
J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 2025

Doi: 10.22061/jecei.2024.11193.775 225

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research Paper

A Robust Concurrent Multi-Agent Deep Reinforcement Learning
based Stock Recommender System

S. Khonsha 1, M. A. Sarram 2, R. Sheikhpour 3,*

1 Computer Engineering Department, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
2 Computer Engineering Department, Yazd University, Yazd, Iran.
3 Department of Computer Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran.

Article Info Abstract

Article History:
Received 21 August 2024
Reviewed 06 October 2024
Revised 04 November 2024
Accepted 17 November 2024

Background and Objectives: Stock recommender system (SRS) based on deep
reinforcement learning (DRL) has garnered significant attention within the
financial research community. A robust DRL agent aims to consistently allocate
some amount of cash to the combination of high-risk and low-risk stocks with the
ultimate objective of maximizing returns and balancing risk. However, existing
DRL-based SRSs focus on one or, at most, two sequential trading agents that
operate within the same or shared environment, and often make mistakes in
volatile or variable market conditions. In this paper, a robust Concurrent
Multiagent Deep Reinforcement Learning-based Stock Recommender System
(CMSRS) is proposed.
Methods: The proposed system introduces a multi-layered architecture that
includes feature extraction at the data layer to construct multiple trading
environments, so that different feed DRL agents would robustly recommend
assets for trading layer. The proposed CMSRS uses a variety of data sources,
including Google stock trends, fundamental data and technical indicators along
with historical price data, for the selection and recommendation suitable stocks to
buy or sell concurrently by multiple agents. To optimize hyperparameters during
the validation phase, we employ Sharpe ratio as a risk adjusted return measure.
Additionally, we address liquidity requirements by defining a precise reward
function that dynamically manages cash reserves. We also penalize the model for
failing to maintain a reserve of cash.
Results: The empirical results on the real U.S. stock market data show the
superiority of our CMSRS, especially in volatile markets and out-of-sample data.
Conclusion: The proposed CMSRS demonstrates significant advancements in stock
recommendation by effectively leveraging multiple trading agents and diverse
data sources. The empirical results underscore its robustness and superior
performance, particularly in volatile market conditions. This multi-layered
approach not only optimizes returns but also efficiently manages risks and
liquidity, offering a compelling solution for dynamic and uncertain financial
environments. Future work could further refine the model's adaptability to other
market conditions and explore its applicability across different asset classes.

Keywords:
Multi-agent

Concurrent learning

Deep reinforcement learning
stock recommender system

*Corresponding Author’s Email
Address:

rsheikhpour@ardakan.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction
Choosing the appropriate share for investment and

accurately identifying the time to buy and sell shares is

considered a challenging task. To become a professional

stock trader and make successful transactions, investor

must have significant experience and be able to recognize

the trend of share price changes. Prediction tools for

detecting market trends and forecasting stock

http://jecei.sru.ac.ir/
mailto:rsheikhpour@ardakan.ac.ir
http://creativecommons.org/licenses/by/4.0/

S. Khonsha et al.

226 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

movements have been popular for several years. Various

techniques and models are used to predict stock prices

efficiently.

Linear regression [1] is introduced to predict

continuous price values. Time series models such as the

ARIMA (AutoRegressive Integrated Moving Average) [2]

have also been proposed to model historical stock price

data. Machine learning algorithms like LSTM (Long Short-

Term Memory) [3], [4], RNN (Recurrent Neural

Networks) [5] are also provided for stock price prediction

and market trend detection. The variable, non-linear and

fluctuating nature of the stock market has prevented the

proposed models and algorithms from predicting well and

being able to perform well in highly volatile markets and

crashes. However, another class of techniques called

reinforcement learning, which have worked well in

computer games [6], [7] and performed as well as or

better than humans, can be used to predict stock prices.

Reinforcement learning in finance and stock trading

involves training intelligent algorithms to make trading

decisions by interacting with financial markets. These

algorithms learn optimal strategies through trial and

error, adapting to market dynamics to maximize returns

and manage risks and the reinforcement agent is

encouraged with any action that makes reaching the goal

with more points, and is punished on the contrary.

Accordingly, some researchers have designed trading

strategies based on deep reinforcement

algorithms [8]-[12], leveraging the power of neural

networks to capture intricate market patterns and make

informed decisions. These approaches aim to enhance

portfolio management, risk assessment, and adaptive

trading in the dynamic and complex landscape of financial

markets.

Because the financial market is constantly changing

and very complex, it is not convenient to learn the optimal

trading policy using only an DRL agent [13]. So, in recent

researches for automatic trading strategies [13]-[18],

different multiagent deep reinforcement learning models

have been used to extract features in order to display the

environment observations of the reinforcement agent.

One of the challenges that these systems face is how to

accurately represent the agent's environment, which can

give the agents a correct perspective for correct action.

All the Multiagent SRS studies that have been done,

trading agents use shared data source for learning. In the

complex and volatile stock market environment, various

distributed and decentralized data sources reflect market

changes from different perspectives. A key challenge is

obtaining the temporal characteristics of these data types

and feeding them into agents differently to provide a

deeper understanding of the stock market environment.

In order to mitigate this challenge, we use various data

sources such as Google stock trends and fundamental

data and technical indicators along with historical price

data to select and recommend suitable stocks to buy or

sell by multiple agents concurrently.

Besides that, due to the different behavior of distinct

stocks in financial markets, the presented approaches

face unsolved challenges yet. Considerable, all parts of

the RL environment only reproduce common historical

price data to train trading agents for all assets which

makes the efficiency of the algorithm not acceptable for

some out-of-sample stocks. While some stocks have

fundamental behavior, some are price driven and some of

them follow the overall movement of the market. To solve

the presented challenge, nonidentical from the research

done, we hypothesize that the treatment of stock

selection for buy or sell trade specially in the time of

volatile market in the form of the stock-based feature

selection and learning the trading behavior of each stock

independently and the cooperation of agents in choosing

the final decision is useful to make robust profitable

trading decisions.

Another challenge that automated trading systems

face is that in highly volatile markets, they face a lack of

liquidity to reduce the average share purchase price.

Therefore, we define the novel reward function in such a

way that the agent always has adequate liquidity in order

to avoid excessive losses in fluctuating markets. The

summarized contributions of this paper are as follows:

 We proposed a Concurrent Multiagent Stock

Recommender System (CMSRS) to generate

collaborative recommendations.

 We used diverse data to co-train multiple

concurrent DRLs to robustly detect market trends.

 For different stocks, the Concurrent RL trading

agents have a custom-built environment for

training. More precisely, effective features are

extracted for different stocks using the dvlw state

formation, and RL agents are trained using these

features as states separately and update shared

policy.

 To mitigate losses in bear markets, we defined a

novel liquidity-based reward function. This reward

function gives points to the reinforcement agent

based on the current amount of cash so that the

agent can always maintain cash at a suitable level.

The organization of this article is divided as follows:

Next section provides a bibliometric-based review of

previous studies on DRL and Multiagent RL trading which

was extracted on August 20, 2024. Then we present the

preliminaries and background concepts needed to define

the RL framework for recommender systems as well as

the classification of different reinforcement learning

algorithms. After that, we describe the proposed method

to solve the raised challenges, including the complete

Multiagent framework based on multi-layer

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 227

recommender structure optimization and the trading

agent training process.

Final Section shows the experimental results, including

the parameters optimization results for different stocks

and the results of the tests and methods applied to

compare the performance of the algorithms and presents

the trading performance of a trained CMSRS in a real

environment. Finally, we concludes the paper with

conclusions from this study and provides directions for

future research.

Related Work

In recent years, recommender systems [19]-[21] and

reinforcement learning (RL) methods have experienced

significant advancements, leading to widespread

adoption across various complex problem domains. RL, in

particular, has led to an increase in the adoption of its

algorithms to solve many problems, even those that

seemed difficult to solve in the past. In the field of stock

trading, these methods have recently received more

attention.

 Fig. 1 demonstrates annual scientific production trend

in this field.

