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Background and Objectives: Software testing plays a vital role in software
development, aimed at verifying the reliability and stability of software systems.
The generation of an effective test suite is key to this process, as it directly
impacts the detection of defects and vulnerabilities. However, for software
systems with numerous input parameters, the combinatorial explosion problem
hinders the creation of comprehensive test suites. This research introduces a
novel approach using the B-Hill Climbing optimizer, an advanced variant of the
traditional hill climbing algorithm, to efficiently generate optimal test suites.
Methods: The B-Hill Climbing optimizer introduces a dynamic parameter, (3,
which facilitates a precise balance between exploration and exploitation
throughout the search process. To evaluate the performance of this proposed
strategy (referred to as BHC), it is compared with TConfig as a mathematical
approach, PICT and IPOG as greedy algorithms, and GS, GALP, DPSO, WOA,
BAPSO, and GSTG as meta-heuristic methods. These strategies are tested across
a variety of configurations to assess their relative efficiency.

Results: The reported results confirm that BHC outperforms the others in terms
of the size of generated test suites and convergence speed. The statistical
analysis of the experimental results on several different configurations shows
that BHC outperforms TConfig as a mathematical strategy, PICT and IPOG as
greedy strategies, GS, GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristics by
83%, 88%, 87%, 61%, 61%, 46%, 61%, 62%, and 70%, respectively.

Conclusion: The BHC strategy presents a novel and effective approach to
optimization, inspired by B8-Hill Climbing optimizer for the generation of an
optimal test suite. It has superior performance in the generation of test suites
with a smaller size and higher convergence speed compared to other strategies.
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Introduction

Software testing plays a fundamental role in the
software development process, ensuring that software
systems operate reliably and meet predefined quality
standards [1]. This validation process encompasses a
range of methodologies, including white box testing and
black box testing. White box testing scrutinizes the
internal workings of software to identify potential flaws
before release. Model checking is a formal method,
belonging to white box testing methods that
systematically examine the properties of a system by
exploring all possible states of a model of a system.
However, this method faces challenges with state space
explosion in large and complex systems, as the memory
requirements grow exponentially [2]. Black box testing
evaluates software functionality from an end-user
perspective to ensure alignment with user requirements
[3]. The integration of these approaches aims to produce
an optimal test suite that guarantees the software's
expected performance under diverse conditions.

Nevertheless, crafting an optimal test suite that
achieves comprehensive coverage across all conceivable
scenarios remains a formidable challenge, particularly
for intricate software systems. This challenge s
exacerbated by the combinatorial explosion problem,
wherein the number of necessary test cases grows
exponentially as the quantity of input parameters and
their potential values expands. Various techniques have
emerged to confront this issue, including t-way testing,
which focuses on examining combinations of input
parameters that significantly influence system behavior
[4].

This paper presents an innovative approach that
leverages t-way testing in conjunction with the B-Hill
Climbing Optimizer, a metaheuristic algorithm [5], to
construct an optimal test suite that tackles the
combinatorial explosion problem while maintaining a
manageable size. Our strategy (so-called BHC) harnesses
the B-Hill Climbing Optimizer to iteratively enhance
candidate test suites by guiding them in the direction of
steepest ascent until a satisfactory solution is reached.
Meanwhile, the t-way testing technique identifies a
subset of input combinations with a high likelihood of
detecting software defects while keeping the test suite's
size within bounds. This optimization method has
demonstrated its effectiveness in producing optimal test
suites that encompass a broad spectrum of test cases.

To evaluate and compare the efficiency of BHC, it is
benchmarked against TConfig as a mathematical
approach, PICT and IPOG as greedy algorithms, and GS,
GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristic
techniques. They are experimented on several different
configurations. Our experimental evaluation illustrates
that our strategy surpasses considered strategies,

drastically reducing the number of required test cases to
achieve comprehensive coverage.

Our investigation aims to spotlight the development
of a comprehensive and effective testing methodology,
merging t-way testing with the 8-Hill Climbing Optimizer,
to address the combinatorial explosion problem. This
methodology, we argue, generates an optimal test suite
that elevates software product quality and reliability,
thereby mitigating potential issues that could impact
end-users.

The remainder of the paper is structured as follows.
Initially, we present the relevant background, including
an overview of the BHC algorithm and the t-way
strategy. Following that, the existing research on
software testing and optimization, with a focus on
metaheuristic algorithms for generating optimal test
suites, will be provided. In the following, we introduce
our proposed approach, utilizing the B-Hill Climbing
Optimizer for comprehensive test suite generation.
Then, the effectiveness of this method, comparing it to
existing techniques and assessing the quality of the
generated test suites, will be presented. Finally, the
conclusion section concludes the paper and discusses
directions for future research.

Background

A. B-Hill Climbing Optimizer

Hill-climbing optimizers are iterative optimization
techniques that aim to improve a solution iteratively by
making local changes. Over time, various versions of hill-
climbing have been developed to address its inherent
limitations, such as getting stuck in local optima or
inefficiency in rugged landscapes. In the continuation of
this section, we review the most notable versions. Basic
hill climbing [6] , is the simplest version of this optimizer
that moves to the best neighboring solution at each
iteration, always choosing the most favorable option.
First-choice hill climbing [7] is another version of this
optimizer, which randomly evaluates neighbors and
chooses the first one that is better than the current
solution. Other versions of this optimizer include:
random-restart hill climbing (repeatedly performs basic
hill climbing from randomly generated initial states,
keeping track of the best solution found) [8], simulated
annealing (hill climbing with cooling) [9], steepest-ascent
hill climbing (evaluates all neighbors and chooses the
one with the steepest increase in fitness (largest
improvement)) [10], parallel hill climbing (runs multiple
hill-climbing processes in parallel from different starting
points) [11], tabu search (memory-based hill climbing)
[12] and B-hill climbing optimizer (introduces a tunable
parameter B to balance exploration and exploitation) [5].
Table 1 covers the various versions of hill-climbing
optimizers and highlights their unique strengths and
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weaknesses. Moreover, this optimizer is hybrid with
other algorithms such as PSO [13] and GA [14].

