] L. Chen, W. Wang, Y. Yang, “CELOF: Effective and fast memory
efficient local outlier detection in high-dimensional data streams,”
Appl. Soft Comput., 102: 107079, 2021.

[31] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, K. Zhang, “Density-based
clustering of data streams at multiple resolutions,” ACM Trans.
Knowl. Discov. Data, 3(3): 14, 2009.

[32] A. Bär, P. Casas, L. Golab, A. Finamore, “DBStream: An online
aggregation, filtering and processing system for network traffic
monitoring,” in Proc. International Wireless Communications and
Mobile Computing Conference (IWCMC): 611-616, 2014.

https://www.mdpi.com/2076-3417/11/12/5320
https://www.mdpi.com/2076-3417/11/12/5320
https://www.mdpi.com/2076-3417/11/12/5320
https://www.mdpi.com/2076-3417/11/12/5320
https://www.sciencedirect.com/science/article/abs/pii/S0268401218301658
https://www.sciencedirect.com/science/article/abs/pii/S0268401218301658
https://www.sciencedirect.com/science/article/abs/pii/S0268401218301658
https://www.sciencedirect.com/science/article/abs/pii/S0268401218301658
https://jecei.sru.ac.ir/article_2116.html
https://jecei.sru.ac.ir/article_2116.html
https://jecei.sru.ac.ir/article_2116.html
https://jecei.sru.ac.ir/article_2116.html
https://ieeexplore.ieee.org/document/8926446
https://ieeexplore.ieee.org/document/8926446
https://ieeexplore.ieee.org/document/9667298
https://ieeexplore.ieee.org/document/9667298
https://ieeexplore.ieee.org/document/9667298
https://ieeexplore.ieee.org/document/9667298
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/pii/S0167739X20329927
https://www.sciencedirect.com/science/article/abs/pii/S0950705121001416
https://www.sciencedirect.com/science/article/abs/pii/S0950705121001416
https://www.sciencedirect.com/science/article/abs/pii/S0950705121001416
https://www.sciencedirect.com/science/article/abs/pii/S0950705121001416
https://www.sciencedirect.com/science/article/abs/pii/S0950705121001416
https://jecei.sru.ac.ir/article_1227.html
https://jecei.sru.ac.ir/article_1227.html
https://jecei.sru.ac.ir/article_1227.html
https://www.mdpi.com/2076-3417/13/10/6353
https://www.mdpi.com/2076-3417/13/10/6353
https://onlinelibrary.wiley.com/doi/10.1002/sam.11662
https://onlinelibrary.wiley.com/doi/10.1002/sam.11662
https://onlinelibrary.wiley.com/doi/10.1002/sam.11662
https://onlinelibrary.wiley.com/doi/10.1002/sam.11662
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000107
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000107
https://www.sciencedirect.com/science/article/abs/pii/S1574013722000107
https://link.springer.com/article/10.1023/B:DAMI.0000023676.72185.7c
https://link.springer.com/article/10.1023/B:DAMI.0000023676.72185.7c
https://link.springer.com/article/10.1023/B:DAMI.0000023676.72185.7c
https://link.springer.com/article/10.1023/B:DAMI.0000023676.72185.7c
https://www.mdpi.com/1424-8220/23/2/640
https://www.mdpi.com/1424-8220/23/2/640
https://link.springer.com/article/10.1007/s10586-021-03445-7
https://link.springer.com/article/10.1007/s10586-021-03445-7
https://link.springer.com/article/10.1007/s10586-021-03445-7
https://ieeexplore.ieee.org/document/9068488
https://ieeexplore.ieee.org/document/9068488
https://ieeexplore.ieee.org/document/9068488
https://ieeexplore.ieee.org/document/9068488
https://www.sciencedirect.com/science/article/abs/pii/S0957417421015268
https://www.sciencedirect.com/science/article/abs/pii/S0957417421015268
https://www.sciencedirect.com/science/article/abs/pii/S0957417421015268
https://dl.acm.org/doi/10.1145/1321440.1321552
https://dl.acm.org/doi/10.1145/1321440.1321552
https://dl.acm.org/doi/10.1145/1321440.1321552
https://ieeexplore.ieee.org/document/5767923/
https://ieeexplore.ieee.org/document/5767923/
https://ieeexplore.ieee.org/document/5767923/
https://ieeexplore.ieee.org/document/5767923/
https://dl.acm.org/doi/10.14778/3342263.3342269
https://dl.acm.org/doi/10.14778/3342263.3342269
https://dl.acm.org/doi/10.14778/3342263.3342269
https://ieeexplore.ieee.org/document/8864980
https://ieeexplore.ieee.org/document/8864980
https://ieeexplore.ieee.org/document/8864980
https://ieeexplore.ieee.org/document/8864980
https://ieeexplore.ieee.org/document/9017953
https://ieeexplore.ieee.org/document/9017953
https://ieeexplore.ieee.org/document/9017953
https://ieeexplore.ieee.org/document/9766336
https://ieeexplore.ieee.org/document/9766336
https://dl.acm.org/doi/10.1145/342009.335388
https://dl.acm.org/doi/10.1145/342009.335388
https://dl.acm.org/doi/10.1145/342009.335388
https://ieeexplore.ieee.org/document/4221341
https://ieeexplore.ieee.org/document/4221341
https://ieeexplore.ieee.org/document/4221341
https://dl.acm.org/doi/10.1145/3219819.3220022
https://dl.acm.org/doi/10.1145/3219819.3220022
https://dl.acm.org/doi/10.1145/3219819.3220022
https://dl.acm.org/doi/10.1145/3219819.3220022
https://www.mdpi.com/2076-3417/8/8/1248
https://www.mdpi.com/2076-3417/8/8/1248
https://dl.acm.org/doi/10.1145/3388142.3388160
https://dl.acm.org/doi/10.1145/3388142.3388160
https://dl.acm.org/doi/10.1145/3388142.3388160
https://dl.acm.org/doi/10.1145/3388142.3388160
https://easychair.org/publications/preprint/HBTX
https://easychair.org/publications/preprint/HBTX
https://easychair.org/publications/preprint/HBTX
https://ascelibrary.org/doi/10.1061/9780784484982.001
https://ascelibrary.org/doi/10.1061/9780784484982.001
https://ascelibrary.org/doi/10.1061/9780784484982.001
https://www.sciencedirect.com/science/article/abs/pii/S1568494621000028
https://www.sciencedirect.com/science/article/abs/pii/S1568494621000028
https://www.sciencedirect.com/science/article/abs/pii/S1568494621000028
https://dl.acm.org/doi/10.1145/1552303.1552307
https://dl.acm.org/doi/10.1145/1552303.1552307
https://dl.acm.org/doi/10.1145/1552303.1552307
https://ieeexplore.ieee.org/document/6906426
https://ieeexplore.ieee.org/document/6906426
https://ieeexplore.ieee.org/document/6906426
https://ieeexplore.ieee.org/document/6906426

