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Introduction 

Power transformers (PTs) are considered one of the 

essential elements in power supply systems. The main 

task of this equipment is to manage voltage levels to 

ensure compatibility between generation sources and 

various electrical loads [1]. In this regard, the reliable 

performance of PTs essential to ensure a continuous 

power supply. This equipment (as a critical network asset) 

to reduce the risk of unexpected failures requires regular 

maintenance and condition assessment. In fact, carrying 

out these preventive measures improves the reliability of  

 

the network. They also reduce downtime and enhance 

the overall stability of the power system [2]. In order to 

protect personnel and equipment, it is essential to 

identify PT issues in their early phases, thereby preventing 

costly repairs and mitigating potential safety hazards. 

Modern diagnostic tools and intelligent decision-making 

procedures drive predictive maintenance techniques, 

which are essential for ensuring a continuous energy 

supply and improving the functionality of PTs. Asset 

managers that proactively identify potential problems 

and meticulously plan maintenance measures can 
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Background and Objectives: Power transformer (PT) health assessment is crucial 
for ensuring the reliability of power systems. Dissolved Gas Analysis (DGA) is a 
widely used technique for this purpose, but traditional DGA interpretation 
methods have limitations. This study aims to develop a more accurate and reliable 
PT health assessment method using an ensemble learning approach with DGA. 

Methods: The proposed method utilizes 11 key parameters obtained from real PT 
samples. In this way, synthetic data are generated using statistical simulation to 
enhance the model's robustness. Twelve different classifiers are initially trained 
and evaluated on the combined dataset. Two novel indices (a risk index and an 
unnecessary cost index) are introduced to assess the classifiers' performance 
alongside traditional metrics such as accuracy, precision, and the confusion matrix. 
An ensemble learning method is then constructed by selecting classifiers with the 
lowest risk and cost indices. 

Results: The ensemble learning approach demonstrated superior performance 
compared to individual classifiers. The learning algorithm achieved high accuracy 
(99%, 92%, and 86% for three health classes), a low unnecessary cost index (6%), 
and a low misclassification risk (16%). This result indicates the effectiveness of the 
ensemble approach in accurately detecting PT health conditions. 

Conclusion: The proposed ensemble learning method provides a reliable and 
accurate assessment of PT health using DGA data. This approach effectively 
optimizes maintenance strategies and enhances the overall reliability of power 
systems by minimizing misclassification risks and unnecessary costs. 
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successfully reduce downtime, extend PT operating 

lifespans, and significantly reduce overall operational 

expenses. In addition to enhancing grid stability, this 

innovative approach fosters a more robust and 

sustainable energy system. The literature on PT fault 

diagnosis provides most of the techniques for identifying 

early faults and preventing catastrophic failures. The 

researchers employ a variety of methods in this 

procedure. Among these are vibration data analysis, 

thermographic image processing [3], dissolved gas 

analysis (DGA), and acoustic emission analysis [4]. 

However, each of these diagnostic techniques has its own 

unique advantages and drawbacks [5]. One popular and 

successful method for diagnosing PT faults is DGA [6]. 

This strategy is based on the fact that different types 

of PT faults produce distinct gases in the oil. Accordingly, 

assessing the quantities of these gases can identify the 

kind and extent of the fault [7]. Many metrics obtained 

from dissolved gases in oil have led to the identification 

of key gases. These include carbon monoxide (CO), carbon 

dioxide (CO₂), hydrogen, methane (CH₄), ethylene (C₂H₄), 

ethane (C₂H₆), and acetylene (C₂H₂) [8]. However, we 

have also exploited other practical features like the oil's 

moisture content and its insulation breakdown voltage 

level. As indicated before, DGA is a robust oil assessment 

instrument. Key gas method (KGM) is a popular DGA data 

analysis tool [9]. KGM, a DGA subsidiary, specializes on 

fault-related gases. This strategy improves fault type and 

severity identification. Measurements of dissolved gases 

in PT insulating oil indicate fault occurrence and type. This 

method leverages the fact that every inaccuracy leads to 

different ratios of oil to dissolved gas. It is possible to 

ascertain the nature and severity of the fault by 

comparing the gas concentrations to the threshold 

values [10]. The characteristics of these gases can identify 

various faults. For instance, internal faults can result in 

the production of hydrogen, CO, CO₂, and CH₄ d. 

However, cellulose faults have the ability to produce 

other gases, such as CH₄, C₂H₆, and C₂H₄ [10]. On the other 

hand, higher hydrocarbon temperatures can lead to 

higher CH₄ and C₂H₆ concentrations. Moreover, studies 

in [4] indicate that an electrical arc or partial discharge 

may raise the concentration of hydrogen. The IEEE 

C57.104-2008 standard provides useful guidelines for 

testing, interpreting, and decision-making of various PT 

faults. The aim of this standard is to standardize and 

improve the accuracy and reliability of the DGA method. 

This standard, by establishing uniform procedures and 

specific requirements, helps increase the efficiency and 

accuracy of the DGA method for detecting faults and 

assessing the health status of PTs. 

In the literature, the DGA process includes various 

steps, the first of which is data preparation. This involves 

collecting oil samples and conducting necessary tests. The 

procedure is done to measure the concentration of 

dissolved gases. After data preparation, the 

concentration of gases (such as hydrogen, methane, 

ethylene, etc.) is identified. Then, the PT fault type is 

determined using various analytical methods (such as key 

gas ratios, Rogers ratios, IEC ratios, and the Duval 

triangle [11]). In the next step, the obtained results from 

the analytical methods are compared with real data to 

evaluate the accuracy and efficiency of the method. 

Eventually (based on the obtained results), decisions will 

be made regarding the health status of the PT and the 

necessary maintenance actions. Gas concentrations in oil 

must be within limits. The references [12]-[14] provide 

the concentration limits for gases in the DGA method. 

These boundaries are used for fault diagnosis and health 

assessment. For example, if the hydrogen concentration 

in the oil exceeds the permissible limit, it may indicate 

windings or core fault . However, interpreting DGA 

parameters takes careful consideration of several 

aspects. In fact, environment, oil type, age, and loads 

affect gas concentrations and fault detection. 

Furthermore, the relation between the concentrations of 

different gases and the types of fractures can be complex 

and nonlinear. For this reason, the use of advanced 

statistical methods and mathematical models is essential 

for the accurate interpretation of results. 