The Beta Hill Climbing (BHC) optimizer is an advanced
iteration of the classic hill climbing algorithm,
incorporating an exploratory operator denoted as B [5].
This operator, inspired by the uniform mutation
operator found in genetic algorithms, equips BHC with
the ability to navigate across diverse regions within the
search space. This enables BHC to break free from local
optima by experimenting with random values to choose
for decision variables. Unlike the basic hill climbing
algorithm [15], BHC effectively balances both exploration
and exploitation, mitigating the risk of converging
prematurely into local optima.

Table 1: The summary of strengths and weaknesses of various
versions of hill-climbing optimizers

Variant Strengths Weaknesses
Basic Hill . Prone to local
L Simple and fast .
Climbing optima
First-Choice Faster than SSue;;c)Ie:i::arl
Hill Climbing stochastic P
moves
Random- High
. Escapes local .
Restart Hill A . computational
L optima effectively
Climbing cost
Simulated Good exploration- Slow
Annealing exploitation balance convergence
. Expensive for
Steepest- Finds locally best
Ascent path quickly large
neighborhoods
Parallel Hill Increases global comp}-lljlfarlional
Climbi tima likelihood
imbing optima likelihoo demand
Avoids cycles in Requires
Tabu Search ¥ memory
search
management
Dynamic Computationall
B-HCO exploration- P ¥

o complex
exploitation control

The BHC algorithm starts with an initial solution x =
{x1, x5, ..., xi} that is randomly generated within the
bounds of the search space, where the value of each
variable x; lies within [/b;, ub;]. Then, the value of the
objective function f(x) is calculated, and a new solution x’
is created by applying N and 8 operators on the current
solution x. This process continues until the number of
iterations falls below the specified maximum,
maxliterations.

The N operator selects a neighboring solution x' from
the current solution x as follows: First, it randomly

Using B-Hill Climbing Optimizer to Generate Optimal Test Suite

chooses one of the variables in the current solution,
denoted as variable j-th. Then, it modifies the value of
this variable using (1):

X', =X, +rnd *bw (1)

here, bw represents the bandwidth between the current
value and the new value, and rnd is a random number
between zero and one. It's worth noting that all variable
values in the new solution x', except for the j-th variable,
remain identical to those in the current solution x.

The 8 operator generates a new solution based on the
existing solution x as follows: It assigns values to the
variables in the new solution using two different
strategies. It either assigns values based on the values in
the current solution with a probability of (1-8) or
randomly samples values from the available range with a
probability of 8. For a more detailed representation of
the algorithm, see Algorithm 1 in the provided
pseudocode.

Algorithm 1: The BHC pseudocode

Input: maxlterations: the maximum number of iterations; k:
the dimension of the given problem; Ib, ub, fit: the fitness
function; bw, beta;

Output: An individual with the highest fitness;

1: Individual x = Initialize (k, Ib, ub);

2: rep =1;

3: while rep <= maxlterations do

4: Individual x” = x;
//// The IV operator: This operator generates
new candidate solutions by adding normally

distributed noise, aiding in local exploitation
around the current solution.

index = a random integer number between 1 and k;
rnd = a random number between 0 and 1;
x’ [index] = x [index] +(2*rnd-1)*bw;
//// The B operator: This operator diversifies
the search by using controlled random

perturbations to escape local optima and
explore new regions of the solution space.

11111/

: forj=1to kdo
9: if rand(0,1) <=beta then
10: x’ [j] = Ib[jl1+(ub[j]-Ib[j])* rand(0,1);
11: end if
12: end for
13: if fit (x’) > fit (x) then
14: X=X
15: end if
16: rep ++;
17: end while

18: return x;
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Overall, BHC stands out as a straightforward vyet
highly efficient optimization algorithm, renowned for its
capability to surmount local optima and navigate across
diverse territories within the search space. At its core,
BHC leverages an exploratory operator, denoted as 6,
which draws inspiration from genetic algorithms. This
distinctive feature empowers the algorithm to execute
random leaps, fostering the potential for accelerated
convergence towards the global optimum. In essence,
the N and 8 operators within BHC can be viewed as
complementary components, with N primarily serving as
an exploitation mechanism and 8 serving as the key
source of exploration in this algorithm.

B. The T-Way Strategy

Comprehensive testing of a software system requires
accounting for all possible combinations of input
parameters in the test cases. However, when dealing
with systems that have a large number of input
parameters, this approach can result in a challenge
known as the “combinatorial explosion” problem.

To tackle this challenge, the t-way combinatorial
testing technique is employed. Instead of covering all
conceivable combinations, it focuses on generating a set
of test cases that encompasses only t combinations of
system parameters [16]. The effectiveness of this
strategy hinges on selecting an appropriate value for t.

Selecting a small t could result in missing critical
combinations needed to detect errors in the generated
test suite. On the other hand, using a large t may bring
back the issue of combinatorial explosion. In this
method, t is known as the “coverage power”, which
dictates the depth of coverage. The test suite generated
using the t-way approach is called a “covering array”
(CA).

For a system that takes p parameters as input, where
each parameter can assume di (1 < i < p) possible values,
the covering array is denoted as CA(N; t, p, dy, ..., dp),
where N signifies the number of test cases, and t
denotes the coverage strength. Assuming all d; (1 <i < p)
are equal to d, the covering array can be abbreviated as
CA(N; t, p, d) or simply CA(N; t, d°).

