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Background and Objectives: In this paper, a novel and efficient unsupervised 
machine learning algorithm named EiForestASD is proposed for distinguishing 
anomalies from normal data in data streams. The proposed algorithm leverages a 
forest of isolation trees to detect anomaly data instances.  
Methods: The proposed method EiForestASD incorporates an isolation forest as 
an adaptable detector model that adjusts to new data over time. To handle 
concept drifts in the data stream, a window-based concept drift detection is 
employed that discards only those isolation trees that are incompatible with the 
new concept. The proposed method is implemented using the Python 
programming language and the Scikit-Multiflow library. 
Results: Experimental evaluations were conducted on six real-world and two 
synthetic data streams. Results reveal that the proposed method EiForestASD 
reduces computation time by 19% and enhances anomaly detection rate by 9% 
compared to the baseline method iForestASD. These results highlight the efficacy 
and efficiency of the EiForestASD in the context of anomaly detection in data 
streams. 
Conclusion: The EiForestASD method handles concept change using an intelligent 
strategy where only those trees from the detector model incompatible with the 
new concept are removed and reconstructed. This modification of the concept 
drift handling mechanism in the EiForestASD significantly reduces computation 
time and improves anomaly detection accuracy.  
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Introduction 

The detection of anomalies in data streams has become 

an increasingly significant research area, driven by the 

exponential growth in the volume and velocity of 

streaming data across diverse domains such as finance, 

healthcare, Internet of Things (IOT), and computer 

networks [1]-[3]. Anomalies, which are data instances 

that deviate significantly from the norm, can provide 

valuable insights into abnormal events, fraud, or potential 

risks in various applications [4]-[6]. However, traditional 

anomaly detection methods designed for static datasets 

are ill-suited for streaming data due to the dynamic 

nature  of  data  streams  and  their  inherent  challenges. 

 

Anomaly detection is a classification task 

encompassing supervised, semi-supervised, and 

unsupervised learning approaches [7]. Supervised 

learning methods are constrained in their ability to detect 

new anomalies and can only identify those resembling 

previously encountered data anomalies. Conversely, 

unsupervised methods offer the advantage of discovering 

novel anomalies without the need for training labels, 

which is particularly valuable considering the cost 

associated with acquiring and labeling training data. 

Given this rationale, the primary focus of this research lies 

in the identification of anomalies within data streams 

through the unsupervised learning methods. 

http://jecei.sru.ac.ir/
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Fig. 1:  Conceptual framework of the proposed method for anomaly detection in data streams.  

 

A data stream is a massive, continuous, unbounded 

and ordered sequence of incoming data at high 

speed [8]-[10]. In the context of data streams, anomaly 

data refers to a data instance that significantly deviates 

from the expected or normal behavior of the data 

stream [11]. It is an observation that stands out from the 

majority of the data points and exhibits characteristics 

that are unusual or unexpected. Anomalies can represent 

abnormalities, irregularities, or rare events in the data 

stream, which may hold valuable information or indicate 

potential issues in the underlying process generating the 

data [3]. While outliers are often identified using 

statistical methods, anomaly detection techniques can be 

more advanced and include methods like machine 

learning, time-series analysis, and clustering, which may 

consider temporal patterns and relationships in data 

streams.  

An ideal anomaly detection method for data streams 

must possess several key characteristics [9]. Firstly, it 

should be capable of processing massive and never-

ending streams of data in real time, as the volume and 

velocity of streaming data necessitate efficient and timely 

analysis. Secondly, the method should be adaptable to 

potential changes in the underlying data distribution over 

time, as data streams often exhibit concept drift, where 

the statistical properties of the data may evolve. Thirdly, 

the method should exhibit high accuracy in identifying 

anomaly data instances, as the consequences of missing 

or misclassifying anomalies can be significant in critical 

applications. 

To address these challenges, this research paper 

introduces a novel and efficient method called Enhanced 

Isolation Forest Adapted for Streaming Data 

(EiForestASD). Conceptual framework of the proposed 

anomaly detection method EiForestASD is shown in Fig. 1. 

The proposed method leverages a forest of isolation 

trees, a popular technique in anomaly detection, to 

effectively distinguish anomalies from normal data 

instances in streaming environments. In addition, 

EiForestASD integrates an adaptable detector model that 

dynamically adjusts to accommodate new data over time. 

Rather than completely discarding the detector model 

when encountering a concept drift, the proposed method 

employs a manipulation strategy to effectively manage 

the concept change. Specifically, only invalid and weak 

detectors are removed instead of entirely eliminating the 

set of detectors. This approach facilitates the high-speed 

processing of data streams and enhances the accuracy of 

anomaly detection within the data stream. The 

contributions of this article are as follows: 

1. Introducing a novel and efficient method named 

EiForestASD for anomaly detection in streaming 

data. 

2. Addressing the challenges posed by streaming data 

by developing a method that is fast, capable of 

processing massive and endless data streams, 

adaptable to potential changes in data distribution 

over time, and exhibits high accuracy in identifying 

anomaly data instances. 

3. Incorporating an adaptable detector model that 
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adjusts to new data over time, discarding only those 

isolation trees that are incompatible with the new 

concept in the event of concept drift. 

4. Conducting experimental evaluations on both real-

world and synthetic data streams. 

Overall, this research contributes to the field of 

anomaly detection in data streams by introducing a novel 

method that addresses the main challenges posed by 

streaming data. The findings highlight the efficacy and 

efficiency of EiForestASD in handling massive and 

perpetual data streams with high speed, adapting to 

concept drift, and accurately identifying anomalies. The 

proposed method holds great promise for various 

applications that require real-time and accurate anomaly 

detection in streaming data. 

The remainder of this article is organized as follows: 

Initially a comprehensive literature review of 

unsupervised methods for anomaly detection in data 

streams is presented. Subsequently, an extensive review 

of related works is conducted, concentrating exclusively 

on methodologies that utilize isolation trees and isolation 

forests for unsupervised anomaly detection within data 

streams, given that our proposed method is founded on 

isolation forests. Then the notion of isolation trees, the 

proposed method EiForestASD, and its mechanism for 

handling concept drift are explained. After that, reports 

and analyzes of the experimental results on the 

benchmark datasets is provided. Finally, the article is 

concluded and directions for future research are 

introduced. 

