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Abstract

Background and Objectives: Unmanned Aerial Vehicles (UAVs) face significant
challenges in navigating narrow passages within GPS-denied environments due
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to sensor and computational limitations. While deep reinforcement learning
(DRL) has improved navigation, many methods rely on costly sensors, such as
depth cameras or LiDAR. This study addresses these issues using a vision-based

Accepted 06 June 2025 DRL framework with a monocular camera for autonomous UAV navigation.

Methods: We propose a DRL-based navigation system utilizing Proximal Policy
Optimization (PPO). The system processes a stack of grayscale monocular images
to capture short-term temporal dependencies, approximating the partially
observable environment. A custom reward function encourages trajectory
optimization by assigning higher rewards for staying near the passage center
while penalizing further distances. The navigation system is evaluated in a 3D
simulation environment under a GPS-denied scenario.

Results: The proposed method achieves a high success rate, surpassing 97% in
challenging narrow passages. The system demonstrates superior learning
efficiency and robust generalization to new configurations compared to baseline
methods. Notably, using stacked frames mitigates computational overhead while
maintaining the effectiveness of the policy.

Conclusion: Our vision-based DRL approach enables autonomous UAV navigation
in GPS-denied environments with reduced sensor requirements, offering a cost-
effective and efficient solution. The findings highlight the potential of monocular
cameras paired with DRL for real-world UAV applications such as search and
rescue and infrastructure inspection. Future work will extend the framework to
obstacle avoidance and general trajectory planning in dynamic environments.
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Introduction

Unmanned Aerial Vehicles (UAVs) have emerged as
transformative tools across a wide range of applications,
impacting both civilian and military sectors [1]. This
surge in UAV deployment is attributed to their inherent
advantages, including extended endurance and stability
in diverse operational conditions, enhanced
maneuverability, cost-effectiveness, and the ability to
access hazardous or difficult-to-reach locations [1], [2].
UAVs find utility in diverse fields, encompassing
precision agriculture, search and rescue missions,
surveillance, remote sensing, infrastructure inspection,
package delivery, and more [2].

While UAVs have shown great promise, their
performance is hindered by limitations such as restricted
battery endurance and flight time [3]. To enhance UAV
capabilities, careful selection of onboard sensors is
essential. UAVs commonly rely on sensors such as
accelerometers, magnetometers, gyroscopes, and GPS
for navigation [4], [5]. Additionally, they utilize stereo
cameras, LiDAR, ultrasonic sensors, and distance sensors
to gather environmental data [6].

Despite their utility, many of these sensors present

drawbacks, including high cost, significant weight,
increased energy consumption, and operational
complexity. In contrast, the camera is a critical

component [5], [7], providing a versatile and efficient
approach to enhancing UAV environmental perception
[8]. Monocular cameras, in particular, are highly suited
for applications where minimizing energy, size, and
weight is crucial [9], [10].

UAVs are increasingly used in applications that
demand a high degree of autonomy. Traditional
methods for UAV navigation often struggle in complex
environments, particularly in confined spaces like narrow
passages. These approaches, which typically rely on pre-
programmed flight paths or rule-based systems, exhibit
limitations in adaptability and responsiveness to
unforeseen obstacles or environmental changes [2], [11].

To handle these limitations, the integration of
Artificial Intelligence (Al), particularly Machine Learning
(ML) and Deep Learning (DL), offers promising avenues
for enhancing UAV autonomy and navigation capabilities
[6], [12], [13]. ML empowers UAVs to learn from data,
enabling them to adapt to environments and make
informed decisions without explicit programming [14].
DL uses artificial neural networks with multiple layers to
extract intricate patterns and representations from data,
allowing for more sophisticated and robust autonomous
capabilities [12], [15].

A prominent method for indoor navigation [16] uses
DL with Convolutional Neural Networks (CNNs) [17]. This
approach treats navigation as a classification task, where
a CNN classifies video feeds from a monocular camera

into actions. After training on a diverse dataset of
images, the CNN can guide UAV maneuvers
autonomously without extra sensors or 3D maps.
However, it needs a large, labeled dataset for reliable
performance across scenarios.

To ensure a UAV can perform tasks safely and
efficiently, it must be able to make decisions and adapt
to changing conditions without human input. In this
context, Reinforcement Learning (RL) provides a
foundation for learning optimal decision-making policies.
By combining both methods, Deep Reinforcement
Learning (DRL) forms that offer significant potential for
achieving higher levels of autonomy [2], [18].

DRL enables an agent to learn optimal actions
through interactions with its environment, receiving
rewards for desired behaviors and penalties for
undesirable ones [19]. This trial-and-error learning
process allows the agent to refine its decision-making
policy progressively, improving navigation performance
over time.

Numerous studies have adopted DRL for autonomous
vehicles [20]-[22] and UAV navigation [23]-[27],
showcasing its effectiveness in intelligent decision-
making and adaptability to challenging scenarios. A key
drawback of approaches like [9] and [28] is that they rely
on direct access to depth image data through
simulations for UAV navigation to estimate the distance
to obstacles using visual cues. However, obtaining depth
map data from the camera in real-world scenarios is
often expensive. It necessitates specialized equipment,
such as stereo cameras or depth sensors, which can
significantly increase the overall cost.

UAV navigation in narrow passages typically relies on
vision-based methods, including image processing for
window detection, homography for pose estimation, and
visual servoing for trajectory control [29]-[31]. Some
approaches enhance monocular vision with optical flow
sensors or use stereo vision for depth information [29],
[32]. Simultaneous Localization and Mapping (SLAM)
also allows simultaneous map building and localization
through visual or other sensors.

