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Method: This study employs a Siamese network based on the Xception
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verification. The model is trained to compare image pairs rather than classify
them individually, using deep feature extraction and Euclidean distance
measurement, optimized through a contrastive loss function.
Results: The proposed model achieves high verification accuracy on benchmark
Transfer learning datasets, reaching 97.6% on the Labeled Faces in the Wild (LFW) dataset and
Small-sample dataset 96.25% on the Olivetti Research Laboratory (ORL) dataset. These results
demonstrate the model’s robustness and generalizability across datasets with
diverse facial characteristics and limited training data.
Conclusion: Our findings indicate that the Siamese-Xception architecture is a
robust and effective approach for facial verification, particularly in low-data
scenarios. This method offers a practical, scalable solution for real-world facial
recognition systems, maintaining high accuracy despite data constraints.
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Introduction

Facial recognition technology has become an
indispensable tool for identity verification across various
sectors, including security operations, financial
transactions, public safety, and daily interactions. This
technology fundamentally divides into two main tasks:
Face Verification and Face Identification [1]

A probe image is compared with a single gallery
image to confirm whether they depict the same
individual. In contrast, Face Identification requires
comparing a probe image against multiple gallery images
to determine the specific identity of the individual [2].
These tasks rely on analyzing and matching facial
features, a process complicated by numerous factors.
Variability in lighting conditions, facial expressions, head
poses, makeup, hairstyles, and aging significantly impact
facial recognition accuracy [3]. Additionally, the
challenge is exacerbated when individuals share similar
features, such as twins, family members, or even
strangers with notable resemblances [4].

Face recognition systems face a wide range of
challenges, especially in uncontrolled environments.
Variations in illumination, pose, facial expressions, and
occlusions (e.g., masks, glasses) can distort facial
features and hinder recognition accuracy. Aging, low-
resolution images, and plastic surgery further complicate
the extraction and matching of features. In real-world
scenarios, like surveillance, images are often captured
under poor conditions—blur, motion, inconsistent
lighting—that amplify these issues [5]. Moreover, intra-
class similarity (e.g., twins) and inter-class variability
increase classification difficulty. Addressing these
challenges requires robust models capable of
generalizing across diverse inputs. Recent research
trends focus on attention mechanisms, 3D modeling, and
domain adaptation to enhance model resilience and
real-world performance.

Recent advancements in deep learning and
computational power have led to the widespread
adoption of Convolutional Neural Networks (CNNs) in
facial recognition and other computer vision tasks [6].
CNNs have revolutionized the field by enabling more
accurate image classification [7], object detection [8],
and image retrieval [9] through hierarchical feature
learning from extensive datasets. The effectiveness of
CNNs, however, is highly dependent on the availability of
diverse and representative training samples [10]. In
practical scenarios, limited samples per class can hinder
the efficiency and accuracy of facial recognition systems
[11].

In the past few years, research has increasingly
focused on enhancing model generalization and
robustness under challenging conditions. Advanced
techniques such as Siamese networks, triplet loss

architectures, attention mechanisms, and domain
adaptation methods have been introduced to overcome
issues related to limited data and variations in real-world
environments [11].

To address these challenges, our study introduces a
novel approach that utilizes a network design featuring
two identical CNNs and incorporates transfer learning
techniques [12]. This approach processes pairs of images
to extract and compare their features, determining
whether they represent the same individual. The
integration of transfer learning enhances the model's
performance, particularly when trained on smaller
datasets, thereby improving recognition accuracy [13].

The structure of this paper is as follows: Section 2
provides a comprehensive review of related research in
the field, while Section 3 outlines the proposed
methodology and network design. Section 4 presents the
results and evaluation of our approach, and Section 5
concludes with a summary of findings and
recommendations for future research.

Related Work

In recent years, Convolutional Neural Network (CNN)-
based algorithms have achieved remarkable
advancements in the field of facial recognition and
verification [14]. These developments have significantly
enhanced the accuracy and robustness of facial
recognition systems. For instance, researchers in [15]
utilized the Weighted PCA-EFMNet deep learning
framework to address challenges such as variations in
facial expressions, head poses, lighting conditions, and
occlusions. This approach focused on feature extraction
to improve the system’s ability to handle these common
issues.