Literature Review 

Anomaly detection is defined as the process of 

identifying patterns within data that deviate from 

expected behavior. Unlike static datasets, which typically 

contain labeled examples suitable for model training, 

real-time data streams often lack such annotations, 

thereby rendering unsupervised methods particularly 

advantageous. This literature review emphasizes 

unsupervised techniques that utilize the inherent 

structure of the data to identify anomalies in the absence 

of prior labeling. Prior research on unsupervised anomaly 

detection in data streams can be categorized into seven 

primary groups: statistical methods, distance-based 

methods, density-based methods, clustering methods, 

tree-based methods, deep learning methods, and hybrid 

approaches. 

The statistical or parametric approach to anomaly 

detection assumes that data instances in a data stream 

conform to a specific statistical distribution, with 

significant deviations from this distribution identified as 

anomalies. Various methodologies illustrate this 

approach. In [12], the outlier score for each data point is 

calculated based on the Gaussian mixture model (GMM).  

In [13], correlation of two or more correlated features 

is computed and an ellipsoidal boundary around these 

features is constructed as the model of normal data. 

In [14], the effects of seasonality and trend is first 

removed from the data stream, and then RobustSTL and 

RobustScaler methods are used to detect anomalies 

based on mean, variance, median, and interquartile range 

of data. In [15], the kernel density estimation (KDE) is 

used to generate and continually update a real-time 

statistical model of the data stream, and the likelihood 

estimates are then used to detect anomalies.  In [16], 

considering high-dimensional medical data streams, the 

information entropy and an efficient pruning technique 

are combined in a novel sliding window model to judge 

whether the data is anomalous or not. 

The distance-based approach considers the distance of 

each data point to its nearest neighbors. For example, 

considering k and R parameters, a data is known as an 

outlier if less than k data in the input data are within R 

distance from this data point. Exact-Storm [17] and 

Direct-Update [18] algorithms are two common 

algorithms in the group of distance-based methods. 

Recently, most research works in this group are focused 

on the efficient computation of distance-based methods. 

In [19], data points at similar locations are grouped and 

the detection of outliers or inliers is handled at the set 

level. In [20], micro-clustering technique is integrated 

with adaptive thresholding of Thresh-LEAP algorithm. 

In [21], a grid-based index is proposed to effectively 

manage summary information of streaming data, and a 

min-heap algorithm is employed to efficiently calculate 

the distance bounds between objects and their k nearest 

neighbors. In [22], a method based on subspaces is 

proposed for explaining anomalies and describing 

relevant dimensions in the unsupervised distance-based 

outlier detection. 

In the density-based approach to outlier detection, the 

local density of each data point serves as a fundamental 

criterion for identifying anomalies [11]. A prominent 

method within this framework is the Local Outlier Factor 

(LOF), which introduces the notion of comparing the local 

densities of neighboring data points with that of the 

target data point [23]. Data points exhibiting a high LOF 

are deemed outliers. The concept of LOF is then 

integrated with a sliding window approach to effectively 

manage data streams. This integration has established a 

fundamental principle that underpins various subsequent 

research endeavors, including iLOF [24], DiLOF [25], 

CLOF [26], and GiLOF [27]. Recently, LOF method is 

enhanced by leveraging ensemble techniques and GPU 

acceleration on data streams [28]. In [29], LOF is 

combined with PCA-based dimensionality reduction to 

infer data stream anomalies in real time. In [30], using 

information entropy for feature selection, clustering for 
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memory reduction, and data insertion for density 

computation, the detection accuracy of LOF is enhanced 

while its memory requirements is reduced for high-

dimensional data streams.  

Clustering techniques have proven effective for 

detecting anomalies by identifying groups of similar data 

points. Methods like k-means and DBSCAN can be 

adapted for anomaly detection in data streams. Among 

preliminary algorithms that fall into this category, we can 

mention DenStream [31], DBStream [32], and 

EvoStream [33]. Several recent methods for anomaly 

detection in data streams are based on clustering. For 

example, in [34], a clustering technique is used to 

summarize data before applying anomaly detection 

methods on the summary. In [35], several clustering 

algorithms including K-means clustering, Mixture of 

Gaussian models, density-based clustering, and self-

organizing maps are employed on stream data for online 

anomaly detection and monitoring of ship machinery 

systems. In [36], a streaming sliding window local outlier 

factor coreset clustering algorithm (SSWLOFCC) is 

proposed, which integrates local outlier factor, 

agglomerative clustering, and PCA for efficient outlier 

detection in large datasets. In [37], a dynamic micro-

clustering scheme is proposed, generating macro-clusters 

from interconnected micro-clusters to identify anomalies 

by assessing both global and local density perspectives.  

Tree-based methods are commonly employed for 

unsupervised anomaly detection in both static datasets 

and data streams [38]. In a tree-based anomaly detection 

method for data streams, an ensemble of tree-based 

anomaly detection models such as half-space tree, 

random-space tree, or isolation tree is often combined 

with a sliding window mechanism to detect anomalies in 

stream data and update anomaly detector 

continually [39], [40]. For example, in [41], an ensemble 

of random half-space trees called Streaming HS-Trees 

method is employed to detect anomalies in stream data. 

It offers several advantages, including constant amortized 

time complexity, constant memory requirements, and 

favorable detection accuracy. In [42], to leverage the 

benefits of fully randomized-space trees, the RS-Forest 

utilized multiple fully RS-Trees to create a density 

estimator that is both fast and accurate. Then, the 

incoming instances in a data stream are scored based on 

the density estimates averaged over all trees in the forest 

and the anomalies are identified.  In [43], an ensemble of 

isolation-Trees known as Isolation Forest (iForest) is 

proposed for detecting anomalies in static datasets. To 

compute the anomaly score for a particular data point, 

the path lengths of the trees containing that point are 

averaged. In [44], the isolation forest technique was 

extended to effectively handle the unique characteristics 

of streaming data by incorporating sliding windows 

mechanism. Some recent extensions of isolation forest to 

streaming data include applying ADWIN to 

iForestASD [45], Historical Isolated Forest (HIF) [46], and 

Bilateral-Weighted Online Adaptive Isolation Forest 

(BWOAIF) [47]. 