Let's illustrate this concept with a hypothetical
medical system featuring six input parameters: patient
age, blood pressure, heart rate, cholesterol level,
diabetes status, and smoking status (Table 2). Suppose
age can be one of two values, blood pressure can be one
of two values, heart rate can be one of two values,
cholesterol level can be one of three values, and
smoking status can be one of three values.

To comprehensively test this system, testing all
possible combinations of input parameters would entail
2%¥2*2%3*3 = 72 test cases. However, this exhaustive
approach can result in a combinatorial explosion,
rendering it impractical to test every single combination.

Table 2: Hypothetical medical system

Patient  Blood Heart Cholesterol  Smoking
age pressure rate level status
<18 Normal Normal High Healthy
>18 Elevated Bradycardia Normal Addicted

low Sometimes

To address this issue, we can employ t-way testing.
This method generates a set of test cases that
encompasses only t combinations of input parameters.
For instance, if we select t = 2, we would only need to
examine 9 test cases, covering pairs of input parameters
(Table 3). This approach substantially cuts down on the
necessary number of test cases while ensuring sufficient
coverage to identify most errors.

Table 3: Covering array CA (9; 2, 23, 32)

# patient  blood heart  cholesterol smoking
age pressure rate level status
1 <18 Elevated Bradycardia low Addicted
2 >18 Normal Normal Normal Addicted
3 >18 Normal  Bradycardia High Healthy
4 <18 Elevated Normal High Sometimes
5 <18 Elevated Normal Normal Healthy
6 >18 Normal Normal low Sometimes
7 <18 Normal Bradycardia Normal Sometimes
8 >18 Elevated Normal High Addicted
9 >18 Elevated Normal low Healthy

Related Work

The t-way strategy causes the number of test cases in
a complete (non-minimal) covering array to grow
exponentially as the interaction strength, represented by
t, increases. To address this challenge, various methods
have been proposed in the literature. Some approaches,
such as Combinatorial Test Services (CTS) [17] and
Tconfig [18], utilize mathematical concepts like
orthogonal arrays (OA). However, these techniques often
face difficulties in generating optimal covering arrays,
particularly when dealing with larger or more complex
configurations.

In contrast, approximate techniques require less time
to identify nearly ideal covering arrays and can be
categorized into two main groups: greedy strategies and
metaheuristics.

C. Greedy Strategies

In this section, we delve into two key methods
employed by greedy strategies [19]: "One-Row-at-a-
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Time" (ORT) and "One-Parameter-at-a-Time" (OPT).
ORT Method:

e ORT builds the covering array (CA) incrementally,
row by row, ensuring optimal coverage.

e The "Automatic Efficient Test Generator" (AETG)
was the first ORT-based strategy. It selects a test
case from multiple candidates in a greedy manner
[20].

e Alternatives to AETG include "mAETG" and
"mAETG-SAT" [21].
e "PICT" is another ORT-based strategy that

generates interactions while randomly selecting
required test cases. However, its randomness can
result in inconsistent results [22].

e "Jenny" adopts a wunique approach, initially
considering 1-way interactions and gradually
incorporating higher-order interactions. It is known
for its speed and ability to produce compact
covering arrays for many configurations [23].

ORT-Based Classification-Tree Method:

e The "Classification-Tree Editor eXtended Logics"
(CTE-XL) partitions the input domain into subsets
and combines them to create test cases, effectively
addressing t = 3 interactions [24].

e "GTWay" is another ORT-based strategy that
generates test suites up to t = 12. It employs bit
structures to store test case components, with an
index table facilitating efficient access [25].

OPT Method:

e OPT, as the name suggests, expands the covering
array by gradually adding more parameters.

e |Initially, it creates a CA for two parameters,
progressively incorporating additional parameters
and their interactions.

e Notable OPT-based strategies include "IPOG-F" [26],
and SCIPOG [27].

These strategies offer diverse approaches to

efficiently construct covering arrays, each suited to
different testing requirements and scenarios.

D. Meta-Heuristic Strategies

Meta-heuristic strategies aim to find near-optimal
covering arrays efficiently, while also avoiding local
optima. These methods, similar to ORT, select test cases
with the highest weight from a list of candidates. They
operate as follows:

= Generating Candidates: A group of potential test
cases is randomly generated.

= |ncreasing Weights: Several operators are applied
to increase the weights of these candidates.

= Expanding Test Suite: The test suite grows by
selecting the test case with the highest weight.

Using B-Hill Climbing Optimizer to Generate Optimal Test Suite

This process repeats until all possible combinations of
the t input parameters are accounted for. Metaheuristic
algorithms are generally classified into nine categories
[28], [29]: biology-based, physics-based, social-based,
music-based, chemical-based, sport-based,
mathematics-based, swarm-based, and hybrid
algorithms. The following are key strategies within these
categories.

e Social-Based (TLBO) [30]: TLBO draws inspiration
from classroom learning environments. It involves
three stages: population creation, training, and
learning. TLBO outperforms other strategies like
TConfig, IPOG, Jenny, and PICT, generating compact
covering arrays for various configurations, even
supporting higher strengths up to t = 15.

e Swarm-Based (PSO) [31]: This approach models test
cases as birds searching for food. Birds represent
test cases with positions and speeds. The PSO
algorithm [32] and its variants, like BAPSO [33], are
based on this concept, supporting higher strengths
(BAPSO: up to t = 16). However, they do not handle
variable strength interactions and have issues with
parameter settings and early convergence.

e Physics-Based (GSTG) [34]: GSTG draws inspiration
from gravitational interactions. Test cases act as
objects with mass, and their gravitational pull
influences their movement. This strategy can
generate covering arrays up to t = 16 but lacks
support for variable strength interactions.