Recent years have seen extensive research into 

advanced DGA interpretation methods. Researchers used 

neural networks (NNs) [15]-[17], genetic algorithms [18], 

and fuzzy logic [19], [20]. These approaches are promising 

PT fault detectors because they can learn complex data 

patterns and correlations [21]. Traditional DGA 

interpretation relies on empirical rules and expert 

knowledge. While these methods have been helpful in 

many circumstances, they may not be enough to reliably 

estimate transformer health under all operating 

conditions. Many studies have shown that classifier 

algorithms including support vector machines 

(SVM) [22], [23], k-nearest neighbors (KNN) [24], [25], 

random forests, decision tree, and Naïve Bayes can 

categorize DGA data and discover different faults. For 

instance, utilizing DGA data, Benmahamed et al. [26] 

suggested a unique method for improving the precision of 

transformer problem identification. They use a bat 

algorithm for parameter optimization, a Gaussian 

classifier, and a SVM classifier in their method. The 

proposed method were able to accurately classify six 

different types of faults than with traditional DGA 

methods. This was done by optimizing the SVM 

parameters and using the concentration of five 

combustible gases as input. In [27], they used SVM and 

the optimization procedure to enhance the model 

parameters and increase the accuracy of fault detection. 

Haque et al. 
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[28] proposed a novel method for fault diagnostics in 

PTs, employing DGA and a Random Forest classifier. They 

classified several fault types with excellent accuracy using 

their approach, which combines a modified Duval 

pentagon method with Euclidean distance characteristics 

and density-based clustering. Using DGA data, a 

study [29] assessed the diagnostic performance of Naive 

Bayes and the KNN algorithm for transformer oil 

insulation states. An approach for finding faults in oil-

immersed PTs uses DGA, a mixed KNN algorithm, and a 

decision tree [24]. The literature review demonstrates 

that feature selection enhances detection process. 

However, some issues with the literature may make it less 

useful and accurate in practice. The limitations of prior 

studies: 

 Some research has mostly looked at small datasets or 

certain kinds of mistakes. This problem makes the 

model less reliable and useful in the real world.  

 Some studies have not used ensemble learning 

methods to improve the accuracy and stability of the 

models (by combining the predictions of models).  

 Many studies have ignored the importance of mistakes 

and the costs associated with erroneously recognizing 

issues. This problem may lead to the selection of 

models that are extremely accurate but carry serious 

risks and high costs. For example, misdiagnosing a 

malfunctioning PT as functional might result in 

irreparable damage, whereas misdiagnosing a working 

PT as a challenge in high maintenance costs. 

This research has presented a novel ensemble learning 

method to address the limitations of previous studies in 

PT health status assessment using DGA data. This 

algorithm uses a big dataset and combines 8 successful 

classifiers in an ensemble learning method. It aims to 

develop a model to determine the PT health across 

various scenarios. This approach considers diagnostic 

accuracy and error costs to make cost-effective decisions. 

This generates synthetic data and standardizes it to 

improve performance. Additionally, in order to measure 

the PT's health status, limit high-risk mistakes, and save 

unnecessary costs, we have developed two risk and 

unnecessary cost indicators. The technologies used in this 

study should improve PT condition monitoring systems 

and reduce unexpected breakdowns. Consequently, we 

have organized the paper as follows: Section 2 explains 

the suggested approach. Section 3 compares the 

performance of the proposed technique with other 

methods, showcasing the implementation details and 

evaluation results on real datasets. Results and 

suggestions for future work are summarized in Section 4. 

Proposed Method 

This section outlines a proposed methodology that 

employs DGA data and machine learning algorithms to 

assess the health status of transformers. The primary 

objective of this method is to address the shortcomings of 

conventional techniques and to enhance the precision 

and dependability in assessing the health condition of the 

transformer. The suggested technique categorizes DGA 

data into three clusters: Healthy, needs retesting in the 

future and needs immediate retesting. This classification 

allows power system operators to evaluate the PT health 

status accurately. Also, they make appropriate decisions 

for PT maintenance and repair. Fig. 1 shows the flowchart 

of the proposed algorithm. As shown, the algorithm 

includes multiple steps as follows. At statistical 

distribution extraction step, the appropriate distribution 

for DGA parameters (gas concentrations and their ratios) 

in each of the three classes is determined. The algorithm 

generate synthetic DGA parameters to increase the of 

training data size and enhance the performance of 

machine learning models. These data are generated using 

the obtained statistical distributions. The algorithm 

normalize both real and synthetic DGA data using an 

appropriate method to ensure uniformity in their scale 

and measurement units. The data is randomly shuffled 

and assigned to training and testing sets for machine 

learning analysis. In order to establish an effective model, 

twelve classifiers are trained and assessed. Consequently, 

an ensemble approach is then employed to further 

enhance the accuracy and reliability of health predictions. 

The following sections will provide complete descriptions 

of the steps. 

A.  Step 1:  Retrieval of Initial Data 

This paper outlines a method for evaluating the health 

of transformers using historical DGA data. These data are 

collected through the analysis of oil samples extracted 

from operational PTs and stored in a dedicated database. 

These include the concentrations and ratios of each of the 

gases, which collectively provide unique insights into the 

transformer's state. The eleven important parameters are 

then reviewed and explained in terms of their technical 

importance. The average breakdown voltage measures 

the dielectric strength of the oil, which shows how well it 

can handle electrical breakdowns when voltage stress is 

applied. The drop in breakdown voltage shows that the oil 

insulation is breaking down. This can be caused by 

contamination, oxidation, or the buildup of 

breakdownproducts. This makes it more likely that there 

will be partial discharges and, eventually, insulation 

failure. Moisture in transformer oil, even in small 

amounts (ppm), can make it less effective at insulating 

and can greatly reduce the oil's dielectric strength.  

This can speed up the breakdown of the paper 

insulation, cause acids and sludge to form, and further 

weaken the transformer's integrity. Carbon monoxide 

solubilized in oil serves as the primary indication of 

thermal stress on cellulose insulation (paper). The 

elevation in CO levels signifies that the insulation is 

experiencing overheating, either attributable to overload, 

inadequate cooling, or isolated hot spots within the PT. 
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Fig. 1: Flowchart of the proposed transformer health assessment algorithm. 
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When paper insulation degrades, it releases CO₂ (a 

substance more difficult to analyze than CO). Taking into 

account the CO₂/CO ratio can aid in accurately 

determining the type and severity of the insulation issue. 

The oil containing oxygen poses a significant issue as it 

accelerates oxidation, leading to the production of acids 

and sludge. When oxygen enters the system, it typically 

indicates an air leak in the generator or conservator tank, 

necessitating immediate repair. While nitrogen typically 

serves as a background gas, it can occasionally serve as a 

diagnostic indicator. A high nitrogen level could mean 

that air is getting into the oil or that nitrogenous 

molecules are breaking down. Total Combustible Gases 

(TCG) measures the amount of combustible gas released 

during partial discharges, overheating, and arcing. To 

ascertain the nature of the mistake, the program must 

thus probe further into the TCG level spike. Gas ratios 

(CH₄/C₂H₂, C₂H₆/CH₄, C₂H₄/C₂H₆, and C₂H₂/C₂H₄) offer a 

detailed understanding of fault situations. Analyzing the 

relative concentration of different gases allows for the 

inference of the fault's nature (e.g., arcing, overheating, 

or partial discharge) and its severity. The literature 

frequently used these ratios in conjunction with 

recognized diagnostic criteria such as the Duval Triangle 

or IEC 60599 to assess DGA results effectively. The 

historical DGA data (which builds up over time and 

includes data from many transformers) helps learn more 

about how transformers work. It makes preventative 

maintenance easier and lowers the chance of failures, 

which keeps the power grid running smoothly. 