Fig. 1 shows since 2018, researchers have paid more

attention to the use of reinforcement learning algorithms

in stock trading.

Especially, the attention of individual and institutional

investors and financial researchers has also been drawn

to DRL algorithms. Many investors are looking for

algorithms that can provide reliable investment

recommendations by taking into account the turbulent,

changing and dynamic conditions of financial markets and

considering all aspects affecting these markets. Table 1

shows a systematic comparative review using

bibliometrics on the research done in the field of stock

trading using RL techniques and Multiagent RL (MARL).

According to Table 1, the analysis from 1998-2024 shows

that 60 out of 264 RL-related documents contain the

keyword Multiagent (from 2002-2024). These documents

cover various applications, including but not limited to

Stock Recommender Systems.

Fig. 1: Annual scientific production.

Table 1 indicates that no book chapters on Multiagent

topics have been published. Additionally, only one

conference review and one journal review on techniques

related to Multiagent Reinforcement Learning (MARL)

have been published.

Table 2 summarizes recent research related to

'reinforcement learning in stock trading' using specific

keywords.

Table 1: Descriptive statistics of the studies conducted in 1998
to 2024: Reinforcement learning stock trading systematic review

Description RL Results MARL Results

MAIN
INFORMATION
ABOUT DATA

Timespan 1998:2024 2002:2024

Sources
(Journals, Books,

etc)
148 44

Documents 264 60

Annual Growth
Rate %

9.19 9.91

Document
Average Age

5.02 4.06

Average
citations per doc

13.7 14.53

References 6781 1132

DOCUMENT
CONTENTS

Keywords Plus
(ID)

1293 268

Author's
Keywords (DE)

470 102

DOCUMENT
TYPES

Article 99 14

Book chapter 8 0

Conference
paper

125 20

Conference
review

7 1

Review 5 1

In Fig. 2, the network between the top research

sources, researcher countries and keywords are

presented, the left side is cited sources, the middle is the

country names and on the left side the keywords are

specified.

S. Khonsha et al.

228 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

Fig. 2: Cited Sources (CR_SO), Countries (AU_CO) and keywords (DE).

Table 2: Very recent research with keywords “reinforcement learning stock trading”

Reference Journal Remarks

[22]
Expert systems

with applications
(2024)

Contributions

A Cascaded LSTM (CLSTM-PPO) model is utilized. Initially, LSTM is
applied to extract time-series features from daily stock data.
Additionally, another LSTM model is employed within the RL

strategy functions for further training.

Disadvantages Instabilities during training.

[18]

Information
Sciences (2023)

Contributions
An RRL algorithmic trading model by using self-attention to extract

hidden temporal representation of series with hybrid loss is
introduced.

Disadvantages High computational complexity due to sequential training of model

[22]

Knowledge based
systems (2023)

Contributions
DRL-UTrans model is proposed that uses architecture of U-Net
and transformer layers combined to RL for trading of single stock.

Disadvantages It does not support multi-stock trading and portfolio construction

[24]
Applied soft

computing (2023)

Contributions
A multi-agent model is introduced that multiple generative

adversarial networks cooperate to regenerate historical price of
stocks to resolve generalization issue in stock trading

Disadvantages It does not support multi-stock trading and portfolio construction

[13]

Neural
Computing and

Applications
(2023)

Contributions
A Multi-agent DRL is proposed that formulate trend consistency
factor into reward function as a regularization term for portfolio

construction

Disadvantages Accurate trend consistency/inconsistency calculation is a challenge

[25]

Advances in
Transdisciplinary

Engineering
(2022)

Contributions
Three actor critic RL models (SAC, TD3, A2C) is employed to
construct an ensemble strategy to automate stock trading

Disadvantages Unstable result to choose an agent with best Sharpe ratio

[26]
Expert systems

with applications
(2022)

Contributions
A deep reinforcement learning model for asset-specific trading rules

is investigated that uses different feature extraction modules

Disadvantages It does not support multi-stock trading and portfolio construction

[27]
Expert systems

with applications
(2022)

Contributions
The ResNet-LSTM actor model for crypto currency trading rules

investigated that uses ResNet architecture

Disadvantages
It does not use reinforcement learning but use classification

approach

https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/journal/information-sciences
https://www.sciencedirect.com/topics/computer-science/residual-neural-network

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 229

Fig. 3 and Table 3 show word cloud of the most

relevant words used in documents.

Fig. 3: World cloud.

Table 3: Most frequent words

Terms Frequency

reinforcement learning 200

Commerce 164

financial markets 140

electronic trading 115

deep learning 97

Investments 84

learning systems 65

learning algorithms 56

reinforcement learnings 50

Profitability 45

trading strategies 42

stock trading 40

decision making 35

algorithmic trading 24

portfolio managements 23

Preliminaries and Backgrounds

A. Single Agent Reinforcement Learning

In decision-making problems, the Markov decision

process (MDP) serves as a framework where outcomes

are partially random and partially influenced by the

decision maker. MDPs are commonly used to describe the

environment in RL, with RL models being a type of state-

based model that leverages MDPs. In essence, RL involves

training an agent through a system of rewards and

punishments. The RL agent observes the current state,

performs an action in the environment, receives a reward

for that action, and this action transitions the

environment to the next state. Fig. 4 schematically shows

MDP process in RL.

Fig. 4: MDP process in RL [28].

In a trading Reinforcement Learning algorithm:

 At time t, the agent (reinforcement algorithm)

assesses the current state (st) of the environment, which

encompasses various factors such as cash balance, stock

prices in the portfolio, the quantity of each share, the

time since a share was purchased, technical indicators,

fundamental parameters of the share, the share board

details (including the number of individual and

institutional buyers and sellers), the volume of shares

bought by individual and institutional traders, and other

relevant features that define the current state of the

environment..

 The agent selects the optimal action (at) from the

available options (buy/sell/hold).

 The environment transitions to a new state (st+1).

 The environment generates a reward (rt), which

reflects the change in the portfolio's value

(increase/decrease/no change).

The process of selecting an action based on the current

state is governed by the policy function (π(st) = at), which

maps states to actions. In reinforcement learning, the

system always consists of an environment with a set of

states, actions, a policy function (which guides transitions

between states), and rewards expressed as numerical

values. The reinforcement learning agent continuously

observes the current state, uses the policy function to

determine the best action, and receives a reward for that

action.

This cycle repeats until an end state is reached. The

agent's goal is to maximize the reward, with an optimal

policy being one that achieves the highest possible

reward. Reinforcement learning algorithms vary widely,

and their classification in Fig. 5 is based on the specific

components they employ to construct the workflow

outlined in Fig. 4, ultimately aiming to achieve the optimal

policy. In recent years, multi-agent models [13]-[17], [24],

ensemble models [8], [25], [29], and models incorporating

autoencoders [30] have also been introduced for portfolio

optimization.

S. Khonsha et al.

230 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

The workflow of all reinforcement learning algorithms

typically includes the following steps:

1. Initialize the policy (π) with random parameters.

2. Using the current policy, select the action (a) with

the highest probability and store the obtained

reward (r) along with the states before (s) and after

(s_(t+1)) the action in the experience memory (D).

3. Choose a model to refine the policy.

4. Repeat step 2 to gather more experience with the

improved policy and continue refining the policy.

In other words, a common approach to finding an

optimal policy that maximizes the expected cumulative

discounted reward for each state is policy iteration. This

method is particularly useful when faced with multiple

options, each with its own distinct rewards and risks.

Policy iteration involves a two-stage process that

alternates between policy evaluation and policy

improvement.

In the policy evaluation stage, we intend to find the

exact value function for our current policy. To achieve this

goal, we iteratively apply the Bellman equation defined as

(1) until we reach convergence.