Navigating in confined spaces presents several
challenges for UAVs, arising from limitations in sensing,
computational resources, environmental factors, and the
complexity of path planning and control. One significant
hindrance is the unreliability or unavailability of GPS
signals indoors [32].

Enclosed spaces often require precise localization and
mapping [33], making techniques like SLAM potentially
useful yet challenging due to their high computational
and power demands, which strain the limited resources
of small UAVs [16], [29], [34]. Furthermore, monocular
SLAM suffers from scale ambiguity [30]. In indoor
environments, featureless surfaces can impair feature-

56 J. Electr. Comput. Eng. Innovations, 14(1): 55-72, 2026



Vision-Based Autonomous UAV Navigation Through GPS-Denied Narrow Passages Using Deep Reinforcement Learning

based SLAM performance, while navigating narrow
passages requires accurate obstacle detection [16], [32],
[35]. [36] discusses utilizing a rangefinder sensor, noting
that while it serves the purpose of navigation, a camera
might be a better option and lead to improved
performance.

This paper addresses the challenge of enabling
autonomous UAV navigation through narrow passages in
a GPS-denied environment using a vision-based DRL
approach with a monocular camera. Additionally, it
explores the performance of DRL in controlling the UAV's
decision-making, focusing on key metrics such as success
rate, computational costs, and collision avoidance. The
principal contributions of the paper are as follows:

e We implement a DRL-based navigation system
that utilizes only a monocular vision system for
obstacle avoidance through perceptual spatial
information extraction;

e  We stack input images to provide the agent with
a short history of observations, capturing short-
term temporal dependencies to approximate the
underlying Partially Observable Markov Decision
Process (POMDP) while reducing computational
overhead;

e We propose a reward function to simplify and
speed up the agent's problem-solving process by
focusing on navigating narrow passages and
assigning higher rewards as the agent moves
closer to the center of the passage;

e We evaluate our method in GPS-denied narrow
passages using realistic 3D simulations to
replicate  real-world  scenarios, including
configurations with incomplete visual cues.

The structure of this paper is as follows: the
background and relevant literature are reviewed in the
next section. The Methodology section outlines the
methods and materials used in this study. The results are
presented and analyzed in the Results and Discussion
section. Lastly, the Conclusion section provides final
remarks and suggests potential directions for future
research.

Related Work
A. Classical Methods

Classical approaches for UAV navigation and obstacle
avoidance have been extensively studied, with
prominent methods including graph-based algorithms,
potential field methods, and rule-based systems. Graph-
based algorithms, such as Dijkstra's and A* algorithms,
discretize the environment into a graph and employ
search algorithms to find the optimal path [12], [18].
These methods are known for their ability to find the
shortest path, but can suffer from computational
inefficiency, especially in large and complex

environments [12], [37]. On the other hand, potential
field methods [38] treat the UAV as a point mass moving
in a potential field generated by obstacles and the
target. These methods are computationally efficient but
are prone to local minima, especially in the presence of
concave obstacles [11]. Rule-based systems rely on a set
of predefined rules to guide the UAV's movement. These
systems are simple to implement but lack flexibility and
adaptability to complex environments [37].

These methods are more suitable for path planning in
a known global environment. An example is [39], where
it uses A* to find the best route for food delivery.
Although it developed a complete prototype system, it
opted against conducting autonomous flights due to
safety concerns. The A* algorithm heavily depends on
the heuristic cost function and requires continuous
computation and storage [40].

Despite the constraints, the algorithm has faced many
improvements over the vyears. For instance, [41]
proposed a multi-objective programming model for UAV
navigation by incorporating error correction and path
constraints. The algorithm proves effective in a grid map
environment, but its wusage diminishes in high-
dimensional spaces [42]. Dynamic A* (D*) has been
introduced to mitigate the limitations [42]. Nevertheless,
creating the cost map for D* is a laborious and error-
prone endeavor [40].

Continuing with the traditional methods, the Rapidly-
exploring Random Tree (RRT) is another widely used
sampling-based technique within the roadmap
algorithms [37] that operates as a purely random search
for path-planning with various motion constraints [42].
Study by [43] incorporates RRT with pruning to eliminate
redundant nodes in cooperative multiple UAV
navigation, ensuring a collision-free path between two
endpoints by limiting sampling within a feasible region
based on the maximum turning angle. However, the
algorithm does not assure the optimality of the
generated path and encounters inefficiency in cluttered
or narrow spaces.

Another enhancement introduced to RRT is [44],
where it utilizes a cost function as heuristic information
that includes both path length and path threat strength
costs to guide the expansion of new nodes.
Nevertheless, [43] simulates in a 2D environment, thus
requiring further validation in a 3D environmental setup,
and [44], despite being done in a 3D environment, is only
suitable for static environments with all details to be
known a priori.

Bug algorithms are practical navigation strategies that
break down the task into moving toward the goal and
navigating around obstacles encountered. While these
methods do not require prior knowledge of the
environment, their resulting path is often suboptimal
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[21], [45]-[47]. Additionally, assumptions such as finding
the M-Line for obstacle avoidance are idealized and
unrealistic in the real world [45].

B. Deep Learning Methods

Most classical techniques can find optimal paths, but
they typically require complete knowledge of the
environment, making them unsuitable for unknown
environments [48]. In contrast, DL approaches are
model-free and demonstrate strong generalization when
facing new or changing scenarios. Although DL
algorithms require large datasets and extensive training
time, they offer fast inference once trained. DL's ability
to learn complex data representations from real-world
environments makes it well-suited for autonomous
robotic applications, particularly for UAVs [15], [49].