B.  Step 2: Statistical Distribution Extraction 

In this step, the statistical distribution governing each 

of the 11 DGA variables is extracted separately for each of 

the three transformer health classes ("Healthy," " needs 

retesting in the future," and "needs immediate retesting 

"). The purpose of this procedure is to create synthetic 

data and increase the database's size. Synthetic data is 

generated to address limitations in the amount and 

diversity of real-world data while also reducing the cost 

and time required for data acquisition. With the increase 

in the volume of training data, various patterns are better 

learned by the model. As a result, the accuracy and 

generalizability of the model increase. Various 

operational conditions and different types of errors is 

simulated by generating synthetic data. In this way, the 

model is helped to perform acceptably under various 

conditions and to be more resilient against new data. The 

process of extracting statistical distributions is such that 

several probable statistical distributions (such as normal, 

log-normal, Weibull, gamma, beta, and exponential) are 

applied to the data of each variable in each class. Then, 

using the Akaike Information Criterion (AIC), the best 

distribution governing the data is selected. The AIC 

criterion, by simultaneously considering the goodness of 

fit of the distribution to the data and the complexity of 

the model, helps in selecting the best distribution. Each 

variable is analyzed to determine its statistical 

distribution within each of the three classes. This 

technique yields 33 unique distributions, given 11 

variables and 3 classes. New DGA data is produced with 

the Monte Carlo approach with these 33 distributions. 

The data are incorporated into the primary database to 

augment the training dataset, hence enhancing the 

efficacy of machine learning models in assessing the 

health status of transformers. 

C.  Step 3: Data Normalization 

The third step of the suggested algorithm is to 

normalize the data. This is done after getting the 

statistical distribution, simulating synthetic data. This step 

prepares data for the learning algorithm to improve 

detection. For this purpose, the Statnorm normalization 

method is used. It transforms the data based on the 

standard normal distribution (with a mean of zero and a 

standard deviation of one). Statnorm is a powerful 

normalization technique specifically suitable for data that 

do not follow a normal distribution. This method 

transforms the data into a standard normal distribution 

by using the rank transformation and then applying the 

inverse cumulative normal distribution function.  This 

approach uses Statnorm's rank-based outlier elimination. 

This minimizes algorithm outlier sensitivity, which is 

especially important for DGA data (with outlier values). In 

addition, the data normalizing into a standard normal 

distribution improves the performance of some machine 

learning algorithms (such as SVM, k-NN, and logistic 

regression). These algorithms perform more effectively 

for data that follows a normal distribution. In order to 

prevent the introduction of bias, the normalization of 

both the training and test datasets should be same.  

As mentioned above, the method builds a synthetic 

dataset to enhance the transformer health detection 

algorithm through three steps: statistical distribution 

extraction, synthetic data production, and data 

normalization. This method improves PT health 

assessment models by adding training data. In addition, it 

improves these models by conducting sensitivity analysis 

and simulating different situations., useful, and reliable. 

Transformer condition assessment improves, resulting in 

fewer failures. 

D.  Step 4: Data Preparation 

This step is very important for getting data ready for 

programs that use machine learning. The chosen method 

reduces possible errors and improves the model's 

performance with new data (by randomizing and dividing 

it up). There are two important parts to the data 

preparation step. In this regard, the suggested method 

mixes up the data in a way that gets rid of any bias that 
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might come from the order of the original dataset. This 

issue guarantees that both the training and testing sets 

(accurately) represent the entire data distribution. 

Secondly, it partitions the data into training and testing 

sets, often according to a 70/30 ratio. All three 

categories—"healthy," "requiring future retesting," and 

"requiring immediate retesting"—utilize this procedure. 

E.  Step 5: Classifier Training and Evaluation 

At this step, the algorithm focuses on the precise 

training and evaluation of various classifiers to detect the 

health status of the transformer. The goal of this step is 

to select the best algorithm for classifying DGA data and 

accurately diagnosing the PT health. The proposed PT 

health assessment system uses 12 well-known machine 

learning classifiers [30]. The approach optimizes 

classifiers via hyper-parameter tweaking. It finds optimal 

hyper-parameter combinations using grid search. In SVM, 

grid search optimizes the kernel type (linear or 

polynomial), penalty parameter (C), and kernel coefficient 

(gamma). Adaptive Boosting (AdaBoostM2), Linear 

Programming Boosting (LPBoost), and Random Under-

sampling Boosting (RUSBoost) all have multi-class 

versions. The number of weak learners (decision trees) is 

an important hyper-parameter that is optimized using 

cross-validation.  

The cross-validation procedure optimizes the number 

of nearest neighbors (k) in the KNN. In addition, the 

algorithm adjusts the number of decision trees in a 

random forest based on cross-validation to achieve a 

balance between model accuracy and complexity. This 

paper evaluates many classifiers and chooses the optimal 

model for transformer health status detection using a 

cross-validation approach with 100 random repeats. The 

method is accurate and reliable. The method randomly 

splits data into 70% training and 30% testing per iteration. 

The results are independent of the data separated by this 

approach. Using training data, each classifier is trained 

and the grid search technique optimizes the model's 

hyper-parameters. The suggested method uses testing 

data to evaluate the accuracy, precision, and confusion 

matrix of the trained model. It randomly divides data 

between training and testing sets in each iteration . The 

procedure's primary loop repeats data partitioning, 

training, and evaluation 100 times. The primary loop 

calculates the mean and standard deviation of the 

evaluation metrics for each classifier. This procedure is 

done to evaluate the system performance. The 

advantages of this technique encompass a reduction in 

the variance of model performance estimate, an 

evaluation of model stability against fluctuations in 

training and testing data, and the identification of optimal 

model parameters and data partitioning configurations. 

This paper uses two new evaluation metrics to assess 

the performance of classifiers in diagnosing the health 

status of transformers in addition to traditional criteria. 

 Risk Index (primary priority):  

This metric addresses the reduction of errors that pose 

significant risks. In practice, misidentifying a faulty 

transformer as healthy is a critical error. This issue has the 

potential to cause catastrophic consequences. The value 

of this metric is derived from the sum of the following two 

values. First, the number of PTs that truly need immediate 

retesting but are mistakenly classified as healthy or 

needing retesting in the future is determined. Then, this 

number is divided by the total number of PTs that truly 

need immediate retesting This value (in percentage) 

allows the algorithm to model the percentage of high-risk 

errors. Second, the algorithm identifies the number of 

transformers incorrectly classified as "healthy" but 

actually requiring retesting in the future. Then, the 

algorithm divides this number by the total number of 

transformers that need retesting in the future (convert to 

percentage). Finally, the two obtained percentages are 

summed to derive the error metric. 