Further innovation is evident in the study presented
in [16], where a novel verification technique employing
an Auto Encoder with Class Sparsity Supervised Encoding
(CSSE) was introduced. This method facilitates the
acquisition of feature representations from labeled
training datasets by enforcing class sparsity, thereby
improving the system's ability to discern between
different individuals even with limited data.

Another significant contribution to the field is
detailed in [17], which proposed a part-based learning
strategy for facial verification. This approach utilizes a
Convolutional Fusion Network (CFN) to extract feature
representations from facial images by focusing on
different parts of the face. This method enhances the
system’s ability to recognize faces by analyzing and
integrating features from various facial regions.

In addition, [18] introduced a new technique that
employs Layer Blocks (DLB) to improve the alignment of
face image pairs. This technique accelerates the face
verification process by enhancing the accuracy of face
pair alignment, which is crucial for effective verification.
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In [19], significant strides were made by developing a
CNN integrated into a Siamese network architecture.
Their model achieved a notable 94.8% recognition
success rate by training on the limited LFW dataset. This
approach demonstrated the effectiveness of using
Siamese networks for face recognition, particularly with
constrained data.

Building on these advancements, another study
employed a similar network structure but enhanced it
with transfer learning using the VGG-16 model, which
was pre-trained on the ImageNet dataset. This approach
achieved an impressive 95.2% accuracy [20], illustrating
the benefits of leveraging pre-trained models to boost
performance.

Recent research using the LFW dataset has focused
on utilizing the face mesh technique to detect and
recognize images with a Deep Neural Net model and 3D
display, achieving 94.23% accuracy with this approach
[21].

In [22], a Siamese CNN model is employed for one-
shot facial recognition. By comparing image pairs and
applying data augmentation, the method achieves 96%
accuracy on the LFW dataset, outperforming traditional
face recognition algorithms.

In the survey [23], facial recognition performance is
compared across different methods using the LFW and
ORL datasets. The study highlights that ORL is more
suitable for controlled testing, while LFW better
represents real-world scenarios, though it poses greater
challenges for recognition systems.

In [5], the authors review the expanding applications
of face recognition in sectors such as healthcare,
security, and education, emphasizing the importance of
image preprocessing and deep learning techniques. They
evaluate various CNN models on the FER and LFW
datasets, concluding that the LFW dataset yields better
performance due to its ability to handle challenges
posed by uncontrolled environments.

Expanding prior research, our work introduces a
Siamese network architecture based on the Xception
model, integrating depth-wise separable convolutions to
enhance feature extraction and improve verification
accuracy. Experimental results on the ORL and LFW
datasets confirm the superior performance and
robustness of the proposed approach under diverse
conditions.

Proposed Approach

A Siamese network [24] is a specialized neural
network architecture that consists of two parallel
subnetworks. These subnetworks share the same
weights and parameters, allowing them to process
inputs consistently. Each subnetwork receives an input,
such as an image, and its outputs are combined to
produce predictions. The core concept of the Siamese
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network is to learn a representation of the data that
facilitates comparison between inputs. By comparing the
feature representations extracted from the parallel
networks, the Siamese architecture can effectively
measure the similarity or dissimilarity between inputs
[13].

In contrast to traditional CNN classifiers that predict
class labels, Siamese networks are designed to learn a
similarity function, making them particularly well-suited
for tasks such as one-shot learning and identity
verification. Furthermore, Siamese networks require
fewer examples to train compared to standard CNN
classifiers, enhancing their efficiency. By focusing on
learning feature distances rather than absolute class
labels, they are more robust to variations in pose,
lighting, and occlusions, providing superior performance
in comparison to conventional classification-based
methods [25].

Fig. 1 illustrates the architecture of a Siamese
network, highlighting its parallel structure and shared
parameters [26].

Siamese Network Architecture
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Fig. 1: A diagram for Siamese network architecture, where
inputl and input2 are a pair of input images, after using a
convolutional neural network to vectorize the inputs,
calculating the distance between the output results, and
determining the similarity of images.