CNNs excel at extracting spatial features from images,
making them highly effective for tasks such as obstacle
detection and environment mapping, where visual data
is crucial. On the other hand, Recurrent Neural Networks
(RNNs) handle sequential data [50], enabling them to
process temporal patterns and dependencies, which is
particularly useful for trajectory prediction and motion
planning. For instance, [51] proposes a fast global path
planner that uses RNN capability to generate safe,
collision-free paths. Compared to classical global path-
planning algorithms, this approach performs better in
complex and challenging environments.

Hybrid models, such as CNN-RNN architectures,
effectively combine spatial and temporal data analysis,
making them well-suited for tasks like those explored in
[52]-[54]. However, a notable downside of such hybrid
models is their increased computational complexity and
training time, which may pose challenges in resource-
constrained environments.

Another set of techniques commonly employed for
navigation, path planning, and obstacle avoidance is the
DRL approach. DRL is becoming increasingly essential for
achieving autonomous decision-making in complex
scenarios [15], [55], 56], and has demonstrated
exceptional performance, particularly in challenging
environments. DRL  techniques combine the
representational power of DL with RL's capability to
learn optimal policies through trial and error [57]. This
enables UAVs to acquire complex behaviors and adapt to
their environments [58].

RL refers to a manner of learning wherein an agent
engages in a trial-and-error process and acquires
knowledge and skills by leveraging the reward signals
and feedback obtained from the environment [59].
There is no predefined dataset in this learning paradigm
from which the model can learn. Instead, the agent
generates the training data in real-time through
interactions with the environment [19]. DRL improves
upon this methodology by utilizing deep neural networks

to estimate the policy, value functions, or both to
determine the most advantageous behavioral choices.

In UAV navigation, DRL has proven remarkably
effective in obstacle avoidance, trajectory planning, and
real-time adaptation to dynamic circumstances. Notably,
the study by [27] emphasizes DRL's ability to effectively
manage high-dimensional state observations.
Additionally, it introduces an innovative memory pool
that enhances learning efficiency and accelerates
training, further supporting DRL as a robust solution for
UAVs operating in complex and unpredictable
environments.

As another example, [60] introduces a memory-based
DRL approach that enables UAVs to avoid obstacles such
as pedestrians with limited environmental knowledge.
Similarly, [61] creates a DRL framework for UAV
navigation in indoor environments, demonstrating the
potential of DRL for challenging indoor navigation
scenarios. A study by [62] focuses on collision-free UAV

navigation using a monocular camera and DRL,
highlighting the use of vision-based sensors for
autonomous  navigation. Likewise, [63] studies

autonomous UAV navigation in large-scale complex
environments using a DRL approach, showcasing the
applicability of DRL for navigation in challenging outdoor
scenarios.

Methodology

RL tasks are framed as interactions within an agent-
environment system, where the agent decides actions in
response to the environment’s current state and
receives feedback for its choices [19]. This control loop
process is depicted in Fig. 1. While RL problems are
typically modeled using the Markov Decision Process
(MDP) [64] under the assumption of fully observable
environments, real-world scenarios rarely satisfy the
Markov property [65]. Thus, critical factors remain
hidden in such cases, creating uncertainty for effective
decision-making.

-

Environment
Agent

Reward r,
Action a, /\ ErsessTssses :
)

Fig. 1: High-level overview of RL control loop. The agent
applies an action to the environment based on its state,
receives rewards, and observes the next state.
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To address this, we propose modeling using a POMDP
[66], which generalizes the MDP framework to handle
incomplete observations. The POMDP can be defined as
a tuple (S§,AP,R Q0) with each component
representing states, actions, transition probabilities,
rewards, and observations o € (), and the conditional
probability distribution over () based on the state-action
pairs (0¢S+1, a¢)-

The agent seeks to maximize the cumulative reward
over time [57]. The UAV refines its policy, m, to favor
actions that optimize the expected total reward. This
objective is expressed through the following
expectation:

Es,=s.a;=a~m [Re] = Eror [Z Vtrtl, (1)
t=0

where T denotes a trajectory sampled from the policy m,
R; is the cumulative reward starting from time ¢,
y € [0,1) is the discount factor, and 7; represents the
reward received at time step t.

A significant challenge of training DRL agents with
policy gradient algorithms is their vulnerability to sudden
performance degradation, where their effectiveness
sharply declines [67]. Addressing this issue is
complicated as the agent begins generating suboptimal
trajectories, which serve as poor data for further policy
updates, compounding the problem.

Proximal Policy Optimization (PPQ) [68] is a family of
optimization techniques that employs an actor-critic
framework to address these challenges. PPO employs an
on-policy learning approach, where the decision-making
policy is updated using a small batch of experiences
collected from interactions with the environment. After
updating, it discards these experiences and collects a
new batch using the revised policy.

PPO offers notable advantages, especially in robotic
path planning and navigation. Its superior sample
efficiency and stability make it a robust choice for
continuous control tasks, where consistent performance
is vital [69]. The algorithm can effectively optimize the
UAV's path in scenarios like navigating narrow corridors,
ensuring minimization of target time and practical
obstacle avoidance, thus enhancing the reproducibility
and clarity of experimental results [70].

Furthermore, PPO demonstrates strong stability and
versatility, = maintaining  minimal  deviations in
performance across different environmental conditions.
Its reliability makes it effective in both simple and
complex environments, excelling in obstacle avoidance
and optimal route planning [70].

Additionally, PPO demonstrates potent performance
when encountering noise or disturbances. Even under
challenging conditions with external perturbations, the
algorithm maintains stable flight, achieving desired

speeds and angles with low computational overhead
[71].