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 223

[33] N. A. Supardi, S. J. Abdulkadir, N. Aziz, “An evolutionary stream
clustering technique for outlier detection,” in Proc. International
Conference on Computational Intelligence (ICCI): 299-304, 2020.

[34] C. Yin, S. Zhang, Z. Yin, J. Wang, “Anomaly detection model based
on data stream clustering,” Clust. Comput., 22(1): 1729-1738,
2019.

[35] E. Vanem, A. Brandsæter, “Unsupervised anomaly detection based
on clustering methods and sensor data on a marine diesel engine,”
J. Mar. Eng. Technol., 20(4): 217-234, 2021.

[36] R. A. A. Habeeb, F. Nasaruddin, A. Gani, M. A. Amanullah, I. A. T.
Hashem, E. Ahmed, M. Imran, “Clustering-based real-time
anomaly detection—A breakthrough in big data technologies,”
Trans. Emerg. Telecommun. Technol., 33(8): e3647, 2022.

[37] X. Wang, M. M. Ahmed, M. N. Husen, H. Tao, Q. Zhao, “Dynamic
micro-cluster-based streaming data clustering method for
anomaly detection,” in Proc. International Conference on Soft
Computing in Data Science: 61-75, 2023.

[38] C. H. Park, “Outlier and anomaly pattern detection on data
streams,” J. Supercomput., 75(9): 6118-6128, 2019.