Deep learning has opened new avenues for anomaly 

detection in data streams. In [48], the LSTM networks is 

used as a predictor of future data, and anomalies are 

detected by comparing the predicted value and actual 

value of current data point. A similar scheme is employed 

in [49] where Temporal Convolutional Neural Networks 

(TCN) provided higher accuracy than LSTM and GRU 

models. Another approach is to employ deep learning 

models in an auto-encoder network to reconstruct the 

output based on previous sequence of inputs, and detect 

anomalies based on reconstruction loss. In this regard, 

in [50] an LSTM-based auto-encoder network is designed 

for anomaly detection in vibration data of wind turbines. 

In [51], an auto-encoder anomaly detector is equipped 

with concept drift detection module based on the Mann-

Whitney U Test to adapt nonstationary environments. 

In [52], to reduce network complexity and computational 

requirements, the encoder network is constructed from 

LSTM layers, while the decoder network is comprised 

from fully connected layers. Lastly, Generative 

Adversarial Networks (GANs) have been applied to 

anomaly detection by generating normal data samples for 

comparison with observed data [53]-[56]. 

Hybrid approaches combine multiple methods to 

improve anomaly detection accuracy and robustness [57]. 

For example, a hybrid Model of One-class SVM and 

Isolation Forest (HMOI) has been proposed in [58] for 

wireless sensor data, where isolation forest is employed 

for anomaly labeling of unlabeled data, and one-class 

SVM is utilized for final classification of anomalies. In [59], 

to detect anomaly in surveillance videos, a Convolutional 

Neural Network (CNN) is employed to extract spatial 

information, combined with a vision transformer to learn 

long-term temporal relationships. In [60], a hybrid 

approach based on deep learning is proposed that 

combines CNN and LSTM models in the encoder and 

decoder parts of an auto-encoder model to detect 

anomalies in spatio-temporal data.  

In conclusion, the domain of unsupervised anomaly 

detection in data streams presents a rich and diverse 

landscape of methodologies, each tailored to address the 

unique challenges posed by the absence of labeled data 

and the dynamic nature of real-time information. By 

categorizing existing techniques into seven distinct 

groups—statistical, distance-based, density-based, 

clustering, tree-based, deep learning, and hybrid 

approaches—we can appreciate the breadth of strategies 

developed to tackle this complex problem. Advances in 

these areas continue to enhance detection accuracy and 
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computational efficiency, paving the way for real-time 

applications across various fields, including finance, 

healthcare, and cybersecurity.  

Related Works on Isolation Forests 

Similar to our research work, numerous other scholars 

have employed the concepts of isolation trees and 

isolation forest for the identification of anomalous data in 

data streams. Accordingly, in this section a detailed 

review of the related works to application of isolation 

forest and isolation trees for anomaly detection in data 

streams is presented.  

In the realm of streaming data analysis, Ding et al. [44] 

extended the Isolation Forest technique to effectively 

handle the unique characteristics of streaming data, such 

as high speed, large volume, and concept drift. Their 

proposed method, known as iForest Adapted for 

Streaming Data (iForestASD), incorporates sliding 

windows to cope with the continuous flow of data and 

adapt to concept drift. By employing bootstrap sampling, 

an initial anomaly detection model is constructed for the 

streaming dataset, and iTrees are built based on the 

randomly sampled data. The trained iForest model is 

continuously updated as new data arrives, ensuring the 

detection of evolving anomalies. Moreover, iForestASD is 

equipped to detect and handle concept drifts by 

monitoring the anomaly rate within a sliding window. If 

the anomaly rate exceeds a predefined threshold, 

concept drift is identified, and a new iForest model is 

constructed to accommodate the latest data window. 

With the increasing popularity of the Python 

programming language in the data science, Togbe et 

al. [61] implemented the iForestASD method under the 

Python programming language and the Scikit-Multiflow 

machine learning framework.  

Togbe et al. [45] extended the iForestASD method to 

handle drifting data by introducing three new algorithms. 

These algorithms utilize two primary drift detection 

methods: ADWIN and KSWIN. By calculating and 

analyzing the average statistics in two sub-windows, 

ADWIN identifies concept drift. Similarly, the KSWIN 

method employs the Kolmogorov-Smirnov test to identify 

changes in data distribution. In addition, Togbe et al. 

introduced N-Dimensional KSWIN (NDKSWIN) to adapt 

KSWIN for multidimensional data streams, declaring a 

drift if a change is detected in at least one dimension. 

Madkour et al. [46] enhanced the existing IForestASD 

methodology by introducing a Historical Isolated Forest 

(HIF) framework and reusing previously constructed 

iForests. Their proposed method retains previously 

constructed isolation forests and utilizes the isolation 

forest most analogous to the current concept drift 

distribution as its operational model. Additionally, it 

maintains the mean and standard deviation of the 

training data chunk alongside each isolation forest within 

the ensemble pool to facilitate the assessment of 

similarity between the current concept drift distribution 

and earlier data distributions. Evaluations revealed that 

while the HIF approach achieved reduced computational 

times compared to IForestASD, it often did not improve 

and sometimes decreased anomaly detection accuracy. 

Hannak et al. [47] improved the IForestASD by adding 

timestamps for each isolation tree (iTree) and using a 

bilateral weighting mechanism for calculating anomaly 

scores. Their approach, called the Bilateral-Weighted 

Online Adaptive Isolation Forest (BWOAIF), assigns 

weights to iTrees to reduce the impact of outdated trees 

in changing data distributions. The anomaly score 

calculation employs bilateral weighting, where one 

component mitigates the influence of iTrees built from 

differing distributions, while the other emphasizes more 

recent trees. Empirical results showed that BWOAIF 

effectively adapts to various concept drift situations, 

including slow and fast shifts, splits, and the emergence 

or disappearance of concepts. 

Yang et al. [62] proposed ASTREAM method which 

integrates Locality-Sensitive Hashing (LSH) into isolation 

Forest (iForest) to achieve better anomaly detection 

performance. The underlying model used in ASTREAM is 

called LSHiForest. ASTREAM addresses the limitations of 

existing approaches by incorporating sliding window, 

model updates, and change detection strategies into 

LSHiForest. The sliding window mechanism effectively 

handles the continuous flow of data streams, while 

Principal Component Analysis (PCA) considers the 

correlations between different dimensions and 

transforms a set of relevant dimensions to a set of 

irrelevant dimensions. Extensive experiments conducted 

on the KDDCUP99 dataset have demonstrated the 

superior performance of ASTREAM in terms of accuracy, 

efficiency, and scalability compared to baseline methods.  