A. Transfer Learning in Deep Learning

Transfer learning [27] is a pivotal technique in deep
learning, leveraging pre-existing models to address new
but related challenges. This method involves applying
models that have been previously trained on large and
diverse datasets to solve different problems with limited
data. By utilizing these pre-trained models, transfer
learning can accelerate the development process and
enhance performance, particularly when dealing with
tasks similar to those for which the original model was
trained. This approach capitalizes on the knowledge and
features learned from prior models, allowing for more
effective solutions in new contexts.

B. Pre-Trained Xception Model

The Xception model [28] developed by Francois
Chollet, is a state-of-the-art convolutional neural
network known for its exceptional performance. It
achieves a top-five test accuracy of 94.5% on the
ImageNet dataset, which comprises 1000 classes and
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over 1.4 million labeled images. The architecture of
Xception is notable for its depth and complexity,
featuring 36 convolutional layers with 3x3 kernel sizes,
14 pooling layers with 2x2 kernel sizes, and three fully
connected layers. The fully connected layers consist of
2048 neurons in the first two layers and a single neuron
in the final layer. This architecture enables Xception to
capture intricate patterns and features from images,
making it highly suitable for transfer learning
applications in facial recognition tasks [29].

The strengths of Xception go beyond its architecture.
Compared to other CNN models, Xception enhances
efficiency and reduces computational costs while
maintaining high accuracy by replacing standard
convolutions with depth-wise separable convolutions.
This architectural modification not only optimizes
performance but also significantly reduces the number
of parameters, making the model less prone to
overfitting [30].

C. Face Recognition Using Siamese-Xception

In our approach, we utilize a pre-trained Xception
model for feature extraction within a Siamese network
architecture and subsequently fine-tune it. Fig. 2
illustrates the of the proposed facial
recognition system.

Flowchart

R

>(—)=

>y
Lamxu)}(x)n » >mmmmov]
ryxn* '

X1

- () >

-{l

g

Fig. 2: Flowchart of the proposed facial recognition model
based on a Siamese network with an Xception backbone.

Initially, we freeze all convolutional layers of the
Xception model except for the last seven layers in the
Exit Flow block. These layers consist of three separable
convolutional layers, one pooling layer, and one global
average pooling layer. Freezing these layers ensures that
their weights remain unchanged during training,

allowing only the weights in the Exit Flow block to be
updated. To this setup, we add a flattened layer followed
by two fully connected layers—one with 2048 neurons
and the other with a single neuron—both utilizing the
sigmoid activation function [31] (refer to Fig. 3 for
visualization).

Fig. 3: Xception network architecture.

As the fully connected layers are initialized randomly,
there is a risk that adjusting their weights could disrupt
the learned features from the pre-trained layers. To
mitigate this, we set the network input size to 128 x 128
x 3 pixels. During training, we employ the contrastive
loss function [32] to refine the model's ability to
differentiate between similar and dissimilar image pairs.
The contrastive loss function works by minimizing the
squared Euclidean distance for similar pairs of images
and maximizing this distance for dissimilar pairs,
effectively pulling similar samples closer and pushing
dissimilar samples apart. The contrastive loss is
computed using the formula:

L=01- }’)%D2 + (Y)%{max(o - m—D)}? (1)

where (y) is a binary label indicating whether the image
pairs are similar (y = 0) or dissimilar (y = 1). The margin
(m) is a positive threshold, set to 1 in this research,
beyond which dissimilar pairs do not impact the loss
function. (D) represents the Euclidean distance between
the feature vectors of the image pairs generated by the
Siamese network, calculated as:

D = |If(xo) = f(xD)II? (2)
here, f(x,) and f(x;) are the feature vectors of the
images x, and x; , respectively, each with 512
dimensions. If the Euclidean distance (D) between the
output vectors is less than 0.5, the model determines the
image pair to be similar (D = 0). Conversely, if the
distance is 0.5 or greater, the images are considered
dissimilar (D = 1). Given the binary nature of the labels,
the model's predicted values should match these labels,
ensuring a direct comparison between predicted and
actual values. This process ultimately yields the final
prediction by the model.