[39] K. Gokcesu, M. M. Neyshabouri, H. Gokcesu, S. S. Kozat,
“Sequential outlier detection based on incremental decision
trees,” IEEE Trans. Signal Process., 67(4): 993-1005, 2019.

[40] T. Barbariol, F. D. Chiara, D. Marcato, G. A. Susto, “A review of tree-
based approaches for anomaly detection,” in Control Charts and
Machine Learning for Anomaly Detection in Manufacturing,
Springer, pp: 149-185, 2022.

[41] S. C. Tan, K. M. Ting, T. F. Liu, “Fast anomaly detection for
streaming data,” in Proc. International Joint Conference on
Artificial Intelligence (IJCAI): 1511-1516, 2011.

[42] K. Wu, K. Zhang, W. Fan, A. Edwards, P. S. Yu, “RS-Forest: A rapid
density estimator for streaming anomaly detection,” in Proc. IEEE
International Conference on Data Mining: 600-609, 2014.

[43] F. T. Liu, K. M. Ting, Z. H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, 6(1): 3, 2012.

[44] Z. Ding, M. Fei, “an anomaly detection approach based on isolation
forest algorithm for streaming data using sliding window,” IFAC
Proc., 46(20): 12-17, 2013.

[45] M. U. Togbe, Y. Chabchoub, A. Boly, M. Barry, R. Chiky, M. Bahri,
“Anomalies detection using isolation in concept-drifting data
streams,” Computers, 10(1): 13, 2021.

[46] A. H. Madkour, A. Elsayed, H. Abdel-Kader, “Historical isolated
forest for detecting and adaptation concept drifts in nonstationary
data streaming,” Int. J. Comput. Inf., 10(2): 16-27, 2023.

[47] G. Hannák, G. Horváth, A. Kádár, M. D. Szalai, “Bilateral-Weighted
online adaptive isolation forest for anomaly detection in streaming
data,” Stat. Anal. Data Min. ASA Data Sci. J., 16(3): 215-223, 2023.

[48] Y. Liu, C. Liu, J. Li, Y. Sun, “Anomaly detection of streaming data
based on deep learning,” in Proc. International Conference on
Internet of Things, Communication and Intelligent Technology:
459-465, 2024.

[49] M. E. A. Azz, A. Aljasmi, A, E. F. Seghrouchni, W. Benzarti, P. Chopin,
F. Barbaresco, R. A. Zitar, “ADS-B data anomaly detection with
machine learning methods,” in Proc. International Workshop on
Metrology for AeroSpace: 94-99, 2024.

[50] Y. Lee, C. Park, N. Kim, J. Ahn, J. Jeong, “LSTM-Autoencoder based
anomaly detection using vibration data of wind turbines,” Sensors,
24(9): 2833, 2024.

[51] J. Li, K. Malialis, M. M. Polycarpou, “Autoencoder-based Anomaly
Detection in Streaming Data with Incremental Learning and
Concept Drift Adaptation,” in Proc. International Joint Conference
on Neural Networks (IJCNN): 1-8, 2023.

[52] M. Molan, A. Borghesi, D. Cesarini, L. Benini, A. Bartolini, “RUAD:
Unsupervised anomaly detection in HPC systems,” Future Gener.
Comput. Syst., 141: 542-554, 2023.

[53] M. Pourreza, B. Mohammadi, M. Khaki, S. Bouindour, H. Snoussi,
M. Sabokrou, “G2D: Generate to detect anomaly,” in Proc. IEEE
Winter Conference on Applications of Computer Vision (WACV):
2002-2011, 2021.

[54] P. Jiao, T. Li, Y. Xie, Y. Wang, W. Wang, D. He, H. Wu, “Generative
evolutionary anomaly detection in dynamic networks,” IEEE Trans.
Knowl. Data Eng., 35(12): 12234-12248, 2023.

[55] T. Yang, Y. Hu, Y. Li, W. Hu, Q. Pan, “A standardized ICS network
data processing flow with generative model in anomaly detection,”
IEEE Access, 8: 4255-4264, 2020.