e Biology-Based (GA and GS): GA [35] uses an
evolutionary principle, creating new test cases from
the current population through crossover and
mutation. GS [16] builds on GA, continually applying
crossover and mutation, achieving efficiency and
supporting up to t = 20. It can handle variable
strength interactions but not constraints.

e Multiple Black Hole (MBH) [36]: Inspired by black
holes and the behavior of stars, MBH moves test
cases toward "black holes" with more energy
(heavier test cases). It can generate covering arrays
up to t = 4, but cannot handle variable strength
interactions or constraints.

e Mathematics-Based (SCAVS) [37], [38]: SCAVS uses
the sine cosine algorithm to solve the problem. It
can generate covering arrays up to t = 6 but does
not support constraints, although it addresses
variable strength interactions.

e Swarm-Based (ABC [39] and ABCVS [40]): These
strategies simulate the social behavior of honey
bees. HABC [41]-[45] offers interactions with
variable strength (t < 6) and supports constraints.
PhABC [45], [46] is a more recent iteration.

Additional examples of metaheuristic strategies
include: HC-BAT (hybrid-based) [47], ABO (swarm-based)
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[48], BDA (swarm-based) [49], LSHADE (biology-based)
[50], GALP (hybrid-based) [51], ACOF (swarm-
based) [52], FATG (swarm-based) [53], SCA
(mathematics-based) [54], HAS (meta-heuristic-based)
[55], [56], HGHC (hybrid-based) [57], QWOA-EMC
(hybrid-based) [58], QSMA (meta-heuristic-based) [59],
HHOA (meta-heuristic-based) [60], BOA (meta-heuristic-
based) [61], TWGH (meta-heuristic-based) [62], TPA
(hybrid-based) [63], ImpARO (meta-heuristic-based) [64],
ROBDDs (meta-heuristic-based) [65], and SCHOP (meta-
heuristic-based) [56].

The Presented Strategy

Given the uncertainty surrounding the size of the
optimal covering array for test set generation,
metaheuristic-based strategies require multiple runs of
these algorithms to generate test samples with
maximum coverage. The algorithms are repeatedly
executed until all possible combinations of the t
coverage parameter are fully addressed. When using any
metaheuristic algorithm to solve the optimal test set
generation problem, two key adjustments are made to
its structure:

= Each test sample is represented as a solution
(chromosome or individual).

= A weight calculation function, acting as a fitness
function, is employed to compute the weight of a
test sample (representing the number of covered
combinations).

In the context of generating an optimal covering
array with p parameters, each taking values within the
range [0, d-1], the covering array is denoted as CA(N; t,
p, d). To utilize the Beta Hill Climbing (BHC) algorithm for
generating a test sample with maximum weight (i.e.,
covering the most combinations), we need to define the
structure of chromosomes and the fitness function.

e Chromosomes are represented as vectors of length
p, denoted as (v1, ..., vp), to represent each test
sample. Each gene vi takes values within the range
[0, d-1].

e The fitness function serves as a weight calculation
function, computing the weight of a test sample,
which represents the number of covered
combinations.

Following the principles outlined in Algorithm 1, the
BHC algorithm starts by randomly generating an initial
solution (test sample) where each gene lies within the
range [0, d-1]. It then iteratively enhances this test
sample by applying the N and B8 operators for a
maximum number of iterations specified as
maxlterations.

In the following sections, we delve into the details of
the BHC strategy, including the creation of the coverage
matrix, the method for calculating the weight of a test
sample, and the updating of the coverage matrix.

According to Algorithm 1, BHC first generates an

initial solution (test sample) randomly, where the value
of each gene lies within the range [0, d-1]. Then, it
improves this test sample by applying the N and 68
operators for a maximum number of iterations called
maxlterations. In the following section, the BHC strategy
is presented, and subsequently, the creation of the
coverage matrix, the method for calculating the weight
of a test sample, and updating the coverage matrix are
explained.

E. BHC Strategy Details

Fig. 1 shows the flowchart of the BHC strategy. The
BHC strategy is employed iteratively to create a test
sample with maximum coverage. It relies on a coverage
matrix (CM) to monitor the coverage status of various
combinations and consists of three key stages:

= Initialization: In this phase, the coverage matrix

(CM) is established, and a variable called RemCov,

representing the number of remaining uncovered

combinations, is initialized to [p)xdt
t

Additionally, an empty test set (TS) is created.

= BHC Algorithm Execution: The BHC algorithm is
executed in this stage to produce a test sample,
saved in the variable tc.

= Update Stage: In this phase, the weight of the

previously generated test sample (tc) is calculated
using the fitness function calcWeight, and this value
is subtracted from the RemCov total. The test
sample tc is subsequently added to the test set TS,
and the coverage matrix CM is updated accordingly.

The BHC algorithm and update stage continue until
either RemCov reaches zero (indicating that all possible
combinations of the t parameters are covered by the
generated test set) or the execution time surpasses 24
hours. At the conclusion of the strategy, the generated
test set TS is presented to the user.

For more clarification, the pseudocode for the BHC
strategy is presented in Algorithm 2. Similar to the
flowchart of this strategy, there are three important
phases. In the first phase (so-called initialization: lines 1-
2), the coverage matrix (CM) is constructed, and the
variable RemCov is set to the value of (ijdt.

t

Additionally, the empty test suite (TS) is created. In the
second phase (so-called running: lines 4-21), the BHC
algorithm is run, and the resulting test case is stored in
tc. In the third phase (so-called updating: line 22), the
weight of tc is calculated using the calcWeight fitness
function and subtracted from RemCov. Furthermore, the
test case tc is appended to the test suite TS, and the
coverage matrix CM is updated accordingly.

