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Background and Objectives: Unmanned Aerial Vehicles (UAVs) face significant 
challenges in navigating narrow passages within GPS-denied environments due 
to sensor and computational limitations. While deep reinforcement learning 
(DRL) has improved navigation, many methods rely on costly sensors, such as 
depth cameras or LiDAR. This study addresses these issues using a vision-based 
DRL framework with a monocular camera for autonomous UAV navigation. 
Methods: We propose a DRL-based navigation system utilizing Proximal Policy 
Optimization (PPO). The system processes a stack of grayscale monocular images 
to capture short-term temporal dependencies, approximating the partially 
observable environment. A custom reward function encourages trajectory 
optimization by assigning higher rewards for staying near the passage center 
while penalizing further distances. The navigation system is evaluated in a 3D 
simulation environment under a GPS-denied scenario. 
Results: The proposed method achieves a high success rate, surpassing 97% in 
challenging narrow passages. The system demonstrates superior learning 
efficiency and robust generalization to new configurations compared to baseline 
methods. Notably, using stacked frames mitigates computational overhead while 
maintaining the effectiveness of the policy. 
Conclusion: Our vision-based DRL approach enables autonomous UAV navigation 
in GPS-denied environments with reduced sensor requirements, offering a cost-
effective and efficient solution. The findings highlight the potential of monocular 
cameras paired with DRL for real-world UAV applications such as search and 
rescue and infrastructure inspection. Future work will extend the framework to 
obstacle avoidance and general trajectory planning in dynamic environments. 
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Introduction 

Unmanned Aerial Vehicles (UAVs) have emerged as 

transformative tools across a wide range of applications, 

impacting both civilian and military sectors [1]. This 

surge in UAV deployment is attributed to their inherent 

advantages, including extended endurance and stability 

in diverse operational conditions, enhanced 

maneuverability, cost-effectiveness, and the ability to 

access hazardous or difficult-to-reach locations [1], [2]. 

UAVs find utility in diverse fields, encompassing 

precision agriculture, search and rescue missions, 

surveillance, remote sensing, infrastructure inspection, 

package delivery, and more [2]. 

While UAVs have shown great promise, their 

performance is hindered by limitations such as restricted 

battery endurance and flight time [3]. To enhance UAV 

capabilities, careful selection of onboard sensors is 

essential. UAVs commonly rely on sensors such as 

accelerometers, magnetometers, gyroscopes, and GPS 

for navigation [4], [5]. Additionally, they utilize stereo 

cameras, LiDAR, ultrasonic sensors, and distance sensors 

to gather environmental data [6]. 

Despite their utility, many of these sensors present 

drawbacks, including high cost, significant weight, 

increased energy consumption, and operational 

complexity. In contrast, the camera is a critical 

component [5], [7], providing a versatile and efficient 

approach to enhancing UAV environmental perception 

[8]. Monocular cameras, in particular, are highly suited 

for applications where minimizing energy, size, and 

weight is crucial [9], [10]. 

UAVs are increasingly used in applications that 

demand a high degree of autonomy. Traditional 

methods for UAV navigation often struggle in complex 

environments, particularly in confined spaces like narrow 

passages. These approaches, which typically rely on pre-

programmed flight paths or rule-based systems, exhibit 

limitations in adaptability and responsiveness to 

unforeseen obstacles or environmental changes [2], [11]. 

To handle these limitations, the integration of 

Artificial Intelligence (AI), particularly Machine Learning 

(ML) and Deep Learning (DL), offers promising avenues 

for enhancing UAV autonomy and navigation capabilities 

[6], [12], [13]. ML empowers UAVs to learn from data, 

enabling them to adapt to environments and make 

informed decisions without explicit programming [14]. 

DL uses artificial neural networks with multiple layers to 

extract intricate patterns and representations from data, 

allowing for more sophisticated and robust autonomous 

capabilities [12], [15]. 

A prominent method for indoor navigation [16] uses 

DL with Convolutional Neural Networks (CNNs) [17]. This 

approach treats navigation as a classification task, where 

a CNN classifies video feeds from a monocular camera 

into actions. After training on a diverse dataset of 

images, the CNN can guide UAV maneuvers 

autonomously without extra sensors or 3D maps. 

However, it needs a large, labeled dataset for reliable 

performance across scenarios. 

To ensure a UAV can perform tasks safely and 

efficiently, it must be able to make decisions and adapt 

to changing conditions without human input. In this 

context, Reinforcement Learning (RL) provides a 

foundation for learning optimal decision-making policies. 

By combining both methods, Deep Reinforcement 

Learning (DRL) forms that offer significant potential for 

achieving higher levels of autonomy [2], [18].  

DRL enables an agent to learn optimal actions 

through interactions with its environment, receiving 

rewards for desired behaviors and penalties for 

undesirable ones [19]. This trial-and-error learning 

process allows the agent to refine its decision-making 

policy progressively, improving navigation performance 

over time. 

Numerous studies have adopted DRL for autonomous 

vehicles [20]-[22] and UAV navigation [23]-[27], 

showcasing its effectiveness in intelligent decision-

making and adaptability to challenging scenarios. A key 

drawback of approaches like [9] and [28] is that they rely 

on direct access to depth image data through 

simulations for UAV navigation to estimate the distance 

to obstacles using visual cues. However, obtaining depth 

map data from the camera in real-world scenarios is 

often expensive. It necessitates specialized equipment, 

such as stereo cameras or depth sensors, which can 

significantly increase the overall cost. 

UAV navigation in narrow passages typically relies on 

vision-based methods, including image processing for 

window detection, homography for pose estimation, and 

visual servoing for trajectory control [29]-[31]. Some 

approaches enhance monocular vision with optical flow 

sensors or use stereo vision for depth information [29], 

[32]. Simultaneous Localization and Mapping (SLAM) 

also allows simultaneous map building and localization 

through visual or other sensors. 

