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Background and Objectives: In the realm of compressed sensing, most greedy 
sparse recovery algorithms necessitate former information about the signal's 
sparsity level, which may not be available in practical conditions. To address this, 
methods based on the Sparsity Adaptive Matching Pursuit (SAMP) algorithm have 
been developed to self-determine this parameter and recover the signal using only 
the sampling matrix and measurements. Determining a suitable Initial Value for 
the algorithm can greatly affect the performance of the algorithm. 
Methods: One of the latest sparsity adaptive methods is Correlation Calculation 
SAMP (CCSAMP), which relies on correlation calculations between the signals 
recovered from the support set and the candidate set. In this paper, we present a 
modified version of CCSAMP that incorporates a pre-estimation phase for 
determining the initial value of the sparsity level, as well as a modified acceptance 
criteria considering the variance of noise.  
Results: To validate the efficiency of the proposed algorithm over the previous 
approaches, random sparse test signals with various sparsity levels were 
generated, sampled at the compression ratio of 50%, and recovered with the 
proposed and previous methods. The results indicate that the suggested method 
needs, on average, 5 to 6 fewer iterations compared to the previous methods, just 
due to the pre-estimation of the initial guess for the sparsity level. Furthermore, 
as far as the least square technique is integrated in some parts of the algorithm, in 
presence of noise the modified acceptance criteria significantly improve the 
success rate while achieving a lower mean squared error (MSE) in the recovery 
process. 
Conclusion: The pre-estimation process makes it possible to recover signal with 
fewer iterations while keeping the recovery quality as before. The fewer the 
number of iterations, the faster the algorithm. By incorporating the noise variance 
into the accept criteria, the method achieves a higher success rate and a lower 
mean squared error (MSE) in the recovery process. 
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Introduction 
Recently, there has been a growing focus among 

researchers on sub-Nyquist sampling methods, due to 

their application in numerous industrial products, such as 

image encryption, radars, mm-wave body scanners and 

pocket handheld ultrasound scanners.  

These applications almost utilize the wideband signals, 

which when sampled at their traditional Nyquist rate, a 

vast number of samples would be generated, leading to 

significant challenges related to processing and storage. 

Sub-Nyquist sampling methods, such as modulated 

wideband converter (MWC), offer solutions to overcome 
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these issues by reducing the sampling rate down to the 

Landau rate [1]-[5].  

The key concept behind these techniques is 

compressed sensing [6], in which data is captured in a 

compressed format. The three main stages of compressed 

sensing are sparsification, compressed sampling, and 

recovery. Sparsification transforms the original signal into 

a sparse format. Compression involves taking 

measurements by multiplying the sparse signal by a 

sensing matrix that has specific characteristics. Finally, in 

the recovery phase, the signal is reconstructed from the 

measurements employing the sparse recovery 

algorithms. 

These algorithms can be divided into three primary 

categories [7]. The first group includes methods based on 

convex relaxation, such as BP (Basis Pursuit) and LASSO, 

which attempt to find the solution by shaping linear 

programming (LP) problems [8], [9]. Although these 

methods are considered accurate, regarding their high 

computational complexity, they might not be applicable 

to practical real large-scale problems.  

The second group consists of non-convex methods that 

rely on statistical approaches, such as BCS (Bayesian 

compressed sensing) [10].  

The third group comprises greedy algorithms that 

implement the recovery process through iterative 

steps [4]. It should be noted that these algorithms are the 

most popular practical techniques because of their lower 

implementation complexity. Among these, Matching 

Pursuit (MP) algorithms are the most widely used and 

practical, known for their performance. In each iteration 

of the simple OMP, the column of the sensing matrix 

related to the highest correlation value with the samples 

is selected. This atom selection process is irreversible, and 

there is no chance to correct for incorrectly selected 

atoms [11], [12].  

Other algorithms, such as CoSaMP and IHT, 

incorporate a backtracking approach that means in 

addition to selecting a certain number of atoms, they are 

capable of removing excessively selected ones by 

applying a threshold in each iteration [13]-[16]. However, 

these greedy algorithms need former knowledge about 

the signal’s sparsity level, which may not always be 

available in practical situations.  

To address this, a sub-category of greedy algorithms, 

known as Sparsity Adaptive Matching Pursuit (SAMP), has 

been developed to estimate the sparsity level as well as 

the recovered signal [17]-[19].  