Overall, this explanation clarifies the approach of the
BHC strategy for generating an optimal test set,
emphasizing its iterative nature and utilization of the
coverage matrix to monitor different combination
coverage.
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Fig. 1: Flowchart of the BHC strategy.

F. Create Coverage Matrix

As the BHC strategy generates test samples
incrementally using the BHC algorithm, a data structure
is essential to track the coverage status of all potential
combinations of the t parameters at each step. This data
structure is known as the "coverage matrix," and it

comprises (pj rows and d' columns. Here's how it
t
works:
e The variable p signifies the number of input
parameters in the system, each capable of taking on
d different values. Consequently, the total number
of combinations for such a system equals (p]xd[.
t
e The coverage matrix needs to hold information for
each row, including d® columns to represent the
combinations and t columns to keep track of the
indices of combinations corresponding to that row.

e An additional column (the last column) in each row
indicates the number of combinations from that
row that are still uncovered by any test sample.
Therefore, the total number of columns in the
coverage matrix becomes t+d'+1.

Initially, when the test set is empty and no
combinations are covered, the values in all d' columns
for each row are set to zero.

The values in the last column for all rows are set to d
indicating that all combinations are yet to be covered by
any test sample.

In summary, the coverage matrix is a critical data
structure employed in the BHC strategy to keep tabs on
the coverage status of all possible t-parameter
combinations during the algorithm's execution. It
efficiently tracks coverage progress and plays a key role
in generating an optimal test set.

t
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Algorithm 2: The BHC strategy

Input: p: the number of parameters, d: the number of
parameter values, t: the interaction strength, maxlterations:
the maximum number of iterations, bw, beta;

Output: a test suite;

////// The initialization phase //////

1: Create a coverage matrix CM;

2: RemCov=(?) x d*; TS=@;

3: while RemCov>0 && ConsumedTime < 24h do
/11//] The running phase //////

4: Ib=0; ub=d-1; k = p; fit = calcWeight ();

5: Individual x=new Individual ();

6: x = Initialize (k, Ib, ub); rep =1,

7: while rep <= maxlterations do

8: Individual x’ = x;
//// The IV operator: This operator generates
new candidate solutions by adding normally
distributed noise, aiding in local exploitation
around the current solution.

9: index = a random number between 1 and k;

10: rnd = a random number between 0 and 1;

11: x’ [index] = x [index] +(2*rnd-1)*bw;
//// The B operator
//// The B operator: This operator diversifies
the search by using controlled random
perturbations to escape local optima and
explore new regions of the solution space.
111117

12: forj=1to kdo

13: if rand(0,1) <=beta then

14: x"[il = Ib[jl+(ublj]-b[j])* rand(0,1);

15: end if

16: end for

17: if fit (x’) > fit (x) then

18: xX=x’;

19: end if

20: rep ++;

21:  end while
//1/1/ The updating phase //////
22:  TS=TSU x; RemCov = RemCov — fit (x); Update CM;
23: end while
24: return TS;

To provide a clearer understanding of the coverage
matrix, let's consider a hypothetical system with p = 4
input parameters and d = 3 possible values for each
parameter. Our objective is to create the coverage
matrix for the covering array CA (N; 2, 3*). Here's how
we determine the matrix dimensions:

The number of rows, denoted as {PJ, is calculated as
t

(‘j which equals 6.
2

The total number of columns, represented as t+d'+1is
determined as 2+3°+1, summing up to 12 columns.

Now, let's break down the columns of this matrix
based on Fig. 2:

The first two columns (0 and 1) are responsible for
indicating the indices of the 6 different combinations
(12, 13, 14, 23, 24, 34).

The following nine columns (2 to 10) encompass all
possible values corresponding to the two parameters
(00, 01, 02, 10, 11, 12, 20, 21, 22).

The last column (11) is dedicated to keeping track of
the number of elements that remain uncovered.

To calculate the column number (c) for a given
combination of indices igi...ir.;, we can utilize (2):

t-1
_ 1)
c=t+y (i, xd7) (2)
=0
In sum, the coverage matrix is a structured

representation used to track combinations of
parameters in the context of covering arrays. In our
hypothetical system, it enables us to efficiently monitor
the coverage status of various combinations and their
corresponding values, aiding in the quest to generate an
optimal test set.

For instance, in the hypothetical system we're
examining, consider the combination of indices (i = 2
and i; = 1). To determine the corresponding column
number (c), you can use the following calculation: c=2 +
(2x3'+1x3% = 9.

Furthermore, the initial value of RemCov
(representing the count of elements that have not been

covered yet) equals (p]xdt' which in our scenario is
t

(4}32, resulting in 54, as illustrated in Fig. 2.

[1]2]ofofofofo]oolo]o]s]
[1]s]ofofolofofoolofo]s]
[1]4]ofofofofo]o]ofo]o]s]
[2]s|olofofofo]ololoo]s]
(2[4 ]ofofo]ofofoo]ofo]s]
_\3\4|o|o|o\o\o\o\o\o\o\9l
01 2 3 4 5 6 7 8 9 1011

RemCov=9+9+ ... +9=54

Fig. 2: Structure of coverage matrix for CA (N; 2,3")
configuration.

G. Calculating Test Sample Weight and Updating the
Coverage Matrix

To determine the weight of a given test sample, we
count the number of new combinations it covers. Here's
the process:
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= We consider both the values within the test sample
itself and those in the first t columns of each row in
the coverage matrix.

= First, we calculate the column number for each
combination (row) using (2) based on the test
sample's values and the t columns.

= |f the value in the corresponding cell of the
coverage matrix is one, it means that this
combination has already been covered by previous
test samples and added to the test set. In such
cases, there's no need to update the weight of the
current test sample.

= However, if the value is zero, we add one to the
weight of the current test sample, and we set the
value of that cell to one, indicating that this
combination should be excluded when calculating
the weight of the next test sample.