[56] M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C.
Regazzoni, N. Sebe, “Abnormal event detection in videos using
generative adversarial nets,” in Proc. IEEE International
Conference on Image Processing (ICIP): 1577-1581, 2017.

[57] J. Wang, J. Liu, J. Pu, Q. Yang, Z. Miao, J. Gao, Y. Song, “An anomaly
prediction framework for financial IT systems using hybrid
machine learning methods,” J. Ambient Intell. Humaniz. Comput.,
14(11): 15277-15286, 2023.

[58] A. Srivastava, M. R. Bharti, “Hybrid machine learning model for
anomaly detection in unlabelled data of wireless sensor
networks,” Wirel. Pers. Commun., 129(4): 2693-2710, 2023.

[59] W. Ullah, T. Hussain, F. U. M. Ullah, M. Y. Lee, S. W. Baik,
“TransCNN: Hybrid CNN and transformer mechanism for
surveillance anomaly detection,” Eng. Appl. Artif. Intell., 123(A):
106173, 2023.

[60] Y. Karadayı, M. N. Aydin, A. S. Öğrenci, “A hybrid deep learning
framework for unsupervised anomaly detection in multivariate
spatio-temporal data,” Appl. Sci., 10(15): 5191, 2020.

[61] M. U. Togbe et al., “Anomaly detection for data streams based on
isolation forest using scikit-multiflow,” in Proc. Computational
Science and Its Applications (ICCSA): 15-30, 2020.

[62] Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. Srivastava, M. R.
Khosravi, L. Qi, “ASTREAM: Data-Stream-Driven scalable anomaly
detection with accuracy guarantee in IIoT environment,” IEEE
Trans. Netw. Sci. Eng., 10(5): 3007-3016, 2022.

[63] Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, R. Ma, C. Yan, “Fast wireless
sensor for anomaly detection based on data stream in an edge-
computing-enabled smart greenhouse,” Digit. Commun. Netw.,
8(4): 498-507, 2022.

[64] Q. Li, Z. Yu, H. Xu, B. Guo, “Human-machine interactive streaming
anomaly detection by online self-adaptive forest,” Front. Comput.
Sci., 17(2): 172317, 2022.

[65] F. T. Liu, K. M. Ting, Z. H. Zhou, “Isolation forest,” in Proc. IEEE
International Conference on Data Mining: 413-422, 2008.

 Biographies

Khadije Moeenfar was born in Bojnord,
Iran. She received B.Sc. degree in Computer
Science and M.Sc. degree in Computer
Engineering from University of Bojnord,
Bojnord, Iran, in 2015 and 2023,
respectively. Her research interests include
machine learning and data mining.