 Unnecessary Cost Index (secondary priority):  

The purpose of this criterion is to reduce unnecessary 

expenses. In fact, unnecessary expenses are imposed on 

the system when a healthy transformer is wrongly 

classified as defective. Then, this number is divided by the 

total number of healthy transformers (then converted to 

a percentage). This method makes it possible to 

determine the percentage of unnecessary expenses. 

Additionally, the number of transformers that actually 

need retesting in the future but have been mistakenly 

classified as needing immediate retesting is determined. 

Then, this number is divided by the total number of 

transformers that actually need to be retested in the 

future (then converted to a percentage). Finally, we add 

the two obtained percentages together to derive the cost 

metric. In these criteria, different errors are weighted 

according to their importance. For instance, the error 

criterion assigns more weight to errors that result in 

misclassifying faulty transformers as healthy. The 

algorithm supplements conventional metrics with these 

criteria to evaluate the performance of classifiers from 

various aspects. These two new criteria allow the 

algorithm to select classifiers that not only have high 

accuracy in detecting transformer health status but also 

minimize high-risk errors and unnecessary costs. 

F.  Ensemble Learning Algorithm 

At this step, the program applies an ensemble learning 

strategy. This procedure is a very efficient machine 

learning method that applies multiple classifiers at once. 

In fact, it combines multiple classifiers into a single, more 

accurate, and reliable forecast. The proposed ensemble 

learning based algorithm implements eight classifiers. It 

trained these classifiers and optimized their parameters 

using grid search methods and cross-validation in the 
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preceding phases. The following are included: SVM, KNN, 

Random Forest, Naive Bayes, Decision Tree, RUSBoost, 

Gaussian Naive Bayes, and LPBoost The proposed 

algorithm selected these classifiers due to their 

exceptional performance and diversity in the 

classification of DGA data. The algorithm receives DGA 

data as input for each case. Each of the eight classifiers 

independently predicts the health status of the 

transformer based on the input DGA data and categorizes 

it into one of three classes. The algorithm calculates class 

votes (predictions) from eight classifiers. For choosing the 

winning class (final transformer health diagnostic), two 

choice paths are considered: 

 Decision path 1:  

If it gets 6 out of 8 votes, a class wins and becomes a 

transformer. 

 Decision path 2:  

If both classes receive at least three votes each, the 

class indicating a more critical condition for the 

transformer will be declared the winner. In other words, 

the priority order will be "needs immediate retesting" 

followed by " needs retesting in the future" and finally 

"healthy". 

The proposed algorithm uses various metrics to 

evaluate the ensemble learning performance. These 

include accuracy, precision, and confusion matrix. These 

metrics encompass error rate metrics, risk factors, and 

unnecessary cost indexes. The algorithm The algorithm 

also utilized these metrics in step 5, which involves 

training and evaluating classifiers. The algorithm conducts 

the evaluation procedure 100 times to enhance 

confidence in the outcomes. Subsequently, it computes 

the mean and standard deviation of the evaluation 

metrics. The proposed ensemble learning technique 

enhances the evaluation of PT health by merging the 

predictions of the top eight classifiers and accounted for 

more significant factors in the final decision-making 

process. Employing this technique can diminish 

maintenance expenses and prolong the longevity of PTs. 

Numerical Results and Analysis 

This section explores the numerical outcomes of 

implementing the method from Section 2 in real-world 

scenarios. This section demonstrates how the proposed 

method accurately categorizes PT health using DGA data. 

Statistical distribution assessment, classical classifier 

evaluation, and group modeling are key components of 

this technique. Section 3.1 will carefully evaluate the 

statistical distributions of critical DGA parameters for 

each transformer health class to find data trends. This 

information should be utilized to generate synthetic data. 

Section 2 proposes a 100-fold random cross-validation 

method to compare the performance of twelve different 

machine learning classifiers, including SVM, KNN, and 

Random Forest. Thus, accuracy, precision, confusion 

matrix, and unnecessary cost indices are used. This 

section will test the ensemble learning model's 

transformer health state classification accuracy and 

dependability. The ensemble learning model uses eight 

top classifier predictions. The proposed method is 

compared to existing DGA interpretation methods for 

advantages and disadvantages. 

A.  Evaluation of Data Preprocessing Steps 

This section will address the numerical evaluation of 

the first three steps of the proposed algorithm, which 

include "statistical distribution extraction," "synthetic 

data generation," and "data normalization." The goal of 

this step is to identify an appropriate statistical 

distribution for each of the 11 DGA parameters (including 

breakdown voltage, moisture, gas concentrations, and 

their ratios) within each of the three transformer health 

classes. The information regarding the transformer under 

study is presented as follows. Fig. 2 to Fig. 5 present the 

statistical distribution of the key features of the studied 

transformers. Fig. 2 shows the statistical distribution of 

transformer lifespans. As can be seen, most transformers 

have a lifespan of between 5 to 10 years (with a frequency 

of about 38%). Additionally, there are a few transformers 

with a lifespan of over 35 years. This indicates that the 

data includes transformers with a variety of ages, from 

new to old. Fig. 3 shows the statistical distribution of 

transformer capacities. The majority of transformers 

(about 70%) have a capacity between 30 to 40 MVA. A few 

transformers with lower capacities (10-20 MVA) and (20-

30 MVA) are also present in the data. Fig. 4 shows the 

statistical distribution of transformer oil weights. 

Transformers with an oil weight of 12 to 16 tons 

(approximately 48%) exhibit the highest frequency. 

Additionally, transformers with lower oil weights (4-8 

tons) and 8-12 tons are also present in the test samples. 

Fig. 5 shows the statistical distribution of the type of oil 

used in transformers. Most transformers (over 90%) use 

IEC-296- type oil. Only a small percentage of transformers 

(less than 10%) use Nynas oil. These figures show that the 

transformers under study cover a wide range of age, 

capacity, oil weight, and type of oil. It is also worth 

mentioning that all the transformers studied in this 

research have a voltage level of 63/20 kV. 

 
Fig. 2: Histogram of PT ages, showing that most transformers 

are between 5 and 10 years old. 
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Fig. 3: Histogram of PT capacities, showing that the majority of 

transformers have a capacity between 30 and 40 MVA. 

 
Fig. 4: Histogram of PT oil weights, showing that most 

transformers have an oil weight between 12 and 16 tons. 

 
Fig. 5: Bar chart of PT oil types, showing that over 90% of 

transformers use IEC-296 oil. 