𝒱π(𝓈) =∑ p (𝓈՛, r|𝓈 , π(𝓈))[r + γ𝒱π(𝓈
՛)]

𝓈՛ ,r
 (1)

where 𝓈՛ represents the next state, and π(𝓈) is the action

taken from state 𝓈 under policy π. The transition

probability, denoted as 𝑝, is the likelihood of moving from

state 𝓈 to the next state 𝓈՛ when performing action 𝜋(𝓈)

and receiving reward 𝑟. The discount factor 𝛾 ∈ [0,1]

accounts for the time value of rewards.

In essence, rewards may not be immediately received

by the agent. Early rewards are generally more

predictable and likely, so they are prioritized over

potential long-term rewards. In sequences, even larger

rewards are discounted if they are further in the future,

as the agent is uncertain about receiving them. The

discount factor (𝛾) is used to adjust the value of future

rewards. A higher 𝛾 means that the agent places more

importance on long-term rewards, while a lower 𝛾

indicates a greater focus on short-term rewards.

In the policy improvement stage, as shown in (2), the

process involves repeatedly applying the Bellman

optimality operator.

πˊ(𝓈)= argmax𝒶 ∑ p (𝓈՛, r | 𝓈 , 𝒶)[r + γ𝒱π(𝓈
՛)]𝓈՛ ,r (2)

Similarly, the value of choosing action 𝒶 in state 𝓈

under policy π is denoted as Qπ(s,a). This represents the

expected cumulative reward of taking action 𝒶 in state 𝓈,

with all subsequent actions being determined by the

policy π, as expressed in (3).

Q𝜋(𝓈 , 𝒶)= ∑ 𝑝 (𝓈՛, 𝑟|𝓈 , 𝒶)[𝑟 + 𝛾Q𝜋(𝓈
՛ , 𝒶ˊ)]

𝓈՛ ,𝑟
 (3)

The Qπ is called the value-action function for the policy

π. The value function of 𝒱𝜋 and Qπ can be estimated with

repetitive experiments. For example, if an agent follows a

policy and averages the amount it receives from

experiences for each situation, after an infinite number of

repetitions, the value of 𝒱𝜋(𝓈) will converge to the real

value. Now, if this average is kept for each state-action

pair separately, then Qπ(𝓈, 𝒶) will be estimated and

stored in the table. Such estimation methods are called

Monte Carlo methods, which include averaging over a

large number of random samples of the real return

reward.

For complex and dynamic problems like stock trading

and portfolio optimization, which involve high-

Fig. 5: RL Algorithms [34].

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 231

dimensional and continuous state-action spaces, finding

the exact optimal solution using lookup table-based

methods is often impractical. Instead, rough

approximators such as neural networks are used. A neural

network comprises several layers, where the input layer

receives the state vector 𝓈, and the output layer

determines the action 𝒶.

Fig. 1 illustrates the training process of an agent based

on a Q-Network with experience replay memory. This

architecture consists of three main components:

 Q-network Q(𝓈, 𝒶;θ) where θ determines the

agent's behavioral policy,

 Q-target network Q(𝓈ˊ, 𝒶ˊ ;θˊ), which is used to

obtain the Q values for the error part of the Deep Q-

Network (DQN) and

 Experience Replay Memory, which the agent

uses to randomly transfer samples to train the Q network.

The replay memory is used to address the issue of high

correlation between consecutive examples in the

problem, which can slow down convergence when used

for training a neural network. To mitigate this,

transitions—comprising the state, action, resulting next

state, and associated reward—are stored in a replay

memory. These transitions are then randomly sampled

from the memory for training the network. By doing so,

the network can learn from a more diverse set of

experiences, reducing the impact of correlation and

improving the stability of the learning process.

Additionally, because these experiences are valuable, the

replay memory allows them to be reused multiple times

for more efficient training. The target network, which

shares the same structure as the main network, is

periodically updated by copying the weights from the

main network to the target network 𝜃ˊ after a fixed

number of steps. This approach helps to reduce the

negative effects of network fluctuations, leading to more

stable training and faster convergence.

Fig. 6: DQN architecture [31].

B. Multi Agent Reinforcement Learning

In MARL, multiple agents interact and learn from each

other in order to better coordinate their actions in the

environment to maximize target long-term reward [30].

This coordination is achieved through a process known as

cooperative learning, where agents share their

experiences with each other and learn from each other’s

experiences. This allows agents to learn from each other

and improve their policies. Specially in the case of the RL

agent that uses the neural network approximator, the

direct use of single-agent methods in multi-agent

frameworks violates the Markov assumptions required

for convergence because other agents are considered as

part of the environment, and the environment from the

perspective of each agent seems to be non-

stationary [32]. As described in [33], if we know the

actions that are taken according to the local observations

of each agent, even with changing policies, the

environment has the property of being stationary.

Algorithm 1 Multiagent RL with 𝑵 𝐀𝐠𝐞𝐧𝐭

Create experience memory D with M size
Create Q function by 𝜽 random weights
Create Q̂ target function by 𝜽ˊ = 𝜽 weights
for episode from 1 to MaxEpisode do
 Initialize a random process 𝐍 for action exploration
 Receive sequence 𝓼𝟏 and preprocessed sequence 𝝓𝟏 = 𝝓 (𝓼𝟏)
 for 𝒕 from 1 to MaxTimeStep do

 ∀ 𝒂𝒈𝒆𝒏𝒕 𝒊 ∈ {𝟏, … ,𝑵} 𝒂𝒊𝒕 = µ𝜽
𝒊 (𝒐𝒊) + 𝐍𝒕

 Execute all 𝑵 actions 𝓪𝒕 and observe reward 𝐫𝒕 and state 𝓼𝒕+𝟏
 Set 𝓼𝒕+𝟏 = 𝓼𝒕 and preprocess 𝝓𝒕+𝟏 = 𝝓 (𝓼𝒕+𝟏)
 Store transition (𝝓𝒕 , 𝓪𝒕 , 𝐫𝒕 ,𝝓𝒕+𝟏) in D
 for agent i = 1 to N do
 Sample random mini-batch of transitions (𝝓𝒋 , 𝓪𝒋 , 𝐫𝒋 , 𝝓𝒋+𝟏)from D

 𝓨𝒋 = 𝐫𝒋
𝒊 + 𝛄𝐐(𝝓 (𝓼𝒕), 𝒂ˊ ; 𝜽ˊ)

 Set 𝓨𝒋 = {
𝐫𝒋, 𝒇𝒐𝒓 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝝓𝒋+𝟏

 𝐫𝒋 + 𝛄𝐦𝐚𝐱𝓪ˊ𝐐 (𝝓 (𝓼𝒕), 𝒂ˊ ; 𝜽ˊ) , 𝒇𝒐𝒓 𝒏𝒐𝒏 − 𝒕𝒆𝒓𝒎𝒊𝒏𝒂𝒍 𝝓𝒋+𝟏

 Do a gradient descent step on (𝓨𝒋 − 𝐐(𝝓𝒋) , 𝓪𝒋 ; 𝜽))2 respect to the 𝜽 parameters

 Each C timesteps assign Q̂ = Q
 end for

 end for

S. Khonsha et al.

232 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

Mathematically, MARL is an MDPs generalization for

multi-agent reinforcement learning and can be defined as

(𝑁, 𝑆, 𝐴1:𝑁 , 𝑇, 𝑅1:𝑁 , 𝛾) tuple, where 𝑁 is the number of RL

agents, 𝑆 denotes states set, 𝐴1:𝑁 indicates actions of 𝑁

agents, 𝑇 describe probability transition function from

states and actions to [0,1] and 𝑅1:𝑁 is average reward

received by 𝑁 agents, depending on the type of multi-

agent MDP, the reward function of the agents can be the

same or different. In the multi-agent case, each agent i, in

the t-th iteration, only updates the value of Q(st,i,at,i) and

leaves the other entries to the Q function unchanged.

Algorithm 1 shows the multi-agent learning process in

details.