Navigating in confined spaces presents several 

challenges for UAVs, arising from limitations in sensing, 

computational resources, environmental factors, and the 

complexity of path planning and control. One significant 

hindrance is the unreliability or unavailability of GPS 

signals indoors [32]. 

Enclosed spaces often require precise localization and 

mapping [33], making techniques like SLAM potentially 

useful yet challenging due to their high computational 

and power demands, which strain the limited resources 

of small UAVs [16], [29], [34]. Furthermore, monocular 

SLAM suffers from scale ambiguity [30]. In indoor 

environments, featureless surfaces can impair feature-
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based SLAM performance, while navigating narrow 

passages requires accurate obstacle detection [16], [32], 

[35]. [36] discusses utilizing a rangefinder sensor, noting 

that while it serves the purpose of navigation, a camera 

might be a better option and lead to improved 

performance. 

This paper addresses the challenge of enabling 

autonomous UAV navigation through narrow passages in 

a GPS-denied environment using a vision-based DRL 

approach with a monocular camera. Additionally, it 

explores the performance of DRL in controlling the UAV's 

decision-making, focusing on key metrics such as success 

rate, computational costs, and collision avoidance. The 

principal contributions of the paper are as follows: 

 We implement a DRL-based navigation system 

that utilizes only a monocular vision system for 

obstacle avoidance through perceptual spatial 

information extraction; 

 We stack input images to provide the agent with 

a short history of observations, capturing short-

term temporal dependencies to approximate the 

underlying Partially Observable Markov Decision 

Process (POMDP) while reducing computational 

overhead; 

 We propose a reward function to simplify and 

speed up the agent's problem-solving process by 

focusing on navigating narrow passages and 

assigning higher rewards as the agent moves 

closer to the center of the passage; 

 We evaluate our method in GPS-denied narrow 

passages using realistic 3D simulations to 

replicate real-world scenarios, including 

configurations with incomplete visual cues. 

The structure of this paper is as follows: the 

background and relevant literature are reviewed in the 

next section. The Methodology section outlines the 

methods and materials used in this study. The results are 

presented and analyzed in the Results and Discussion 

section. Lastly, the Conclusion section provides final 

remarks and suggests potential directions for future 

research. 

Related Work 

A. Classical Methods 

Classical approaches for UAV navigation and obstacle 

avoidance have been extensively studied, with 

prominent methods including graph-based algorithms, 

potential field methods, and rule-based systems. Graph-

based algorithms, such as Dijkstra's and A* algorithms, 

discretize the environment into a graph and employ 

search algorithms to find the optimal path [12], [18]. 

These methods are known for their ability to find the 

shortest path, but can suffer from computational 

inefficiency, especially in large and complex 

environments [12], [37]. On the other hand, potential 

field methods [38] treat the UAV as a point mass moving 

in a potential field generated by obstacles and the 

target. These methods are computationally efficient but 

are prone to local minima, especially in the presence of 

concave obstacles [11]. Rule-based systems rely on a set 

of predefined rules to guide the UAV's movement. These 

systems are simple to implement but lack flexibility and 

adaptability to complex environments [37].  

These methods are more suitable for path planning in 

a known global environment. An example is [39], where 

it uses A* to find the best route for food delivery. 

Although it developed a complete prototype system, it 

opted against conducting autonomous flights due to 

safety concerns. The A* algorithm heavily depends on 

the heuristic cost function and requires continuous 

computation and storage [40].  

Despite the constraints, the algorithm has faced many 

improvements over the years. For instance, [41] 

proposed a multi-objective programming model for UAV 

navigation by incorporating error correction and path 

constraints. The algorithm proves effective in a grid map 

environment, but its usage diminishes in high-

dimensional spaces [42]. Dynamic A* (D*) has been 

introduced to mitigate the limitations [42]. Nevertheless, 

creating the cost map for D* is a laborious and error-

prone endeavor [40]. 

Continuing with the traditional methods, the Rapidly-

exploring Random Tree (RRT) is another widely used 

sampling-based technique within the roadmap 

algorithms [37] that operates as a purely random search 

for path-planning with various motion constraints [42]. 

Study by [43] incorporates RRT with pruning to eliminate 

redundant nodes in cooperative multiple UAV 

navigation, ensuring a collision-free path between two 

endpoints by limiting sampling within a feasible region 

based on the maximum turning angle. However, the 

algorithm does not assure the optimality of the 

generated path and encounters inefficiency in cluttered 

or narrow spaces.  

Another enhancement introduced to RRT is [44], 

where it utilizes a cost function as heuristic information 

that includes both path length and path threat strength 

costs to guide the expansion of new nodes. 

Nevertheless, [43] simulates in a 2D environment, thus 

requiring further validation in a 3D environmental setup, 

and [44], despite being done in a 3D environment, is only 

suitable for static environments with all details to be 

known a priori. 

Bug algorithms are practical navigation strategies that 

break down the task into moving toward the goal and 

navigating around obstacles encountered. While these 

methods do not require prior knowledge of the 

environment, their resulting path is often suboptimal 



M. Shahbazi Khojasteh et al. 

58  J. Electr. Comput. Eng. Innovations, 14(1): 55-72, 2026 

[21], [45]-[47]. Additionally, assumptions such as finding 

the M-Line for obstacle avoidance are idealized and 

unrealistic in the real world [45]. 

B. Deep Learning Methods 

Most classical techniques can find optimal paths, but 

they typically require complete knowledge of the 

environment, making them unsuitable for unknown 

environments [48]. In contrast, DL approaches are 

model-free and demonstrate strong generalization when 

facing new or changing scenarios. Although DL 

algorithms require large datasets and extensive training 

time, they offer fast inference once trained. DL's ability 

to learn complex data representations from real-world 

environments makes it well-suited for autonomous 

robotic applications, particularly for UAVs [15], [49]. 

