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Background and Objectives: Stock recommender system (SRS) based on deep 
reinforcement learning (DRL) has garnered significant attention within the 
financial research community. A robust DRL agent aims to consistently allocate 
some amount of cash to the combination of high-risk and low-risk stocks with the 
ultimate objective of maximizing returns and balancing risk. However, existing 
DRL-based SRSs focus on one or, at most, two sequential trading agents that 
operate within the same or shared environment, and often make mistakes in 
volatile or variable market conditions. In this paper, a robust Concurrent 
Multiagent Deep Reinforcement Learning-based Stock Recommender System 
(CMSRS) is proposed. 
Methods: The proposed system introduces a multi-layered architecture that 
includes feature extraction at the data layer to construct multiple trading 
environments, so that different feed DRL agents would robustly recommend 
assets for trading layer. The proposed CMSRS uses a variety of data sources, 
including Google stock trends, fundamental data and technical indicators along 
with historical price data, for the selection and recommendation suitable stocks to 
buy or sell concurrently by multiple agents. To optimize hyperparameters during 
the validation phase, we employ Sharpe ratio as a risk adjusted return measure. 
Additionally, we address liquidity requirements by defining a precise reward 
function that dynamically manages cash reserves. We also penalize the model for 
failing to maintain a reserve of cash. 
Results: The empirical results on the real U.S. stock market data show the 
superiority of our CMSRS, especially in volatile markets and out-of-sample data. 
Conclusion: The proposed CMSRS demonstrates significant advancements in stock 
recommendation by effectively leveraging multiple trading agents and diverse 
data sources. The empirical results underscore its robustness and superior 
performance, particularly in volatile market conditions. This multi-layered 
approach not only optimizes returns but also efficiently manages risks and 
liquidity, offering a compelling solution for dynamic and uncertain financial 
environments. Future work could further refine the model's adaptability to other 
market conditions and explore its applicability across different asset classes. 
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Introduction 
Choosing the appropriate share for investment and 

accurately identifying the time to buy and sell shares is 

considered a challenging task. To become a professional 

stock trader and make successful transactions, investor 

must have significant experience and be able to recognize 

the trend of share price changes. Prediction tools for 

detecting market trends and forecasting stock 
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movements have been popular for several years. Various 

techniques and models are used to predict stock prices 

efficiently.  

Linear regression [1] is introduced to predict 

continuous price values. Time series models such as the 

ARIMA (AutoRegressive Integrated Moving Average) [2] 

have also been proposed to model historical stock price 

data. Machine learning algorithms like LSTM (Long Short-

Term Memory) [3], [4], RNN (Recurrent Neural 

Networks) [5] are also provided for stock price prediction 

and market trend detection. The variable, non-linear and 

fluctuating nature of the stock market has prevented the 

proposed models and algorithms from predicting well and 

being able to perform well in highly volatile markets and 

crashes. However, another class of techniques called 

reinforcement learning, which have worked well in 

computer games [6], [7] and performed as well as or 

better than humans, can be used to predict stock prices. 

Reinforcement learning in finance and stock trading 

involves training intelligent algorithms to make trading 

decisions by interacting with financial markets. These 

algorithms learn optimal strategies through trial and 

error, adapting to market dynamics to maximize returns 

and manage risks and the reinforcement agent is 

encouraged with any action that makes reaching the goal 

with more points, and is punished on the contrary. 

Accordingly, some researchers have designed trading 

strategies based on deep reinforcement 

algorithms [8]-[12], leveraging the power of neural 

networks to capture intricate market patterns and make 

informed decisions. These approaches aim to enhance 

portfolio management, risk assessment, and adaptive 

trading in the dynamic and complex landscape of financial 

markets. 

Because the financial market is constantly changing 

and very complex, it is not convenient to learn the optimal 

trading policy using only an DRL agent [13]. So, in recent 

researches for automatic trading strategies [13]-[18], 

different multiagent deep reinforcement learning models 

have been used to extract features in order to display the 

environment observations of the reinforcement agent. 

One of the challenges that these systems face is how to 

accurately represent the agent's environment, which can 

give the agents a correct perspective for correct action. 

All the Multiagent SRS studies that have been done, 

trading agents use shared data source for learning. In the 

complex and volatile stock market environment, various 

distributed and decentralized data sources reflect market 

changes from different perspectives. A key challenge is 

obtaining the temporal characteristics of these data types 

and feeding them into agents differently to provide a 

deeper understanding of the stock market environment. 

In order to mitigate this challenge, we use various data 

sources such as Google stock trends and fundamental 

data and technical indicators along with historical price 

data to select and recommend suitable stocks to buy or 

sell by multiple agents concurrently.  

Besides that, due to the different behavior of distinct 

stocks in financial markets, the presented approaches 

face unsolved challenges yet. Considerable, all parts of 

the RL environment only reproduce common historical 

price data to train trading agents for all assets which 

makes the efficiency of the algorithm not acceptable for 

some out-of-sample stocks. While some stocks have 

fundamental behavior, some are price driven and some of 

them follow the overall movement of the market. To solve 

the presented challenge, nonidentical from the research 

done, we hypothesize that the treatment of stock 

selection for buy or sell trade specially in the time of 

volatile market in the form of the stock-based feature 

selection and learning the trading behavior of each stock 

independently and the cooperation of agents in choosing 

the final decision is useful to make robust profitable 

trading decisions.  

Another challenge that automated trading systems 

face is that in highly volatile markets, they face a lack of 

liquidity to reduce the average share purchase price. 

Therefore, we define the novel reward function in such a 

way that the agent always has adequate liquidity in order 

to avoid excessive losses in fluctuating markets. The 

summarized contributions of this paper are as follows: 

 We proposed a Concurrent Multiagent Stock 

Recommender System (CMSRS) to generate 

collaborative recommendations. 

 We used diverse data to co-train multiple 

concurrent DRLs to robustly detect market trends. 