Proposed Concurrent MultiAgent Stock

Recommender System

We propose a multi-layer multi-agent stock

recommender system based on deep reinforcement

algorithm. In the proposed multi-layer CMSRS, we

propose centralized value function estimator and

decentralized policy networks of RL agents to diminish

explained non-stationary issue and stabilize RL agent

training in the DRL layer. The CMSRS architecture consists

of four distinct layers, each serving a specific purpose in

generating stock recommendations for users. These

layers typically include:

Data Layer: This layer involves gathering and

aggregating various data sources and extracting relevant

features from the preprocessed data.

Environment Layer: In this layer, the new risk aversion

reward function is proposed to reduce asset variance and

decrease maximum percentage loss.

DRL Layer: This layer includes Multi agent DRL model

that concurrently train on the environment to reach

optimal policy.

Trading Layer: Finally, the contributions made in the

above three layers will lead to more robust

recommendations to profitable stock trading in the

trading layer.

 In the data layer, preprocessing and feature extraction

is done on the various data sources such as Google stock

trends [34], [35] and fundamental data and technical

indicators along with historical price data to construct

multiple trading environments, so that different feed DRL

agents in the DRL layer can have different observations.

Fig. 7 shows the proposed multi-layer CMSRS system. The

details of each layer are explained in the following

subsections.

A. Data Layer

The data layer in a stock recommender system plays a

crucial role in gathering and preparing the various data

sources required to make informed recommendations. In

the proposed architecture, various data sources including

Google Trends, fundamental data, and historical daily

stock price data (OHLCV) augmented with technical

indicators (MACD, RSI, CCI and IDX) is used to form each

agent observation separately.

Fig. 7: Proposed CMSRS architecture.

Google trends as a proxy for market sentiment

analysis, as analyzed in [35] can improve the Sharpe ratio

of trading. Therefore, this feature has been used to feed

agents. A normalization preprocess and missing data

dealing along with feature extraction is done on the raw

data in the data layer. The data layer includes the

following tasks in details:

OHLCV Data: This refers to historical price and trading

volume data for stocks. It includes the opening,

highest, lowest, and closing prices of a stock on a

specific day, as well as the trading volume. This data

provides insights into price trends, volatility, and

trading activity over time. The data layer collects and

preprocesses this information, ensuring it is clean,

consistent, and ready for analysis.

Fundamental Data: Fundamental indicators are key

financial metrics that provide insights into a company's

financial health and performance. A fundamental risk

aversion indicator could be derived from metrics such

as debt-to-equity ratio, earnings per share (EPS), and

other relevant financial ratios. This indicator helps

assess the financial stability and risk profile of a

company. The data layer gathers these fundamental

indicators for the stocks under consideration.

Google Trends Data: Google Trends provides

information about the popularity of search terms over

time. In the context of a stock recommender system,

Google Trends data can be used to gauge public

interest and sentiment towards specific stocks or

sectors. The data layer collects Google Trends data

related to search terms relevant to the stocks being

analyzed.

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 233

The data collected from these sources is often in

disparate formats and may require preprocessing to align

timestamps, handle missing values, and normalize the

data. Once prepared, the data can be integrated into a

unified dataset for further analysis.

Overall, the role of data layer in a stock recommender

system involves collecting, preprocessing, and integrating

diverse data sources to create a comprehensive dataset

that captures both historical market trends and external

factors affecting stock performance. This integrated

dataset serves as the foundation for building CMSRS

models that take into account various dimensions of stock

behavior and market sentiment.

B. Environment Layer

As mentioned in the preliminaries section, in RL-based

learning, the trader agent comes to gain experience by

interacting with the market environment through trial-

and-error procedure to maximize the reward function.

The data on which the agent's observations rely the

sensors that provide input to the deep reinforcement

algorithm. We assume that the quality and quantity of

this data is effective on the amount of reward that the

agent can achieve. In addition, the way of rewarding the

reinforcement agent is very effective in the convergence

of the model. In this layer, the precise definition of the

state construction and reward function is proposed,

which is explained in detail below.

State Formulation

Defining the state structure in complex environments

such as stock trading needs some expertise information.

According to our latest information, other researches

have used the simple structure of the time window to

construct the state. We use novel multi-source n-

dimensional vector to represent state. First, we define the

difference vector in the tth timestep for fth feature of

data, dvt
f, as the element-wise subtraction of dt-1

f from dt
f:

dvt
f
 := dt

f⊖ dt-1
f = (dt

f- dt-1
f). Then, dv is calculated for a

rolling lookback window (w) that is selected to the current

time and automatically shifts forward with the timesteps,

Fig. 8 shows statet formation for one window. This

valuable information is used to construct observations of

agents. In experiments this process called difference

vector lookback window (dvlw) and compared versus

simple lookback window (slw).

Fig. 8: State formation.

Risk Aversion Reward Function

Designing a reward function for a multi-agent RL that

aims to maximize returns, avoid risks, and reduce

maximum drawdowns is a complex task that requires

careful consideration of various factors. The common

definition of the reward in trading agents is the amount

of change in the value of the portfolio after the execution

of the action that is not risk averse. But in practice, a

trader does not prefer his capital balance to be unstable.

In other words, high profit along with high loss is not

desirable for investors. To model this risk aversion and

comprise liquidity requirement, we define precise reward

function to dynamically manage cash reserves and

penalize the model for not maintaining a reserve of cash.

We add a penalty term to the reward function, which aims

to reduce the capital variance. This new function enables

the model to execute transactions with high confidence

and manage cash reserves. Accordingly, we propose the

following reward function and compare its effect

empirically in real experiments. The immediate reward of

ith agent at timestep t, after executing action 𝒶𝑡
𝑖 (Sell/Buy

shares from jth stock) in state 𝓈𝑡
𝑖 and transition to state

𝓈𝑡+1
ˊ𝑖 defined by:

 (4)
𝑟𝑡
𝑖(𝓈𝑡

𝑖 , 𝒶𝑡
𝑖 , 𝓈𝑡+1

𝑖) = (𝒞𝑡+1
𝑖 + ℎ𝑡+1,𝑗

𝑖 ∗ 𝑝𝑡+1,𝑗
𝑖)

 − (𝒞𝑡
𝑖 + ℎ𝑡,𝑗

𝑖 ∗ 𝑝𝑡,𝑗
𝑖) − 𝓅𝑡+1

𝑖 − 𝒞0
𝑖

where 𝒞 denotes cash value and 𝓅𝑡+1
𝑖 is cash penalty term

as:

 (5) 𝓅𝑡+1
𝑖 = 𝑀𝐴𝑋(0, ∑(𝒞𝑡

𝑖 + ℎ𝑡,𝑗
𝑖 ∗ 𝑝𝑡,𝑗

𝑖) ∗ 𝒫 − 𝒞𝑡
𝑖)

where 𝒫 is a hyperparameter which determines the

liquidity percentage of the portfolio. The cooperative goal

of the agents in CMSRS is to maximize the team average

cumulative discounted reward obtained by all agents:

 (6)
Q𝜋(𝓈𝑡 , 𝒶𝑡) = 𝔼𝓈𝑡+1

[𝑟𝑡(𝓈𝑡, 𝒶𝑡 , 𝓈𝑡+1) +
 𝛾𝔼𝒶𝑡+1∼π(𝓈𝑡+1)

[Q𝜋(𝓈𝑡+1 , 𝒶𝑡+1)]]

C. DRL Layer

In the DRL layer, we use concurrent multiprocessing

training via various observations of the local environment

to improve the performance of DRL trading agents. Each

trading agent i interacts with a market environment to

produce transitions independently in the form of {𝓈𝑖, 𝒶𝑖 ,

 r𝑖 , 𝓈ˊ𝑖} that respectively are state, action, reward and

next state. Then, collection of experience transitions from

all the RL agents are stored in a shared replay memory to

update a learner. Fig. 9 demonstrates the policy

optimization process of the proposed CMSRS. the optimal

policy of DRL model is learned by using gradient descent

on the loss function: ℒθ = 𝔼[(𝒴𝑖 − Q(𝜙𝑖 , 𝒶𝑖 ; 𝜃))2], where

θ is policy network`s parameter, 𝜙𝑖 is the preprocessed

state and 𝒴𝑖 = r𝑖 + γmax𝒶ˊQ̂(𝜙 (𝓈𝑖), 𝑎ˊ ; 𝜃ˊ) is target value.