CNNs excel at extracting spatial features from images, 

making them highly effective for tasks such as obstacle 

detection and environment mapping, where visual data 

is crucial. On the other hand, Recurrent Neural Networks 

(RNNs) handle sequential data [50], enabling them to 

process temporal patterns and dependencies, which is 

particularly useful for trajectory prediction and motion 

planning. For instance, [51] proposes a fast global path 

planner that uses RNN capability to generate safe, 

collision-free paths. Compared to classical global path-

planning algorithms, this approach performs better in 

complex and challenging environments. 

Hybrid models, such as CNN-RNN architectures, 

effectively combine spatial and temporal data analysis, 

making them well-suited for tasks like those explored in 

[52]-[54]. However, a notable downside of such hybrid 

models is their increased computational complexity and 

training time, which may pose challenges in resource-

constrained environments. 

Another set of techniques commonly employed for 

navigation, path planning, and obstacle avoidance is the 

DRL approach. DRL is becoming increasingly essential for 

achieving autonomous decision-making in complex 

scenarios [15], [55], 56], and has demonstrated 

exceptional performance, particularly in challenging 

environments. DRL techniques combine the 

representational power of DL with RL's capability to 

learn optimal policies through trial and error [57]. This 

enables UAVs to acquire complex behaviors and adapt to 

their environments [58]. 

RL refers to a manner of learning wherein an agent 

engages in a trial-and-error process and acquires 

knowledge and skills by leveraging the reward signals 

and feedback obtained from the environment [59]. 

There is no predefined dataset in this learning paradigm 

from which the model can learn. Instead, the agent 

generates the training data in real-time through 

interactions with the environment [19]. DRL improves 

upon this methodology by utilizing deep neural networks 

to estimate the policy, value functions, or both to 

determine the most advantageous behavioral choices. 

In UAV navigation, DRL has proven remarkably 

effective in obstacle avoidance, trajectory planning, and 

real-time adaptation to dynamic circumstances. Notably, 

the study by [27] emphasizes DRL's ability to effectively 

manage high-dimensional state observations. 

Additionally, it introduces an innovative memory pool 

that enhances learning efficiency and accelerates 

training, further supporting DRL as a robust solution for 

UAVs operating in complex and unpredictable 

environments. 

As another example, [60] introduces a memory-based 

DRL approach that enables UAVs to avoid obstacles such 

as pedestrians with limited environmental knowledge. 

Similarly, [61] creates a DRL framework for UAV 

navigation in indoor environments, demonstrating the 

potential of DRL for challenging indoor navigation 

scenarios. A study by [62] focuses on collision-free UAV 

navigation using a monocular camera and DRL, 

highlighting the use of vision-based sensors for 

autonomous navigation. Likewise, [63] studies 

autonomous UAV navigation in large-scale complex 

environments using a DRL approach, showcasing the 

applicability of DRL for navigation in challenging outdoor 

scenarios. 

Methodology 

RL tasks are framed as interactions within an agent-

environment system, where the agent decides actions in 

response to the environment’s current state and 

receives feedback for its choices [19]. This control loop 

process is depicted in Fig. 1. While RL problems are 

typically modeled using the Markov Decision Process 

(MDP) [64] under the assumption of fully observable 

environments, real-world scenarios rarely satisfy the 

Markov property [65]. Thus, critical factors remain 

hidden in such cases, creating uncertainty for effective 

decision-making. 
 

 

 
Fig. 1: High-level overview of RL control loop. The agent 
applies an action to the environment based on its state, 

receives rewards, and observes the next state. 
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To address this, we propose modeling using a POMDP 

[66], which generalizes the MDP framework to handle 

incomplete observations. The POMDP can be defined as 

a tuple (           ) with each component 

representing states, actions, transition probabilities, 

rewards, and observations    , and the conditional 

probability distribution over   based on the state-action 

pairs (          ). 

The agent seeks to maximize the cumulative reward 

over time [57]. The UAV refines its policy,  , to favor 

actions that optimize the expected total reward. This 

objective is expressed through the following 

expectation: 

              [  ]      [∑    

 

   

]  (1) 

where   denotes a trajectory sampled from the policy  , 

   is the cumulative reward starting from time  , 

  [   ) is the discount factor, and    represents the 

reward received at time step  . 

A significant challenge of training DRL agents with 

policy gradient algorithms is their vulnerability to sudden 

performance degradation, where their effectiveness 

sharply declines [67]. Addressing this issue is 

complicated as the agent begins generating suboptimal 

trajectories, which serve as poor data for further policy 

updates, compounding the problem. 

Proximal Policy Optimization (PPO) [68] is a family of 

optimization techniques that employs an actor-critic 

framework to address these challenges. PPO employs an 

on-policy learning approach, where the decision-making 

policy is updated using a small batch of experiences 

collected from interactions with the environment. After 

updating, it discards these experiences and collects a 

new batch using the revised policy. 

PPO offers notable advantages, especially in robotic 

path planning and navigation. Its superior sample 

efficiency and stability make it a robust choice for 

continuous control tasks, where consistent performance 

is vital [69]. The algorithm can effectively optimize the 

UAV's path in scenarios like navigating narrow corridors, 

ensuring minimization of target time and practical 

obstacle avoidance, thus enhancing the reproducibility 

and clarity of experimental results [70]. 

Furthermore, PPO demonstrates strong stability and 

versatility, maintaining minimal deviations in 

performance across different environmental conditions. 

Its reliability makes it effective in both simple and 

complex environments, excelling in obstacle avoidance 

and optimal route planning [70]. 