These methods start with an initial value of the sparsity 

level and gradually adjust it in each iteration with a 

specific step size. Various versions of SAMP have been 

developed to enhance performance in both speed and 

accuracy. The fixed step size is used in the basic SAMP 

[13], while in FSAMP, the step size increases linearly [20]. 

In SAMPVSS and IGSAMP, exponential functions are 

offered to increase the step size [21]-[24]. In Some recent 

algorithm, such as CCSAMP, the step size is adjusted 

based on the correlation coefficient calculated in each 

iteration [25], [26]. It is notable that the initial value 

selection for the step size significantly impacts the 

algorithm’s performance. The small step size will increase 

the number of iterations, while the big value might lead 

to the overestimation of the sparsity level.  

The main contribution of this work is the integration of 

a pre-estimation phase to determine the optimal initial 

step size for CCSAMP, leading to a reduced number of 

required iterations. Additionally, we have established a 

different termination criterion, significantly increasing 

the success rate of CCSAMP under noisy conditions. 

This article is organized as follows: the second section 

provides an overview of the compressed sensing and 

SAMP algorithms. The third section introduces the pre-

estimation phase and the new termination criteria. The 

implementation results, validating the performance of 

the presented work, are presented in the fourth section. 

Overview of Compressed Sensing and SAMP 

Consider a signal 𝛉𝜖ℝ𝑁×1 with length of 𝑁 which is 

targeted to be compressed to a measurement signal 

𝐲𝜖ℝ𝑀×1 with length of 𝑀, where 𝑀 is far smaller than 𝑁 

(𝑀 << 𝑁). But as far as compressed sensing concepts are 

only applicable to the either sparse or compressible 

signals, as shown in below equation, in case of having a 

non-sparse original signal, 𝛉 should be represented in 

terms of the sparse basis of 𝜳 and the sparse signal 

𝐱𝜖ℝ𝑁×1, such that 𝐱 contain only 𝐾 non-zero elements.  

       (1) 𝛉 =  𝜳 𝐱 

In different cases, matrix 𝜳 may vary. Depending on 

the type of application, it can be constructed utilizing 

Fourier transform, Discrete Cosine Transform (DCT), 

Wavelet transform, or other similar transforms. After a 

sparse representation of the signal, the compressed 

measurement 𝐲𝑀×1 is calculated by multiplying the matrix 

𝜱𝑀×𝑁 that decreases the dimension from 𝑁 to 𝑀, as 

shown below: 

(2) 𝐲 =  𝜱 𝜽 = 𝜱𝜳 𝐱 = 𝑨𝐱 

where 𝑨 = 𝜱𝜳. It is noted that 𝑨 is named the sensing 

matrix throughout this article, and to guarantee a 

successful recovery process of the original signal from the 

measurements, this matrix must satisfy special 

characteristics, specifically the Restricted Isometry 

Property (RIP). This condition is met only if the below 

equation is satisfied with constant 𝛿𝑘 ∈ (0,1) [27]. 

(3) (1 − 𝛿𝑘)‖𝐱‖2
2 ≤ ‖𝑨𝐱‖2

2 ≤ (1 + 𝛿𝑘)‖𝐱‖2
2 

One method of recovering the original signal from the 

samples 𝐲 is solving the 𝑙0-norm minimization problem, as 
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show in (4). The goal is to find the sparsest signal that, 

when sampled with 𝑨,  it produces the samples 𝐲. 

(4)  �̂� = arg min‖𝐱‖0    𝑠. 𝑡. 𝐲 = 𝑨𝐱 

In this formula ‖ ‖0 denotes the 𝑙0 −norm and reflects 

the signal’s sparsity level. However, this method is an NP-

hard problem, and its complexity increases significantly as 

the dimension grows. So, it is recommended to 

approximate it with a 𝑙1-norm minimization problem, as 

shown below [28]. 

(5)  �̂� = arg min‖𝐱‖1    𝑠. 𝑡. 𝐲 = 𝑨𝐱 

Although this method can recover the signal with high 

accuracy, greedy algorithms are often preferred due to 

their advantage of lower implementation complexity. 

Among these, certain algorithms, based on the SAMP 

algorithm, do not require any former information about 

the signal's sparsity level. The pseudo-code related to the 

basic SAMP is presented in Algorithm 1. 