PPO introduces a relative policy performance metric
that quantifies the difference in performance between
two policies. Applying a constraint on the step size
during policy updates prevents performance collapse
and ensures monotonic improvement. With J(m) as the
objective function, m representing the current policy,
and 7’ denoting the updated policy after an iteration,
the relative policy performance identity can be
expressed as follows:

T
JGr) = () = By [Z YA s at)l. @

with A™(s, a) being the advantage function under i that
measures whether a given action is better or worse than
the policy's average action in a given state, defined as:

ATL’(S' a) = Qn(sv a) - Vﬂ:(s)t (3)

where Q"(s,a) represents the action-value function,
describing the expected return starting from state s,
taking action a;, and following m, defined as (4), and
V™(s) is the state-value function, which provides the
expected return starting from state s; under policy
[72], expressed in (5).

Q"(s,a) = E;p [ YT | So =500 = al- (4)
Vn(s) = ]E‘L'~7T [ ytrt So = Sl- (5)

A common approach in implementing actor-critic-
based policy gradient methods involves using
Generalized Advantage Estimation (GAE) [73]. GAE
introduces a discounted, exponentially weighted sum of
temporal difference (TD) errors to balance short-term
and long-term return estimates. It addresses the bias-
variance trade-off in advantage estimation by
interpolating between high-bias, low-variance (1-step
TD) estimators and lower-bias, higher-variance (n-step
TD) estimators. This flexibility allows GAE to compute
more stable and accurate advantage values, improving
policy updates. Mathematically, GAE is expressed as:

AGae(spap) = Z(V/’D%Hl' (6)
=0

where 1 € [0,1] controls the trade-off between bias and
variance. Smaller values of A place greater emphasis on
the value function estimate, while larger values give
more weight to the actual rewards. §; in (6) is the TD
error, defined as:

O =1 + YV (Ser1) — VT (sp). (7)

The relative difference is defined in (2) acts as a
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measure of policy improvement. A positive difference
indicates that the updated policy, 7', is better than the
previous policy. In each policy iteration, the goal is to
select a new policy ' that maximizes this difference.
Consequently, optimizing the objective J(m') s
equivalent to maximizing this performance gap, and
both can be achieved through gradient ascent.
Therefore, we can express it as follows:

rr}rz;\x](ﬂ') @H)TQX(](T[') - J(m). (8)

At its core, PPO employs a surrogate objective
function that ensures steady policy improvement, that is
J(m") —J(m) = 0. However, a limitation arises as the
expectation in (2) requires trajectories from m’, which is
not available until after the update. To address this, we
assume that two policies are close, so their state
distributions are similar. This allows us to approximate
the equation using trajectories from 7 with importance
sampling weights. We can express the probability ratio
between the new policy and the old policy,
parameterized by 6, as follows:

mg(aclse)

r(0) = ——/———,
‘ T[eold (atlst)

(9)
where mg(a;|s;) is the probability of taking action a, in
the state s, under the new policy, and g, (a;|s;) is the
probability under the old policy. Thus, we can get
7:(0g9) =1 from it. This allows us to rewrite the
objective function (2), with advantages calculated using
the older policy, as follows:

mg(aclsy) m
—————— A4 °¥(s,,a,)| =E.[r.(0)A,]. (10
o ey A e a) | = @4 (10

Jj(6) = E,

To control and prevent large, unstable policy updates,
a constrained clipped version of the surrogate function is
employed, restricting the policy updates to stay within a
trust region that is both easy to implement and
computationally efficient, as follows:

JELP(9) = E[min(r:(8)A,, clip(:(8),1 — €, 1 + €)A4,)], (11)

where € is a hyperparameter that defines the clipping
neighborhood and can be decayed during training. The
function takes the minimum of the unclipped and the
clipped objective to ensure conservative updates. PPO
updates the policy iteratively using gradient ascent, with
a representing the learning rate, as follows:

8 « 0 + alVyJ°LIP(6). (12)

PPO includes a separate objective to train the value
function V™ (s) using mean-squared error:

£7(0) = E[(Vo(s) — R (13)

PPO clips the value function like the clipped surrogate
objective by minimizing the following loss:

Vclip(st) = c“p(V9 (St)! Vold(st) — €y, Vold(st) + 61;)' (14)

JVF(9) = B, [max ((Vo(s) = RD?, (Vaip(s) = R.)")]- (15)

A study by [74] found no empirical evidence
supporting the effectiveness of value function loss
clipping in improving performance. Furthermore, [75]
argue that V;,(s,) may even hinder performance. We
empirically tested this in our case and observed that
value clipping does not enhance our model's
performance and, thus, is not wused in our
implementation.

Decaying the € values for clipping helps stabilize
training in PPO by gradually reducing the allowed
deviation. Initially, larger clipping values allow more
freedom for exploration and faster updates, while
decaying € encourages more conservative updates as
training progresses. For € clipping range, we can use the
following linear decay:

t
€t = €stare T (Eend - estart) X (1 - T): (16)

where t is the current timestep out of the total
timesteps T, €; is the current epsilon value, and €54+
and €,,q4 are the starting and ending values of the
clipping range.

The total loss combines the policy objective, value
function loss objective, and an entropy term to ensure
sufficient exploration:

JTOTAL(9) = E,[JELP(0) — cJYF () + c,H(my)],  (17)

where ¢; and c, are coefficients to control the
importance of each term, and H(my) is the entropy of
the policy for exploration. The flow diagram of the PPO is
depicted in Fig. 2.