Another study by Yang et al. [63] introduces 

DLSHiForest, which combines Locality-Sensitive Hashing 

(LSH), Isolation Forest, and the time window technique to 

achieve accurate and efficient anomaly detection in data 

streams from wireless sensors. DLSHiForest takes into 

account correlations between different dimensions and 

detects anomaly based on Locality-Sensitive Hashing. 

Each streaming data point is treated as a 

multidimensional vector, and the hash functions consider 

all the dimension information while hashing the data 

points, thereby accounting for the cross-correlation 

among different dimensions. The hashing process 

involves the dot product of two vectors, which represents 

the comprehensive consideration of all dimensional 

information of the data point. The efficient partitioning of 

data points and the detection of anomaly in DSLHiForest 

heavily rely on the hashing technique. 

Li et al. [64] introduced an innovative human-machine 



K. Moeenfar et al. 

214  J. Electr. Comput. Eng. Innovations, 13(1): 209-224, 2025 

interactive streaming anomaly detection approach, 

referred to as ISPForest, which is capable of being 

adaptively updated in real time through the integration of 

human feedback. In their framework, the feedback 

mechanism plays a critical role in recalibrating both the 

computation of anomaly scores and the architecture of 

the detector itself, thereby enhancing the accuracy of 

future anomaly score assessments. The empirical findings 

from their study indicate that the inclusion of feedback 

significantly improves the performance of anomaly 

detection systems with minimal human intervention. 

A detailed review of existing literature in the domain 

of tree-based unsupervised anomaly detection using 

isolation forests has revealed that isolation forest exhibits 

notable efficiency and scalability in the detection of 

anomaly within data streams. In contrast to the majority 

of such tree-based methods that fail to adequately 

address the challenge of concept drift in data, the 

iForestASD algorithm employs continual monitoring of 

the anomaly rate to identify concept drift and 

subsequently reconstructs the entire detector model 

upon detecting a change in the concept. The approach 

employed by newer tree-based methods, which utilize 

isolation forest, closely mirrors that of iForestASD in 

terms of identifying and handling concept drift. 

Nevertheless, the iForestASD method is impeded by the 

time-intensive process of rebuilding the detector model, 

resulting in significant algorithmic slowdown and delays 

in identifying anomaly data. Hence, it is imperative to 

explore alternative methods that offer more efficient 

management of concept drift. To address this objective, 

in this research work, the EiForestASD technique is 

introduced which integrates a mechanism to manage 

concept drift without discarding the entire detector 

model. This approach requires less time to update the 

model, making it highly adaptable to data changes and 

particularly suitable for resource-constrained devices. 

EiForestASD Method 

This research aims to develop a method that can 

detect anomalies in data streams and update the detector 

model efficiently when the concept drifts occur. The 

proposed method, named Enhanced Isolation Forest 

Algorithm for Stream Data (EiForestASD), is an 

enhancement of the iForestASD algorithm proposed 

by [44], [61], but with more smartness in handling 

concept drifts and updating the detector model. The 

EiForestASD is a partitioning-based anomaly detection 

method for data streams, which employs a forest of 

isolation trees (iTrees) to isolate anomalies. The 

EiForestASD continuously updates the forest of iTrees on 

the data stream and uses it to detect anomalies in each 

window of data. The steps of the proposed method 

EiForestASD are depicted in Fig. 2. 

 

 
Fig. 2:  Steps of the proposed method EiForestASD for anomaly 

detection in data streams.  

 

The proposed method EiForestASD begins by receiving 

a window of data and constructing the initial iForest 

detector model. Subsequently, for each incoming data 

point, the algorithm searches the input data point in all 

isolation trees and uses the isolation forest to compute 

anomaly score of the input data point and report anomaly 

data points. After reporting anomaly data instances, 

EiForestASD computes the anomaly rate in the last 

window of data and compares it with a predefined 

threshold to determine if there is a concept drift. If a 

concept drift is detected, the EiForestASD identifies weak 

and obsolete isolation trees in the current detector model 

and replaces them with new ones constructed on the last 

window of data. The following sections will explain the 

details of the proposed method. 

A.  Isolation Tree 

An isolation tree (iTree) is a binary tree that recursively 

partitions the data space in a hierarchical manner. Each 

node of the iTree represents a subset of the data, and 

each branch represents a split of the subset into two 

smaller subsets. The construction of an iTree is done 

randomly. In the randomization process, to expand an 

arbitrary node of the tree, a feature is randomly selected 

from the data, and then a split point is randomly selected 

from the range of values of that feature. Then, the 

selected feature and the split point are used to split the 
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data of the current node into two subsets. Data points 

that have higher values than the split point for the 

selected feature form the right child of the current node, 

and those that have lower values form the left child. The 

construction of an iTree starts from the root node, which 

contains the whole dataset. The randomization process is 

applied to the current node to split it into two children, 

and this process is repeated on the children. This process 

continues until a leaf node is created that contains a small 

number of data points or a maximum depth is reached. 

Fig. 3 illustrates an example of partitioning a dataset using 

an iTree, where this sample dataset has only two features 

and five data points. In Fig. 3, the data instance “a” is 

isolated from other data instances at the first level of the 

iTree, and would be a proper candidate for anomaly. 

 

 
Fig. 3:  Using an isolation tree to partition dataset and separate 

data points.  

B.  Anomaly Detection 

An isolation forest, also known as an iForest, is a group 

of isolation trees. The concept of isolating anomalies 

instead of profiling normal instances is introduced in the 

isolation forest [43], [65], resulting in a more efficient sub-

sampling method and a linear time complexity algorithm 

with low memory requirements. The isolation forest 

constructs a collection of isolation trees, with each tree 

randomly selecting a subset of instances and creating 

splits based on randomly selected attributes. The 

anomaly score of an instance is measured by its average 

path length in the isolation trees, with shorter path 

lengths indicating higher anomaly scores. 

In an iTree, the leaves that have smaller depths are 

isolated from the rest of the data with only a few 

partitioning steps. Therefore, the leaves that are located 

at a lower depth are likely to be anomalous. After an iTree 

is constructed, for each new data point, we search it in 

the tree to reach a leaf. The depth of that leaf node 

determines the anomaly score of the new data point. The 

deeper the leaf node, the lower the anomaly score should 

be. Fig. 4 demonstrates the difference in leaf node depth 

and the number of partitioning steps for anomaly and 

non-anomaly data points.  