 

Algorithm 1: Sparsity Adaptive Matching Pursuit (SAMP) 

Input params: measurement signal 𝐲, sensing matrix 𝑨, 
initial step-size 𝑠0 

Output: recovered signal �̂� 

Initial: �̂� = 0; 𝐫0 = 𝐲; 𝐹0 = ∅; 𝐿 = 𝑠0; 𝑡 = 1; 

while (𝑡𝑟𝑢𝑒) 

𝐵𝑡 = max (𝑨𝐻𝐫𝑡−1, 𝐿) 

𝐶𝑡 = 𝐹𝑡−1 ∪ 𝐵𝑡 

𝐹 = max (𝑨𝐶𝑡

ϯ
𝐲, 𝐿) 

𝐫 = 𝐲 − 𝑨𝐹𝑨𝐹
ϯ

𝐲 

if ‖𝐫‖2 < 𝜀  

         break; 

else if  ‖𝐫‖2 ≥ ‖𝐫𝒕−𝟏‖2  

          𝐿 = 𝐿 + 𝑠0 

else  

          𝐹𝑡 = 𝐹; 𝐫𝑡 = 𝐫; 𝑡 = 𝑡 + 1;  

end 

�̂� = 𝑨𝐹
ϯ

𝐲 

end while 

 

In each iteration, firstly, the candidate set 𝐶𝑡 is 

calculated by finding the 𝐿 indices corresponding to the 

largest correlation between columns of the sensing 

matrix 𝑨 and the previous residual signal. The function 

max (𝐭𝐞𝐦𝐩, 𝐿) returns the index set associated with the 

𝐿 highest value of the input vector of temp.  Then, the 

signal is temporarily recovered related to the union set of 

𝐹𝑡−1 and 𝐶𝑡. Then, as the backtracking stage, the final 

index set is created by selecting its 𝐿 largest value. 

Based on this set of indices, the residual 𝐫 is updated. 

During each iteration. If the correct atoms are selected, 

the norm of 𝐫 tends to decrease.  

Otherwise, it indicates that the chosen sparsity level 𝐿 

is insufficient and must be increased by the step size 𝑠0. 

The repetition of the algorithm continues until the norm 

of 𝐫 becomes smaller than a predefined epsilon. 

Meanwhile, the algorithm might stop unsuccessfully if 𝐿 

exceeds 𝑀 or if the iteration counter 𝑡 exceeds the 

maximum number of iterations. 

As far as the SAMP algorithm uses a fixed step size 𝑠, it 

is prone to either overestimate or underestimate the 

correct sparsity level. In different modifications of the 

SAMP algorithm, others have made attempts to make the 

step size variable.  

For instance, in the CCSAMP method, a varying step 

size is introduced that adjusts based on the correlation 

between 𝐲𝐶𝑡
and 𝐲𝐹  obtained through the Least Squares 

technique for the candidate set and the final set, as 

illustrated in (6) [25]. Step size adjustment is achieved 

through a multilevel decision-making process. Low 

correlation indicates a significant change in each 

iteration. So, the step size must grow. In other words, the 

lower the correlation, the higher the step size. As the 

correlation converges to 1, the step size must be selected 

more cautiously with small values. 

 (6) 

𝐲𝐶𝑡
= 𝑨𝐶𝑡

(𝑨𝐶𝑡

𝑻𝑨𝐶𝑡
)−𝟏𝑨𝐶𝑡

𝑻 𝐲 

𝐲𝐹 = 𝑨𝐹(𝑨𝐹
𝑻𝑨𝐹)−𝟏𝑨𝐹

𝑻 𝐲 

𝜌𝑡 = 𝑐𝑜𝑟𝑟(𝐲𝐶𝑡
, 𝐲𝐹) 

𝑠 = { 
𝑠0 + 10 ∗ (1 − 𝜌𝑡) 𝜌𝑡 < 0.9

    𝑠0                       𝜌𝑡 < 1 − 10−6

1                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Proposed Method  

A. Pre-estimation Phase 

The performance of CCSAMP slightly varies with 

different initial values of the sparsity level. This section 

discusses the details of ICCSAMP, specifically how the 

initial sparsity level is calculated through a pre-estimation 

phase by implementing a matching test [21], [29].  