S. Khonsha et al.

234 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

Fig. 9: Multiagent architecture of DRL layer.

So far, several methods have been proposed for RL

with neural network approximators, including those

based on policy gradients. Proximal Policy Optimization

(PPO) [36] has been shown to provide better stability

among other RL algorithms. PPO, as the name suggests,
seeks to find a proximal policy that uses advantage

function (𝒜) as the difference between the future

discounted sum of rewards on a certain state and action,

and the value function of that policy and thus avoids large

policies update. Let the ratio ℛ(θ) =
πθ
ˊ (𝒶𝑡 |𝓈𝑡)

πθ(𝒶𝑡 |𝓈𝑡)
 , loss

function of PPO is:

 (7) ℒθ
𝒸 = 𝔼[(min(ℛ(θ) 𝒜, 𝒸 (ℛ(θ),1−𝜖,1+ 𝜖) 𝒜)]

where 𝒸 denotes clipping operator and 𝜖 is the bound

threshold hyperparameter.

We investigate the concurrent Multiagent PPO

algorithm to learn a shared decentralized policy by

leveraging team experience from all the PPO agents. At

the first of training phase, the parameters of policy of all

agents are set to an initial value. Then, for each episode,

N agents in each timestep sample an action (Buy/Sell)

using own deep neural network. After that, the agent

executes the action in the trading environment and

observes the reward and transfers to the next state. All of

team experiences store in the experience replay memory.

After collecting samples for an episode, M epochs of

updating are performed with a small batch of transitions

sampled from memory D on the loss function of (7) using

SGD (stochastic gradient descent). In this architecture, all

agents work cooperatively as a team to maximize the

team-average cumulative discounted reward.

D. Trading Layer

The trading layer in a stock recommender system plays

a pivotal role in executing the recommendations provided

by a DRL agent. This layer bridges the gap between the

recommendations generated by the DRL agent and the

actual execution of trades in the financial market. The

motivation to create a very robust trading system is

achieved by cooperating with several robust models to

maximize the cumulative reward and let them trade

based on the DRL layer output. Here is an explanation of

the key functions of the trading layer:

1. Trade Execution: Once the DRL agent generates
stock recommendations based on its learned policy,
the trading layer is responsible for executing these
recommendations. It converts the agent
recommendations into actionable buy or sell orders in
the market.

2. Risk Management: The trading layer incorporates
risk management strategies to control potential losses.
This involves setting limits on the size of trades,
diversification across different stocks or asset classes,
and implementing stop-loss and take-profit
mechanisms to manage trade outcomes.

3. Transaction Costs: The trading layer takes
transaction costs into account, including brokerage
fees, taxes, and spreads. It aims to optimize trade
execution to minimize these costs and enhance overall
trading performance.

 Experiments

All the experiments are carried out on a computer

having a 16 GB RAM with CPU Intel Core i7-10750H and

GPU Nvidia GeForce GTX 1080 8 GB dedicated memory,

80 GB of virtual memory has been used to optimize the

parameters. Data collection consists of three parts.

Historical price data, fundamental data and historical data

of Google Trends.

In all experiments, the initial amount of cash balance is

10,000$. We incorporate the transaction cost to reflect

market friction, e.g., 0.1% of each buy or sell trade. To

control risk during market crash situations the volatility

index (VIX) is used that is a real-time U.S. stock market

index representing the market's expectations for volatility

over the coming 30 days.

In our experiments, we select seven most active stocks

from United States stock market due to the high market

liquidity, including TSLA, AAPL, AMZN, MSFT, GOOG,

META and IBM to evaluate the proposed CMSRS. The first

six (META, GOOG, TSLA, MSFT, AAPL, AMZN) have been

used for training and evaluation and generalization

testing, the last one (IBM) not utilized in training, used to

test the robustness of the model and its efficiency. The

time period used is from January 1, 2013 to July 1, 2023.

One last year, from August 1, 2022 to August 1, 2023, has

been used for the trading phase Fig. 10, shows the price

plot of six train datasets. We use the following widely

used metrics in both research and practice to evaluate the

proposed CMSRS:

 Cumulative Return (CR): reflects the overall effect of the

trading strategy in a certain period of time

 Sharpe Ratio (SR): returns the earned per unit of

volatility, which is a widely used measure of an

investment performance.

 Maximum DrawDown (MDD): shows the maximum

percentage loss during the trading period.

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 235

Profit and Loss (P&L): presents the amount of profit

or loss of the algorithm in the desired time period.

Reinforcement learning algorithms are very sensitive

to hyperparameter values, and one of the most time-

consuming processes of reinforcement learning is the

optimization phase of hyperparameters. To optimize the

parameters, we must define a search space in which the

valid values of the hyperparameters are specified. Values

can be sampled in two ways: normal distribution and

uniform distribution.

Results and Discussion

A. Results of the Proposed State Formulation

To evaluate the impact of proposed state formation on

the convergence speed and the returned reward, the

experiment setup involving three agents with random

stocks is implemented.

The result as shown in Fig. 12 confirms that the

proposed state construction process significantly

converges to higher rewards in less time.

Fig. 10: Stock prices, the training set (red color): January 1, 2013 to August 1, 2022 and trading set (green color): from July 1,
2022 to August 1, 2023- From top left to bottom right: META, GOOGL, TSLA, MSFT, AAPL and AMZN.

The selection of hyperparameters can be done both

randomly and in a grid manner. We perform Bayesian

optimization algorithm for search and use Sharpe ratio

as risk adjusted return measure for hyperparameter

optimization in validation phase. Fig. 11 shows the effect

of the number of episodes on the convergence of the

reinforcement agent in the training phase. The

convergence of the algorithm is clearly seen in episode

10,000, but in episode 500, the output of the agent's

reward fluctuates a lot.

Fig. 11: Effect of the number of episodes on the convergence of the reinforcement agents in the training phase (Left to right:

500, 1000 and 10,000 episodes).

Fig. 12: Training reward using proposed difference vector

lookback window (dvlw) and simple lookback window(slw),
w=32.

S. Khonsha et al.

236 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

B. Results of the Risk Aversion Reward Function

Fig. 13 illustrates the trading actions and outcomes

achieved through the utilization of the proposed risk

aversion reward function, specifically concerning the

concept of Maximum DrawDown. By maintaining a

predetermined cash reserve level and implementing a

trading reward function that penalizes the RL agent when

the cash level falls below a specified threshold, the

potential for enhancing the Maximum DrawDown metric

becomes apparent. Maximum DrawDown (MDD)

represents a widely used risk assessment tool within the

realms of trading and investment. It gauges the utmost

loss suffered by an investment or trading strategy from its

peak to its lowest point before reaching a new peak (ovals

in Fig. 13(a) In this context, smoothed increasing gained

reward (Fig. 13(b)) versus fluctuated reward curve (Fig.

13(a)) demonstrates that by imposing penalties on the RL

agent for sustaining a cash level beneath a designated

threshold, a proactive encouragement is established for

the agent to uphold a more substantial cash balance.

Furthermore, the findings in Fig. 13(c) validate the results

of the trade action distribution chart, showcasing a

reduced number of long positions and an increased

occurrence of short positions, accompanied by instances

of holding flat positions. This configuration can be

interpreted as a strategy for managing risks. This

approach contributes to the mitigation of drawdown

severity by deterring the agent from assuming overly risky

positions that might otherwise lead to substantial losses.

The tabular CR results of training using risk aversion cash

penalty (RAPW) and no limit on cash (NLOC) is given in

Table 4.

(a)

(b)

(c)

Fig. 13: a) Trading simulation by no limit on cash reserving and high volatile return. b) Trading simulation by using risk aversion
cash penalty. c) Action distribution of RAPW of stocks.