Additionally, PPO demonstrates potent performance 

when encountering noise or disturbances. Even under 

challenging conditions with external perturbations, the 

algorithm maintains stable flight, achieving desired 

speeds and angles with low computational overhead 

[71]. 

PPO introduces a relative policy performance metric 

that quantifies the difference in performance between 

two policies. Applying a constraint on the step size 

during policy updates prevents performance collapse 

and ensures monotonic improvement. With  ( ) as the 

objective function,   representing the current policy, 

and    denoting the updated policy after an iteration, 

the relative policy performance identity can be 

expressed as follows: 

 (  )   ( )       [∑    (     )

 

   

]  (2) 

with   (   ) being the advantage function under   that 

measures whether a given action is better or worse than 

the policy's average action in a given state, defined as: 

  (   )    (   )    ( )  (3) 

where   (   ) represents the action-value function, 

describing the expected return starting from state   , 

taking action   , and following  , defined as (4), and 

  ( ) is the state-value function, which provides the 

expected return starting from state    under policy   

[72], expressed in (5). 

  (   )      [∑    

 

   ∣
∣
∣
∣
         ]  (4) 

  ( )      [∑    

 

   ∣
∣
∣
∣
    ]  (5) 

A common approach in implementing actor-critic-

based policy gradient methods involves using 

Generalized Advantage Estimation (GAE) [73]. GAE 

introduces a discounted, exponentially weighted sum of 

temporal difference (TD) errors to balance short-term 

and long-term return estimates. It addresses the bias-

variance trade-off in advantage estimation by 

interpolating between high-bias, low-variance (1-step 

TD) estimators and lower-bias, higher-variance (n-step 

TD) estimators. This flexibility allows GAE to compute 

more stable and accurate advantage values, improving 

policy updates. Mathematically, GAE is expressed as: 

    
 (     )  ∑(  )     

 

   

  (6) 

where   [   ] controls the trade-off between bias and 

variance. Smaller values of   place greater emphasis on 

the value function estimate, while larger values give 

more weight to the actual rewards.    in (6) is the TD 

error, defined as: 

         (    )    (  )  (7) 

The relative difference is defined in (2) acts as a 
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measure of policy improvement. A positive difference 

indicates that the updated policy,   , is better than the 

previous policy. In each policy iteration, the goal is to 

select a new policy    that maximizes this difference. 

Consequently, optimizing the objective  (  ) is 

equivalent to maximizing this performance gap, and 

both can be achieved through gradient ascent. 

Therefore, we can express it as follows: 

   
   

 (  )     
   

( (  )   ( ))  (8) 

At its core, PPO employs a surrogate objective 

function that ensures steady policy improvement, that is 

 (  )   ( )   . However, a limitation arises as the 

expectation in (2) requires trajectories from   , which is 

not available until after the update. To address this, we 

assume that two policies are close, so their state 

distributions are similar. This allows us to approximate 

the equation using trajectories from   with importance 

sampling weights. We can express the probability ratio 

between the new policy and the old policy, 

parameterized by  , as follows: 

  ( )  
  (     )

     (     )
  (9) 

where   (     ) is the probability of taking action    in 

the state    under the new policy, and      (     ) is the 

probability under the old policy. Thus, we can get 

  ( old)    from it. This allows us to rewrite the 

objective function (2), with advantages calculated using 

the older policy, as follows: 

 ( )    [
  (     )

     (     )
  

     (     )]    [  ( )  ]  (10) 

To control and prevent large, unstable policy updates, 

a constrained clipped version of the surrogate function is 

employed, restricting the policy updates to stay within a 

trust region that is both easy to implement and 

computationally efficient, as follows: 

     ( )    [   (  ( )       (  ( )        )  )]  (11) 

where   is a hyperparameter that defines the clipping 

neighborhood and can be decayed during training. The 

function takes the minimum of the unclipped and the 

clipped objective to ensure conservative updates. PPO 

updates the policy iteratively using gradient ascent, with 

  representing the learning rate, as follows: 

        
    ( )  (12) 

PPO includes a separate objective to train the value 

function   ( ) using mean-squared error: 

  
  ( )    [(  (  )    )

 ]  (13) 

PPO clips the value function like the clipped surrogate 

objective by minimizing the following loss: 

 clip(  )  clip(  (  )     (  )         (  )    )  (14) 

  
  ( )    *   ((  (  )    )

  ( clip(  )    )
 
)+  (15) 

A study by [74] found no empirical evidence 

supporting the effectiveness of value function loss 

clipping in improving performance. Furthermore, [75] 

argue that  clip(  ) may even hinder performance. We 

empirically tested this in our case and observed that 

value clipping does not enhance our model's 

performance and, thus, is not used in our 

implementation. 

Decaying the   values for clipping helps stabilize 

training in PPO by gradually reducing the allowed 

deviation. Initially, larger clipping values allow more 

freedom for exploration and faster updates, while 

decaying   encourages more conservative updates as 

training progresses. For   clipping range, we can use the 

following linear decay: 

          (           )  (  
 

 
)  (16) 

where   is the current timestep out of the total 

timesteps  ,    is the current epsilon value, and        

and      are the starting and ending values of the 

clipping range. 

The total loss combines the policy objective, value 

function loss objective, and an entropy term to ensure 

sufficient exploration: 

  
     ( )    [  

    ( )      
  ( )     (  )]  (17) 

where    and    are coefficients to control the 

importance of each term, and  (  ) is the entropy of 

the policy for exploration. The flow diagram of the PPO is 

depicted in Fig. 2. 