 For different stocks, the Concurrent RL trading 

agents have a custom-built environment for 

training. More precisely, effective features are 

extracted for different stocks using the dvlw state 

formation, and RL agents are trained using these 

features as states separately and update shared 

policy. 

 To mitigate losses in bear markets, we defined a 

novel liquidity-based reward function. This reward 

function gives points to the reinforcement agent 

based on the current amount of cash so that the 

agent can always maintain cash at a suitable level. 

The organization of this article is divided as follows: 

Next section provides a bibliometric-based review of 

previous studies on DRL and Multiagent RL trading which 

was extracted on August 20, 2024. Then we present the 

preliminaries and background concepts needed to define 

the RL framework for recommender systems as well as 

the classification of different reinforcement learning 

algorithms. After that, we describe the proposed method 

to solve the raised challenges, including the complete 

Multiagent framework based on multi-layer 
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recommender structure optimization and the trading 

agent training process.  

Final Section shows the experimental results, including 

the parameters optimization results for different stocks 

and the results of the tests and methods applied to 

compare the performance of the algorithms and presents 

the trading performance of a trained CMSRS in a real 

environment. Finally, we concludes the paper with 

conclusions from this study and provides directions for 

future research. 

Related Work 

In recent years, recommender systems [19]-[21] and 

reinforcement learning (RL) methods have experienced 

significant advancements, leading to widespread 

adoption across various complex problem domains. RL, in 

particular, has led to an increase in the adoption of its 

algorithms to solve many problems, even those that 

seemed difficult to solve in the past. In the field of stock 

trading, these methods have recently received more 

attention. 

 Fig. 1 demonstrates annual scientific production trend 

in this field.  

Fig. 1 shows since 2018, researchers have paid more 

attention to the use of reinforcement learning algorithms 

in stock trading. 

Especially, the attention of individual and institutional 

investors and financial researchers has also been drawn 

to DRL algorithms. Many investors are looking for 

algorithms that can provide reliable investment 

recommendations by taking into account the turbulent, 

changing and dynamic conditions of financial markets and 

considering all aspects affecting these markets. Table 1 

shows a systematic comparative review using 

bibliometrics on the research done in the field of stock 

trading using RL techniques and Multiagent RL (MARL). 

According to Table 1, the analysis from 1998-2024 shows 

that 60 out of 264 RL-related documents contain the 

keyword Multiagent (from 2002-2024). These documents 

cover various applications, including but not limited to 

Stock Recommender Systems. 

 

 

Fig. 1:  Annual scientific production. 

Table 1 indicates that no book chapters on Multiagent 

topics have been published. Additionally, only one 

conference review and one journal review on techniques 

related to Multiagent Reinforcement Learning (MARL) 

have been published. 

Table 2 summarizes recent research related to 

'reinforcement learning in stock trading' using specific 

keywords. 

 
Table 1: Descriptive statistics of the studies conducted in 1998 
to 2024: Reinforcement learning stock trading systematic review 

 

Description  RL Results  MARL Results 

MAIN 
INFORMATION 
ABOUT DATA 

  

Timespan 1998:2024 2002:2024 

Sources 
(Journals, Books, 

etc) 
148 44 

Documents 264 60 

Annual Growth 
Rate % 

9.19 9.91 

Document 
Average Age 

5.02 4.06 

Average 
citations per doc 

13.7 14.53 

References 6781 1132 

DOCUMENT 
CONTENTS 

  

Keywords Plus 
(ID) 

1293 268 

Author's 
Keywords (DE) 

470 102 

DOCUMENT 
TYPES 

  

Article 99 14 

Book chapter 8 0 

Conference 
paper 

125 20 

Conference 
review 

7 1 

Review 5 1 

   

 

In Fig. 2, the network between the top research 

sources, researcher countries and keywords are 

presented, the left side is cited sources, the middle is the 

country names and on the left side the keywords are 

specified. 
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Fig. 2:  Cited Sources (CR_SO), Countries (AU_CO) and keywords (DE).

 

Table 2: Very recent research with keywords “reinforcement learning stock trading” 

Reference Journal Remarks 

[22] 
Expert systems 

with applications 
(2024) 

Contributions 

A Cascaded LSTM (CLSTM-PPO) model is utilized. Initially, LSTM is 
applied to extract time-series features from daily stock data. 
Additionally, another LSTM model is employed within the RL 

strategy functions for further training. 

Disadvantages Instabilities during training. 

[18] 

 

Information 
Sciences (2023) 

 

Contributions 
An RRL algorithmic trading model by using self-attention to extract 

hidden temporal representation of series with hybrid loss is 
introduced. 

Disadvantages High computational complexity due to sequential training of model 

[22] 

 

Knowledge based 
systems (2023) 

 

Contributions 
DRL-UTrans model is proposed that uses architecture of      U-Net 
and transformer layers combined to RL for trading of single stock. 

Disadvantages It does not support multi-stock trading and portfolio construction 

[24] 
Applied soft 

computing (2023) 

Contributions 
A multi-agent model is introduced that multiple generative 

adversarial networks cooperate to regenerate historical price of 
stocks to resolve generalization issue in stock trading 

Disadvantages It does not support multi-stock trading and portfolio construction 

[13] 

Neural 
Computing and 

Applications 
(2023) 

Contributions 
A Multi-agent DRL is proposed that formulate trend consistency 
factor into reward function as a regularization term for portfolio 

construction 

Disadvantages Accurate trend consistency/inconsistency calculation is a challenge 

[25] 

Advances in 
Transdisciplinary 

Engineering 
(2022) 

Contributions 
Three actor critic RL models (SAC, TD3, A2C) is employed to 
construct an ensemble strategy to automate stock trading 

Disadvantages Unstable result to choose an agent with best Sharpe ratio 

[26] 
Expert systems 

with applications 
(2022) 

Contributions 
A deep reinforcement learning model for asset-specific trading rules 

is investigated that uses different feature extraction modules 

Disadvantages It does not support multi-stock trading and portfolio construction 

[27] 
Expert systems 

with applications 
(2022) 

Contributions 
The ResNet-LSTM actor model for crypto currency trading rules 

investigated that uses ResNet architecture 

Disadvantages 
It does not use reinforcement learning but use classification 

approach 

 

https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/topics/computer-science/residual-neural-network
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Fig. 3 and Table 3 show word cloud of the most 

relevant words used in documents. 
 