 

 

Fig. 4:  It takes five steps to separate the inlier data X0, while 
the anomaly data X1 is separated much faster in just two steps.  

 

In the proposed method EiForestASD, a forest of iTrees 

is used as a detector model. The iForest is built from the 

first observed data window, and updated as subsequent 

windows arrive. For each new data point, its anomaly 

score must be computed by the current detector model. 

To this end, the new data point is searched in all the trees 

of the iForest, and based on its depth in the trees, an 

anomaly score 𝑠(𝑥) is calculated for the new data point. 

Data points that have an anomaly score higher than the 

anomaly threshold, denoted by 𝑠𝑡ℎ, are reported as 

anomalous.  

Assume that the size of the sliding window is equal to 

𝑀 samples. Also, suppose that the number of iTrees in the 

iForest detector model is 𝑁 trees. In this case, the 

anomaly score 𝑠(𝑥) of the data point 𝑥 is calculated with 

the following equation: 

        (1)   𝑠(𝑥) = 2
−
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where the symbol 𝑐(𝑀) represents the expected average 

value of the path length ℎ(𝑥) for all data points in the 

current window. If the window length 𝑀 is greater than 2, 

the value of 𝑐(𝑀) is calculated according to the following 

equation: 
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         (2)  𝑐(𝑀) = 2𝐻(𝑀 − 1) − (𝑀 − 1)/𝑀 

where 𝐻(𝑀) represents the harmonic number, which can 

be estimated by the relation 𝐻(𝑀) = 𝑙𝑛(𝑀) + 𝛾 and the 

value of 𝛾 = 0.5772156649. Also, the symbol 𝐸(ℎ(𝑥)) 

shows the average depth of the leaf node containing 𝑥 in 

the isolation trees of the current iForest detector model, 

which is calculated according to the following equation: 

         (3)   𝐸(ℎ(𝑥)) =
1

𝑁
∑ ℎ𝑖(𝑥)

𝑁

𝑖=1
 

C.  Concept Drift Detection and Handling 

The EiForestASD method handles the concept drifts in 

the data streams by monitoring a typical anomaly rate. 

The anomaly rate in each data window is computed by 

calculating the ratio of the number of data points 

detected as anomalous to the total number of data points 

in the window. If the anomaly rate of the window exceeds 

the concept drift threshold, then a concept drift has 

occurred. In case of a concept drift, the baseline algorithm 

iForestASD would discard its current forest of isolation 

trees and start building a new forest using all the data 

points. However, in the proposed method EiForestASD, 

we use a more intelligent approach. To reduce the 

computation time of the algorithm, in the EiForestASD 

method, when a concept drift occurs, instead of removing 

all the isolation trees, we remove only weak iTrees, the 

trees that classify most of the data points of the current 

window as anomalies. The procedure of concept drift 

detection and handling in the proposed method 

EiForestASD is outlined by Algorithm 1.  

Subsequent to processing the most recent window of 

data points, Algorithm 1 is employed to identify and 

address any occurrence of concept drift. Initially, in lines 

1 to 4, the anomaly status of all data points within the last 

window of data, denoted as W, is examined, enabling the 

computation of the anomaly rate associated with W. 

Subsequently, in line 5, the concept drift is determined by 

comparing the anomaly rate, referred to as u, of the 

window W of most recent data points with the predefined 

threshold for concept drift, known as uth. If the anomaly 

rate surpasses the concept drift threshold, it implies the 

occurrence of concept drift, necessitating the execution 

of appropriate steps outlined in lines 6 to 15. 

To effectively address the concept drift, a for loop is 

initiated in line 7, inspecting each isolation tree within the 

current ensemble model for obsoleteness. In the event 

that a tree is deemed invalid, it is replaced with a newly 

generated isolation tree model, crafted based on the 

latest data points obtained from window W. The 

obsoleteness checking process is carried out in lines 8 to 

11, involving the computation of the anomaly rate 

associated with the current isolation tree t in relation to 

the data points present within the latest window W. 

Subsequently, this anomaly rate is compared with the 

specified anomaly threshold, uth. If the anomaly rate of 

isolation tree t exceeds the anomaly threshold, the tree t 

is considered to be obsolete and invalid, consequently 

requiring substitution with a newly created isolation tree 

as delineated in lines 11 to 14. 

 
Algorithm 1  Concept drift detection and handling in EiForestASD 

Inputs: W – window of latest data points, F – ensemble of iTrees,  

              sth – anomaly threshold, uth – concept drift threshold 

Outputs: F – updated ensemble of isolation trees 

1: Search each data point x ∈ W in all isolation trees t ∈ F 

2: Compute anomaly score s(x) for each data point x ∈ W using all  

     isolation trees t ∈ F 

3: Count the number of anomaly points in the last window of data W  

4: Compute anomaly rate u of the last window of data W 

5: if  u > uth 

6:      // Concept drift happened 

7:      for each isolation tree t ∈ F 

8:             Compute the anomaly score for each data point x ∈ W using  

                  only one isolation tree t  

9:          Count the number of anomaly points detected by isolation  

                  tree t in the last window of data W  

10:            Compute anomaly rate of isolation tree t as utree 

11:            if  utree > uth 

12:                    // This tree is not valid and should be replaced 

13:                replace isolation tree t ∈ F with a new iTree trained on  

                          the last window of data P 

14:            end if 

15:     end for 

16: end if 

17: return updated ensemble of isolation trees F 

 

In this way, in the proposed method EiForestASD, only 

obsolete iTrees are removed from the current detector 

model. The removed iTrees are replaced with new iTrees 

constructed based on all the data points in the current 

window. 

Evaluation and Results 

In this section, the performance of the proposed 

method EiForestASD in identifying anomalies in the data 

stream will be evaluated and compared with the baseline 

iForestASD method in [44]. For this purpose, the 

proposed method was implemented using Python 

programming language and with the help of the Scikit-

Multiflow library and compared with the Python 

implementation of the iForestASD method in this 

library [61]. 