 

Fig. 6 to Fig. 10 show scatter plots and histograms of 

DGA parameters for the three health classes of 

transformers so that you can look at how the data is 

spread out and check how well the statistical distribution 

extraction is working. The distributions of breakdown 

voltage and humidity, CO and CO₂, O₂ and N₂, and TCG and  

are shown in Fig. 6 to Fig. 9 for the three classes.  Fig. 10 

also displays the three classes' gas ratios (CH₄/C₂H₂, 

C₂H₆/CH₄, and C₂H₂/C₂H₄). Parameter transformer classes 

have varied DGA parameter distributions, as shown in 

these figures. Fig. 6 demonstrates a different distribution 

of "breakdown voltage" in the "healthy" class compared 

to the other two classes. Fig. 7 illustrates the distinct 

relationship between the "CO concentration" and "CO₂ 

concentration" across the three classes. Accurate 

modeling of key data requires identifying the appropriate 

statistical distribution for each. Each DGA parameter is 

analyzed across three transformer health classes.  This 

ensures the synthetic data accurately represents the 

different health conditions of PTs. 

 
Fig. 6: Visualization of DGA data for breakdown voltage and 

moisture across three PT health Class. 

 
Fig. 7: Distribution of CO and CO₂ concentrations according 

across three PT health Class. 

 
Fig. 8: Scatter plot and histogram depicting O₂ and N₂ 

concentrations across three PT health Class. 

 
Fig. 9: Visualization of DGA data for TCG and breakdown 

voltage across three PT health Class. 
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Fig. 10: Distribution of gas ratios (CH₄/C₂H₂, C₂H₆/CH₄, 

C₂H₄/C₂H₆, C₂H₂/C₂H₄) in DGA data. 
 

These statistical distributions provide synthetic data 

and enable statistical analysis. The systematic technique 

encompassed the subsequent methods to ascertain the 

statistical distribution of each parameter: The normal 

distribution, log-normal distribution, Weibull distribution, 

gamma distribution, beta distribution, and exponential 

distribution were used to model the DGA data. Each class 

parameter's data was fitted to one of these distributions. 

The maximum likelihood estimation technique is used to 

estimate parameters. Each distribution's AIC is obtained 

after fitting to the data.  

The exponential distribution is the best distribution for 

the "average breakdown voltage" parameter since it has 

the lowest AIC value in all classes. Similar analysis was 

done on the remaining other DGA parameters, identifying 

the optimum statistical distribution. Table 1 shows that 

DGA parameters in different classes have varied statistical 

distributions. The "Parameter" column of Table 1 

indicates the 11 DGA metrics employed to evaluate 

transformer health. The parameters encompass 

breakdown voltage, moisture levels, concentrations of 

CO, CO2, O2, and N2 gases, along with the ratios of 

CH4/C2H2, C2H6/CH4, C2H4/C2H6, and C2H2/C2H4 

gases ratios. The "Class" column indicates the three 

health classes of the transformer, which are: Healthy (H): 

The transformer is in a healthy condition. Needs retesting 

in the future (FR): The transformer is currently healthy, 

but it requires retesting in the future. Immediate retest 

required (IR): The transformer is in a critical condition and 

requires an immediate retest. The AIC criterion selects the 

best statistical distribution for each parameter in each 

class, as shown in the "Distribution" column. Using the 

Monte Carlo method, parameters for each distribution, 

like A (lower bound), B (upper bound), µ (mean), and π 

(standard deviation), are used to make fake data. As 

observed in the table, the statistical distribution of DGA 

parameters varies across different transformer health 

classes. This indicates that the health status of the 

transformer affects the statistical distribution of DGA 

parameters. As mentioned, this paper illustrates the 

impact of transformer health on the statistical 

distribution of DGA parameters. The parameter "CO 

concentration" has a log-normal distribution in the 

"healthy" class and a gamma distribution in the "needs 

immediate retesting" class. Table 1 shows that 

exponential and log-normal distributions are the most 

common for DGA parameters. The following are the 

optimal distributions for seven parameters in a variety of 

classes. Additionally, this implies that these distributions 

may be capable of modeling DGA data. "Data 

normalization" and "synthetic data generation" steps will 

be implemented subsequent to this. 

B.  Evaluation of Classifiers 

This section evaluates all 12 classifiers utilized in Fig. 1. 

All classifiers were trained and tested with preprocessed 

DGA data during the evaluation process, utilizing various 

metrics to measure the performance of each classifier. To 

ensure the reliability and robustness of the assessment, a 

100-fold randomized cross-validation technique was 

utilized.  
 

Table 1: Statistical distributions of data across three transformer 
health classes 
 

Oil Property/ 
Characteristic 

Class 
Best-Fit 
Distribution 

Estimated Parameters of 
Best-Fit Distributions 

Average 
breakdown 
voltage 1 to 6 

1 Weibull A=75.33 B=12.1104 
2 Weibull A=75.3733 B=19.4471 

3 Lognormal µ= 4.30501 σ=0.0560327 

Moisture 

1 Exponential µ=0.233556  
2 Exponential µ=0.145379  

3 Exponential µ=0.113236  

Average 
concentration 
of CO 

1 Lognormal µ=-0.576039 σ=0.463825 
2 Lognormal µ=-0.0754555 σ= 0.341141 

3 Gamma α=8.02887 β=0.107086 

Average 
concentration 
of CO₂  

1 Weibull A=0.925048 B=2.19319 
2 Lognormal µ=0.365075 σ =0.270727 

3 Normal µ=1.59517 σ=0.74024 

Average 
concentration 
of O₂ 

1 Exponential µ=13764.9  
2 Exponential µ=9888.07  

3 Exponential µ=8486.44  

Average 
concentration 
of N₂ 

1 Normal µ=83619.9 σ=11446.2 
2 Normal µ=87500.9 σ=10307.7 

3 Weibull A=90734.2 B=9.71992 

Average TCG 
1 Gamma α=4.18118 β=73.8387 
2 Lognormal µ=6.36514 σ=0.538263 

3 Lognormal µ=6.46998 σ=0.588093 

CH₄/CH₂ 
present in the 
oil 

1 Exponential µ=0.540598  
2 Lognormal µ=-2.66182 σ=1.63765 

3 Exponential µ=0.12083  

C₂H₆/CH₄ 
ratio in the oil 

1 Weibull A=2.63218 B=0.853263 
2 Lognormal µ= 1.4266 σ=0.596508 

 3 Exponential µ=5.73942  

C₂H₄/C₂H₆ 
ratio in the oil 

1 Exponential µ=7.13276  
2 Exponential µ=1.45367  

3 Exponential µ=1.31425  

C₂H₂/C₂H₄ 
ratio in the oil 

1 Exponential µ=6.48753  
2 Exponential µ=1.28539  

3 Exponential µ=1.68514  
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The classifier was trained and evaluated on the training 

and testing sets by employing random data splitting for 

each cross-validation cycle. To obtain a reliable estimate 

of the classifier's performance, the results were 

subsequently averaged over 100 iterations.  Each 

classifier's performance was measured using a variety of 

metrics, including accuracy, precision, and the confusion 

matrix. In addition to these conventional metrics, two 

new metrics were developed to address the importance 

of misclassifications in transformer fault diagnosis: the 

Risk Index and the Unnecessary Cost Index. The 

evaluation results are given in Table 2. This table shows 

the average and standard deviation of each assessment 

measure across 100 cross-validation iterations for each of 

the 12 classifiers. In the next subsections, we do a 

thorough examination of each classifier's performance, 

assessing its strengths and limitations across many 

evaluation measures. This investigation will provide 

useful insights into each classifier's suitability for the task 

of transformer defect diagnostics, as well as guidance in 

selecting the most successful algorithm for this 

application. 