Action a Update 6, via

Environment Policy Loss

Policy Ratio

Rollout Buffer

"(s) Advantage
Function
A
[ 1: ————
| Update 6. via

Gradient Descent

Fig. 2: The data flow diagram of the PPO framework.

The camera captures RGB images with a field of view
of 90° and dimensions of (3,50,50). To approximate
the environment's underlying POMDP, we stack input
images to provide the agent with a short history of
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observations. This effectively captures temporal
dependencies and reduces ambiguity in state
representation. We transform the RGB images to
grayscale, normalize them to the range [-1,1], and
stack the subsequent captured frames along the width
dimension. The stack is processed through CNN layers,
flattened, and fed into a fully connected layer for further
processing. The output features are then passed to the
actor and critic networks to determine the actions and
estimate the values. It is important to note that actions
don’t directly generate the output. Instead, the actor-
network produces the mean and sigma of a normal
distribution from which actions are sampled. The
architecture of the proposed method is illustrated in Fig.
3.

This approach transforms the task closer to a first-
order MDP by embedding critical contextual information
from recent frames, allowing the agent to infer short-
term dependencies on the current state more
accurately. By doing so, we eliminate the need for
computationally expensive recurrent mechanisms, such
as RNNs, which explicitly model long-term dependencies
but often introduce significant overhead.

This balance enhances efficiency while maintaining
effective policy learning in partially observable
environments. The implementation details are outlined
in Algorithm 1.

A. Action Space

The action space is a high-level, two-dimensional
continuous control space that directly manages the
linear velocities along the principal axes in the UAV’s
local NED coordinate system. These velocities are
defined in meters per second and are illustrated in Fig. 4.
The movement along the x-axis is set to a fixed value and
remains unchanged throughout the flight.

Consequently, the quadrotor maintains constant
forward motion while the model controls the lateral
translation along the y-axis and the altitude translation
along the z-axis. Each action is applied to the drivetrain
for 0.5 seconds.

B. Reward Function

The reward function consists of three terms: the first
term rewards the agent consistently after passing the
first passage based on the total number of passages. It is
calculated as:

-1
where a is the starting value, b is the ending value, N is
the number of total passages, and i is the index of the
current passage; the second term accounts for the
distance from the center of the current passage. Each
passage is an imaginary cube with all three principal axes
of a length of 2 meters.

a
r1={a+i-N |i=0,1,...,N—1}, (18)

Algorithm 1: Proximal Policy Optimization

Input: single-channel image with size (C, H, W)
Output: continuous action a;

: Set ¢, = 0, entropy regularization weight

: Set ¢; = 0, importance weight of J/F(6)

: Set € = 0, the clipping variable

: Set K, the number of epochs

: Set T, the time horizon

: Set M < T, the minibatch size

: Set a = 0, the learning rate

: Set N, the stack size

: Initialize the actor and critic parameters 64,0, with
Orthogonal initialization for weights and constant for
biases.

O 00 N O U B W N

10: Initialize the old actor network 64,

11: fori =1,2,..,MAX_STEPS do

12: | Initialize an empty rollout buffer

13: |Initialize s, as zeros with size (C, H,W X N)
14: | Observe o;

15: |forj =1,2,..,T do

16: S¢ < Roll the stack along the width dimension and add
Ot

17: Apply action a;~mg, (at|s;)

18: Receive 13 and observe 0y

19: Record (0, a;, 1, 0¢41) into rollout buffer

20: Ot < Ot41

21: | end for

22: |SetBy,,, =0,
23: | Calculate Vi, 1, ..., Vigy  using the critic network 6,
24: | Compute advantages Ay, ..., Ay using (6) with 64,

25: | Let batch with size T consist of the collected trajectories,
advantages, and target values

26: |forepoch =1,2,...,K do

27: for minibatch m in batch do

28: Calculate 1;,,(6,4)

29: Calculate JSHP(6,) using (11), with the advantages
Ay and 1,,(04)

30: Calculate entropies H,, using 8,

31 Calculate policy 10ss: J,01(64) = Ji'F (64) — C2Hip

based on (17)

32: Calculate predicted values V7 (s,,) using 8

33: Calculate value loss J,q;(6¢) using (15)

34: Update actor parameters 8, according to (12) using
calculated J,;(64)

35: Update critic parameters 6. according to (12) using
calculated J,,4:(8¢)

36: end for

37: | end for

38: | Decay clipping € variable

39: end for
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Fig. 3: Architecture of the proposed PPO model with consideration of temporal correlations. The number of stacked frames
is 3. Number of filters, stride and output size are mentioned for each convolutional layer.

Fig. 4: Overview of the high-level continuous action space,
controlling lateral (y-axis) and altitude (z-axis) velocities,
with constant forward motion along the x-axis.

Based on the UAV's distance from the cube's center, it
receives a negative reward, which becomes less
penalized as it gets closer to the center.

Conversely, when the UAV is inside the imaginary
cube, the negative reward transitions to a positive
reward:

1 1

_ Ycube
2

~ (Ve =psll),

where Pa = (yuav: Zuav) and Pp = (ycube: Zcube) represent
the UAV’s position and the imaginary cube position,

respectively; the third reward term provides a larger
constant reward if all passages are successfully passed.
In the case of a collision, a penalty is imposed, and the
trajectory terminates due to a critical failure. The final
reward is computed as the sum of all the terms:

, ifinside
_ Zcube
uav 2

yuav

= ) (29)

if outside

e =n + r + 13. (20)

The parameters of the reward function are
determined empirically to achieve the best results.

The reward function implicitly plays a crucial role in
addressing safety issues by directing the UAV to
maintain its position in the center as it moves through
narrow passages. It improves navigation and helps avoid
obstacles while significantly decreasing the likelihood of
crashes, especially in tight spaces.