 

 
 

The camera captures RGB images with a field of view 

of     and dimensions of (       ). To approximate 

the environment's underlying POMDP, we stack input 

images to provide the agent with a short history of 

 

Fig. 2: The data flow diagram of the PPO framework. 
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observations. This effectively captures temporal 

dependencies and reduces ambiguity in state 

representation. We transform the RGB images to 

grayscale, normalize them to the range [    ], and 

stack the subsequent captured frames along the width 

dimension. The stack is processed through CNN layers, 

flattened, and fed into a fully connected layer for further 

processing. The output features are then passed to the 

actor and critic networks to determine the actions and 

estimate the values. It is important to note that actions 

don’t directly generate the output. Instead, the actor-

network produces the mean and sigma of a normal 

distribution from which actions are sampled. The 

architecture of the proposed method is illustrated in Fig. 

3. 

This approach transforms the task closer to a first-

order MDP by embedding critical contextual information 

from recent frames, allowing the agent to infer short-

term dependencies on the current state more 

accurately. By doing so, we eliminate the need for 

computationally expensive recurrent mechanisms, such 

as RNNs, which explicitly model long-term dependencies 

but often introduce significant overhead.  

This balance enhances efficiency while maintaining 

effective policy learning in partially observable 

environments. The implementation details are outlined 

in Algorithm 1. 

A. Action Space 

The action space is a high-level, two-dimensional 

continuous control space that directly manages the 

linear velocities along the principal axes in the UAV’s 

local NED coordinate system. These velocities are 

defined in meters per second and are illustrated in Fig. 4. 

The movement along the x-axis is set to a fixed value and 

remains unchanged throughout the flight.  

Consequently, the quadrotor maintains constant 

forward motion while the model controls the lateral 

translation along the y-axis and the altitude translation 

along the z-axis. Each action is applied to the drivetrain 

for 0.5 seconds. 

B. Reward Function 

The reward function consists of three terms: the first 

term rewards the agent consistently after passing the 

first passage based on the total number of passages. It is 

calculated as: 

   {     
   

   
            }   (18) 

where   is the starting value,   is the ending value,   is 

the number of total passages, and   is the index of the 

current passage; the second term accounts for the 

distance from the center of the current passage. Each 

passage is an imaginary cube with all three principal axes 

of a length of 2 meters. 

Algorithm 1: Proximal Policy Optimization 

 Input: single-channel image with size (     ) 

 Output: continuous action    

1: Set       entropy regularization weight 

2: Set       importance weight of   
  ( ) 

3: Set      the clipping variable 

4: Set    the number of epochs 

5: Set    the time horizon 

6: Set      the minibatch size 

7: Set      the learning rate 

8: Set    the stack size 

9: Initialize the actor and critic parameters       with 

Orthogonal initialization for weights and constant for 

biases. 

10: Initialize the old actor network       

11: for                   do 

12:  Initialize an empty rollout buffer 

13:  Initialize    as zeros with size (       ) 

14:  Observe    

15:  for           do 

16: 
  

    Roll the stack along the width dimension and add 

   

17:   Apply action       (     ) 

18:   Receive    and observe      

19:   Record (             ) into rollout buffer 

20:           

21:  end for 

22:  Set          

23:  Calculate       
          

  using the critic network    

24:  Compute advantages         using (6) with       

25: 
 

Let       with size   consist of the collected trajectories, 

advantages, and target values 

26:  for               do 

27:   for minibatch   in       do 

28:    Calculate   (  ) 

29: 
   

Calculate   
    (  ) using (11), with the advantages 

   and   (  ) 

30:    Calculate entropies    using    

31: 
   

Calculate policy loss:     (  )    
    (  )       

based on (17) 
     

32:    Calculate predicted values  ̂ (  ) using    

33:    Calculate value loss     (  ) using (15) 
     

34: 
   

Update actor parameters    according to (12) using 

calculated     (  ) 

35: 
   

Update critic parameters    according to (12) using 

calculated     (  ) 

36:   end for 

37:  end for 

38:  Decay clipping   variable 

39: end for 



M. Shahbazi Khojasteh et al. 

62  J. Electr. Comput. Eng. Innovations, 14(1): 55-72, 2026 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the UAV's distance from the cube's center, it 

receives a negative reward, which becomes less 

penalized as it gets closer to the center.  

Conversely, when the UAV is inside the imaginary 

cube, the negative reward transitions to a positive 

reward: 

   

{
 
 

 
 
√

 

| uav  
 cu e

 
|
 

 

| uav  
 cu e

 
|
 i  inside 

 (√‖     ‖)                      i  outside

  (19) 

where    ( uav  uav) and    ( cu e  cu e) represent 

the UAV’s position and the imaginary cu e position, 

respectively; the third reward term provides a larger 

constant reward if all passages are successfully passed. 

In the case of a collision, a penalty is imposed, and the 

trajectory terminates due to a critical failure. The final 

reward is computed as the sum of all the terms:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             (20) 

The parameters of the reward function are 

determined empirically to achieve the best results. 

The reward function implicitly plays a crucial role in 

addressing safety issues by directing the UAV to 

maintain its position in the center as it moves through 

narrow passages. It improves navigation and helps avoid 

obstacles while significantly decreasing the likelihood of 

crashes, especially in tight spaces. 

Results and Discussion 

All experiments are conducted on a standard laptop 

with an Intel Core i7-6700HQ processor running at 2.6 

GHz, 16 GB of RAM, and a GeForce GTX 960M GPU with 

4 GB of VRAM. 

We use the AirSim simulation platform [76] to achieve 

realistic simulations. This platform is specifically 

designed to develop RL algorithms for autonomous 

agents in real-world scenarios. AirSim accurately 

simulates the environmental and aerodynamic 

properties of UAVs by utilizing the graphical capabilities 

of Unreal Engine to create a practical virtual 

environment. This paper focuses on using a multi-rotor 

UAV, known for its superior hover and maneuverability 

performance [48], making it an ideal choice for civilian 

applications outside the military domain. 