D: {0 =>d<051=>d =05} (3)

The pseudocode of the proposed method is
illustrated in Fig. 4:

Siamese-Xception Based Face Recognition

Input: Dataset of image pairs {(Image_A, Image_B, label)}, where label € {0, 1}
Output: Trained model and Similarity Score (S) during inference

1. Load the pre-trained Xception model (trained on ImageNet)
2. Freeze all layers except the last 7 layers in the Exit Flow block
3. Append a Flatten layer, a Dense(2048) layer, and a Dense(1, sigmoid) layer to form the Siamese head
4. For each training epoch:
For each image pair (Image_A, Image_B, label) in the training dataset:
a. Resize each image to 128 x 128 x 3
b. Normalize pixel values to range [0, 1]
c. Pass Image_A and Image_B through the shared Xception model to get feature vectors F_Aand F_B
d. Compute Euclidean distance D between F_A and F_B:
D = sqrt(Z (F_A[i] - F_BIi])*), fori=1to 512
e. Compute contrastive loss:
If label = O (similar): Loss = D*
If label = 1 (dissimilar): Loss = max(0, margin - D)?
f. Backpropagate the loss to update the trainable layers
5. After training, for each test image pair:
a. Compute D and output similarity score S = sigmoid(D)
b. If S < threshold (e.g., 0.5), classify as "similar", else "dissimilar"

Fig. 4: Pseudocode of the proposed Siamese-Xception-based
facial recognition approach.
By only a few pictures. Notably, all images have
dimensions of 250*250 pixels.
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Results and Discussion

In our facial recognition system, the Siamese network
leverages pairs of images along with corresponding
labels for the learning process. This approach requires
careful curation of training data to meet the system’s
specifications. To generate these image pairs, we follow
a structured methodology as outlined in prior studies.
When two images represent the same individual, they
are categorized as "similar." Conversely, if the images
depict different individuals, they are labeled as
"different".

To evaluate the performance of the proposed
method, two well-known datasets were utilized: Labeled
Faces in the Wild (LFW) and the ORL (Olivetti Research
Laboratory Face Database).

The Labeled Faces in the Wild (LFW) [33] dataset
contains 15,000 images of faces collected from various
individuals under unconstrained conditions. The images
were captured in real-world environments, featuring
variations in lighting, pose, and facial expressions,
making the dataset highly challenging and suitable for
robust facial analysis (Refer to Fig. 5 for illustration).

Fig. 5: Some samples of the LFW dataset.

The Olivetti Research Laboratory (ORL) [34] dataset
consists of 400 grayscale images of 40 individuals, with
10 images per person. The images exhibit variations in
facial expressions (such as open/closed eyes, smiling/not
smiling) and pose (slight tilts and rotations), while
maintaining a relatively controlled environment in terms
of lighting and background. This dataset is widely used
for benchmarking face recognition and classification
algorithms.

For each dataset, a randomized split was performed
to ensure rigorous training and evaluation, with 80% of
the data assigned to the training set and the remaining
20% reserved for testing and accuracy evaluation. This
balanced partitioning facilitates the model’s ability to
effectively discriminate between similar and dissimilar

A Siamese Network-Based Xception for Face Recognition

faces, a capability essential for enhancing recognition
performance. Representative examples of the image
pairs generated for a single subject are illustrated in Fig.
6.

The experiments were conducted on Google Colab,
using an Nvidia A100 GPU with 16 GB of memory. The
deep learning models were implemented using the Keras
framework. The study was performed on the LFW and
ORL datasets, where a batch size of 256 was employed,
and the ADAM optimizer with a learning rate of a =
0.01.was used.

Fig. 6: Samples of similar and dissimilar pairs.

The accuracy on the LFW dataset was evaluated and
presented in Table 1, while the results on the ORL
dataset were reported in Table 2.