 Email: moeenfar2014@gmail.com

 ORCID: NA

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage: NA

https://ieeexplore.ieee.org/document/9247832
https://ieeexplore.ieee.org/document/9247832
https://ieeexplore.ieee.org/document/9247832
https://link.springer.com/article/10.1007/s10586-017-1066-2
https://link.springer.com/article/10.1007/s10586-017-1066-2
https://link.springer.com/article/10.1007/s10586-017-1066-2
https://www.tandfonline.com/doi/full/10.1080/20464177.2019.1633223
https://www.tandfonline.com/doi/full/10.1080/20464177.2019.1633223
https://www.tandfonline.com/doi/full/10.1080/20464177.2019.1633223
https://onlinelibrary.wiley.com/doi/10.1002/ett.3647
https://onlinelibrary.wiley.com/doi/10.1002/ett.3647
https://onlinelibrary.wiley.com/doi/10.1002/ett.3647
https://onlinelibrary.wiley.com/doi/10.1002/ett.3647
https://link.springer.com/chapter/10.1007/978-981-99-0405-1_5
https://link.springer.com/chapter/10.1007/978-981-99-0405-1_5
https://link.springer.com/chapter/10.1007/978-981-99-0405-1_5
https://link.springer.com/chapter/10.1007/978-981-99-0405-1_5
https://link.springer.com/article/10.1007/s11227-018-2674-1
https://link.springer.com/article/10.1007/s11227-018-2674-1
https://ieeexplore.ieee.org/document/8579573
https://ieeexplore.ieee.org/document/8579573
https://ieeexplore.ieee.org/document/8579573
https://link.springer.com/chapter/10.1007/978-3-030-83819-5_7
https://link.springer.com/chapter/10.1007/978-3-030-83819-5_7
https://link.springer.com/chapter/10.1007/978-3-030-83819-5_7
https://link.springer.com/chapter/10.1007/978-3-030-83819-5_7
https://dl.acm.org/doi/10.5555/2283516.2283647
https://dl.acm.org/doi/10.5555/2283516.2283647
https://dl.acm.org/doi/10.5555/2283516.2283647
https://ieeexplore.ieee.org/document/7023377
https://ieeexplore.ieee.org/document/7023377
https://ieeexplore.ieee.org/document/7023377
https://dl.acm.org/doi/10.1145/2133360.2133363
https://dl.acm.org/doi/10.1145/2133360.2133363
https://www.sciencedirect.com/science/article/pii/S1474667016314999
https://www.sciencedirect.com/science/article/pii/S1474667016314999
https://www.sciencedirect.com/science/article/pii/S1474667016314999
https://www.mdpi.com/2073-431X/10/1/13
https://www.mdpi.com/2073-431X/10/1/13
https://www.mdpi.com/2073-431X/10/1/13
https://ijci.journals.ekb.eg/article_288783.html
https://ijci.journals.ekb.eg/article_288783.html
https://ijci.journals.ekb.eg/article_288783.html
https://onlinelibrary.wiley.com/doi/10.1002/sam.11612
https://onlinelibrary.wiley.com/doi/10.1002/sam.11612
https://onlinelibrary.wiley.com/doi/10.1002/sam.11612
https://link.springer.com/chapter/10.1007/978-981-97-2757-5_49
https://link.springer.com/chapter/10.1007/978-981-97-2757-5_49
https://link.springer.com/chapter/10.1007/978-981-97-2757-5_49
https://link.springer.com/chapter/10.1007/978-981-97-2757-5_49
https://ieeexplore.ieee.org/document/10591547
https://ieeexplore.ieee.org/document/10591547
https://ieeexplore.ieee.org/document/10591547
https://ieeexplore.ieee.org/document/10591547
https://www.mdpi.com/1424-8220/24/9/2833
https://www.mdpi.com/1424-8220/24/9/2833
https://www.mdpi.com/1424-8220/24/9/2833
https://ieeexplore.ieee.org/document/10191328
https://ieeexplore.ieee.org/document/10191328
https://ieeexplore.ieee.org/document/10191328
https://ieeexplore.ieee.org/document/10191328
https://www.sciencedirect.com/science/article/abs/pii/S0167739X2200406X
https://www.sciencedirect.com/science/article/abs/pii/S0167739X2200406X
https://www.sciencedirect.com/science/article/abs/pii/S0167739X2200406X
https://ieeexplore.ieee.org/document/9423181
https://ieeexplore.ieee.org/document/9423181
https://ieeexplore.ieee.org/document/9423181
https://ieeexplore.ieee.org/document/9423181
https://ieeexplore.ieee.org/document/9623498
https://ieeexplore.ieee.org/document/9623498
https://ieeexplore.ieee.org/document/9623498
https://ieeexplore.ieee.org/document/8945403
https://ieeexplore.ieee.org/document/8945403
https://ieeexplore.ieee.org/document/8945403
https://ieeexplore.ieee.org/document/8296547
https://ieeexplore.ieee.org/document/8296547
https://ieeexplore.ieee.org/document/8296547
https://ieeexplore.ieee.org/document/8296547
https://link.springer.com/article/10.1007/s12652-019-01645-z
https://link.springer.com/article/10.1007/s12652-019-01645-z
https://link.springer.com/article/10.1007/s12652-019-01645-z
https://link.springer.com/article/10.1007/s12652-019-01645-z
https://link.springer.com/article/10.1007/s11277-023-10253-2
https://link.springer.com/article/10.1007/s11277-023-10253-2
https://link.springer.com/article/10.1007/s11277-023-10253-2
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://www.sciencedirect.com/science/article/abs/pii/S0952197623003573
https://www.mdpi.com/2076-3417/10/15/5191
https://www.mdpi.com/2076-3417/10/15/5191
https://www.mdpi.com/2076-3417/10/15/5191
https://link.springer.com/chapter/10.1007/978-3-030-58811-3_2
https://link.springer.com/chapter/10.1007/978-3-030-58811-3_2
https://link.springer.com/chapter/10.1007/978-3-030-58811-3_2
https://ieeexplore.ieee.org/document/9729987
https://ieeexplore.ieee.org/document/9729987
https://ieeexplore.ieee.org/document/9729987
https://ieeexplore.ieee.org/document/9729987
https://www.sciencedirect.com/science/article/pii/S2352864821000948
https://www.sciencedirect.com/science/article/pii/S2352864821000948
https://www.sciencedirect.com/science/article/pii/S2352864821000948
https://www.sciencedirect.com/science/article/pii/S2352864821000948
https://link.springer.com/article/10.1007/s11704-022-1270-y
https://link.springer.com/article/10.1007/s11704-022-1270-y
https://link.springer.com/article/10.1007/s11704-022-1270-y
https://ieeexplore.ieee.org/document/4781136
https://ieeexplore.ieee.org/document/4781136
mailto:moeenfar2014@gmail.com