In the experiments of this section, the actual anomaly 

rate of each data set was used to value the anomaly rate 

threshold parameter in the concept drift detection 

section. The value of parameter 𝑀, which determines the 

size of the window, was considered equal to 100. For the 

parameter 𝑁, which determines the number of isolation 

trees in the detector model, values of 30, 50, and 100 

were tested. The anomaly threshold 𝑠𝑡ℎ for each data 

point was set to 0.5. In this case, a data point is considered 

an anomaly by the detector model if its average depth in 
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the detector trees is less than half of the expected value 

for the depth of the leaf nodes. The concept drift 

threshold 𝑢𝑡ℎ was considered equal to the actual anomaly 

rate of each data set. In other words, we assume that the 

anomaly rate in each window is the same as the anomaly 

rate of the entire dataset. 

A.  Evaluation Metrics 

This research will compare anomaly detection 

methods in terms of computation time and accuracy. The 

main objective of the proposed method EiForestASD is to 

reduce the computation time of the algorithm by 

intelligently managing the concept drifts. Therefore, the 

computation time will be the primary and most important 

evaluation criterion. To compare the computation time, 

the amount of CPU time spent by each algorithm on each 

dataset will be measured and reported in seconds. 

Besides the computation time, the accuracy of 

anomaly detection is also crucial for each algorithm. To 

evaluate the accuracy of anomaly detection by each 

algorithm, the F1 score will be used as a performance 

measure. Specifically, the anomaly detection problem will 

be treated as a binary classification problem. Anomalies 

will be considered as the positive class and non-anomalies 

as the negative class. Let 𝑃 denote the precision and 𝑅 

denote the recall. Then, the F1 score, which is a suitable 

metric for imbalanced classification problems, will be 

computed using the following equation: 

(4) F1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
 

B.  Benchmark Datasets 

The proposed method and the competing algorithm 

were evaluated using two sets of real and synthetic data 

sets, which are commonly used as benchmarks for 

anomaly data identification in streaming data. The real 

datasets were obtained from the Anomaly Detection 

Datasets (ODDS)1 library. Synthetic datasets were 

generated by the Scikit-MultiFlow library using different 

data generators. Table 1 summarizes the characteristics 

of the benchmark datasets, which were treated as data 

streams. 

The synthetic data streams included Mulcross, which 

followed a multivariate normal distribution, and SEA, 

which had four blocks and abrupt concept drifts between 

them. The real data streams included HTTP and SMTP, 

which involved computer networks attack detection and 

computer networks intrusion prediction tasks, 

respectively; Forest Cover, which involved vegetation 

classification based on soil information; Shuttle, which 

involved deciding how to land a spacecraft; Sat Image, 

which involved pixel classification of satellite images; and 

MNIST, which involved image classification of English 

                                                           
1 http://odds.cs.stonybrook.edu/about-odds/ 

handwritten digits. The consecutive samples of each 

dataset were considered as a data stream. 

 
Table 1: Characteristics of the benchmark datasets 

 

Dataset Number of 
Instances 

Number of 
Attributes 

Anomaly 
Rate 

SEA 10000 3 0.10 % 

Mul Cross 262144 4 10 % 

HTTP 567498 3 0.39 % 

SMTP 976175 3 0.03 % 

Forest Cover 286048 10 0.96 % 

Shuttle 49097 9 7 % 

Sat Image 7603 100 9 % 

MNIST 5803 36 1.22 % 

 

C.  Evaluation of Computation Time 

The primary objective of the EiForestASD method is to 

enhance the efficiency of anomaly detection in data 

streams by reducing the required computation time. To 

assess the effectiveness of the proposed method in 

achieving this goal, an experiment was conducted to 

compare the computation time of the proposed method 

EiForestASD with the baseline iForestASD method across 

different datasets.  

The EiForestASD method incorporates two crucial 

parameters: the sliding window size and the ensemble 

size. Therefore, the experiment was performed with 

varying window sizes of 50, 100, and 500, and different 

numbers of trees including 30, 50, and 100.  

The results of the experiment are presented in Table 2, 

Table 3, and Table 4 for window size of 50, 100, and 500 

data instances, respectively. The CPU time of each 

method is reported in seconds. In Table 2, for each 

dataset, CPU time of the proposed method EiForestASD 

and the baseline method iForestASD is reported for 

window size of 50 data instances.  

For each dataset, the experiment was carried out for 

30, 50, and 100 iTrees in the anomaly detector model and 

the results are reported. The column Ratio indicates the 

ratio of the CPU time of EiForestASD with respect to the 

CPU time of iForestASD.  

These findings indicate that the EiForestASD method 

consistently outperforms the baseline iForestASD 

algorithm in terms of computation time across all 

datasets and for different number of iTrees. For window 

size of 50 data instances, in average, the proposed 

method EiForestASD achived a reduction of 19% in 

computation time with respect to the baseline method 

iForestASD.  
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Table 2: Reduction of computation time (seconds) by the 
proposed method EiForestASD for window size of 50 data points 

 

Dataset # Trees iForestASD EiForestASD Ratio 

SEA 
30 173 132 0.76 
50 183 150 0.82 
100 226 184 0.82 

MulCross 
30 4527 3851 0.85 
50 7563 6632 0.88 
100 14287 12387 0.87 

HTTP 
30 657 300 0.46 
50 777 663 0.85 
100 2640 2037 0.77 

SMTP 
30 453 384 0.85 
50 498 396 0.80 
100 898 729 0.81 

ForestCover 
30 4884 4103 0.84 
50 7238 6195 0.86 
100 8921 7834 0.88 

Shuttle 
30 6849 5540 0.81 
50 7853 6628 0.84 
100 11187 9249 0.83 

SatImage 
30 1531 1246 0.81 
50 2502 2131 0.85 
100 5121 4321 0.84 

MNIST 
30 1838 1371 0.75 
50 3002 2344 0.78 
100 6145 4753 0.77 

Average 4165 3482 0.81 

 
Table 3: Reduction of computation time by the proposed 
method EiForestASD for window size of 100 data points 

 

Dataset # Trees iForestASD EiForestASD Ratio 

SEA 
30 172 132 0.77 
50 191 142 0.74 
100 243 198 0.82 

MulCross 
30 4655 3908 0.84 
50 7885 6818 0.86 
100 16131 14292 0.89 

HTTP 
30 1269 1128 0.89 
50 7505 6291 0.84 
100 11978 10344 0.86 

SMTP 
30 1051 900 0.86 
50 2103 1945 0.92 
100 4897 4507 0.92 

ForestCover 
30 5775 4895 0.85 
50 7824 6975 0.89 
100 10647 9233 0.87 

Shuttle 
30 8948 7368 0.82 
50 12381 10374 0.84 
100 15254 12531 0.82 

SatImage 
30 3161 2610 0.83 
50 5776 4975 0.86 
100 10595 9022 0.85 

MNIST 
30 3793 2871 0.76 
50 6932 5472 0.79 
100 12714 9924 0.78 

Average 6745 5702 0.84 

 

To determine the effect of window size on the 

performance of the algorithms under evaluation, the 

same experiment was repeated for window size of 100 

data instances and the results are reported in Table 3. 