To estimate the initial sparsity level, the index set 𝑆0 is 

first calculated with 𝐿0 = 1, as below: 

(7) 𝑆0 = max (𝑨𝐻𝐲, 𝐿0) 

Then, the following expression is evaluated to check its 

correctness:  

(8) ‖𝑨𝑆0
𝑇 𝐲‖2 <

1 − 𝛿𝑠

√1 + 𝛿𝑠

‖𝐲‖2 

Here, the constant 𝛿𝑠 is limited between 0 and 1. If the 

condition is satisfied, the 𝐿0 is incremented by one, and 

𝑆0 is updated respectively. Otherwise, the 𝐿0 is 

considered as the initial sparsity level. This value helps to 

reduce the number of iterations of the algorithm, leading 

to speed enhancement. 

The pseudo-code related to this algorithm is presented 

below: 
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Algorithm 2: Improved Correlation Coefficient Sparsity 
Adaptive Matching Pursuit (ICCSAMP) 

Input params: measurement signal 𝐲, sensing matrix 𝑨, 
initial step-size 𝑠0 

Output: recovered signal �̂� 

Initial: �̂� = 0;  𝐶0 = ∅;  𝐹0 = ∅; 𝐿0 = 1;  𝑡 = 1; 

//pre-estimation phase 

while(true) 

𝑆0 = max (𝑨𝐻𝐲, 𝐿0) 

𝐢𝐟 (‖𝑨𝑆0
𝑇 𝐲‖

2
< ((1 − 𝛿𝑠)/√1 + 𝛿𝑠)‖𝐲‖2)  

𝐿0 = 𝐿0 + 1; 

𝐞𝐥𝐬𝐞 𝑏𝑟𝑒𝑎𝑘; 

end while 

𝐿 = 𝐿0; 

𝐫𝟎 = 𝐲 − 𝑨𝑆0
𝑨𝑆0

ϯ
𝐲 

//body  

while (𝑡𝑟𝑢𝑒) 

𝑆𝑡 = max (𝑨𝐻𝐫𝑡−1, 𝐿) 

𝐶𝑡 = 𝐹𝑡−1 ∪ 𝑆𝑡 

𝐹 = max (𝑨𝐶𝑡

ϯ
𝐲, 𝐿) 

𝐲𝐶𝑡
= 𝑨𝐶𝑡

(𝑨𝐶𝑡

𝑻𝑨𝐶𝑡
)−𝟏𝑨𝐶𝑡

𝑻 𝐲 

𝐲𝐹 = 𝑨𝐹(𝑨𝐹
𝑻𝑨𝐹)−𝟏𝑨𝐹

𝑻 𝐲 

𝜌𝑡 = 𝑐𝑜𝑟𝑟(𝐲𝐶𝑡
, 𝐲𝐹) 

𝐢𝐟(𝜌𝑡 < 0.9) 𝐭𝐡𝐞𝐧       

     𝑠 = 𝑠0 + 10 ∗ (1 − 𝜌𝑡) 

𝐞𝐥𝐬𝐞 𝐢𝐟 (𝜌𝑡 < 1 − 10−6) 𝐭𝐡𝐞𝐧        

    𝑠 = 𝑠0 

𝐞𝐥𝐬𝐞     

      𝑠 = 1 

𝐫 = 𝐲 − 𝑨𝐹𝑨𝐹
ϯ

𝐲 

if ‖𝐫‖2 < 𝜀  

         break; 

else if  ‖𝐫‖2 ≥ ‖𝐫𝒕−𝟏‖2  

          𝐿 = 𝐿 + 𝑠 

else  

          𝐹𝑡 = 𝐹; 𝐫𝑡 = 𝐫; 𝑡 = 𝑡 + 1;  

end while 

�̂� = (𝑨𝐹𝑡

𝑻𝑨𝐹𝑡
)−𝟏𝑨𝐹𝑡

𝑻 𝐲 

end 

B. Acceptance Criteria in Noisy Condition 

Given the sensing matrix 𝑨, the measurement vector 

𝐲, and the set of indices 𝑆, when the number of 

measurements 𝑀 is much smaller than the length of the 

signal 𝑁, in each iteration, reconstructing the signal at 

specific indices leads to a set of underdetermined 

equations. Thus, least-squares techniques play a key role 

in the projection of the samples onto the signal domain.  

An important issue that should not be neglected is the 

performance of least-squares techniques under noisy 

conditions. In the presence of measurement noise, the 

observation model is given by 

(9) 𝐲 = 𝑨𝐱 + 𝐧 

where 𝐧 is additive zero-mean Gaussian noise with 

variance 𝜎2, same as below:  

(10) 𝐧 = 𝒩(0, 𝜎2𝑰) 

In the Least square technique, the target is to find �̂� 

which can minimize the residual error 𝐫. 