Results and Discussion

All experiments are conducted on a standard laptop
with an Intel Core i7-6700HQ processor running at 2.6
GHz, 16 GB of RAM, and a GeForce GTX 960M GPU with
4 GB of VRAM.

We use the AirSim simulation platform [76] to achieve
realistic simulations. This platform is specifically
designed to develop RL algorithms for autonomous
agents in real-world scenarios. AirSim accurately
simulates the environmental and aerodynamic
properties of UAVs by utilizing the graphical capabilities
of Unreal Engine to create a practical virtual
environment. This paper focuses on using a multi-rotor
UAV, known for its superior hover and maneuverability
performance [48], making it an ideal choice for civilian
applications outside the military domain.

We design our environment based on [77],
structuring it into several sections. A wall with a narrow
passage separates each section, requiring the quadrotor
to navigate through to proceed. The final section
transitions the quadrotor from an indoor to an outdoor
environment, which then marks the task as completed.
The training environment and its corresponding map are
demonstrated in Fig. 5. The dimensions of the elements
in the environment are shown in Fig. 6. To assess the
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effectiveness and generalization of the policy, we
conduct experiments using the training setup and
scenarios with varied passage arrangements.

Fig. 6: Dimensions of each section and passage in the
environment, all in meters.

A. Performance Comparison

For comparison, we evaluate our method against
closely related approaches from [28] and [49].
Additionally, we evaluate our method against recent and
state-of-the-art algorithms, including Deep Deterministic
Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and
Soft Actor-Critic (SAC). Furthermore, we include an
analysis of the number of frames and evaluate its impact
on performance. The training hyperparameters for each
environment are detailed in Table 1.

The main criterion for assessing a navigation
algorithm is the success rate, which is determined by the
formula S/K X 100%, where S represents the count of
successful trajectories and K indicate the number of
times the algorithm has been executed [42].

Fig. 7 depicts the training performance results. As
evident from the graphs in this figure, the plots (a), (b),
and (c) share significant similarities with plots (a) and (b)
demonstrating a strong correlation. As training
progresses in the environment, the first observable
trend in these graphs is that the agent learns effectively

from the interactions over time, resulting in an increase
in the average episode length across most approaches.
This indicates that the agent learns an effective policy
through iterative weight updates driven by gradient
descent signals from network errors.

Table 1: Training hyperparameters

Hyperparameter Value
Optimizer Adam
Seed 2024
Frame Stack 3
Learning Rate 0.00007
Number Of Rollout Steps 2048
Batch Size 128
Update Epochs 30
Discount Factor 0.99
GAE Coefficient 0.7
Max Gradient Norm 0.5
Start Clipping Value 0.3
End Clipping Value 0.05
Entropy Coefficient 0
Value Function Coefficient 1
Total Learning Steps 100,000

Moreover, the rise in average episode length is
accompanied by increased rewards, further highlighting
effective learning. Among the approaches compared in
this figure, it is evident that when using single grayscale
images, there is no notable improvement in the average
episode length or rewards compared to other methods.
This suggests that the agent needs assistance to derive a
meaningful understanding of the required policy from a
single image and its extracted features, resulting in a
failure of this approach.

Given that actions are continuous, it becomes clear
that considering correlations among multiple images is
necessary to capture the influence of action changes on
the input state space. This understanding can be
established by introducing a short-term dependency
through stacking input images.

For instance, when the stack size is two, the agent not
only achieves a higher initial average episode length
compared to other approaches but also demonstrates
significantly better results in terms of average success
rate, as shown in the plot (c), even compared to cases
with larger stack sizes.

However, as seen across all plots and most noticeably
in plot (d), this approach exhibits more significant
fluctuations than others, indicating a need for more
stability.
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Fig. 7: Training performance results.

Plot (d) shows that the network's error is highly
volatile, which may lead to fundamental policy shifts
during updates, sometimes steering the agent in
counterproductive directions. These adverse effects are
evident in plot (c) for this method.

When the stack size is increased to three, all graphs
show much better stability, and it is apparent that this
approach outperforms others significantly. This
approach achieves the best performance across all
metrics. Increasing the stack size to four or five results in
slower learning rates in terms of success rate and
rewards, alongside a higher computational overhead,
without yielding substantial performance improvements.
Approaches [28] and [49] demonstrate considerably
weaker performance in solving the task and achieving
success rates, further validating the reliability and
effectiveness of the proposed method. The full detail of
the experiments done is outlined in Table 2.

Unlike comparison methods, DDPG has the longest
average episode length but generates a relatively low
average reward and experiences a high collision rate. Its
elevated loss indicates instability during training,

primarily due to the difficulties associated with value-
based learning in  complex continuous-action
environments. DDPG requires more training steps to
achieve optimal policy refinement.

On the other hand, TD3 shows improved stability.
However, its high loss and collision rate also imply that it
needs more training steps.

This is due to the use of additional networks that rely
on approximations. In contrast, SAC demonstrates a
higher reward and success rate, ranking as the second-
best method with a relatively low loss value. This success
highlights how entropy-regularized policy learning
effectively balances exploration and exploitation. Hence,
SAC exhibits faster initial learning, as shown in Fig. 7,
plots (b) and (c).

SAC's performance closely aligns with the two-frame
stack setup.