Similarly, the proposed method EiForestASD consistently 

outperforms the baseline iForestASD algorithm in terms 

of CPU time. For window size of 100 data instances, in 

average, the proposed method EiForestASD achived a 

reduction of 16% in computation time. Table 4 presents 

the results of the same experiment for window size of 500 

data instances. While the computation time of the 

algorithms is significantly increased with respect to 

window size of 100 and 50 data instances, the 

EiForestASD still consistently outperforms the baseline 

iForestASD algorithm in terms of CPU time. For window 

size of 500 data instances, in average, the proposed 

method EiForestASD achived a reduction of 15% in 

computation time. These findings demonstrate that the 

proposed method EiForestASD is capable of processing 

input data streams more efficiently than the baseline 

method iForestASD. 
 
Table 4: Reduction of computation time by the proposed 
method EiForestASD for window size of 500 data points 

 

Dataset # Trees iForestASD EiForestASD Ratio 

SEA 
30 266 174 0.66 
50 274 200 0.73 
100 305 278 0.91 

MulCross 
30 9112 7800 0.86 
50 16927 14579 0.86 
100 36584 32001 0.87 

HTTP 
30 26850 24843 0.93 
50 30234 28950 0.96 
100 38981 37275 0.96 

SMTP 
30 9321 8425 0.90 
50 13803 12972 0.94 
100 26842 25840 0.96 

ForestCover 
30 9035 7959 0.88 
50 16535 14113 0.85 
100 30005 25825 0.86 

Shuttle 
30 14811 12176 0.82 
50 19868 16253 0.82 
100 31793 26081 0.82 

SatImage 
30 12087 10122 0.84 
50 19854 17069 0.86 
100 37401 32215 0.86 

MNIST 
30 14504 11134 0.77 
50 23824 18776 0.79 
100 44881 35437 0.79 

Average 20171 17521 0.85 

 

The effect of the number of trees {30, 50, 100} in the 

detector model on the computation time of each of the 

EiForestASD and iForestASD algorithms for different 

window sizes is illustrated in Fig. 5. The computation time 

increased for both algorithms as the number of trees 

increased, and the rate and pattern of this increase were 

similar for both algorithms. Moreover, EiForestASD 
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reduced the computation time for all datasets compared 

to the baseline method iForestASD. Therefore, the 

proposed method EiForestASD achieved a strong saving in 

computation time. 

D.  Evaluation of Anomaly Detection Accuracy 

The accuracy of anomaly detection in data streams 

serves as a crucial criterion for evaluating the 

performance of anomaly detection algorithms. In this 

experiment, the anomaly detection accuracy of the 

proposed method EiForestASD was compared with the 

basic iForestASD algorithm across various datasets. The 

experiment encompassed different window sizes of 50, 

100, and 500, as well as varying numbers of trees 

including 30, 50, and 100. The results obtained from this 

experiment are presented in Table 5. 

 
Table 5: Improvement of anomaly detection accuracy by the 
proposed method EiForestASD compared with the baseline 
method iForestASD according to the F1 criterion 

 

  
Win Size = 
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SEA 
30 0.37 0.41 0.39 0.45 0.42 0.51 
50 0.37 0.41 0.39 0.47 0.43 0.51 

100 0.38 0.44 0.39 0.48 0.49 0.56 

MulCross 
30 0.63 0.69 0.69 0.75 0.76 0.82 
50 0.64 0.71 0.69 0.78 0.78 0.82 

100 0.65 0.71 0.69 0.78 0.78 0.84 

HTTP 
30 0.19 0.25 0.26 0.33 0.31 0.41 
50 0.20 0.26 0.29 0.36 0.31 0.44 

100 0.18 0.29 0.29 0.38 0.31 0.45 

SMTP 
30 0.39 0.43 0.40 0.46 0.42 0.49 
50 0.39 0.43 0.40 0.47 0.43 0.51 

100 0.40 0.44 0.41 0.47 0.43 0.52 

ForestCover 
30 0.24 0.30 0.31 0.36 0.52 0.59 
50 0.24 0.31 0.32 0.37 0.53 0.61 

100 0.25 0.31 0.32 0.39 0.55 0.61 

Shuttle 
30 0.67 0.72 0.73 0.76 0.81 0.86 
50 0.67 0.73 0.73 0.78 0.82 0.86 

100 0.68 0.73 0.74 0.78 0.84 0.88 

SatImage 
30 0.22 0.29 0.24 0.33 0.28 0.40 
50 0.23 0.30 0.24 0.33 0.28 0.40 

100 0.22 0.31 0.24 0.34 0.29 0.40 

MNIST 
30 0.38 0.49 0.41 0.55 0.44 0.59 
50 0.39 0.52 0.42 0.55 0.45 0.62 

100 0.39 0.54 0.44 0.57 0.47 0.62 

Average 0.39 0.46 0.43 0.51 0.51 0.60 

 

The values reported in the Table 5 demonstrate that 

the proposed method EiForestASD exhibits a substantial 

improvement in anomaly detection accuracy compared to 

the baseline algorithm. Unlike the basic iForestASD 

method that discards all isolation trees in the event of a 

concept change, the proposed method EiForestASD 

retains the isolation trees that remain compatible with 

the new concept. This smart approach contributes to the 

increased accuracy of the proposed method EiForestASD. 

On average, the proposed method achieved an 

improvement in anomaly detection accuracy of 

approximately 7% for a window size of 50, 8% for a 

window size of 100, and 9% for a window size of 500.  