 

 

 

 

 

 

 

Fig. 3:  World cloud. 

 

Table 3: Most frequent words 

Terms Frequency 

reinforcement learning 200 

Commerce 164 

financial markets 140 

electronic trading 115 

deep learning 97 

Investments 84 

learning systems 65 

learning algorithms 56 

reinforcement learnings 50 

Profitability 45 

trading strategies 42 

stock trading 40 

decision making 35 

algorithmic trading 24 

portfolio managements 23 

 

Preliminaries and Backgrounds 

A.  Single Agent Reinforcement Learning 

In decision-making problems, the Markov decision 

process (MDP) serves as a framework where outcomes 

are partially random and partially influenced by the 

decision maker. MDPs are commonly used to describe the 

environment in RL, with RL models being a type of state-

based model that leverages MDPs. In essence, RL involves 

training an agent through a system of rewards and 

punishments. The RL agent observes the current state, 

performs an action in the environment, receives a reward 

for that action, and this action transitions the 

environment to the next state. Fig. 4 schematically shows 

MDP process in RL. 
 

 
Fig. 4:  MDP process in RL [28]. 

In a trading Reinforcement Learning algorithm: 

 At time t, the agent (reinforcement algorithm) 

assesses the current state (st) of the environment, which 

encompasses various factors such as cash balance, stock 

prices in the portfolio, the quantity of each share, the 

time since a share was purchased, technical indicators, 

fundamental parameters of the share, the share board 

details (including the number of individual and 

institutional buyers and sellers), the volume of shares 

bought by individual and institutional traders, and other 

relevant features that define the current state of the 

environment.. 

 The agent selects the optimal action (at) from the 

available options (buy/sell/hold). 

 The environment transitions to a new state (st+1). 

 The environment generates a reward (rt), which 

reflects the change in the portfolio's value 

(increase/decrease/no change). 

The process of selecting an action based on the current 

state is governed by the policy function (π(st) = at), which 

maps states to actions. In reinforcement learning, the 

system always consists of an environment with a set of 

states, actions, a policy function (which guides transitions 

between states), and rewards expressed as numerical 

values. The reinforcement learning agent continuously 

observes the current state, uses the policy function to 

determine the best action, and receives a reward for that 

action.  

This cycle repeats until an end state is reached. The 

agent's goal is to maximize the reward, with an optimal 

policy being one that achieves the highest possible 

reward. Reinforcement learning algorithms vary widely, 

and their classification in Fig. 5 is based on the specific 

components they employ to construct the workflow 

outlined in Fig. 4, ultimately aiming to achieve the optimal 

policy. In recent years, multi-agent models [13]-[17], [24], 

ensemble models [8], [25], [29], and models incorporating 

autoencoders [30] have also been introduced for portfolio 

optimization. 
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The workflow of all reinforcement learning algorithms 

typically includes the following steps: 

1. Initialize the policy (π) with random parameters. 

2. Using the current policy, select the action (a) with 

the highest probability and store the obtained 

reward (r) along with the states before (s) and after 

(s_(t+1)) the action in the experience memory (D). 

3. Choose a model to refine the policy. 

4. Repeat step 2 to gather more experience with the 

improved policy and continue refining the policy. 

In other words, a common approach to finding an 

optimal policy that maximizes the expected cumulative 

discounted reward for each state is policy iteration. This 

method is particularly useful when faced with multiple 

options, each with its own distinct rewards and risks. 

Policy iteration involves a two-stage process that 

alternates between policy evaluation and policy 

improvement. 

In the policy evaluation stage, we intend to find the 

exact value function for our current policy. To achieve this 

goal, we iteratively apply the Bellman equation defined as 

(1) until we reach convergence. 

𝒱π(𝓈) =∑ p ( 𝓈՛, r|𝓈 , π(𝓈))[  r +  γ𝒱π(𝓈
՛)]

𝓈՛ ,r
 (1) 

where 𝓈՛  represents the next state, and π(𝓈) is the action 

taken from state 𝓈 under policy π. The transition 

probability, denoted as 𝑝, is the likelihood of moving from 

state 𝓈 to the next state 𝓈՛  when performing action 𝜋(𝓈)  

and receiving reward 𝑟. The discount factor 𝛾 ∈ [0,1]  

accounts for the time value of rewards. 

In essence, rewards may not be immediately received 

by   the    agent.    Early    rewards   are    generally    more  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

predictable and likely, so they are prioritized over 

potential long-term rewards. In sequences, even larger 

rewards are discounted if they are further in the future, 

as the agent is uncertain about receiving them. The 

discount factor (𝛾) is used to adjust the value of future 

rewards. A higher 𝛾 means that the agent places more 

importance on long-term rewards, while a lower 𝛾  

indicates a greater focus on short-term rewards. 

In the policy improvement stage, as shown in (2), the 

process involves repeatedly applying the Bellman 

optimality operator. 

πˊ(𝓈)= argmax𝒶 ∑ p ( 𝓈՛, r | 𝓈 , 𝒶)[  r + γ𝒱π(𝓈
՛)]𝓈՛ ,r   (2)   

Similarly, the value of choosing action 𝒶 in state 𝓈 

under policy π is denoted as Qπ(s,a). This represents the 

expected cumulative reward of taking action 𝒶 in state 𝓈, 

with all subsequent actions being determined by the 

policy π, as expressed in (3).  