(11) 𝐫 = 𝐲 − 𝑨�̂� 

However, the variance of the residual 𝐫, 𝑣𝑎𝑟(𝐫), is 

often found to be greater than the variance of the noise 

𝜎2. In other words, when applying the Least Mean Square 

method for finding �̂�, there is always some stable error 

remaining which prevents the Mean Square Error (MSE) 

from becoming lower than the noise variance [30]. 

As mentioned before, the stopping condition in 

CCSAMP checks whether the residual norm is lower than 

a predefined fixed epsilon, typically equal to 10−6. This 

fixed threshold can cause the algorithm to fail under noisy 

conditions. However, if the threshold is chosen based on 

the noise variance, the success rate of the algorithm will 

increase. 

Experimental Results 

All evaluation procedures in this article were 

performed using simulations in MATLAB R2021a.  

To ensure a meaningful comparison among different 

algorithms, a unique test condition was established. 

Specifically, a 𝐾-sparse signal 𝐱 was created by generating 

a random Gaussian signal with a length of N=256 and 

retaining only 𝐾 randomly located elements. 

To compress this signal by a compression ratio of 50%, 

a sensing matrix 𝑨 of size 128×256 was generated, with 

its elements drawn from a Gaussian distribution. This 

structure, with high probability, ensures that this sensing 

matrix satisfies the RIP condition. 

The measurement vector 𝐲 is created by taking 

samples from 𝐱 by multiplying it with 𝑨. Given 𝐲 and 𝑨, In 

this section, the target is to compare the performance of 

recovery algorithms for estimating 𝐱. 

One measure to evaluate the performance of the 

algorithms is the success rate. In order to calculate this 

measure, for different values of the sparsity 𝐾, each 

recovery algorithm was repeated 500 times with different 

sparse signals, and the percentage of successful recovery 

was recorded. The result of recovery is considered 

successful whenever the norm of residual becomes less 

than a predefined epsilon.  

In the first experiment, signals with different sparsity 

levels 𝐾, ranging from 10 to 50, were generated. The test 

was repeated for 512 times, and as shown in Fig. 1, the 

pre-estimation phase in ICCSAMP could decrease the 

number of iterations in average, while maintaining the 

success rate unchanged. 
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However, a slight difference in the success rate under 

highly sparse conditions (𝐾 = 10) is due to the value of 

the estimation parameter 𝛿0. The effect of this parameter 

on the success rate is illustrated in Fig. 2. In the case of 

selecting a small 𝛿0, the estimation of the sparsity level 

fails. From this figure, it can be concluded that values 

above 0.3 perform well for different sparsity levels. 

 

 
 

Fig. 1: Performance comparison of the CCSAMP and ICCSAMP 
without noise. (a) Success Rate (b) number of required 

iterations. 
 

 
Fig. 2: Effect of 𝛿0 value on the success rate for sparsity levels 

of 10 and 40. 

As is depicted in Fig. 3, it is noted that in the absence 

of measurement noise, both of methods, CCSAMP and 

ICCSAMP, reach the same level of the MSE. This can be 

concluded that the pre-estimation phase can increase the 

speed of algorithm, retaining the recovery error the same. 

In another experiment, the number of iterations of the 

SAMP, SAMPVSS, CCSAMP, and ICCSAMP were compared 

in terms of different sparsity levels. In this test, the initial 

sparsity level 𝑠0 = 4 was selected to be the same for the 

four algorithms. For SAMPVSS, the parameters 𝛼 = 3 and 

𝛽 = 2 were used. As illustrated in Fig. 4, it is evident that 

the ICCSAMP algorithm, which utilized the pre-estimation 

phase, requires fewer iterations than the other 

algorithms, resulting in an increase in the overall speed of 

the recovery process. 
 

 
Fig. 3: MSE comparison of the CCSAMP and ICCSAMP without 

noise. 

In another experiment, the number of iterations of the 

SAMP, SAMPVSS, CCSAMP, and ICCSAMP were compared 

in terms of different sparsity levels. In this test, the initial 

sparsity level 𝑠0 = 4 was selected to be the same for the 

four algorithms. For SAMPVSS, the parameters 𝛼 = 3 and 

𝛽 = 2 were used. As illustrated in Fig. 4, it is evident that 

the ICCSAMP algorithm, which utilized the pre-estimation 

phase, requires fewer iterations than the other 

algorithms, resulting in an increase in the overall speed of 

the recovery process.  