Table 2: Statistical distributions of data across three transformer health classes 
 

Algorithm 
Avg (%) Max (%) Min (%) 

Avg 
Accuracy 

(%) 

Confusion Matrix  

Class 

Average per class 
(%) 

Avg worst case Best case 
 

Accuracy Precision 
Risk Cost Risk Cost Risk Cost  

Ensemble 
Learning 

Used in 
ensemble 
learning? 

16 6 26 13 7 2 97 

582 4 2 583 3 2 583 3 2  1 99 99 

3 122 7 5 118 9 5 118 9  2 92 92 

2 6 46 3 9 42 3 9 42  3 83 86 

Support Vector 
Machine 

Yes 23 6 34 11 13 2 97 

582 4 2 585 2 1 585 2 1  1 99 99 

4 121 6 6 119 7 6 119 7  2 92 92 

3 7 44 7 9 38 7 9 38  3 85 81 

K-Nearest 
Neighbor 

Yes 
24 

 
7 
 

34 
 

12 
 

13 
 

3 
 

96 
 

577 9 2 579 9 0 579 9 0  1 99 98 

5 120 7 6 118 8 6 118 8  2 88 91 

3 8 43 6 10 38 6 10 38  3 83 79 

Random Forest Yes 
24 

 
2 
 

33 
 

5 
 

14 
 

0 
 

97 
 

586 1 1 587 1 0 587 1 0  1 99 100 

6 124 2 7 124 1 7 124 1  2 94 94 

3 8 43 5 10 39 5 10 39  3 94 80 

Naive Bayes Yes 38 35 61 53 22 18 87 

552 20 16 557 17 14 557 17 14  1 98 94 

10 84 38 17 89 26 17 89 26  2 71 64 

3 14 37 5 21 28 5 21 28  3 42 69 

Gaussian Naive 
Bayes 

Yes 38 35 61 53 22 18 87 

552 20 16 557 17 14 557 17 14  1 98 94 

10 84 38 17 89 26 17 89 26  2 71 64 

3 14 37 5 21 28 5 21 28  3 42 69 

Decision Tree Yes 42 9 62 18 22 4 93 

575 8 5 572 13 3 572 13 3  1 97 98 

10 113 9 18 108 6 18 108 6  2 85 85 

6 13 35 8 18 28 8 18 28  3 72 66 

RUSBoost Yes 43 47 63 64 28 28 86 

571 6 10 570 10 8 570 10 8  1 97 97 

14 60 58 20 63 49 20 63 49  2 77 45 

6 12 36 6 20 28 6 20 28  3 35 67 

LPBoost Yes 59 47 194 196 0 0 76 

476 52 60 588 0 0 588 0 0  1 97 81 

10 86 36 124 8 0 124 8 0  2 NaN 65 

5 23 26 45 9 0 45 9 0  3 NaN 48 

Multinomial 
Logistic 
Regression 

No 83 9 95 15 68 4 90 

576 10 2 578 8 2 578 8 2  1 97 98 

15 109 9 13 115 4 13 115 4  2 71 82 

5 34 15 7 39 8 7 39 8  3 60 28 

Discriminant 
Analysis 

No 86 14 101 21 71 7 89 

577 10 1 580 8 0 580 8 0  1 95 98 

25 92 16 33 84 15 33 84 15  2 71 70 

8 28 18 6 35 13 6 35 13  3 53 33 

Multiple Linear 
Regression 

No 
93 

 
10 

 
106 

 
16 

 
83 

 
5 
 

88 

559 29 0 562 26 0 562 26 0  1 98 95 

10 115 7 15 111 6 15 111 6  2 62 87 

3 43 8 3 48 3 3 48 3  3 52 14 

AdaBoostM2 No 119 1 130 2 112 0 89 

583 5 0 583 5 0 583 5 0  1 94 99 

25 107 0 39 93 0 39 93 0  2 70 81 

12 42 0 9 45 0 9 45 0  3 NaN 0 
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SVM: 

The aim of the SVM approach is to determine the best 

decision boundary that differentiates between various 

classes. The Radial Basis Function (RBF) kernel is used in 

this model. This method is a non-linear kernel that allows 

the model to learn non-linear decision boundaries. Also, 

Bayesian optimization modifies hyper-parameters of the 

model via the penalty parameter and kernel coefficient. 

In this manner, the optimal values for these parameters 

are selected to reduce the classification error on the 

validation data. Also, the data are normalized (given a 

zero mean and unit variance) before the SVM model is 

trained to lessen the effect of feature scale on model 

performance. A binary classifier is trained for each pair of 

classes using the "one-vs-one" method. In reality, the 

coding method is also regarded as a hyperparameter for 

issues involving more than two classes. Consequently, the 

aforementioned information are employed to train the 

algorithm on the training data. In 100 iterations, the SVM 

model obtained an average of 23% risk and 6% cost, as 

demonstrated by the Table 2 available. The risk 

associated with this method is 13% in the best-case 

scenario and 34% in the worst-case scenario. Additionally, 

the accuracy of this method is 99%, 92%, and 85% for the 

three classes, respectively. This procedure outperforms 

other methods in terms of accuracy and risk, as indicated 

by these findings. As shown by the average confusion 

matrix of this method, 44 of the 54 cases classified in class 

3 were correctly identified, while 7 and 3 cases were 

classified in lesser classes, respectively. This 

demonstrates that the likelihood of this method 

misdiagnosing class 3 samples as classes 1 and 2 is 

relatively low. In addition, this method has a low risk of 

misdiagnosing class 2 samples as class 1, as only four of 

the 132 cases classified in class 2 were classified in class 

1. The SVM method's overall risk and accuracy are 23% 

and 97% respectively, which are acceptable. 

KNN: 

The KNN model is being developed using training data. 

This function places training samples in the feature space. 

In order to forecast the class of the new sample, K 

samples in the feature space that are close to it are 

referenced. The distance (such as the Euclidean distance) 

is computed between the new sample and the training 

samples. Presumably, the prevailing class among the K 

neighbors is the expected label for the new sample. For 

this model, a range of options for k were assessed; cross-

validation was used to identify the ideal value. For this 

model, various values for k were tested, and the best 

value was obtained using cross-validation. It is obvious 

from the Fig. 11 that the KNN method achieves the lowest 

level of risk when the number of neighbors (k) is equal to 

1. So, the optimal number of neighbors in this method 

was determined to be k = 1. 