Q𝜋(𝓈 , 𝒶)= ∑ 𝑝 ( 𝓈՛, 𝑟|𝓈 , 𝒶)[  𝑟 +  𝛾Q𝜋(𝓈
՛ , 𝒶ˊ)]

𝓈՛ ,𝑟
 (3) 

The Qπ is called the value-action function for the policy 

π. The value function of 𝒱𝜋 and Qπ can be estimated with 

repetitive experiments. For example, if an agent follows a 

policy and averages the amount it receives from 

experiences for each situation, after an infinite number of 

repetitions, the value of 𝒱𝜋(𝓈) will converge to the real 

value. Now, if this average is kept for each state-action 

pair separately, then Qπ(𝓈, 𝒶) will be estimated and 

stored in the table. Such estimation methods are called 

Monte Carlo methods, which include averaging over a 

large number of random samples of the real return 

reward. 

For complex and dynamic problems like stock trading 

and portfolio optimization, which involve high- 

Fig. 5:  RL Algorithms [34]. 
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dimensional and continuous state-action spaces, finding 

the exact optimal solution using lookup table-based 

methods is often impractical. Instead, rough 

approximators such as neural networks are used. A neural 

network comprises several layers, where the input layer 

receives the state vector 𝓈, and the output layer 

determines the action 𝒶. 

Fig. 1 illustrates the training process of an agent based 

on a Q-Network with experience replay memory. This 

architecture consists of three main components: 

 Q-network Q(𝓈, 𝒶;θ) where θ determines the 

agent's behavioral policy, 

 Q-target network Q(𝓈ˊ, 𝒶ˊ ;θˊ), which is used to 

obtain the Q values for the error part of the Deep Q-

Network (DQN) and 

 Experience Replay Memory, which the agent 

uses to randomly transfer samples to train the Q network. 

The replay memory is used to address the issue of high 

correlation between consecutive examples in the 

problem, which can slow down convergence when used 

for training a neural network. To mitigate this, 

transitions—comprising the state, action, resulting next 

state, and associated reward—are stored in a replay 

memory. These transitions are then randomly sampled 

from the memory for training the network. By doing so, 

the network can learn from a more diverse set of 

experiences, reducing the impact of correlation and 

improving the stability of the learning process. 

Additionally, because these experiences are valuable, the 

replay memory allows them to be reused multiple times 

for more efficient training. The target network, which 

shares the same structure as the main network, is 

periodically  updated  by  copying  the  weights  from  the  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

main network to the target network 𝜃ˊ after a fixed 

number of steps. This approach helps to reduce the 

negative effects of network fluctuations, leading to more 

stable training and faster convergence. 

 
Fig. 6:  DQN architecture [31]. 

B.  Multi Agent Reinforcement Learning 

In MARL, multiple agents interact and learn from each 

other in order to better coordinate their actions in the 

environment to maximize target long-term reward [30]. 

This coordination is achieved through a process known as 

cooperative learning, where agents share their 

experiences with each other and learn from each other’s 

experiences. This allows agents to learn from each other 

and improve their policies. Specially in the case of the RL 

agent that uses the neural network approximator, the 

direct use of single-agent methods in multi-agent 

frameworks violates the Markov assumptions required 

for convergence because other agents are considered as 

part of the environment, and the environment from the 

perspective of each agent seems to be non-

stationary [32]. As described in [33], if we know the 

actions that are taken according to the local observations 

of each agent, even with changing policies, the 

environment has the property of being stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Multiagent RL with 𝑵 𝐀𝐠𝐞𝐧𝐭 

Create experience memory D with M size  
Create Q function by 𝜽 random weights  
Create Q̂ target function by 𝜽ˊ =  𝜽 weights 
for episode from 1 to MaxEpisode do 
       Initialize a random process 𝐍 for action exploration 
       Receive sequence 𝓼𝟏 and preprocessed sequence 𝝓𝟏 = 𝝓 (𝓼𝟏) 
       for 𝒕 from 1 to MaxTimeStep do 

              ∀ 𝒂𝒈𝒆𝒏𝒕 𝒊 ∈ {𝟏, … ,𝑵}  𝒂𝒊𝒕 = µ𝜽
𝒊 (𝒐𝒊)  + 𝐍𝒕 

             Execute all 𝑵 actions 𝓪𝒕 and observe reward 𝐫𝒕 and state 𝓼𝒕+𝟏 
             Set 𝓼𝒕+𝟏 =  𝓼𝒕 and preprocess 𝝓𝒕+𝟏 = 𝝓 (𝓼𝒕+𝟏) 
             Store transition (𝝓𝒕 , 𝓪𝒕 , 𝐫𝒕 ,𝝓𝒕+𝟏) in D 
             for agent i = 1 to N do 
                   Sample random mini-batch of transitions (𝝓𝒋 , 𝓪𝒋 , 𝐫𝒋 , 𝝓𝒋+𝟏)from D 

                   𝓨𝒋 =  𝐫𝒋
𝒊 + 𝛄𝐐(𝝓 (𝓼𝒕 ), 𝒂ˊ ;  𝜽ˊ) 

                               Set 𝓨𝒋 = {
𝐫𝒋,                                                                     𝒇𝒐𝒓 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝝓𝒋+𝟏

 𝐫𝒋 + 𝛄𝐦𝐚𝐱𝓪ˊ𝐐 (𝝓 (𝓼𝒕), 𝒂ˊ ;  𝜽ˊ) , 𝒇𝒐𝒓 𝒏𝒐𝒏 − 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝝓𝒋+𝟏
 

             Do a gradient descent step on (𝓨𝒋 −  𝐐(𝝓𝒋) , 𝓪𝒋 ;  𝜽))2 respect to the 𝜽 parameters 

             Each C timesteps assign Q̂ = Q 
       end for 

           end for 
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Mathematically, MARL is an MDPs generalization for 

multi-agent reinforcement learning and can be defined as 

(𝑁, 𝑆, 𝐴1:𝑁 , 𝑇, 𝑅1:𝑁 , 𝛾) tuple, where 𝑁 is the number of RL 

agents, 𝑆 denotes states set, 𝐴1:𝑁 indicates actions of  𝑁 

agents, 𝑇 describe probability transition function from 

states and actions to [0,1] and 𝑅1:𝑁 is average reward 

received by 𝑁 agents, depending on the type of multi-

agent MDP, the reward function of the agents can be the 

same or different. In the multi-agent case, each agent i, in 

the t-th iteration, only updates the value of Q(st,i,at,i) and 

leaves the other entries to the Q function unchanged. 