E.  Limitations and Future Works 

This research has several limitations that could be a 

basis for future investigations. Firstly, in the proposed 

methodology, the threshold value (uth) for each data 

stream was established based on the pre-determined 

anomalous data rate. However, such a rate is typically 

unknown in real-world scenarios. Addressing this issue 

may involve developing a method to compute the 

threshold value of uth based on the statistical distribution 

and inherent characteristics of the data, with the capacity 

for dynamic updates over time. Secondly, the proposed 

approach employed a fixed window size. A more adaptive 

strategy, where the window size is calibrated according to 

the properties of the data stream and adjusted 

periodically, could potentially enhance the accuracy of 

anomalous data detection. Similarly, the number of trees 

in the anomaly detection model can also computed 

atomically and updated dynamically. In this study, the 

iTree was chosen as the base model for anomaly 

detection; however, investigating alternative base 

models may yield valuable insights for future research. 

Lastly, considering that data streams represent an 

unbounded sequence of data points, summarizing the 

previous data points and the aggregation and analysis of 

these data summaries could significantly contribute to 

improving the efficacy of anomaly detection outcomes in 

a hybrid method. 

Discussion 

The findings of this study highlight the effectiveness of 

the proposed EiForestASD algorithm in the realm of 

anomaly detection within data streams. By employing a 

specialized adaptive detection mechanism that discards 

only those isolation trees incompatible with new 

concepts, EiForestASD not only reduces computational 

overhead but also enhances detection accuracy. This 

distinguishes the proposed method from traditional 

algorithms such as the baseline iForestASD, which blindly 

eliminates all isolation trees upon encountering concept 

drift. In examining the computational efficiency of 

EiForestASD, the results indicate a consistent 19% 

improvement in computation time across varied datasets 

and configurations. By utilizing a window-based approach 

that maintains only relevant isolation trees, the algorithm 

adapts comprehensively to concept drift while sustaining 

high processing speeds. Furthermore, the evaluated 

datasets confirm that the proposed method significantly 
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surpasses iForestASD in both computation time and 

anomaly detection accuracy, achieving up to a 9% 

improvement  in  the  latter.  The   nuanced  handling   of  

 

 

concept changes contributes to this achievement, 

supporting the hypothesis that targeted tree removal is 

more efficient than blind destruction. 

 

 
(a) window size of 50 samples 

 

 
(b) window size of 100 samples 

 

 
(c) window size of 500 samples 

 

Fig. 5:  Reduction of computation time by the proposed method EiForestASD compared with the baseline method iForestASD for: 
(a) window size of 50 samples, (b) window size of 100 samples, and (c) window size of 500 samples.  

 

 

While the results are encouraging, several limitations 

necessitate further investigation. First, the reliance on a 

predetermined anomalous data rate to establish the 

threshold value (uth) for anomaly detection poses 
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questions regarding the algorithm’s applicability to real-

world scenarios where such information is often 

unavailable. Future work should focus on devising a more 

dynamic thresholding system that can adaptively 

compute uth based on the statistical characteristics of 

incoming data streams. Additionally, the static window 

size employed within this study may not optimally 

capture the differences of all data streams. An adaptive 

strategy that permits adjustment of window sizes based 

on real-time data analysis could yield substantial 

enhancements in detection performance. The proposed 

EiForestASD framework can be further enhanced to 

accommodate the detection of both incremental and 

recurring concept drift, enabling it to adopt distinct 

behaviors in response to each type of drift. In addition, 

development of a noise-resilient version of the 

EiForestASD algorithm is crucial, particularly for 

applications in dynamic environments where data quality 

can fluctuate considerably. 

Conclusion 

In this paper, the EiForestASD method is introduced as 

a means of identifying anomalies in data streams using a 

forest of isolation trees over time. The algorithm detects 

anomalies in the current window of data and updates the 

detector model, the forest of isolation trees, with each 

new window of data. The EiForestASD method handles 

concept change by removing and reconstructing only 

those trees from the detector model that are 

incompatible with the new concept, labeling most of the 

current window data as anomalies. This approach is more 

intelligent than the baseline iForestASD method, which 

discards all isolation trees when faced with concept 

change. The modification of the concept drift handling 

mechanism in the EiForestASD not only reduced 

computation time of the anomaly detection, but also 

improved anomaly detection accuracy. Since various 

types of concept drift exist in data streams, future 

research should focus on extending the proposed method 

to address gradual, recurring, and incremental drifts more 

effectively. The algorithm's robustness against these drift 

types could be evaluated using simulated drifts in 

synthetic datasets. Furthermore, the application of our 

proposed algorithm or its enhanced variants to real-world 

scenarios, such as human activity monitoring, presents an 

interesting area of research for exploration. Another 

critical challenge in data stream analysis is the presence 

of noise. Future versions of the proposed method should 

aim to enhance the resilience of both anomaly detection 

and concept drift detection mechanisms against noise, 

thereby improving overall performance in dynamic, real-

world environments. 
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Abbreviations  

ADWIN Adaptive Window 

BWOAIF Bilateral-Weighted Online Adaptive 
Isolation Forest 

CLOF Composite Local Outlier Factor 

CNN Convolutional Neural Network 

DLSHiForest Dynamic Anomaly Detection based 
on Locality-Sensitive Hashing 
Isolation Forest 

DiLOF Density Summarizing Incremental 
LOF 

EiForestASD Enhanced iForestASD 

GAN Generative Adversarial Networks 

GiLOF Genetic-based incremental LOF 

GMM Gaussian Mixture Model 

HIF Historical Isolated Forest 

HMOI Hybrid Model of One-class SVM and 
Isolation Forest 

HS-Tree Half-space Tree 

iForest Isolation Forest 

iForestASD iForest Algorithm for Stream Data 

iLOF Incremental Local Outlier Factor 

ISPForest Interactive Space Partitioning 
Forest 

KDE Kernel Density Estimation 

KSWIN Kolmogorov–Smirnov Window 

LOF Local Outlier Factor 
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LSH Locality-Sensitive Hashing 

LSTM Long Short-term Memory Network 

ODDS Outlier Detection Data Sets 

PCA Principal Component Analysis 

RS-Tree Randomized-space Tree 

SSWLOFCC Streaming Sliding Window LOF 
Coreset Clustering 

TCN Temporal Convolutional Neural 
Network 
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