However, the three-frame stack configuration
achieves the highest average reward and success rate
while  maintaining the lowest collision rate,
outperforming all other setups, including SAC. Our
approach yields slow but gradual progress.
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Table 2: Performance results of the final rollout during the training phase

Method Avg. Episode Length Avg. Episode Reward T Success Rate T Collision Rate | Loss
Single 28.95 15.43 0.00 1.00 0.94
2 Stack 87.55 153.64 0.74 0.26 5.24
3 Stack 91.95 169.56 0.79 0.21 2.35
4 Stack 90.62 162.42 0.67 0.33 3.59
5 Stack 85.26 150.26 0.67 0.33 1.30
DDPG 96.91 73.91 0.40 0.60 25.37
TD3 78.33 105.22 0.53 0.47 21.74
SAC 88.92 164.28 0.75 0.25 6.69
Ref [28] 85.98 137.96 0.68 0.32 17.44
Ref [49] 80.29 124.00 0.54 0.46 3.69

B. Computational Cost Analysis

Computational cost analysis of image stack
configurations provides insight into performance and
resource consumption. Table 3 presents the inference
time, frames per second (FPS), number of parameters,

and VRAM allocation comparison for different stack
sizes. Among these configurations, the three-frame stack
achieves a balanced performance in terms of decision-
making effectiveness while maintaining manageable
computational overhead.

Table 3: Computational cost comparison for different frame stack during evaluation iterations

N-Frame Inference Time (ms) Frames Per Second Number of Parameters VRAM Allocation (MB)
One 8.17 17.79 277,603 3.20
Two 11.26 17.24 736,355 8.45
Three 20.55 16.58 1,129,571 12.95
Four 20.74 16.51 1,522,787 17.45
Five 21.07 16.37 1,916,003 21.95

The three-frame stack achieves an inference time of
20.55 ms, delivering 16.58 processed frames per second.
Although the computational cost is slightly higher than
that of the two-frame stacks, this increase is subtle as
decision-making accuracy and stability are improved.
Additionally, the three-frame stack requires 1,129,571
parameters and consumes 12.95 MB of VRAM,
representing a  reasonable trade-off between
performance gains and resource usage. Compared to the
four-frame and five-frame configurations, the three-
frame stack maintains a lower computational footprint
without sacrificing performance. Furthermore, the three-
frame stack requires no complex hardware and achieves
remarkably sounder performance with minimal
additional computational cost compared to a single-
frame input.

The network’s number of parameters increases as
more frames are stacked. While the three-frame stack
has higher parameters than the single-frame setup, it
remains well within the capabilities of UAV hardware.
Compared to more frame stacks, which exceed 1.5
million parameters, the three-frame stack offers a more
efficient  balance  between  performance and
computational demands. This configuration ensures that
UAVs can process visual data effectively without
overloading onboard processors, making it a practical
choice for real-time navigation, especially in GPS-denied
environments.

Fig. 8 further illustrates these findings. The
comparative representation depicts the trade-offs
between performance and computational cost across
different stack sizes.
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Fig. 8: Performance and computational cost across different
frame stack configurations.

Based on the results, frame stacking enhances UAV
navigation performance without adding additional
overhead. Compared to single-frame input, stacking
allows the UAV to utilize temporal visual cues, leading to
more accurate decision-making while maintaining
computational efficiency. This balance makes the frame
well-suited for deployment on resource-constrained
edge devices.

C. Generalization Verification

We conduct two tests to assess the model's
generalization capability under different environmental
variations. In the first test, we change the positions of
the passageways, while in the second test, we modify
both their position and shape from cubes to spheres. Fig.
9 illustrates the design and map of the second
generalization test. Fig. 10 illustrates the results.

Fig. 10: Setup and map of the second generalization testing
environment.
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Fig. 9: Performance evaluation during the testing phases over 25 sets of 100 iterations, with shaded areas indicating the standard
deviation across sets.

The proposed approach shows consistent stability in
task completion and safety across various test scenarios.
Success and collision rates remain within reasonable,
acceptable ranges. There are slight variations in episode
rewards, corresponding to expected behavioral
adaptations to different environmental setups. The
reward variations result from minor trade-offs in

navigation efficiency, rather than from failures in core
task execution. In particular, the agent receives more
rewards when it is closer to the center of the
passageway. As a result, confidence in the rewards is
anticipated.

The comprehensive results of all tests are presented
in Table 4.

Table 3: Performance results in the testing phases over 25 sets of 100 iterations, with their respective standard deviations

Test Category

Avg. Episode Length Avg. Episode Reward

Success Rate Collision Rate

97.773 £ 0.482
97.619 £ 0.633
97.852 +0.564

Main Setup
Generalization 1

Generalization 2

0.978 £0.037 0.022 +0.037
0.981+0.026 0.019+0.026
0.971+0.041 0.029 £0.041

210.524 +5.228
188.652 +2.508
203.686 + 4.255
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Regardless of the setup, the model exhibits strong
performance in its primary objectives, i.e., success and
collision avoidance, demonstrating its ability to adapt to
environmental changes. This consistency in critical
metrics, accompanied by minor reward deviations,
underlines the model’s ability to generalize effectively
without compromising its functional reliability. For a
visual representation of the experiments, please refer to
the supplementary movie cIipl.

D. Noise Impact Analysis

To evaluate the model's robustness to sensor noise,
we introduce noise at different strengths to simulate
varying noise levels. Specifically, distortions are applied
at 5%, 10%, and 15% magnitudes to challenge the visual
processing capabilities under diverse wavering degrees.

Here, sensor noise serves as a representative factor
for broader adverse environmental conditions, such as
low light, fog, and camera distortions, strengthening the
real-world relevance of this analysis by approximating
visual uncertainties that UAVs commonly encounter in
practical scenarios.

Horizontal distortion blends the ratio of the noise
pixel with the image pixel, which introduces fluctuations
in the horizontal line of an image. We aim to assess how
the model handles such disturbances.