Algorithm 1 shows the multi-agent learning process in 

details. 

Proposed Concurrent MultiAgent Stock 

Recommender System 

We propose a multi-layer multi-agent stock 

recommender system based on deep reinforcement 

algorithm. In the proposed multi-layer CMSRS, we 

propose centralized value function estimator and 

decentralized policy networks of RL agents to diminish 

explained non-stationary issue and stabilize RL agent 

training in the DRL layer. The CMSRS architecture consists 

of four distinct layers, each serving a specific purpose in 

generating stock recommendations for users. These 

layers typically include: 

Data Layer: This layer involves gathering and 

aggregating various data sources and extracting relevant 

features from the preprocessed data. 

Environment Layer: In this layer, the new risk aversion 

reward function is proposed to reduce asset variance and 

decrease maximum percentage loss. 

DRL Layer: This layer includes Multi agent DRL model 

that concurrently train on the environment to reach 

optimal policy.  

Trading Layer: Finally, the contributions made in the 

above three layers will lead to more robust 

recommendations to profitable stock trading in the 

trading layer. 

 In the data layer, preprocessing and feature extraction 

is done on the various data sources such as Google stock 

trends [34], [35] and fundamental data and technical 

indicators along with historical price data to construct 

multiple trading environments, so that different feed DRL 

agents in the DRL layer can have different observations. 

Fig. 7 shows the proposed multi-layer CMSRS system. The 

details of each layer are explained in the following 

subsections. 

A.  Data Layer 

The data layer in a stock recommender system plays a 

crucial role in gathering and preparing the various data 

sources required to make informed recommendations. In 

the proposed architecture, various data sources including 

Google Trends, fundamental data, and historical daily 

stock price data (OHLCV) augmented with technical 

indicators (MACD, RSI, CCI and IDX) is used to form each 

agent observation separately.  
 

 
Fig. 7:  Proposed CMSRS architecture. 

Google trends as a proxy for market sentiment 

analysis, as analyzed in [35] can improve the Sharpe ratio 

of trading. Therefore, this feature has been used to feed 

agents. A normalization preprocess and missing data 

dealing along with feature extraction is done on the raw 

data in the data layer. The data layer includes the 

following tasks in details: 

OHLCV Data: This refers to historical price and trading 

volume data for stocks. It includes the opening, 

highest, lowest, and closing prices of a stock on a 

specific day, as well as the trading volume. This data 

provides insights into price trends, volatility, and 

trading activity over time. The data layer collects and 

preprocesses this information, ensuring it is clean, 

consistent, and ready for analysis. 

Fundamental Data: Fundamental indicators are key 

financial metrics that provide insights into a company's 

financial health and performance. A fundamental risk 

aversion indicator could be derived from metrics such 

as debt-to-equity ratio, earnings per share (EPS), and 

other relevant financial ratios. This indicator helps 

assess the financial stability and risk profile of a 

company. The data layer gathers these fundamental 

indicators for the stocks under consideration. 

Google Trends Data: Google Trends provides 

information about the popularity of search terms over 

time. In the context of a stock recommender system, 

Google Trends data can be used to gauge public 

interest and sentiment towards specific stocks or 

sectors. The data layer collects Google Trends data 

related to search terms relevant to the stocks being 

analyzed. 
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The data collected from these sources is often in 

disparate formats and may require preprocessing to align 

timestamps, handle missing values, and normalize the 

data. Once prepared, the data can be integrated into a 

unified dataset for further analysis.  

Overall, the role of data layer in a stock recommender 

system involves collecting, preprocessing, and integrating 

diverse data sources to create a comprehensive dataset 

that captures both historical market trends and external 

factors affecting stock performance. This integrated 

dataset serves as the foundation for building CMSRS 

models that take into account various dimensions of stock 

behavior and market sentiment. 

B.  Environment Layer 

As mentioned in the preliminaries section, in RL-based 

learning, the trader agent comes to gain experience by 

interacting with the market environment through trial-

and-error procedure to maximize the reward function. 

The data on which the agent's observations rely the 

sensors that provide input to the deep reinforcement 

algorithm. We assume that the quality and quantity of 

this data is effective on the amount of reward that the 

agent can achieve. In addition, the way of rewarding the 

reinforcement agent is very effective in the convergence 

of the model. In this layer, the precise definition of the 

state construction and reward function is proposed, 

which is explained in detail below. 

State Formulation 

Defining the state structure in complex environments 

such as stock trading needs some expertise information. 

According to our latest information, other researches 

have used the simple structure of the time window to 

construct the state. We use novel multi-source n-

dimensional vector to represent state. First, we define the 

difference vector in the tth timestep for fth feature of 

data, dvt
f, as the element-wise subtraction of dt-1

f from dt
f: 

dvt
f
 := dt

f⊖ dt-1
f = (dt

f- dt-1
f). Then, dv is calculated for a 

rolling lookback window (w) that is selected to the current 

time and automatically shifts forward with the timesteps, 

Fig. 8 shows statet formation for one window. This 

valuable information is used to construct observations of 

agents. In experiments this process called difference 

vector lookback window (dvlw) and compared versus 

simple lookback window (slw). 
 

 
Fig. 8:  State formation. 

Risk Aversion Reward Function 

Designing a reward function for a multi-agent RL that 

aims to maximize returns, avoid risks, and reduce 

maximum drawdowns is a complex task that requires 

careful consideration of various factors. The common 

definition of the reward in trading agents is the amount 

of change in the value of the portfolio after the execution 

of the action that is not risk averse. But in practice, a 

trader does not prefer his capital balance to be unstable. 

In other words, high profit along with high loss is not 

desirable for investors. To model this risk aversion and 

comprise liquidity requirement, we define precise reward 

function to dynamically manage cash reserves and 

penalize the model for not maintaining a reserve of cash. 