= |t's important to subtract one from the value in the
last column of the specific row to account for the
updated weight of the current test sample.

= Finally, after examining all rows, we subtract the
obtained weight for this test sample from the
RemCov value. RemCov signifies the count of
remaining combinations that have yet to be
covered.

To illustrate this process, let's consider the test
sample tc = (0, 1, 2, 0) in Fig. 2. In Fig. 3, we visually
depict how the weight is calculated for this test sample
based on the coverage matrix. As shown, we first
calculate the column number for each combination (row)
using (2) and update all corresponding cells from zero to
one. Additionally, the values in the last columns, initially
at 9, are reduced to 8. Finally, after all the updates, the
RemCov value decreases to 48. This process ensures

efficient tracking of covered combinations and
contributes to generating an optimal test set.
ii
A
01** 2405341 =3 ‘1‘2‘0|1‘0‘0‘0|0‘0|0‘0|8‘
0*2* 24H0x3+2 =4 ‘1‘3‘0|0‘1‘0‘0|0‘0|0‘0 8‘
orvo 23 a0 0 1 ]a]1]ofolo]o]olo]o]o]s]
*ll*l:>2+1x3+2:7E>23000001l]008
150 2+1x340 =5 2/4|0|ofo|1]o|o]o|0|0]|8
*20 2+2:3+0=8 3(4/0|0f0j0f0|O|1]|O|0]|8

0012345678 91011
weight=1+1+--+1=6
RemCov=54 —6 =48

Fig. 3: Calculating the weight of the test sample tc = (0,1,2,0)
according to the coverage matrix of Figure 2 and updating it.

Evaluation Results

In order to assess the effectiveness of the BHC
strategy, we conducted an evaluation using MATLAB
2017a software. Our analysis involved comparing the

Using B-Hill Climbing Optimizer to Generate Optimal Test Suite

BHC strategy against various other strategies, including
TConfig as a mathematical approach, PICT and IPOG as
greedy methods, and GS, GALP, DPSO, WOA, BAPSO, and
GSTG as metaheuristic strategies.

Before commencing the evaluation and comparison,
we needed to determine appropriate values for two
crucial parameters: bw, which is related to the N
operator, and 8, which relates to the 8 operator. To
achieve this, we executed the BHC strategy ten times
within the context of the CA (N; 2, p, 4) configuration,
where p ranged from 11 to 16. Our analysis of the
results, as depicted in Fig. 4, revealed that the BHC
strategy exhibited its best performance when configured
with bw = 0.5 and 8 = 0.2. Additionally, we acquired
suitable parameter values for the other strategies from
relevant literature, and these values are summarized in
Table 4.

Another essential parameter in our assessment is the
maximum number of function evaluations (maxFFE),
which we set to 10,000 for all strategies under
consideration. It's worth noting that the parameters
maxFFE and the number of iterations (Maxlterations) in
the algorithms are interchangeable. If we denote nFFE as
the number of function evaluations performed in each
iteration of an algorithm, then the number of iterations
can be calculated using (3):

maxFFE (3)
nFFE

Maxlterations =

As an example, consider the WOA algorithm within
our chosen strategy, where the population size is set to
180. Consequently, the value of nFFE corresponds to
180. Using (3), we can calculate the number of
iterations, which yields Maxliterations equal to 10,000 /
180, resulting in approximately 56 iterations.

H. Results Generation

To obtain our results, we executed all the strategies a
total of 100 times across five distinct datasets, as
follows:

. CA(N;2,p,3)for3<p<12

. CA(N;3,p,d)for7<p<12and2<d<3

= CA(N;t p,3)for7<t<llandt+l<p<12
. CA(N;4,p,5)for5<p<15

= CA(N;t,p,2)for12<t<l16and14<p<17

The hardware environment for running these
strategies was equipped with an Intel® Core™ i5 CPU and
6GB of RAM. It's important to note that in our results
table, we use "NA" and ">day" when a specific strategy
execution result is unavailable for a given configuration
or when a strategy failed to produce an optimal covering
array within a 24-hour timeframe.
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. 4: Average size of production test set in CA (N; 2,p,4) configuration for 11< p<16.

Table 4: Appropriate values for parameters of the meta-heuristic strategies

Strategy Parameters and their appropriate values

BHC bw = 0.5, beta =0.2

GS N =120, MutRate = 0.4, CossRate = 0.4
GALP N =10-300, MutRate = 0.4..1.0, CossRate = 0.4..1.0

Mutation method : Uniform
Crossover method : ALPSOFV (Kmax = 10-20, a = 0.9, r =4, R1 and R2: random)
WOA N =180
BAPSO N =100, Loudness = 0.9, PulseemissionRate = 0.9,
Minfrequency = 0, Maxfrequency =1, Tolerance = 0.025, WeightValue = 0.4,
CycWalkvalue = 1.49
GSTG N =100, ElitistCheck = 1, Rpower = 1, Rnorm = 2

In Table 5, we present the sizes of the test sets
generated by all strategies for the first dataset, CA (N; 2,
p, 3), where 3 < p < 12. This dataset encompasses 10
distinct configurations. Notably, in 9 out of these cases,
both GALP and GS produced the smallest test sets.
Following closely, BHC generated the smallest test sets in
8 of these configurations. In contrast, TConfig, employed
as a mathematical strategy, failed to produce any test
set with the smallest size for this dataset. Among the
considered greedy strategies, IPOG consistently
produced the smallest test sets in the majority of cases.

In Table 6, we present the sizes of the test sets
generated by all strategies for the second dataset, CA (N;
3, p, d), where 7 < p £ 12 and 2 < d < 3. This dataset

92

encompasses 13 distinct configurations. Notably, in
terms of generating test sets with the smallest size, both
GALP and BHC demonstrated the best performance
across this dataset.