 

Fig. 11: Risk assessment of the KNN algorithm with different 
numbers of neighbors. 

 
That is, the class of a new sample is predicted solely by 

utilizing its adjacent neighbor in the feature space. 

According to Table 2, this model has attained an average 

accuracy of 96%, a risk of 24%, and a cost of 7% over 100 

iterations. This method carries a risk of 13 % in the best-

case scenario and 34% in the worst-case scenario. In 

addition, the accuracy of this method for the three classes 

is 99%, 88%, and 83%, respectively. Based on these 

findings, this procedure outperforms other methods in 

terms of accuracy and risk. Based on the average 

confusion matrix of this method, 43 of the 54 cases in 

class 3 were correctly identified, while 8 and 3 cases were 

classified into lesser classes, respectively. This matter 

implies that the likelihood of this method misclassifying 

class 3 samples as classes 1 and 2 is relatively low. In 

addition, the method's minimal risk of misclassifying clas 

s 2 samples as class 1 is supported by the fact that only 5 

of the 132 cases in class 2 were classified as class 1. The 

KNN method with k = 1 has an overall risk of 24%, which 

is deemed satisfactory. 

Random Forest: 

This study employs the random forest method to 

classify PT health. In the training phase, the algorithm 

generates many decision trees and determines a class 

based on the average of these classifications or the mean 

prediction (regression) of the individual trees. The 

classifier is trained with a random forest model including 

100 decision trees. Each decision tree is trained using 

random features and a random subset of the training 

data. Bagging is the technique employed to do this. This 

technique enhances tree diversity and mitigates 

overfitting. hence, it strengthens the model and increases 

its applicability across diverse scenarios. According to Fig. 

1, a 100-fold randomized cross-validation method is used 

to evaluate the random forest model performance. The 

results, shown in the Table 2, show that the model was 

accurate 97% of the time, with a risk index of 24% and an 

unnecessary cost index of 2%. The model showed that the 
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worst-case risk index is 33%, and the best-case risk index 

is 14%. The model is 99% accurate for the "Healthy" class, 

94% accurate for the " needs retesting in the future" class, 

and 94% accurate for the "Needs Immediate Retesting" 

class. Due to its poor performance compared to SVM and 

KNN, this method placed third on the Risk Index. The 

average confusion matrix shows that out of 54 cases in 

Class 3, 43 were correctly identified as being in that class, 

8 were mistakenly put in Class 2, and 3 were mistakenly 

put in Class 1. This means that the system did a pretty 

good job of finding major faults (Class 3). Also, out of 132 

cases in Class 2, 124 were correctly classified. Six were 

wrongly labeled as Class 1, and two were wrongly labeled 

as Class 3. This indicates a minimal likelihood of 

erroneously classifying transformers that require 

retesting in the future. The Random Forest model 

achieves an adequate equilibrium among accuracy, risk, 

and cost. Nonetheless, its comparatively elevated risk 

score compared to SVM and KNN indicates that it has the 

potential to more effectively identify defective 

transformers. 

Other classifiers: 

In this part, we look at how well the classifiers used in 

this study worked. These are Naive Bayes, Decision Tree, 

RUSBoost, Gaussian Naive Bayes, LPBoost, Multinomial 

Logistic Regression, Discriminant Analysis, AdaBoostM2, 

and Multiple Linear Regression. By examining the Table 2, 

we can analyze the performance of these classifiers in 

relation to the risk index, the unnecessary cost index, and 

their corresponding confusion matrices. For instance, the 

risk index of the Naive Bayes classifier is 38%, whereas the 

unnecessary cost index is 35%. On the other hand, the 

decision tree classifier displays an unnecessary cost index 

of 9% and a danger index of 42%. Furthermore, a review 

of the confusion matrices reveals that certain classifiers 

do better in accurately categorizing transformers as 

belonging to class 3. The SVM, KNN and Random Forest 

classifiers notably identify a greater number of Class 3 

instances than the Naive Bayes classifier. The classifier 

selection relies on the application and the relative 

relevance of accuracy, risk, and cost. For example: 

 A classifier with a lower risk index should be preferred 

to reduce the danger of misclassifying damaged 

transformers as healthy. 

 Choose a classifier with a lower unnecessary cost 

index to reduce costs from misclassifying healthy 

transformers as faulty.  

The following points can be made based on the data of 

Table 2. 

 Risk: 

o Risk classifiers between 25% and 50%: 

 Naive Bayes (38%) 

 Gaussian Naive Bayes (38%) 

  Decision Tree (42%) 

  RUSBoost (43%) 

o Risk classifiers between 50% and 75%: 

  LPBoost (59%) 

o Classifiers with a risk greater than 75%: 

  Multinomial Logistic Regression (83%) 

  Discriminant Analysis (86%) 

 Multiple Linear Regression (93%) 

 AdaBoostM2 (119%) 

 Cost: 

o Classifiers with less than 10% cost: 

 Random Forest (2%) 

 Decision Tree (9%) 

 Multinomial Logistic Regression (9%) 

 Multiple Linear Regression (10%) 

o Classifiers with more than 10% cost: 

 Discriminant Analysis (14%) 

 Gaussian Naive Bayes (35%) 

 Naive Bayes (35%) 

 LPBoost (47%) 

 RUSBoost (47%) 

 Confusion matrix (for class 3): 

o Naive Bayes: 

 Out of 54 samples in class 3, 37 are correctly 

identified, and 14 are classified in class 2 and 3 in 

class 1. 

o Decision Tree:  

 Out of 54 samples in class 3, 35 items are 

correctly identified, 13 items are classified in 

class 2, and 6 items are classified in class 1. 

o RUSBoost:  

 Out of 54 samples in class 3, 36 are correctly 

identified, and 12 are classified in class 2 and 6 in 

class 1. 

o LPBoost:  

 Out of 54 samples in class 3, 26 are correctly 

identified, and 23 are classified in class 2 and 5 in 

class 1. 

o Multinomial Logistic Regression:  

 Out of 54 samples in class 3, 15 cases are 

correctly identified, 34 cases are classified in 

class 2, and 5 cases are in class 1. 

o Discriminant Analysis:  

 Out of 54 samples in class 3, 18 items are 

correctly identified, 28 items are classified in 

class 2, and 8 items are classified in class 1. 

o AdaBoostM2:  

 Out of 54 samples in class 3, 0 items are correctly 

identified, 42 items are classified in class 2, and 

12 items are classified in class 1. 

o Multiple Linear Regression:  

 Out of 54 samples in class 3, 8 cases are correctly 

identified, 43 cases are classified in class 2, and 3 

cases are in class 1. 
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Ensemble learning based classifiers: 

This section shows the performance of the suggested 

ensemble learning model, which uses the top eight 

classifiers. This model combines classifier predictions to 

improve detection. This approach uses SVM, KNN with 

k=1, Random Forest, Naive Bayes, Decision Tree, 

RUSBoost, Gaussian Naive Bayes, and LPBoost. The 

selection of these models was based on their exceptional 

performance and diversity in categorizing DGA data. 