K. Moeenfar et al.

224 J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025

Vahid Kiani received M.S. and Ph.D. degrees
in Computer Engineering from Ferdowsi
University of Mashhad (FUM), Mashhad, Iran,
in 2011 and 2016, respectively. In 2017, he
joined University of Bojnord as an Assistant
Professor in the Department of Computer
Engineering. His research interests include
machine learning, data mining, and digital
image processing.

 Email: v.kiani@ub.ac.ir

 ORCID: 0000-0002-8248-9262

 Web of Science Researcher ID: AAD-4191-2019

 Scopus Author ID: 54973793600

 Homepage: https://ub.ac.ir/en/~v.kiani

Azadeh Soltani received the B.S., M.S, and
Ph.D. degrees in Computer Engineering from
Ferdowsi University of Mashhad, Mashhad,
Iran, in 2001, 2004, and 2014, respectively.
She was a lecturer at Azad University of
Bojnord from 2004 to 2006. She is currently
an assistant professor in the Department of
Computer Engineering at University of
Bojnord, Bojnord, Iran. Her current research
interests include machine learning, data
mining, and evolutionary algorithms.

 Email: a.soltani@ub.ac.ir

 ORCID: 0000-0003-3090-7992

 Web of Science Researcher ID: AAA-6000-2022

 Scopus Author ID: 14123895600

 Homepage: https://ub.ac.ir/~a.soltani

Rabeh Ravanifard received B.Sc., M.Sc. and
Ph.D. in 2002, 2007 and 2020 from Isfahan
University of Technology, Amirkabir
University of Technology, and Isfahan
University of Technology, respectively. She
is currently an Assistant Professor of
Computer Engineering at University of
Bojnord. Her research interests include
machine learning and soft computing.

 Email: ravanifard@ub.ac.ir

 ORCID: 0000-0002-9472-0011

 Web of Science Researcher ID: HSH-9074-2023

 Scopus Author ID: 57212561977

 Homepage: https://ub.ac.ir/~ravanifard

How to cite this paper:
K. Moeenfar, V. Kiani, A. Soltani, R. Ravanifard, “A fast and accurate tree-based approach
for anomaly detection in streaming data,” J. Electr. Comput. Eng. Innovations, 13(1): 209-
224, 2025.

DOI: 10.22061/jecei.2024.11110.767

URL: https://jecei.sru.ac.ir/article_2228.html

mailto:v.kiani@ub.ac.ir
https://orcid.org/0000-0002-8248-9262
https://www.scopus.com/authid/detail.uri?authorId=54973793600
https://ub.ac.ir/en/~v.kiani
mailto:a.soltani@ub.ac.ir
https://orcid.org/0000-0003-3090-7992
https://www.scopus.com/authid/detail.uri?authorId=14123895600
https://ub.ac.ir/~a.soltani
mailto:ravanifard@ub.ac.ir
https://orcid.org/0000-0002-9472-0011
https://www.scopus.com/authid/detail.uri?authorId=57212561977
https://ub.ac.ir/~ravanifard
https://jecei.sru.ac.ir/article_2228.html