Fig. 11 illustrates the distortion and fluctuations
resulting from different noise levels. Additionally, we
introduce 20% random noise blobs alongside the
horizontal distortion to better simulate real-world

uncertainties.

(a) No-Moise

bl |

(c) Moise Strength 10%

.- -

(d) Moise Strength 15%

Fig. 11: Horizontal line distortion in a captured image. Distortion increases when the noise level gets higher.

" https://youtu.be/Raf12qrObps
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Fig. 12 shows Gaussian distribution plots of how
different noise levels affect the actions. As noise
increases, the distribution mean shifts, indicating slight
changes in the UAV's behavior. At 5% noise, the
distributions of lateral actions remain close to the no-
noise baseline. However, the distribution mean shifts
slightly more at 10% and 15% noise levels, resulting in
more variability in action selection. Although the
standard deviation remains constant in each plot, the
distribution for lateral movements shifts toward more
negative values as noise increases. In contrast, vertical
action changes less and shows no consistent pattern in
mean shift direction, pointing out that lateral control is
more sensitive to noise than vertical movement. As a
result, the agent struggles to locate the passage due to
horizontal line distortion.

Action Distributions
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Fig. 12: Gaussian distribution of UAV actions for lateral (y-axis)
and vertical (z-axis) movements at different noise levels.

Similarly, Fig. 13 shows the distribution of action data
points for both actions under different noise levels. In
the no-noise case, the action values are clustered around
-1, indicating stable control. As noise increases, the
distributions widen, especially along the y-axis, where
the peaks become less defined and more spread out. In
contrast, the z-axis peak changes moderately with a
slight shift in the mean value. This implies that higher
noise levels increase uncertainty, with more impact on
lateral control.

:

Fig. 14: Distribution of UAV action values for lateral (y-axis) and
vertical (z-axis) movements under varying noise strengths.
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Table 5 evaluates the navigation performance under
sensor noise uncertainty, while Fig. 14 provides a visual
representation, with shaded areas indicating the
standard deviation across all execution sets.

Table 4: Performance assessment with sensor noise addition during the testing phase over 10 sets of 100 iterations

Noise Strength  Avg. Episode Length Avg. Episode Reward

Success Rate Collision Rate

5% 97.186 +1.035 172.127 £5.925 0.954 +0.036 0.046 +0.036
10% 96.238 +1.806 156.578 £ 6.736 0.913+0.051 0.087 +0.051
15% 91.845 +3.955 129.747 £10.669 0.762+0.108 0.238 +0.108
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Fig. 13: Performance evaluation with sensor noise addition during the testing phase over 10 sets of 100 iterations, with shaded
areas indicating the standard deviation across sets.
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Despite the added noise in captured images and
increased uncertainty in action selection, the three-
frame stack method does not rely solely on the current
observation to predict the next movement. Since
distorted pixels change with each frame, the agent
utilizes temporal information to maintain reasonable
success and failure rates with 5% noise.

However, as noise intensifies to 10%, the standard
deviation area expands, and success trajectories
decrease due to higher uncertainty, though the
performance impact remains minimal. At 15% noise
strength, as shown in Fig. 11, the distortion becomes
severe, altering the perceived positions of passageways
and making safe navigation challenging. In this scenario,
the agent struggles to complete the task safely, resulting
in a significant performance drop, with the success rate
falling to approximately 0.76, a reduction of about 0.15
compared to the 10% noise setting. These findings
indicate that the 15% noise level is too high for an agent
not trained to handle such input noise. Thus, the three-
frame stacked model can tolerate the noise up to 10%
and maintain acceptable performance.

Conclusion

This paper presents a PPO-based approach for
autonomous quadrotor navigation in GPS-denied
environments using a monocular camera as the primary
sensor. We effectively process temporal information and
manage limited environmental data by utilizing stacks of
grayscale images. The trained policy learns to maximize
rewards by favoring actions that yield the highest
returns. Using this policy, the agent robustly and
precisely controls actions to navigate the aerial vehicle
through challenging and narrow passages.

The quadrotor's reliable operation in GPS-denied
settings is a tribute to its adaptability and robustness,
ensuring its reliability for search and rescue, inspection,
and surveillance applications. This paper highlights the
transformative potential of DRL methods, such as PPO,
particularly when paired with effective feature
extraction and processing techniques. Our approach
reduces equipment costs, provides fast inference, and
facilitates simpler architectures. It is essential to note
that our method is validated in simulation, which may
not fully capture the aerodynamic effects experienced by
UAVs in real-world environments, such as near gaps,
walls, or wind gusts. These aerodynamic disturbances
can impact the vehicle's dynamics.

In future work, we plan to design an image-based
collision probability algorithm to improve performance
and extend the method to general path planning in
dynamic environments. Additionally, we will conduct
real-world validation to ensure robustness to
aerodynamic factors and environmental noise. As part of
the deployment, explicit safety mechanisms, such as

emergency stopping and fault-tolerant behaviors, are
planned to increase operational reliability and address
unforeseen failures during flight.

Author Contributions

M. Shahbazi Khojasteh conceptualized the study,
developed the methodology, and conducted software
development, validation, and analysis. A. Salimi-Badr
supervised the project and provided manuscript review
and feedback.

Funding
This paper has received no external funding.
Conflict of Interest

The authors declare no potential conflict of interest
regarding the publication of this work. In addition, the
ethical issues, including plagiarism, informed consent,
misconduct, data fabrication and/or falsification, double
publication and/or submission, and redundancy, have
been completely witnessed by the authors.

Abbreviations
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