Table 1: Face Recognition Rate in Different Methods with LFW
Dataset

Method Accuracy
RF+LDA [23] 67.96
KNN+LDA [23] 69.77
NB+ICA [23] 72.35
LR+ICA [23] 78.55
MLP+PCA [23] 80.88
SVM+PCA [23] 83.54
CNN+STN [5] 86.3
CFN+APEM [18] 87.50+1.57
DLB [19] 88.50
PSI-CNN [5] 88.7
L-CSSE+KSRC [16] 92.02
Face Mesh [21] 94.23
SiameseFace [17] 94.80
Weighted PCA-Efmnet [27] 95.00+0.71
Siamese-VGG [17] 95.62+0.42
Siamese+CNN [22] 96
Siamese-Xception(proposed 97.66+0.21
method)
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A comparative analysis against various recent
methods indicates that our proposed Siamese network-
based Xception model consistently achieves the highest
accuracy, highlighting its robustness and effectiveness
for face recognition tasks under both controlled and
unconstrained conditions.

Table 2: Face Recognition Rate in Different Methods with ORL
Dataset

Method Accuracy

NB+ICA [23] 86.25
KNN+ICA [23] 87.50
RF+PCA [23] 93.75
MLP+LDA [23] 93.75
SVM+PCA [23] 93.75
LR+ICA [23] 93.75
Siamese-Xception(proposed 96.25

method)

The comparison between the LFW and ORL datasets
reveals significant differences in the performance of
facial recognition methods, particularly when evaluating
the Siamese network-based Xception model. For the ORL
dataset, the proposed Siamese-Xception model achieved
an impressive accuracy of 96.25%, outperforming
traditional machine learning models and CNN-based
methods. On the other hand, when tested on the more
challenging LFW dataset, the same model achieved a
higher accuracy of 97.66%. This indicates that the
Siamese-Xception model performs exceptionally well in
both controlled and real-world conditions,
demonstrating its robustness and generalization ability.
In comparison to other recent methods, the proposed
model consistently outperforms existing techniques,
including Siamese-VGG, which reached 95.62% on LFW.
These results highlight the effectiveness of the Siamese
network-based Xception architecture, particularly in
handling variations in facial features across different
datasets. The model's success on both datasets
underscores its potential for real-world applications in
identity verification and face recognition tasks, with
notable improvements in accuracy compared to previous
approaches.

An analysis of the model’s performance, presented in
Fig. 7 and Fig. 8, highlights the training and validation
dynamics for the LFW and ORL datasets, respectively.
Fig. 7 depicts the progression of accuracy and loss across
epochs for the LFW dataset, while Fig. 8 illustrates the
corresponding trends for the ORL dataset.

In both cases, the accuracy shows a consistent
upward trajectory, indicating the model’s capability to
effectively learn from the training data while maintaining
strong generalization to unseen samples. Although a

slight gap between training and validation accuracy
appears midway through training, this discrepancy
remains modest, and it gradually stabilizes during later
epochs, suggesting that the model successfully mitigates
severe overfitting. Minor fluctuations observed in the
validation loss and accuracy are negligible and do not
disrupt the overall convergence trend.

These findings collectively demonstrate that the
proposed Siamese-Xception model achieves a well-
balanced performance between underfittings and
overfitting [35], delivering robust and reliable results
across both controlled (ORL) and unconstrained (LFW)
face recognition environments.
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Fig. 7: Performance of the proposed model based on accuracy
and loss per epoch on the LFW dataset.
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Fig. 8: Performance of the proposed model based on accuracy
and loss per epoch on the ORL dataset.

Conclusion and Future Works

In this study, a Siamese network architecture based
on transfer learning with Xception was employed to
address the challenges of face verification in limited-data
scenarios. The model demonstrated strong capability in
extracting deep facial features, achieving competitive
accuracy rates of 97.6% on the LFW dataset and 96.25%
on the ORL dataset, which confirms its robustness across
datasets with varying characteristics.

Despite these promising results, certain limitations
remain. The model's performance is inherently
dependent on the quality and variability of the training
data, and further improvements could be realized by
expanding the dataset and incorporating additional
evaluation metrics beyond accuracy.

For future work, integrating advanced techniques
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such as triplet loss and more sophisticated data
augmentation strategies is recommended to enhance
feature learning and model generalization further.
Exploring architectures that better capture both low-
level and high-level facial features could also contribute
to higher verification precision. These directions hold
potential for developing even more reliable and efficient
face recognition systems for practical applications.
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