In Table 7, we provide the sizes of the test sets
generated by all strategies for the third dataset, denoted
asCA (N; t, p,3),where7<t<1landt+1<p<12.This
dataset encompasses a total of 15 distinct
configurations. Notably, in 8 of these configurations, the
BHC strategy stands out by producing test sets with the
smallest size.

Tables 8 and 9 present the sizes of the test sets
generated by all strategies for the fourth and fifth
datasets, respectively. The fourth dataset corresponds to
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CA (N; 4, p, 5), where 5 < p < 15, while the fifth dataset
pertains to CA (N; t, p, 2), where 12 <t<16and 14 <p<
17.

Upon reviewing these tables, it becomes evident that
BHC consistently excels by producing test sets with the
smallest size across the majority of configurations in
these datasets. To demonstrate the superiority of the
BHC strategy over other existing methods, we utilized
the Friedman test. This non-parametric statistical test is
designed for comparing multiple related samples [66]
and is effective in identifying performance differences

Using B-Hill Climbing Optimizer to Generate Optimal Test Suite

among the various strategies. In the Friedman test
output report, the strategy with the lowest average rank
is designated as Rank 1, signifying the best performance.
Subsequently, the second lowest rank is assigned as
Rank 2, and so forth.

Table 10 provides an overview of the overall ranks
achieved by both BHC and other strategies across all the
considered datasets, totaling 54 distinct configurations.
Notably, BHC consistently secures the first rank,
demonstrating its effectiveness in generating test sets
with the smallest size.

Table 5: Test set size generated by all strategies in CA (N; 2,p,3) for3< p<12

d4p BHC BHC GALP GSTG GS BAPSO DPSO WOA TConfig  PICT IPOG
N.Best N.Avg N.Best N.Best N.Best N.Best N.Best N.Best N.Best N.Best N.Best
3,3 9 9.69 9 9 9 9 9 9 10 10 9
3,4 9 10.28 9 9 9 10 9 9 10 13 9
3,5 11 12.88 11 11 11 11 11 11 14 13 15
3,6 13 14.55 13 13 13 14 14 14 15 14 15
3,7 14 15.24 14 15 14 15 15 14 15 16 15
3,8 15 15.92 15 15 15 15 15 15 17 16 15
3,9 15 16.55 15 17 15 16 15 16 17 17 15
3,10 16 17.43 16 18 16 17 16 16 17 18 15
3,11 17 17.82 16 19 16 17 17 17 20 18 17
3,12 17 18.23 16 19 16 17 16 17 20 19 21
Table 6: Size of the test set generated by all strategies in CA (N; 3, p, d) for7<p<l2and2<d=<3
dp BHC BHC GALP GSTG GS BAPSO DPSO WOA TConfig PICT IPOG
N.Best N.Avg N.Best N.Best N.Best N.Best N.Best  N.Best N.Best N.Best N.Best
2,7 12 15.09 12 12 12 12 15 12 16 15 16
2,8 12 16.05 12 14 14 14 16 14 18 17 18
2,9 16 16.25 16 16 16 15 16 15 20 17 20
2,10 16 16.65 16 16 16 16 16 16 20 18 20
3,4 27 31.12 27 28 27 27 28 27 32 34 32
3,5 38 40.39 37 40 38 38 41 38 40 43 41
3,6 39 45.10 40 43 43 43 33 42 48 48 46
3,7 48 50.66 48 48 49 48 48 48 55 51 55
3,8 52 54.75 52 53 54 52 52 53 58 59 56
3,9 56 58.51 56 56 58 57 56 57 64 63 63
3,10 60 61.78 59 61 61 59 59 59 68 65 66
3,11 63 64.81 62 63 63 63 63 64 72 70 70
3,12 65 67.51 65 65 67 65 65 65 77 72 73
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Table 7: Size of the test set generated by all strategies in CA (N; t, p, 3) for 7<t<11and t+1 < p <12

t,p BHC BHC GALP GSTG GS BAPSO DPSO WOA  TConfig PICT IPOG
N.Best N.Avg N.Best  N.Best N.Best N.Best N.Best N.Best N.Best N.Best  N.Best

7,8 2989 3013.12 3029 3031 3032 3029 2241 3031 >day 3143 NA

7,9 4417 4435.23 4425 4425 4437 4425 4427 4425 > day 4618 NA

7,10 5476 5484.32 5459 5473 5464 5472 5434 5474 >day 5884 NA
7,11 6427 6437.13 6468 6543 6533 6515 6413 6531 >day 7116 NA
7,12 7557 7563.12 7593 7598 7603 7614 >day 7610 >day 8314 NA
8,9 9283 9292.25 9258 9372 9266 9273 9284 9258 >day 9763 NA
8,10 13894 13902.42 13903 13912 13907 13912 13939 13912 > day 14599 NA
8,11 17713 17832.31 17639 17753 17792 17831 >day 17641 >day 18,859 NA
8,12 20415 20513.21 20963 22731 21670 21631 >day 21310 >day 23112 NA
9,10 28434 2844531 28312 29631 28629 27813 21433 28319 >day 30181 NA
9,11 43474 4349531 43543 43591 43809 43931 >day 43592 > day 45521 NA
9,12 53813 53865.21 56219 57301 56481 57931 >day 55931 >day 59966 NA
10,11 86960 87031.42 87712 88391 87766 88351 >day 87721 >day 92435 NA
10,12 133842 13394.2 135962 139041 136096 140315 >day 136841 > day 141990 NA
11,12 246309 257342.4 267085 26518 267131 274102 >day 259341 >day 278993 NA

Table 8: Size of the test set generated by all strategies in CA (N; 4, p, 5) for 5 < p <15