Table 4: CR of stock in training process using risk aversion cash
penalty (RAPW) and no limit on cash (NLOC)

Stock

Reward
function

MSFT AAPL GOOGL AMZN META TSLA

RAPW 2193 997 1063 1788 2755 1762

NLOC 2030 976 950 1487 2402 1695

C. Results of the Multiagent vs. Single agent

This experiment kicked off with the development of a

comprehensive set of trading strategies for both the

multiagent and single agent systems, taking into account

various technical, fundamental, and sentiment-based

factors. Prior to launching the experiment, extensive

backtesting was carried out to fine-tune the parameters

of each trading system, ensuring optimal strategy

execution and reducing the potential for overfitting. Fig.

14 shows the result of this experiment in terms of gained

total reward per episode.

Fig. 14: Total reward per Episode of proposed MultiAgent

system and single agent trading system, w=64.

In summary, the empirical evidence provides

compelling support for the superiority of the multiagent

trading system over the single-agent system in terms of

returns. Through dedicating additional time to the model

convergence process and refining policies, more

favorable outcomes can be realized. This undertaking will

not only enhance the model quality and precision, but

also markedly elevate final efficiency. Thus, the accurate

fusion of patience and focused parameter adjustments

and policy optimizations has ultimately culminated in

attaining superior performance and greater value

compared to the invested time and efforts.

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 237

D. Results of the Robustness

To thoroughly challenge the CMSRS adaptability and

robustness, the experiment ventured into uncharted

territory by subjecting it to non-trained stock [IBM].

Analysis of trading performance metrics such as Sharpe

ratio (SR), maximum drawdown (MDD), and average

trade profit and loss (P&L) is shown in Table 5. The initial

investment has set to 10,000$.

Table 5: Trading performance of proposed MultiAgent system on non-trained IBM stock

Period January 1, 2013 - July 1, 2023 August 1, 2022 - August 1, 2023

Measures Proposed model Buy and Hold Proposed model Buy and Hold

SR 0.1276 -1.3430 0.0057 -1.5821

MDD -0.3592 -0.4372 -0.101 -0.1761

P&L 26456 -38.58 2512.04 1345.44

E. Comparison with Baselines

In this section, we provide the performance

comparison results of our proposed CMSRS against other

approaches during both the training and backtesting

phases.

We compare our CMSRS against Buy and Hold

baseline. Besides that, we employ state of the art Multi

Agent DQN (MADQN) RL algorithm (Table 6).

Table 6: CMSRS backtesting results

Stock
Period January 1, 2013 - July 1, 2023 August 1, 2022 - August 1, 2023

Measures CMSRS MADQN B&H CMSRS MADQN B&H

META

SR 0.4325 0.087 -0.8224 0.0326 0.0076 -0.4849

MDD -0.24 -0.432 -0.5922 0.05831 -0.311 -0.5085

P&L 53754.3 50213 46798.70 15467 11098 10179.76

GOOG

SR 0.3708 0.0097 -1.1431 0.05831 0.0102 -0.8647

MDD -0.21 -0.298 -0.3087 -0.09 -0.203 -0.3166

P&L 73217.9 57605.9 54208.64 7521 2314 1534.46

TSLA

SR 0.1570 0.0145 -0.4834 0.1203 0.0021 -0.5223

MDD -0.3203 -0.4509 -0.6063 -0.34 -0.43 -0.6505

P&L 2134012 1348905 1250510 3210 23 -1207.48

MSFT

SR 0.3773 0.05 -1.1231 0.0778 0.0101 -0.9483

MDD -0.1983 -0.2809 -0.2908 -0.12 -0.311 -0.2684

P&L 123709 113900 112621 7525 3715 2181.32

AAPL

SR 0.3597 0.1348 -1.0466 0.09381 0.0176 -1.0458

MDD -0.2521 -0.3 -0.3852 -0.092 -0.211 -0.2826

P&L 97654 91212 85957.96 4614.9 1441 2141.46

AMZN

SR 0.3464 0.09 -0.9348 0.06134 0.0076 -0.7986

MDD -0.2709 -0.398 -0.4516 -0.1689 -0.271 -0.4349

P&L 108306 97201 94856.15 3251.65 1258 -348.67

Fig. 15 shows learning curve of the proposed

multiagent RL and baseline multi DQN. As evident from

Fig. 15, the learning process of DQN exhibits notable

variance. In contrast, the presented model not only

outperforms DQN in terms of achieving superior rewards

but also excels in learning speed and training efficiency,

requiring significantly less time-approximately one-tenth

of the time invested by DQN.

S. Khonsha et al.

238 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

Fig. 15: Learning curve of the proposed multiagent RL and
baseline multi DQN.

Conclusion

This study has introduced a significant advancement in

the realm of stock recommender systems through the

development of a Concurrent Multiagent Deep

Reinforcement Learning-based Stock Recommender

System (CMSRS).

While previous systems focused on a limited number

of sequential trading agents within the same

environment, often leading to errors in volatile market

conditions, the proposed CMSRS represents a robust

solution by leveraging concurrent multi-layer

architecture. The CMSRS framework is designed with

meticulous consideration, encompassing feature

extraction in the data layer to construct diverse trading

environments.

This innovative approach enables multiple feed Deep

Reinforcement Learning (DRL) agents to make

recommendations robustly within the trading layer. The

system effectively integrates various data sources,

incorporating Google stock trends, fundamental data,

technical indicators, and historical price data. This

comprehensive dataset empowers the concurrent agents

to collaboratively select and recommend stocks for

buying or selling.

To further enhance the effectiveness of the system,

the Sharpe ratio is employed as a risk-adjusted return

measure, facilitating the optimization of

hyperparameters during the validation phase.

Additionally, the introduced reward function ensures

dynamic management of cash reserves, thereby

addressing liquidity requirements and penalizing

deviations from maintaining an adequate cash reserve.

Empirical results obtained from real U.S. stock market

data corroborate the supremacy of the Concurrent

Multiagent SRS (CMSRS), particularly evident in volatile

market conditions and out-of-sample scenarios. The

CMSRS not only demonstrates its ability to navigate

challenging market dynamics but also exhibits robustness

and superior performance in comparison to prior

systems. By advancing the capabilities of stock

recommender systems in the domain of deep

reinforcement learning, this research contributes

significantly to the field of financial technology and

investment strategies.

Author Contributions

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

References

[1] M. Z. Asghar, F. Rahman, F. M. Kundi, S. Ahmad, "Development of
stock market trend prediction system using multiple
regression," Comput. Math. Organ. Theory, 25(2019): 271-301,
2019.

[2] A. A. Ariyo, A. O. Adewumi, C. K. Ayo, "Stock price prediction using
the ARIMA model," in Proc. 2014 UKSim-AMSS 16th International
Conference on Computer Modelling and Simulation: 106-112,
2014.

[3] Y. Wang, Y. Liu, M. Wang, R. Liu, “LSTM model optimization on
stock price forecasting,” in Proc. 2018 17th International
Symposium on Distributed Computing and Applications for
Business Engineering and Science (DCABES): 173-177, 2018.

[4] S. Banik, N. Sharma, M. Mangla, S. N. Mohanty, S. Shitharth, “LSTM
based decision support system for swing trading in stock
market,” Knowl. Based Syst., 239: 107994, 2022.

[5] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, K. P.
Soman, “Stock price prediction using LSTM, RNN and CNN-sliding
window model,” in Proc. 2017 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI): 1643-1647, 2017.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness et al.,
“Human-level control through deep reinforcement
learning,” Nature, 518(7540): 529-533, 2015.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifreet al.,
“Mastering the game of Go with deep neural networks and tree
search,” Nature, 529 (7587): 484-489, 2016.

[8] A. R. Azhikodan, A. G. Bhat, M. V. Jadhav, “Stock trading bot using
deep reinforcement learning,” in Innovations in Computer Science
and Engineering, Proc. the Fifth ICICSE 2017: 41-49, Springer, 2019.

[9] X. Wu, H. Chen, J. Wang, L. Troiano, V. Loia, H. Fujita, “ Adaptive
stock trading strategies with deep reinforcement learning
methods,” Inf. Sci., 538: 142-158, 2020.