We design our environment based on [77], 

structuring it into several sections. A wall with a narrow 

passage separates each section, requiring the quadrotor 

to navigate through to proceed. The final section 

transitions the quadrotor from an indoor to an outdoor 

environment, which then marks the task as completed. 

The training environment and its corresponding map are 

demonstrated in Fig. 5. The dimensions of the elements 

in the environment are shown in Fig. 6. To assess the 

 

Fig. 3: Architecture of the proposed PPO model with consideration of temporal correlations. The number of stacked frames 
is 3. Number of filters, stride and output size are mentioned for each convolutional layer. 

 
Fig. 4: Overview of the high-level continuous action space, 
controlling lateral (y-axis) and altitude (z-axis) velocities, 

with constant forward motion along the x-axis. 
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effectiveness and generalization of the policy, we 

conduct experiments using the training setup and 

scenarios with varied passage arrangements. 

 

 
 

Fig. 5: The training environment with its map. 
 
 

 
 

Fig. 6: Dimensions of each section and passage in the 
environment, all in meters. 

A. Performance Comparison 

For comparison, we evaluate our method against 

closely related approaches from [28] and [49]. 

Additionally, we evaluate our method against recent and 

state-of-the-art algorithms, including Deep Deterministic 

Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and 

Soft Actor-Critic (SAC). Furthermore, we include an 

analysis of the number of frames and evaluate its impact 

on performance. The training hyperparameters for each 

environment are detailed in Table 1.  

The main criterion for assessing a navigation 

algorithm is the success rate, which is determined by the 

formula          , where   represents the count of 

successful trajectories and   indicate the number of 

times the algorithm has been executed [42]. 

Fig. 7 depicts the training performance results. As 

evident from the graphs in this figure, the plots (a), (b), 

and (c) share significant similarities with plots (a) and (b) 

demonstrating a strong correlation. As training 

progresses in the environment, the first observable 

trend in these graphs is that the agent learns effectively 

from the interactions over time, resulting in an increase 

in the average episode length across most approaches. 

This indicates that the agent learns an effective policy 

through iterative weight updates driven by gradient 

descent signals from network errors. 

 
Moreover, the rise in average episode length is 

accompanied by increased rewards, further highlighting 

effective learning. Among the approaches compared in 

this figure, it is evident that when using single grayscale 

images, there is no notable improvement in the average 

episode length or rewards compared to other methods. 

This suggests that the agent needs assistance to derive a 

meaningful understanding of the required policy from a 

single image and its extracted features, resulting in a 

failure of this approach. 

Given that actions are continuous, it becomes clear 

that considering correlations among multiple images is 

necessary to capture the influence of action changes on 

the input state space. This understanding can be 

established by introducing a short-term dependency 

through stacking input images.  

For instance, when the stack size is two, the agent not 

only achieves a higher initial average episode length 

compared to other approaches but also demonstrates 

significantly better results in terms of average success 

rate, as shown in the plot (c), even compared to cases 

with larger stack sizes. 

However, as seen across all plots and most noticeably 

in plot (d), this approach exhibits more significant 

fluctuations than others, indicating a need for more 

stability.  

Table 1: Training hyperparameters 

Hyperparameter Value 

Optimizer Adam 

Seed 2024 

Frame Stack 3 

Learning Rate 0.00007 

Number Of Rollout Steps 2048 

Batch Size 128 

Update Epochs 30 

Discount Factor 0.99 

GAE Coefficient 0.7 

Max Gradient Norm 0.5 

Start Clipping Value 0.3 

End Clipping Value 0.05 

Entropy Coefficient 0 

Value Function Coefficient 1 

Total Learning Steps 100,000 
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Plot (d) shows that the network's error is highly 

volatile, which may lead to fundamental policy shifts 

during updates, sometimes steering the agent in 

counterproductive directions. These adverse effects are 

evident in plot (c) for this method. 

When the stack size is increased to three, all graphs 

show much better stability, and it is apparent that this 

approach outperforms others significantly. This 

approach achieves the best performance across all 

metrics. Increasing the stack size to four or five results in 

slower learning rates in terms of success rate and 

rewards, alongside a higher computational overhead, 

without yielding substantial performance improvements. 

Approaches [28] and [49] demonstrate considerably 

weaker performance in solving the task and achieving 

success rates, further validating the reliability and 

effectiveness of the proposed method. The full detail of 

the experiments done is outlined in Table 2. 

Unlike comparison methods, DDPG has the longest 

average episode length but generates a relatively low 

average reward and experiences a high collision rate. Its 

elevated    loss    indicates    instability    during    training, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

primarily due to the difficulties associated with value-

based learning in complex continuous-action 

environments. DDPG requires more training steps to 

achieve optimal policy refinement. 

On the other hand, TD3 shows improved stability. 

However, its high loss and collision rate also imply that it 

needs more training steps.  

This is due to the use of additional networks that rely 

on approximations. In contrast, SAC demonstrates a 

higher reward and success rate, ranking as the second-

best method with a relatively low loss value. This success 

highlights how entropy-regularized policy learning 

effectively balances exploration and exploitation. Hence, 

SAC exhibits faster initial learning, as shown in Fig. 7, 

plots (b) and (c). 

SAC’s per ormance closely aligns with the two-frame 

stack setup.  

However, the three-frame stack configuration 

achieves the highest average reward and success rate 

while maintaining the lowest collision rate, 

outperforming all other setups, including SAC. Our 

approach yields slow but gradual progress. 

  

(a) Avg. Episode Length (b) Avg. Episode Reward 

  

(c) Avg. Success Rate (d) Network Loss 

Fig. 7: Training performance results. 
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B. Computational Cost Analysis 

Computational cost analysis of image stack 

configurations provides insight into performance and 

resource consumption. Table 3 presents the inference 

time, frames per  second  (FPS),  number  of  parameters,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three-frame stack achieves an inference time of 

20.55 ms, delivering 16.58 processed frames per second. 