We add a penalty term to the reward function, which aims 

to reduce the capital variance. This new function enables 

the model to execute transactions with high confidence 

and manage cash reserves. Accordingly, we propose the 

following reward function and compare its effect 

empirically in real experiments. The immediate reward of 

ith agent at timestep t, after executing action 𝒶𝑡
𝑖   (Sell/Buy 

shares from jth stock) in state 𝓈𝑡
𝑖  and transition to state 

𝓈𝑡+1
ˊ𝑖  defined by: 

       (4) 
𝑟𝑡
𝑖(𝓈𝑡

𝑖 , 𝒶𝑡
𝑖 , 𝓈𝑡+1

𝑖 ) = (𝒞𝑡+1
𝑖 + ℎ𝑡+1,𝑗

𝑖 ∗ 𝑝𝑡+1,𝑗
𝑖 ) 

 − (𝒞𝑡
𝑖 + ℎ𝑡,𝑗

𝑖 ∗ 𝑝𝑡,𝑗
𝑖 ) − 𝓅𝑡+1

𝑖 − 𝒞0
𝑖    

where 𝒞 denotes cash value and 𝓅𝑡+1
𝑖  is cash penalty term 

as: 

       (5) 𝓅𝑡+1
𝑖  = 𝑀𝐴𝑋(0, ∑(𝒞𝑡

𝑖 + ℎ𝑡,𝑗
𝑖 ∗ 𝑝𝑡,𝑗

𝑖 ) ∗ 𝒫 − 𝒞𝑡
𝑖) 

where 𝒫 is a hyperparameter which determines the 

liquidity percentage of the portfolio. The cooperative goal 

of the agents in CMSRS is to maximize the team average 

cumulative discounted reward obtained by all agents: 

          (6) 
Q𝜋( 𝓈𝑡 , 𝒶𝑡) = 𝔼𝓈𝑡+1

[𝑟𝑡(𝓈𝑡, 𝒶𝑡 , 𝓈𝑡+1) +
                          𝛾𝔼𝒶𝑡+1∼π(𝓈𝑡+1)

[Q𝜋(𝓈𝑡+1 , 𝒶𝑡+1) ]] 

C.  DRL Layer 

In the DRL layer, we use concurrent multiprocessing 

training via various observations of the local environment 

to improve the performance of DRL trading agents. Each 

trading agent i interacts with a market environment to 

produce transitions independently in the form of {𝓈𝑖, 𝒶𝑖 , 

 r𝑖  , 𝓈ˊ𝑖} that respectively are state, action, reward and 

next state. Then, collection of experience transitions from 

all the RL agents are stored in a shared replay memory to 

update a learner. Fig. 9 demonstrates the policy 

optimization process of the proposed CMSRS. the optimal 

policy of DRL model is learned by using gradient descent 

on the loss function: ℒθ = 𝔼[(𝒴𝑖 −  Q(𝜙𝑖  , 𝒶𝑖  ;  𝜃))2], where 

θ is policy network`s parameter, 𝜙𝑖  is the preprocessed 

state and  𝒴𝑖 = r𝑖 + γmax𝒶ˊQ̂(𝜙 (𝓈𝑖), 𝑎ˊ ;  𝜃ˊ) is target value. 
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Fig. 9:  Multiagent architecture of DRL layer. 

So far, several methods have been proposed for RL 

with neural network approximators, including those 

based on policy gradients. Proximal Policy Optimization 

(PPO) [36] has been shown to provide better stability 

among other RL algorithms. PPO, as the name suggests, 
seeks to find a proximal policy that uses advantage 

function (𝒜) as the difference between the future 

discounted sum of rewards on a certain state and action, 

and the value function of that policy and thus avoids large 

policies update. Let the ratio ℛ(θ) = 
πθ
ˊ (𝒶𝑡 |𝓈𝑡)

πθ(𝒶𝑡 |𝓈𝑡)
 , loss 

function of PPO is: 

         (7)   ℒθ
𝒸  = 𝔼[(min(ℛ(θ) 𝒜, 𝒸 (ℛ(θ),1−𝜖,1+ 𝜖) 𝒜)] 

where 𝒸 denotes clipping operator and 𝜖 is the bound 

threshold hyperparameter.  

We investigate the concurrent Multiagent PPO 

algorithm to learn a shared decentralized policy by 

leveraging team experience from all the PPO agents. At 

the first of training phase, the parameters of policy of all 

agents are set to an initial value. Then, for each episode, 

N agents in each timestep sample an action (Buy/Sell) 

using own deep neural network. After that, the agent 

executes the action in the trading environment and 

observes the reward and transfers to the next state. All of 

team experiences store in the experience replay memory. 

After collecting samples for an episode, M epochs of 

updating are performed with a small batch of transitions 

sampled from memory D on the loss function of (7) using 

SGD (stochastic gradient descent). In this architecture, all 

agents work cooperatively as a team to maximize the 

team-average cumulative discounted reward. 

D.  Trading Layer 

The trading layer in a stock recommender system plays 

a pivotal role in executing the recommendations provided 

by a DRL agent. This layer bridges the gap between the 

recommendations generated by the DRL agent and the 

actual execution of trades in the financial market. The 

motivation to create a very robust trading system is 

achieved by cooperating with several robust models to 

maximize the cumulative reward and let them trade 

based on the DRL layer output. Here is an explanation of 

the key functions of the trading layer:  

1. Trade Execution: Once the DRL agent generates 
stock recommendations based on its learned policy, 
the trading layer is responsible for executing these 
recommendations. It converts the agent 
recommendations into actionable buy or sell orders in 
the market. 

2. Risk Management: The trading layer incorporates 
risk management strategies to control potential losses. 
This involves setting limits on the size of trades, 
diversification across different stocks or asset classes, 
and implementing stop-loss and take-profit 
mechanisms to manage trade outcomes. 

3. Transaction Costs: The trading layer takes 
transaction costs into account, including brokerage 
fees, taxes, and spreads. It aims to optimize trade 
execution to minimize these costs and enhance overall 
trading performance. 