[10] S. Carta, A. Corriga, A. Ferreira, A. S. Podda, D. R. Recupero, “A
multi-layer and multi-ensemble stock trader using deep learning
and deep reinforcement learning,” Appl. Intell., 51: 889-905, 2021.

[11] X. Y. Liu, H. Yang, Q. Chen, R. Zhang, L. Yang, B. Xiao, C. D. Wang,
“FinRL: A deep reinforcement learning library for automated stock
trading in quantitative finance,” arXiv preprint arXiv:2011.09607,
2020.

[12] S. Yang, “Deep reinforcement learning for portfolio
management,” Knowl. Based Syst., 278: 110905, 2023.

https://link.springer.com/article/10.1007/s10588-019-09292-7
https://link.springer.com/article/10.1007/s10588-019-09292-7
https://link.springer.com/article/10.1007/s10588-019-09292-7
https://link.springer.com/article/10.1007/s10588-019-09292-7
https://ieeexplore.ieee.org/abstract/document/7046047
https://ieeexplore.ieee.org/abstract/document/7046047
https://ieeexplore.ieee.org/abstract/document/7046047
https://ieeexplore.ieee.org/abstract/document/7046047
https://ieeexplore.ieee.org/abstract/document/8572550
https://ieeexplore.ieee.org/abstract/document/8572550
https://ieeexplore.ieee.org/abstract/document/8572550
https://ieeexplore.ieee.org/abstract/document/8572550
https://www.sciencedirect.com/science/article/pii/S0950705121011072
https://www.sciencedirect.com/science/article/pii/S0950705121011072
https://www.sciencedirect.com/science/article/pii/S0950705121011072
https://www.sciencedirect.com/science/article/pii/S0950705121011072
https://ieeexplore.ieee.org/abstract/document/8126078/
https://ieeexplore.ieee.org/abstract/document/8126078/
https://ieeexplore.ieee.org/abstract/document/8126078/
https://ieeexplore.ieee.org/abstract/document/8126078/
https://ieeexplore.ieee.org/abstract/document/8126078/
https://ieeexplore.ieee.org/abstract/document/8126078/
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://link.springer.com/chapter/10.1007/978-981-10-8201-6_5
https://link.springer.com/chapter/10.1007/978-981-10-8201-6_5
https://link.springer.com/chapter/10.1007/978-981-10-8201-6_5
https://link.springer.com/chapter/10.1007/978-981-10-8201-6_5
https://www.sciencedirect.com/science/article/pii/S0020025520304692
https://www.sciencedirect.com/science/article/pii/S0020025520304692
https://www.sciencedirect.com/science/article/pii/S0020025520304692
https://www.sciencedirect.com/science/article/pii/S0020025520304692
https://link.springer.com/article/10.1007/s10489-020-01839-5
https://link.springer.com/article/10.1007/s10489-020-01839-5
https://link.springer.com/article/10.1007/s10489-020-01839-5
https://link.springer.com/article/10.1007/s10489-020-01839-5
https://arxiv.org/abs/2011.09607
https://arxiv.org/abs/2011.09607
https://arxiv.org/abs/2011.09607
https://arxiv.org/abs/2011.09607
https://www.sciencedirect.com/science/article/pii/S095070512300655X
https://www.sciencedirect.com/science/article/pii/S095070512300655X

A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System

J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202 239

[13] C. Ma, J. Zhang, Z. Li, S. Xu, “Multi-agent deep reinforcement
learning algorithm with trend consistency regularization
for portfolio management,” Neural Comput. Appl., 35(9): 6589-
6601, 2023.

[14] Z. Huang, F. Tanaka, “MSPM: A modularized and scalable multi-
agent reinforcement learning-based system for financial portfolio
management,” Plos one, 17(2): e0263689, 2022.

[15] J. Lussange, I. Lazarevich, S. Bourgeois-Gironde, S. Palminteri, B.
Gutkin, “Modelling stock markets by multi-agent reinforcement
learning,” Comput. Econ., 57: 113-147, 2021.

[16] J. Lee, R. Kim, S. W. Yi, J. Kang, “MAPS: Multi-agent reinforcement
learning-based portfolio management system,” arXiv preprint
arXiv:2007.05402, 2020.

[17] P. Koratamaddi, K. Wadhwani, M. Gupta, D. S. G. Sanjeevi, “A
multi-agent reinforcement learning approach for stock portfolio
allocation,” in Proc. the 3rd ACM India Joint International
Conference on Data Science & Management of Data (8th ACM
IKDD CODS & 26th COMAD): 410-410, 2021.

[18] D. Kwak, S. Choi, W. Chang, “Self-attention based deep direct
recurrent reinforcement learning with hybrid loss for trading
signal generation,” Inf. Sci., 623: 592-606, 2023.

[19] S. Forouzandeh, K. Berahmand, R. Sheikhpour, Y. Li, “A new
method for recommendation based on embedding spectral
clustering in heterogeneous networks (RESCHet),” Expert Syst.
Appl., 231: 120699, 2023.

[20] S. Forouzandeh, M. Rostami, K. Berahmand, R. Sheikhpour,
“Health-aware food recommendation system with dual attention
in heterogeneous graphs,” Comput. Biol. Med., 169: 107882, 2024.

[21] M. Nourahmadi, A. Rahimi, H. Sadeqi, “Designing a stock
recommender system using the collaborative filtering algorithm
for the Tehran stock exchange,” Financ. Res. J., 26(2): 302-330,
2024.

[22] B. Yang, T. Liang, J. Xiong, C. Zhong, “Deep reinforcement learning
based on transformer and U-Net framework for stock
trading,” Knowl. Based Syst., 262: 110211, 2023.

[23] J. Zou, J. Lou, B. Wang, S. Liu, “A novel deep reinforcement learning
based automated stock trading system using cascaded lstm
networks,” Expert Syst. Appl., 242: 122801, 2024.

[24] F. F. He, C. T. Chen, S. H. Huang, “A multi-agent virtual market
model for generalization in reinforcement learning based trading
strategies,” Appl. Soft Comput., 134, 109985, 2023.

[25] S. Singh, V. Goyal, S. Goel, H. C. Taneja, “Deep reinforcement
learning models for automated stock trading," in Advanced
Production and Industrial Engineering, 27: 175, 2022.

[26] M. Taghian, A. Asadi, R. Safabakhsh, “Learning financial asset-
specific trading rules via deep reinforcement learning,” Expert
Syst. Appl., 195: 116523, 2022.

[27] L. K. Felizardo, F. C. L. Paiva, C. de Vita Graves, E. Y. Matsumoto, A.
H. R. Costa, E. Del-Moral-Hernandez, P. Brandimarte,
“Outperforming algorithmic trading reinforcement learning
systems: A supervised approach to the cryptocurrency
market,” Expert Syst. Appl., 202: 117259, 2022.

[28] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,
MIT press, 2018.

[29] T. Faturohman, T. Nugraha, “Islamic stock portfolio optimization
using deep reinforcement learning,” J. Islamic Monetary Econ.
Finance, 8(2): 181-200, 2022.

[30] H. Yue, J. Liu, D. Tian, Q. Zhang, “A novel anti-risk method for
portfolio trading using deep reinforcement
learning,” Electronics, 11(9): 1506, 2022.

[31] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria
et al., “Massively parallel methods for deep reinforcement
learning,” arXiv preprint arXiv:1507.04296, 2015.

[32] Y. Shoham, K. Leyton-Brown, “Multiagent systems: Algorithmic,
game-theoretic, and logical foundations,” Cambridge University
Press, 2008.

[33] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-ompetitive
environments,” Adv. Neural Inf. Processing Syst., 30, 2017.

[34] S. Khonsha, M. A. Sarram, R. Sheikhpour, “A profitable portfolio
allocation strategy based on money net-flow adjusted deep
reinforcement learning,” Iran. J. Finance, 7(4): 59-89, 2023.