In the first subfig. 1 of Fig. 12, the risk indices of the 12 

used classifiers are shown. This figure shows a significant 

break in the risk chart after the eighth classifier, indicating 

an increase in risk values to high and unacceptable levels. 

In other words, the first eight classifiers have significantly 

lower risk compared to the next four classifiers. For this 

reason, the top 8 classifiers have been selected as the 

best classifiers and have been used in the ensemble 

learning algorithm. So, it is possible to create an accurate 

and reliable detection model by combining the 

predictions of these low-risk classifiers. Moreover, 

eliminating four high-risk classifiers mitigates the 

excessive escalation of model complexity and preserves 

its speed and efficiency. Table 2 shows that the model 

reduced risk by 7% relative to the best single classifier 

(23%) over 100 iterations, achieving a risk level of 16%. 

The proposed method exhibits risk index in range of 7% in 

the best-case scenario to 26% in the worst-case scenario. 

The proportion of unnecessary expenses is observed to 

range from 2% to 13%, yielding an average value of 6%. In 

addition to the fact that the ensemble method offers less 

risk compared to the results of the individual method, it 

achieves an average accuracy of 97%. The accuracy 

attained in class 3 of the ensemble technique exceeds 

that of the individual classifier methods. This issue stems 

from prioritizing method selection intended to reduce the 

risk index. In the typical confusion matrix for this 

approach, 54 occurrences in class 3 were assessed, 

leading to 46 instances being correctly identified. In 

contrast, 6 cases were wrongly put in class 2, and 2 cases 

were wrongly put in class 1. This proves that the 

suggested method works very well at finding samples that 

belong to class 3. Only 3 of the 132 class 2 cases were 

misclassified; the other 121 were correctly classified. This 

demonstrates that using this method, there is a very low 

risk of incorrectly identifying class 2 samples. The 

ensemble learning method has the lowest risk, at 16% 

(14% for class 3 and 2% for class 2), of all the methods this 

study looked at. In addition, the unnecessary cost index 

that is related to this method works better than other 

methods, except for Random Forest and Decision Tree. 

Because this method has a low-risk rating and doesn't 

cost too much, it can be assumed that it is a trustworthy 

way to check the health of transformers. Fig. 12 shows 

how well the suggested ensemble learning model works 

compared to different algorithms. Looking at other 

methods, the ensemble learning approach has a relatively 

lower risk level. While reducing the chance of high-risk 

mistakes, this study shows that the suggested method is 

both efficient and effective at accurately figuring out the 

health status of PT. 
 

 
Fig. 12: Performance evaluation of the ensemble learning 

model compared to other methods. 
 

Furthermore, the unnecessary cost index associated 

with this method is maintained at a level that is deemed 

acceptable when compared to the majority of alternative 

methods. This outcome demonstrates its efficacy in 

minimizing excessive expenditures. Overall, the ensemble 

learning model demonstrates commendable 

performance regarding the risk index and unnecessary 

cost index, indicating its efficacy in diagnosing the health 

status of the transformer. 

Conclusion 

A new ensemble learning technique for PT health 

assessment (dividing them into three groups: "healthy," 

"needs retesting in the future," and "needs immediate 

retesting.") using DGA data has been proposed in this 

paper. The algorithm combines the performance of eight 

classifiers (such as: SVM, KNN, Random Forest, Naive 

Bayes, Decision Tree, RUSBoost, Gaussian Naive Bayes, 

and LPBoost) and considers errors and costs to create a 

transformer health diagnosis model with high accuracy 

and reliability. The proposed approach is evaluated by the 

risk index, unnecessary cost index, and accuracy, which 

demonstrate superior performance compared to 

previous techniques across these metrics. The risk index 

has decreased as a result. This finding suggests that it can 

identify defective transformers more accurately. This 
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model can minimize transformer maintenance expenses 

and extends their lifespan. This study found overall 

accuracy 97%, average risk index 16%, unnecessary cost 

index 6%, best-case risk 7%, and worst-case risk 26%. The 

findings show that the suggested approach efficiently 

evaluates transformer health, reducing the expenses and 

dangers of incorrect diagnosis. The optimal result of single 

classifier (SVM), is an average risk index of 23. The 

comparison of these values with the average risk index of 

16% in the proposed ensemble learning technique 

demonstrates its efficiency and effectiveness in reducing 

misdiagnosis. In addition, the method improved the 

accuracy in the worst-case class. This improvement is 

particularly significant due to the importance of this class. 

It achieved an accuracy of 86%, compared to the SVM and 

KNN techniques (with recorded accuracy of 81% and 79%, 

respectively). Hence, the results show that the ensemble 

learning method works better at finding healthy 

transformers than single-classifier methods. This 

approach can be further improved through the 

incorporation of additional data and the application of 

sophisticated machine learning techniques. This 

methodology is capable of identifying additional 

transformer and electrical network anomalies. 

Future Work 

This study provides a number of directions for further 

investigation. The authors suggest that the following 

should be accounted for in future work: 

 In this paper, a simple classification method with three 

classes was used. In future works, hierarchical 

classification methods can be used for a more precise 

categorization of transformer health status. For 

example, the class "Need for Retesting" can be divided 

into two subclasses: "Need for Retesting in the Near 

Future" and "Need for Retesting in the Distant 

Future". 

 The DGA data used in this paper includes a part of the 

total technical information regarding transformers. In 

the future works, data can be collected with more 

detailed technical information, such as the type of 

transformer, the age of the transformer, and 

environmental conditions. This work can help improve 

the accuracy of machine learning models. 

 In the proposed method, 11 DGA parameters were 

used to train machine learning models. Accordingly, 

the impact of feature selection on parameters can be 

examined for the future works. For example, methods 

such as PCA or mutual information-based approaches 

can be used to select the most important features.  

 The proposed method is established based on 

traditional machine learning algorithms such as SVM 

and KNN. The deep learning algorithms, such as 

convolutional neural networks (CNN), can be used for 

fault detection in transformers in future works. These 

algorithms can improve fault detection accuracy (due 

to their high capability in learning complex features 

from data).  

 The proposed method in this paper is established 

based on the certainty and accuracy of the initial data 

and the correct evaluation by the expert. In future 

works, the impact of uncertainty in DGA data on the 

performance of machine learning models can be 

examined. Additionally, methods based on 

uncertainty learning can be used to improve the 

accuracy of models.  
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