 Experiments 

All the experiments are carried out on a computer 

having a 16 GB RAM with CPU Intel Core i7-10750H and 

GPU Nvidia GeForce GTX 1080 8 GB dedicated memory, 

80 GB of virtual memory has been used to optimize the 

parameters. Data collection consists of three parts. 

Historical price data, fundamental data and historical data 

of Google Trends. 

In all experiments, the initial amount of cash balance is 

10,000$. We incorporate the transaction cost to reflect 

market friction, e.g., 0.1% of each buy or sell trade. To 

control risk during market crash situations the volatility 

index (VIX) is used that is a real-time U.S. stock market 

index representing the market's expectations for volatility 

over the coming 30 days.  

In our experiments, we select seven most active stocks 

from United States stock market due to the high market 

liquidity, including TSLA, AAPL, AMZN, MSFT, GOOG, 

META and IBM to evaluate the proposed CMSRS. The first 

six (META, GOOG, TSLA, MSFT, AAPL, AMZN) have been 

used for training and evaluation and generalization 

testing, the last one (IBM) not utilized in training, used to 

test the robustness of the model and its efficiency. The 

time period used is from January 1, 2013 to July 1, 2023. 

One last year, from August 1, 2022 to August 1, 2023, has 

been used for the trading phase Fig. 10, shows the price 

plot of six train datasets. We use the following widely 

used metrics in both research and practice to evaluate the 

proposed CMSRS:  

 Cumulative Return (CR): reflects the overall effect of the 

trading strategy in a certain period of time 

 Sharpe Ratio (SR): returns the earned per unit of 

volatility, which is a widely used measure of an 

investment performance. 

 Maximum DrawDown (MDD): shows the maximum 

percentage loss during the trading period. 
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Profit and Loss (P&L): presents the amount of profit 

or loss of the algorithm in the desired time period. 

Reinforcement learning algorithms are very sensitive 

to hyperparameter values, and one of the most time-

consuming processes of reinforcement learning is the 

optimization phase of hyperparameters. To optimize the 

parameters, we must define a search space in which the 

valid values of the hyperparameters are specified. Values 

can be sampled in two ways: normal distribution and 

uniform distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Results and Discussion 

A.  Results of the Proposed State Formulation 

To evaluate the impact of proposed state formation on 

the convergence speed and the returned reward, the 

experiment setup involving three agents with random 

stocks is implemented.  

The result as shown in Fig. 12 confirms that the 

proposed state construction process significantly 

converges to higher rewards in less time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10:  Stock prices, the training set (red color): January 1, 2013 to August 1, 2022 and trading set (green color): from July 1, 
2022 to August 1, 2023- From top left to bottom right: META, GOOGL, TSLA, MSFT, AAPL and AMZN. 

The selection of hyperparameters can be done both 

randomly and in a grid manner. We perform Bayesian 

optimization algorithm for search and use Sharpe ratio 

as risk adjusted return measure for hyperparameter 

optimization in validation phase. Fig. 11 shows the effect 

of the number of episodes on the convergence of the 

reinforcement agent in the training phase. The 

convergence of the algorithm is clearly seen in episode 

10,000, but in episode 500, the output of the agent's 

reward fluctuates a lot. 

   

Fig. 11: Effect of the number of episodes on the convergence of the reinforcement agents in the training phase (Left to right: 

500, 1000 and 10,000 episodes). 

 
Fig. 12: Training reward using proposed difference vector 

lookback window (dvlw) and simple lookback window(slw), 
w=32. 
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B.  Results of the Risk Aversion Reward Function 

Fig. 13 illustrates the trading actions and outcomes 

achieved through the utilization of the proposed risk 

aversion reward function, specifically concerning the 

concept of Maximum DrawDown. By maintaining a 

predetermined cash reserve level and implementing a 

trading reward function that penalizes the RL agent when 

the cash level falls below a specified threshold, the 

potential for enhancing the Maximum DrawDown metric 

becomes apparent. Maximum DrawDown (MDD) 

represents a widely used risk assessment tool within the 

realms of trading and investment. It gauges the utmost 

loss suffered by an investment or trading strategy from its 

peak to its lowest point before reaching a new peak (ovals 

in Fig. 13(a) In this context, smoothed increasing gained 

reward (Fig. 13(b)) versus fluctuated reward curve (Fig. 

13(a)) demonstrates that by imposing penalties on the RL 

agent for sustaining a cash level beneath a designated 

threshold, a proactive encouragement is established for 

the agent to uphold a more substantial cash balance. 

Furthermore, the findings in Fig. 13(c) validate the results 

of the trade action distribution chart, showcasing a 

reduced number of long positions and an increased 

occurrence of short positions, accompanied by instances 

of holding flat positions. This configuration can be 

interpreted as a strategy for managing risks. This 

approach contributes to the mitigation of drawdown 

severity by deterring the agent from assuming overly risky 

positions that might otherwise lead to substantial losses. 

The tabular CR results of training using risk aversion cash 

penalty (RAPW) and no limit on cash (NLOC) is given in 

Table 4. 

 

(a) 

 

(b) 
 

(c) 

Fig. 13:  a) Trading simulation by no limit on cash reserving and high volatile return. b) Trading simulation by using risk aversion 
cash penalty. c) Action distribution of RAPW of stocks.

Table 4: CR of stock in training process using risk aversion cash 
penalty (RAPW) and no limit on cash (NLOC) 

Stock  

Reward 
function 

MSFT AAPL GOOGL AMZN META TSLA 

RAPW 2193 997 1063 1788 2755 1762 

NLOC 2030 976 950 1487 2402 1695 

 

C.  Results of the Multiagent vs. Single agent 

This experiment kicked off with the development of a 

comprehensive set of trading strategies for both the 

multiagent and single agent systems, taking into account 

various technical, fundamental, and sentiment-based 

factors. Prior to launching the experiment, extensive 

backtesting was carried out to fine-tune the parameters 

of each trading system, ensuring optimal strategy 

execution and reducing the potential for overfitting. Fig. 