[35] H. Hu, L. Tang, S. Zhang, H. Wang, “Predicting the direction of stock
markets using optimized neural networks with Google Trends,”
Neurocomput., 285: 188-195, 2018.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov,
“Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2018.

Biographies

Samira Khonsha is a faculty member of the
department of computer
engineering, Zarghan branch, Islamic Azad
University. She holds a Bachelor's degree in
Software Engineering from the Shiraz University.
She also has a Master's degree in in Software
Engineering from Shiraz University and a Ph.D. in
Software Engineering from the Yazd University.
Her areas of expertise include reinforcement

learning, and financial markets.

 Email: khonsha.samira@gmail.com

 ORCID: 0000-0001-9301-760X

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage:
https://scholar.google.com/citations?user=4wEfZaAAAAAJ&hl=en&o
i=ao

Mehdi Agha Sarram is an Associate Professor at
the department of Computer Engineering in Yazd
University, Yazd, Iran. He received his Ph.D.
degree from University of Wales, Cardiff, U.K. in
1979. He is Member of Australian Institute of
Control and Instrumentation and also Member of
Steering Committee on IT standards (ISIRI-ITTC).
He has been Casual Lecturer in Australian

Universities such as SIBT Macquarie University, University of Western
Sydney Macarthur and SWIC University of Western Sydney from 2000 to
2003. His research interests include Machine learning, Data mining,
Network coding and Wireless sensor networks.

 Email: mehdi.sarram@yazd.ac.ir

 ORCID: 0000-0002-1872-6155

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage:
https://scholar.google.com/citations?user=Hx1_SDYAAAAJ&hl=en

Razieh Sheikhpour received her Ph.D. in
Computer Engineering from Yazd University,
Yazd, Iran, in 2017. Currently, she is an Associate
Professor at the department of Computer
Engineering at Ardakan University, Ardakan, Iran.
Her research interests include machine learning,
semi-supervised feature selection and

bioinformatics.

 Email: rsheikhpour@ardakan.ac.ir

 ORCID: 0000-0002-3119-3349

 Web of Science Researcher ID: N-3816-2017

 Scopus Author ID: 55321804800

 Homepage:
https://scholar.google.com/citations?user=SyIdF_4AAAAJ&hl=en

https://link.springer.com/article/10.1007/s00521-022-08011-9
https://link.springer.com/article/10.1007/s00521-022-08011-9
https://link.springer.com/article/10.1007/s00521-022-08011-9
https://link.springer.com/article/10.1007/s00521-022-08011-9
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263689
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263689
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263689
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263689
https://link.springer.com/article/10.1007/s10614-020-10038-w
https://link.springer.com/article/10.1007/s10614-020-10038-w
https://link.springer.com/article/10.1007/s10614-020-10038-w
https://link.springer.com/article/10.1007/s10614-020-10038-w
https://arxiv.org/abs/2007.05402
https://arxiv.org/abs/2007.05402
https://arxiv.org/abs/2007.05402
https://arxiv.org/abs/2007.05402
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://dl.acm.org/doi/abs/10.1145/3430984.3431045
https://www.sciencedirect.com/science/article/pii/S0020025522015377
https://www.sciencedirect.com/science/article/pii/S0020025522015377
https://www.sciencedirect.com/science/article/pii/S0020025522015377
https://www.sciencedirect.com/science/article/pii/S0957417423012010
https://www.sciencedirect.com/science/article/pii/S0957417423012010
https://www.sciencedirect.com/science/article/pii/S0957417423012010
https://www.sciencedirect.com/science/article/pii/S0957417423012010
https://www.sciencedirect.com/science/article/pii/S0010482523013471
https://www.sciencedirect.com/science/article/pii/S0010482523013471
https://www.sciencedirect.com/science/article/pii/S0010482523013471
https://jfr.ut.ac.ir/article_98028.html
https://jfr.ut.ac.ir/article_98028.html
https://jfr.ut.ac.ir/article_98028.html
https://jfr.ut.ac.ir/article_98028.html
https://www.sciencedirect.com/science/article/pii/S0950705122013077
https://www.sciencedirect.com/science/article/pii/S0950705122013077
https://www.sciencedirect.com/science/article/pii/S0950705122013077
https://www.sciencedirect.com/science/article/pii/S0950705122013077
https://www.sciencedirect.com/science/article/pii/S0957417423033031
https://www.sciencedirect.com/science/article/pii/S0957417423033031
https://www.sciencedirect.com/science/article/pii/S0957417423033031
https://www.sciencedirect.com/science/article/pii/S0957417423033031
https://www.sciencedirect.com/science/article/pii/S1568494623000030
https://www.sciencedirect.com/science/article/pii/S1568494623000030
https://www.sciencedirect.com/science/article/pii/S1568494623000030
https://www.sciencedirect.com/science/article/pii/S1568494623000030
https://www.researchgate.net/publication/365327829_Deep_Reinforcement_Learning_Models_for_Automated_Stock_Trading
https://www.researchgate.net/publication/365327829_Deep_Reinforcement_Learning_Models_for_Automated_Stock_Trading
https://www.researchgate.net/publication/365327829_Deep_Reinforcement_Learning_Models_for_Automated_Stock_Trading
https://www.researchgate.net/publication/365327829_Deep_Reinforcement_Learning_Models_for_Automated_Stock_Trading
https://www.sciencedirect.com/science/article/pii/S0957417422000239
https://www.sciencedirect.com/science/article/pii/S0957417422000239
https://www.sciencedirect.com/science/article/pii/S0957417422000239
https://www.sciencedirect.com/science/article/pii/S0957417422000239
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://www.sciencedirect.com/science/article/pii/S0957417422006339
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://jimf-bi.org/index.php/JIMF/article/view/1430
https://jimf-bi.org/index.php/JIMF/article/view/1430
https://jimf-bi.org/index.php/JIMF/article/view/1430
https://jimf-bi.org/index.php/JIMF/article/view/1430
https://www.mdpi.com/2079-9292/11/9/1506
https://www.mdpi.com/2079-9292/11/9/1506
https://www.mdpi.com/2079-9292/11/9/1506
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
https://arxiv.org/abs/1507.04296
http://www.masfoundations.org/mas.pdf
http://www.masfoundations.org/mas.pdf
http://www.masfoundations.org/mas.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://www.ijfifsa.ir/article_170053_468a7cdfc0154fe937e91cd3ed33a513.pdf
https://www.ijfifsa.ir/article_170053_468a7cdfc0154fe937e91cd3ed33a513.pdf
https://www.ijfifsa.ir/article_170053_468a7cdfc0154fe937e91cd3ed33a513.pdf
https://www.ijfifsa.ir/article_170053_468a7cdfc0154fe937e91cd3ed33a513.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0925231218300572
https://www.sciencedirect.com/science/article/abs/pii/S0925231218300572
https://www.sciencedirect.com/science/article/abs/pii/S0925231218300572
https://www.sciencedirect.com/science/article/abs/pii/S0925231218300572
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
mailto:khonsha.samira@gmail.com
https://scholar.google.com/citations?user=4wEfZaAAAAAJ&hl=en&oi=ao
https://scholar.google.com/citations?user=4wEfZaAAAAAJ&hl=en&oi=ao
mailto:mehdi.sarram@yazd.ac.ir
https://scholar.google.com/citations?user=Hx1_SDYAAAAJ&hl=en
mailto:rsheikhpour@ardakan.ac.ir
https://scholar.google.com/citations?user=SyIdF_4AAAAJ&hl=en

S. Khonsha et al.

240 J. Electr. Comput. Eng. Innovations, 13(1): 225-240, 202

How to cite this paper:
S. Khonsha, M. A. Sarram, R. Sheikhpour, “A robust concurrent multi-agent deep
reinforcement learning based stock recommender system,” J. Electr. Comput. Eng.
Innovations, 13(1): 225-240, 2025.

DOI: 10.22061/jecei.2024.11193.775

URL: https://jecei.sru.ac.ir/article_2229.html

https://jecei.sru.ac.ir/article_2229.html