Although the computational cost is slightly higher than 

that of the two-frame stacks, this increase is subtle as 

decision-making accuracy and stability are improved. 

Additionally, the three-frame stack requires 1,129,571 

parameters and consumes 12.95 MB of VRAM, 

representing a reasonable trade-off between 

performance gains and resource usage. Compared to the 

four-frame and five-frame configurations, the three-

frame stack maintains a lower computational footprint 

without sacrificing performance. Furthermore, the three-

frame stack requires no complex hardware and achieves 

remarkably sounder performance with minimal 

additional computational cost compared to a single-

frame input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and VRAM allocation comparison for different stack 

sizes. Among these configurations, the three-frame stack 

achieves a balanced performance in terms of decision-

making effectiveness while maintaining manageable 

computational overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The network’s num er o  parameters increases as 

more frames are stacked. While the three-frame stack 

has higher parameters than the single-frame setup, it 

remains well within the capabilities of UAV hardware. 

Compared to more frame stacks, which exceed 1.5 

million parameters, the three-frame stack offers a more 

efficient balance between performance and 

computational demands. This configuration ensures that 

UAVs can process visual data effectively without 

overloading onboard processors, making it a practical 

choice for real-time navigation, especially in GPS-denied 

environments. 

Fig. 8 further illustrates these findings. The 

comparative representation depicts the trade-offs 

between performance and computational cost across 

different stack sizes.  

Table 2: Performance results of the final rollout during the training phase 

Method Avg. Episode Length Avg. Episode Reward ↑ Success Rate ↑ Collision Rate ↓  Loss 

Single 28.95 15.43 0.00 1.00 0.94 

2 Stack 87.55 153.64 0.74 0.26 5.24 

3 Stack 91.95 169.56 0.79 0.21 2.35 

4 Stack 90.62 162.42 0.67 0.33 3.59 

5 Stack 85.26 150.26 0.67 0.33 1.30 

DDPG 96.91 73.91 0.40 0.60 25.37 

TD3 78.33 105.22 0.53 0.47 21.74 

SAC 88.92 164.28 0.75 0.25 6.69 

Ref [28] 85.98 137.96 0.68 0.32 17.44 

Ref [49] 80.29 124.00 0.54 0.46 3.69 

 

Table 3: Computational cost comparison for different frame stack during evaluation iterations 

N-Frame Inference Time (ms) Frames Per Second Number of Parameters VRAM Allocation (MB) 

One 8.17 17.79 277,603 3.20 

Two 11.26 17.24 736,355 8.45 

Three 20.55 16.58 1,129,571 12.95 

Four 20.74 16.51 1,522,787 17.45 

Five 21.07 16.37 1,916,003 21.95 

 



M. Shahbazi Khojasteh et al. 

66  J. Electr. Comput. Eng. Innovations, 14(1): 55-72, 2026 

 
 

Fig. 8: Performance and computational cost across different 
frame stack configurations. 

 

Based on the results, frame stacking enhances UAV 

navigation performance without adding additional 

overhead. Compared to single-frame input, stacking 

allows the UAV to utilize temporal visual cues, leading to 

more accurate decision-making while maintaining 

computational efficiency. This balance makes the frame 

well-suited for deployment on resource-constrained 

edge devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed approach shows consistent stability in 

task completion and safety across various test scenarios. 

Success and collision rates remain within reasonable, 

acceptable ranges. There are slight variations in episode 

rewards, corresponding to expected behavioral 

adaptations to different environmental setups. The 

reward  variations   result    from    minor    trade-offs    in 

 

 

 

 

 

 

 

 

 

C.  Generalization Verification 

We conduct two tests to assess the model's 

generalization capability under different environmental 

variations. In the first test, we change the positions of 

the passageways, while in the second test, we modify 

both their position and shape from cubes to spheres. Fig. 

9 illustrates the design and map of the second 

generalization test. Fig. 10 illustrates the results. 

 

 
 

Fig. 10: Setup and map of the second generalization testing 
environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

navigation efficiency, rather than from failures in core 

task execution. In particular, the agent receives more 

rewards when it is closer to the center of the 

passageway. As a result, confidence in the rewards is 

anticipated.  

The comprehensive results of all tests are presented 

in Table 4. 

 

 

 

 

 

 

 
 

 

   
(a) Main Setup (b) Generalization 1 (c) Generalization 2 

Fig. 9: Performance evaluation during the testing phases over 25 sets of 100 iterations, with shaded areas indicating the standard 
deviation across sets. 

 

Table 3: Performance results in the testing phases over 25 sets of 100 iterations, with their respective standard deviations 

Test Category Avg. Episode Length Avg. Episode Reward Success Rate  Collision Rate  

Main Setup 97.773 ± 0.482 210.524 ± 5.228 0.978 ± 0.037 0.022 ± 0.037 

Generalization 1 97.619 ± 0.633 188.652 ± 2.508 0.981 ± 0.026 0.019 ± 0.026 

Generalization 2 97.852 ± 0.564 203.686 ± 4.255 0.971 ± 0.041 0.029 ± 0.041 
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Regardless of the setup, the model exhibits strong 

performance in its primary objectives, i.e., success and 

collision avoidance, demonstrating its ability to adapt to 

environmental changes. This consistency in critical 

metrics, accompanied by minor reward deviations, 

underlines the model’s a ility to generalize e  ectively 

without compromising its functional reliability. For a 

visual representation of the experiments, please refer to 

the supplementary movie clip1. 