 
Fig. 4: Comparison of the number of required iterations in 
different sparsity levels for SAMP, SAMPVSS, CCSAMP, and 

ICCSAMP. 

In the final experiment, our aim was to verify the effect 

of the presented modified acceptance criteria by 

comparing the performance of CCSAMP and ICCSAMP 

under noisy conditions. Meanwhile, to verify that the 

performance of the presented algorithm remains 

consistent across signals with different lengths, we 

conducted this test using an input signal of length 512.The 

success rate, number of iterations, and the mean squared 

error (MSE) of the recovery error are illustrated in the Fig. 

5. 
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 It is evident that in the presence of Gaussian 

measurement noise with various SNR levels, the CCSAMP 

algorithm with fixed stop criterion of 10−5  was unable to 

perform, having a success rate below 0.6 in various SNR 

levels. In contrast, the ICCSAMP algorithm could 

successfully recovered the signal. As shown, for ICCSAMP, 

both the MSE and the number of iterations decrease as 

the SNR increases. Specifically, in SNR higher than 20𝑑𝐵, 

the MSE of the CCSAMP is nearly zero which proves that 

the signal could be recovered with high accuracy. This 

behavior can be explained by the fact that greedy 

algorithms operate iteratively. If the acceptance criterion 

is not chosen appropriately, the algorithm is likely to fail 

in detection of the correct sparsity level. Neglecting noise 

variance and using a fixed value for epsilon increases the 

likelihood of failure, particularly in low SNR conditions. 

 

 
Fig. 5: Performance comparison of CCSAMP and ICCSAMP in 

different SNRs. (a) success rate (b) number of required 
iterations (c)MSE. 

Discussion 

All the experiments in this article are conducted using 

a white Gaussian signal as the input, which follows a 

normal distribution. It is important to note that if other 

distributions, such as Cauchy sequences with outlier 

values, are used, the performance may be affected. 

During the sparsification process if outlier values are 

selected, the recovery process becomes more 

challenging. This is because greedy algorithms operate by 

selecting columns of the sampler matrix that have higher 

correlation with the samples. In this phase, outliers tend 

to dominate, which can significantly affect the atom 

selection process. 

 In an experiment, we generated two sets of input 

based on the Gaussian and Cauchy distribution, and 

repeated the algorithm for 512 times. The below table 

also implies on the above-mentioned discussion. 

Table 1: ICCSAMP performance with two different inputs 

 

Input distribution Success rate MSE 

Gaussian 0.88 42.407 

Cauchy 0.51 1.59× 105 

Summary and Conclusion 

In sub-Nyquist sampling methods such as MWC, sparse 

recovery algorithms are essential for the blind recovery 

process. Although most greedy recovery algorithms 

require knowing the sparsity level in advance, a group of 

algorithms, known as SAMP algorithms, can adaptively 

recover the signal by adjusting the sparsity level in each 

iteration. The initial value of the sparsity level in SAMP 

algorithms can highly affect their performance due to 

either overestimation or underestimation. Also, the way 

the step-size is adjusted can change the computational 

time of the algorithm. In our proposed method, we not 

only reduced the number of required iterations by 

integrating a pre-estimation phase, but also increased the 

success rate of the algorithm in noisy conditions by 

implementing a modified stopping criterion, based on the 

variance of the white gaussian noise.  
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Abbreviation 

𝐀 Sensing matrix 

(. )𝐻 Hermitian transpose of argument matrix 
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(. )ϯ Pseudo inverse of argument matrix 

𝑨𝐹  Columns of 𝑨 corresponding to index set 𝐹 

𝒙 Estimated recovered signal  

‖ ‖0 𝑙0 −norm 

‖. ‖2 Euclidean norm 

𝑐𝑜𝑟𝑟(𝒙, 𝒚) Correlation between 𝒙 and 𝒚 

𝑣𝑎𝑟(. ) Variance of elements of argument vector 

RIP Restricted Isometry Property 

𝒏 Measurement noise 

𝒚 Compressed samples 

MSE Mean Square Error 

𝐾 True sparsity level 

𝐿 Estimated sparsity level 

SNR Signal to Noise Ratio 

SAMP Sparsity Adaptive Matching Pursuit 

CCSAMP Correlation Calculation SAMP 
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