BHC BHC GALP GSTG GS BAPSO WOA TConfig PICT IPOG
N.Best N.Avg N.Best N.Best N.Best N.Best N.Best N.Best N.Best N.Best

5 775 782.65 762 774 769 774 784 773 810 773
6 984 992.32 986 1021 984 1031 1015 1092 1072 1058
7 1168 117431 1168 1172 1176 1181 1168 1320 1279 1293
8
9

1338  1341.45 1364 1353 1371 1384 1379 1532 1468 1511

1488 149450 1553 1587 1548 1531 1592 1724 1643 1702
10 1634 1635.21 1634 1747 1638 1634 1641 1878 1812 1869
11 1766  1767.75 1812 1769 1838 1853 1769 2038 1957 2024
12 1890 1893.50 1910 1923 1967 1983 1941 2178 2103 2150
13 2003  2005.25 2013 2104 2041 2031 2112 >day 2238 2296
14 2115 2117.75 2131 2251 2156 2293 2123 >day 2359 2436
15 2217  2220.17 2245 2371 2268 2258 2259 >day 2480 2538

Table 9: Size of the test set generated by all strategies in CA (N; t, p, 2) for 12 <t <16 and 14 < p <17

BHC BHC GALP GSTG GS BAPSO DPSO WOA  TConfig PICT IPOG
N.Best N.Avg N.Best N.Best N.Best N.Best N.Best N.Best N.Best N.Best N.Best

CA(N;12,2"") 8873  8891.32 8904 9021 8893 8891 8972 8874  >day 9112 NA
CA(N;13,2"") 11152 1121063 11051 11714 10251 11731 >day 11217 >day 12441  NA
CA(N;14,2") 22163 22231.33 22642 21983 23377 21725 >day 22862 >day 25036  NA
CA(N;15,2%) 40415 40512.75 41820 42930 46575 43624 >day 42641 >day 51127  NA
CA(N;16,2") 94431 94451.63 94932 94941 95680 96320 >day 95326 >day 100266  NA
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Table 10: Overall ranks of BHC and other strategies in all considered data sets

BHC GALP GSTG GS BAPSO DPSO WOA TConfig PICT IPOG
. Mean
Friedmar Rank 2.69 2.75 4.93 4.35 4.63 6.50 4.09 9.03 7.91 8.13
Test
Rank 1 2 6 4 5 7 3 10 8 9

Conclusion and Future Directions

Generating an optimal test set, also known as a
coverage array, is a complex NP-Hard problem.
Metaheuristic algorithms such as Genetic Algorithms,
Particle Swarm Optimization, Ant Colony Optimization,
and Tabu Search have demonstrated their remarkable
efficiency in tackling this problem. However, the issue of
handling large test set sizes remains unresolved. In this
paper, we introduced an innovative strategy based on
the Beta Hill Climbing (BHC) optimization method to
address the optimal test set generation problem. In our
evaluation and comparison, we pitted BHC against
TConfig (a mathematical strategy), PICT and IPOG
(greedy strategies), and GS, GALP, DPSO, WOA, BAPSO,
and GSTG (metaheuristic strategies) using five well-
established datasets. According to the results derived
from the Friedman test, BHC consistently ranked first in
generating test sets with the smallest size.

The primary contributions of this research include the
first-time application of the B-hill climbing (BHC)
optimizer for generating minimum covering arrays,
which demonstrates greater efficiency and supports
higher interaction strengths (t>15) than most existing
strategies.

However, BHC has certain limitations, such as its
inability to handle variable-strength interactions and
constraints, which are essential features of t-way testing.
To address these gaps, future work can focus on

extending BHC to incorporate these features.
Additionally, integrating BHC with established
metaheuristic algorithms can further improve its

efficiency and expand its utility.
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Abbreviations

ABC Artificial Bee Colony

ABCVS Artificial Bee Colony for generating Variable
t-way Test Sets

AETG Automatic Efficient Test Generator

ALPSOFV Adaptlve I._ayered Population Size with
Optimal Fitness Value

BAPSO Hybrid of Bat Algorithm and Particle Swarm

Optimization

BDA Bi-Objective Dragonfly Algorithm

BHC Beta Hill Climbing

B6-HCO Beta Hill Climbing Optimizer

BOA Butterfly Optimization Algorithm

CA Covering Array

M Coverage Matrix

CTEXL  Classification-Tree Editor eXtended Logics
DPSO Discrete Particle Swarm Optimization
GALP Genetic Algorithm with Local Path
GA Genetic Algorithm

GS Genetic Strategy

GSTG Gravitational Search Test Generator
HABC Hybrid Artificial Bee Colony

HC-BAT Hybrid Hill Climbing and Bat Algorithm
HGHC  Hybrid Greedy Hill Climbing

HHOA  Harris Hawks Optimization Algorithm
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IPOG In-Parameter-Order General

LSHADE LinearISuccess-History Adaptive Differential
Evolution

MBH Multiple Black Hole

OPT One-Parameter-at-a-Time

ORT One-Row-at-a-Time

PICT Pairwise Independent Combinatorial Testing

PSO Particle Swarm Optimization

QWOA- Q-learning Whale Optimization Algorithm

EMC with Ensemble Model Checking

REMCOV Remaining Combinations

ROBDDs Reduced Ordered Binary Decision Diagrams

SCA Sine Cosine Algorithm

SCAVS _?_ien; (Siziige Algorithm for Variable t-way

SCIPOG Seeding and Constraint Support in IPOG

TC Test Case

TLBO Teaching—Learning-Based Optimization

TP Test Parameter

TS Test Set

TPA Three-Phase Approach

TWAY  t-way Combinatorial Testing

WOA Whale Optimization Algorithm
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