D. Noise Impact Analysis 

To evaluate the model's robustness to sensor noise, 

we introduce noise at different strengths to simulate 

varying noise levels. Specifically, distortions are applied 

at 5%, 10%, and 15% magnitudes to challenge the visual 

processing capabilities under diverse wavering degrees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                                            
1
 https://youtu.be/Raf12qr0bps 

Here, sensor noise serves as a representative factor 

for broader adverse environmental conditions, such as 

low light, fog, and camera distortions, strengthening the 

real-world relevance of this analysis by approximating 

visual uncertainties that UAVs commonly encounter in 

practical scenarios. 

Horizontal distortion blends the ratio of the noise 

pixel with the image pixel, which introduces fluctuations 

in the horizontal line of an image. We aim to assess how 

the model handles such disturbances. 

Fig. 11 illustrates the distortion and fluctuations 

resulting from different noise levels. Additionally, we 

introduce 20% random noise blobs alongside the 

horizontal distortion to better simulate real-world 

uncertainties. 
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Fig. 12 shows Gaussian distribution plots of how 

different noise levels affect the actions. As noise 

increases, the distribution mean shifts, indicating slight 

changes in the UAV's behavior. At 5% noise, the 

distributions of lateral actions remain close to the no-

noise baseline. However, the distribution mean shifts 

slightly more at 10% and 15% noise levels, resulting in 

more variability in action selection. Although the 

standard deviation remains constant in each plot, the 

distribution for lateral movements shifts toward more 

negative values as noise increases. In contrast, vertical 

action changes less and shows no consistent pattern in 

mean shift direction, pointing out that lateral control is 

more sensitive to noise than vertical movement. As a 

result, the agent struggles to locate the passage due to 

horizontal line distortion. 

 

 
 

Fig. 12: Gaussian distribution of UAV actions for lateral (y-axis) 

and vertical (z-axis) movements at different noise levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, Fig. 13 shows the distribution of action data 

points for both actions under different noise levels. In 

the no-noise case, the action values are clustered around 

-1, indicating stable control. As noise increases, the 

distributions widen, especially along the y-axis, where 

the peaks become less defined and more spread out. In 

contrast, the z-axis peak changes moderately with a 

slight shift in the mean value. This implies that higher 

noise levels increase uncertainty, with more impact on 

lateral control. 

 

 
 

Fig. 14: Distribution of UAV action values for lateral (y-axis) and 
vertical (z-axis) movements under varying noise strengths. 

 

Table 5 evaluates the navigation performance under 

sensor noise uncertainty, while Fig. 14 provides a visual 

representation, with shaded areas indicating the 

standard deviation across all execution sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Performance assessment with sensor noise addition during the testing phase over 10 sets of 100 iterations 

Noise Strength Avg. Episode Length Avg. Episode Reward Success Rate  Collision Rate  

5% 97.186 ± 1.035 172.127 ± 5.925 0.954 ± 0.036 0.046 ± 0.036 

10% 96.238 ± 1.806 156.578 ± 6.736 0.913 ± 0.051 0.087 ± 0.051 

15% 91.845 ± 3.955 129.747 ± 10.669 0.762 ± 0.108 0.238 ± 0.108 

 

   
(a) Noise Strength 5% (b) Noise Strength 10% (c) Noise Strength 15% 

Fig. 13: Performance evaluation with sensor noise addition during the testing phase over 10 sets of 100 iterations, with shaded 
areas indicating the standard deviation across sets. 
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Despite the added noise in captured images and 

increased uncertainty in action selection, the three-

frame stack method does not rely solely on the current 

observation to predict the next movement. Since 

distorted pixels change with each frame, the agent 

utilizes temporal information to maintain reasonable 

success and failure rates with 5% noise.  

However, as noise intensifies to 10%, the standard 

deviation area expands, and success trajectories 

decrease due to higher uncertainty, though the 

performance impact remains minimal. At 15% noise 

strength, as shown in Fig. 11, the distortion becomes 

severe, altering the perceived positions of passageways 

and making safe navigation challenging. In this scenario, 

the agent struggles to complete the task safely, resulting 

in a significant performance drop, with the success rate 

falling to approximately 0.76, a reduction of about 0.15 

compared to the 10% noise setting. These findings 

indicate that the 15% noise level is too high for an agent 

not trained to handle such input noise. Thus, the three-

frame stacked model can tolerate the noise up to 10% 

and maintain acceptable performance.  

Conclusion 

This paper presents a PPO-based approach for 

autonomous quadrotor navigation in GPS-denied 

environments using a monocular camera as the primary 

sensor. We effectively process temporal information and 

manage limited environmental data by utilizing stacks of 

grayscale images. The trained policy learns to maximize 

rewards by favoring actions that yield the highest 

returns. Using this policy, the agent robustly and 

precisely controls actions to navigate the aerial vehicle 

through challenging and narrow passages. 

The quadrotor's reliable operation in GPS-denied 

settings is a tribute to its adaptability and robustness, 

ensuring its reliability for search and rescue, inspection, 

and surveillance applications. This paper highlights the 

transformative potential of DRL methods, such as PPO, 

particularly when paired with effective feature 

extraction and processing techniques. Our approach 

reduces equipment costs, provides fast inference, and 

facilitates simpler architectures. It is essential to note 

that our method is validated in simulation, which may 

not fully capture the aerodynamic effects experienced by 

UAVs in real-world environments, such as near gaps, 

walls, or wind gusts. These aerodynamic disturbances 

can impact the vehicle's dynamics. 

In future work, we plan to design an image-based 

collision probability algorithm to improve performance 

and extend the method to general path planning in 

dynamic environments. Additionally, we will conduct 

real-world validation to ensure robustness to 

aerodynamic factors and environmental noise. As part of 

the deployment, explicit safety mechanisms, such as 

emergency stopping and fault-tolerant behaviors, are 

planned to increase operational reliability and address 

unforeseen failures during flight. 
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