14 shows the result of this experiment in terms of gained 

total reward per episode.  

 
Fig. 14:  Total reward per Episode of proposed MultiAgent 

system and single agent trading system, w=64. 

In summary, the empirical evidence provides 

compelling support for the superiority of the multiagent 

trading system over the single-agent system in terms of 

returns. Through dedicating additional time to the model 

convergence process and refining policies, more 

favorable outcomes can be realized. This undertaking will 

not only enhance the model quality and precision, but 

also markedly elevate final efficiency. Thus, the accurate 

fusion of patience and focused parameter adjustments 

and policy optimizations has ultimately culminated in 

attaining superior performance and greater value 

compared to the invested time and efforts. 
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D.  Results of the Robustness 

To thoroughly challenge the CMSRS adaptability and 

robustness, the experiment ventured into uncharted 

territory by subjecting it to non-trained stock [IBM]. 

Analysis of trading performance metrics such as Sharpe 

ratio (SR), maximum drawdown (MDD), and average 

trade profit and loss (P&L) is shown in Table 5. The initial 

investment has set to 10,000$. 
 

Table 5: Trading performance of proposed MultiAgent system on non-trained IBM stock 

Period January 1, 2013 - July 1, 2023 August 1, 2022 - August 1, 2023 

Measures Proposed model Buy and Hold Proposed model Buy and Hold 

SR 0.1276 -1.3430 0.0057 -1.5821 

MDD -0.3592 -0.4372 -0.101 -0.1761 

P&L 26456 -38.58 2512.04 1345.44 
 

E.   Comparison with Baselines 

In this section, we provide the performance 

comparison results of our proposed CMSRS against other 

approaches during both the training and backtesting 

phases.  

 

We compare our CMSRS against Buy and Hold 

baseline. Besides that, we employ state of the art Multi 

Agent DQN (MADQN) RL algorithm (Table 6). 
 

 

Table 6: CMSRS backtesting results 

Stock 
Period January 1, 2013 - July 1, 2023 August 1, 2022 - August 1, 2023 

Measures CMSRS MADQN B&H CMSRS MADQN B&H 

META 

SR 0.4325 0.087 -0.8224 0.0326 0.0076 -0.4849 

MDD -0.24 -0.432 -0.5922 0.05831 -0.311 -0.5085 

P&L 53754.3 50213 46798.70 15467 11098 10179.76 

GOOG 

SR 0.3708 0.0097 -1.1431 0.05831 0.0102 -0.8647 

MDD -0.21 -0.298 -0.3087 -0.09 -0.203 -0.3166 

P&L 73217.9 57605.9 54208.64 7521 2314 1534.46 

TSLA 

SR 0.1570 0.0145 -0.4834 0.1203 0.0021 -0.5223 

MDD -0.3203 -0.4509 -0.6063 -0.34 -0.43 -0.6505 

P&L 2134012 1348905 1250510 3210 23 -1207.48 

MSFT 

SR 0.3773 0.05 -1.1231 0.0778 0.0101 -0.9483 

MDD -0.1983 -0.2809 -0.2908 -0.12 -0.311 -0.2684 

P&L 123709 113900 112621 7525 3715 2181.32 

AAPL 

SR 0.3597 0.1348 -1.0466 0.09381 0.0176 -1.0458 

MDD -0.2521 -0.3 -0.3852 -0.092 -0.211 -0.2826 

P&L 97654 91212 85957.96 4614.9 1441 2141.46 

AMZN 

SR 0.3464 0.09 -0.9348 0.06134 0.0076 -0.7986 

MDD -0.2709 -0.398 -0.4516 -0.1689 -0.271 -0.4349 

P&L 108306 97201 94856.15 3251.65 1258 -348.67 

Fig. 15 shows learning curve of the proposed 

multiagent RL and baseline multi DQN. As evident from 

Fig. 15, the learning process of DQN exhibits notable 

variance. In contrast, the presented model not only 

outperforms DQN in terms of achieving superior rewards 

but also excels in learning speed and training efficiency, 

requiring significantly less time-approximately one-tenth 

of the time invested by DQN. 
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Fig. 15:  Learning curve of the proposed multiagent RL and 
baseline multi DQN. 

 

Conclusion 

This study has introduced a significant advancement in 

the realm of stock recommender systems through the 

development of a Concurrent Multiagent Deep 

Reinforcement Learning-based Stock Recommender 

System (CMSRS).  

While previous systems focused on a limited number 

of sequential trading agents within the same 

environment, often leading to errors in volatile market 

conditions, the proposed CMSRS represents a robust 

solution by leveraging concurrent multi-layer 

architecture. The CMSRS framework is designed with 

meticulous consideration, encompassing feature 

extraction in the data layer to construct diverse trading 

environments.  

This innovative approach enables multiple feed Deep 

Reinforcement Learning (DRL) agents to make 

recommendations robustly within the trading layer. The 

system effectively integrates various data sources, 

incorporating Google stock trends, fundamental data, 

technical indicators, and historical price data. This 

comprehensive dataset empowers the concurrent agents 

to collaboratively select and recommend stocks for 

buying or selling.  

To further enhance the effectiveness of the system, 

the Sharpe ratio is employed as a risk-adjusted return 

measure, facilitating the optimization of 

hyperparameters during the validation phase. 

Additionally, the introduced reward function ensures 

dynamic management of cash reserves, thereby 

addressing liquidity requirements and penalizing 

deviations from maintaining an adequate cash reserve. 

Empirical results obtained from real U.S. stock market 

data corroborate the supremacy of the Concurrent 

Multiagent SRS (CMSRS), particularly evident in volatile 

market conditions and out-of-sample scenarios. The 

CMSRS not only demonstrates its ability to navigate 

challenging market dynamics but also exhibits robustness 

and superior performance in comparison to prior 

systems. By advancing the capabilities of stock 

recommender systems in the domain of deep 

reinforcement learning, this research contributes 

significantly to the field of financial technology and 

investment strategies. 
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