
 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

83

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

Seyyed AmirHossein Eshghazadi , Einollah Pira * , Mohammad Khodizadeh-Nahari ,

Alireza Rouhi

Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.

Article Info Abstract

Article History:
Received 15 March 2025
Reviewed 08 June 2025
Revised 18 May 2025
Accepted 12 July 2025

Background and Objectives: Software testing plays a vital role in software
development, aimed at verifying the reliability and stability of software systems.
The generation of an effective test suite is key to this process, as it directly
impacts the detection of defects and vulnerabilities. However, for software
systems with numerous input parameters, the combinatorial explosion problem
hinders the creation of comprehensive test suites. This research introduces a
novel approach using the β-Hill Climbing optimizer, an advanced variant of the
traditional hill climbing algorithm, to efficiently generate optimal test suites.

Methods: The β-Hill Climbing optimizer introduces a dynamic parameter, β,
which facilitates a precise balance between exploration and exploitation
throughout the search process. To evaluate the performance of this proposed
strategy (referred to as BHC), it is compared with TConfig as a mathematical
approach, PICT and IPOG as greedy algorithms, and GS, GALP, DPSO, WOA,
BAPSO, and GSTG as meta-heuristic methods. These strategies are tested across
a variety of configurations to assess their relative efficiency.

Results: The reported results confirm that BHC outperforms the others in terms
of the size of generated test suites and convergence speed. The statistical
analysis of the experimental results on several different configurations shows
that BHC outperforms TConfig as a mathematical strategy, PICT and IPOG as
greedy strategies, GS, GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristics by
83%, 88%, 87%, 61%, 61%, 46%, 61%, 62%, and 70%, respectively.

Conclusion: The BHC strategy presents a novel and effective approach to
optimization, inspired by β-Hill Climbing optimizer for the generation of an
optimal test suite. It has superior performance in the generation of test suites
with a smaller size and higher convergence speed compared to other strategies.

Keywords:
Hill climbing

Meta-heuristic

Optimizer

Software testing

Test suite

*Corresponding Author’s Email
Address: pira@azaruniv.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

How to cite this paper:
S. A. Eshghazadi, E. Pira, M. Khodizadeh-Nahari, A. Rouhi “Using β-Hill climbing optimizer

to generate optimal test suite,” J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026.

DOI: 10.22061/jecei.2025.11277.787

URL: https://jecei.sru.ac.ir/article_2367.html

2345- 3044/© 2026 The Authors. Published by Shahid Rajaee Teacher Training University.

http://jecei.sru.ac.ir/
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
mailto:pira@azaruniv.ac.ir
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://jecei.sru.ac.ir/article_2367.html
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467
https://orcid.org/0009-0009-1282-4326
https://orcid.org/0000-0001-9010-6113
https://orcid.org/0009-0007-7416-3100
https://orcid.org/0000-0003-1494-3467

S. A. Eshghazadi et al.

84 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

Introduction

Software testing plays a fundamental role in the

software development process, ensuring that software

systems operate reliably and meet predefined quality

standards [1]. This validation process encompasses a

range of methodologies, including white box testing and

black box testing. White box testing scrutinizes the

internal workings of software to identify potential flaws

before release. Model checking is a formal method,

belonging to white box testing methods that

systematically examine the properties of a system by

exploring all possible states of a model of a system.

However, this method faces challenges with state space

explosion in large and complex systems, as the memory

requirements grow exponentially [2]. Black box testing

evaluates software functionality from an end-user

perspective to ensure alignment with user requirements

[3]. The integration of these approaches aims to produce

an optimal test suite that guarantees the software's

expected performance under diverse conditions.

Nevertheless, crafting an optimal test suite that

achieves comprehensive coverage across all conceivable

scenarios remains a formidable challenge, particularly

for intricate software systems. This challenge is

exacerbated by the combinatorial explosion problem,

wherein the number of necessary test cases grows

exponentially as the quantity of input parameters and

their potential values expands. Various techniques have

emerged to confront this issue, including t-way testing,

which focuses on examining combinations of input

parameters that significantly influence system behavior

[4].

This paper presents an innovative approach that

leverages t-way testing in conjunction with the β-Hill

Climbing Optimizer, a metaheuristic algorithm *5+, to

construct an optimal test suite that tackles the

combinatorial explosion problem while maintaining a

manageable size. Our strategy (so-called BHC) harnesses

the β-Hill Climbing Optimizer to iteratively enhance

candidate test suites by guiding them in the direction of

steepest ascent until a satisfactory solution is reached.

Meanwhile, the t-way testing technique identifies a

subset of input combinations with a high likelihood of

detecting software defects while keeping the test suite's

size within bounds. This optimization method has

demonstrated its effectiveness in producing optimal test

suites that encompass a broad spectrum of test cases.

To evaluate and compare the efficiency of BHC, it is

benchmarked against TConfig as a mathematical

approach, PICT and IPOG as greedy algorithms, and GS,

GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristic

techniques. They are experimented on several different

configurations. Our experimental evaluation illustrates

that our strategy surpasses considered strategies,

drastically reducing the number of required test cases to

achieve comprehensive coverage.

Our investigation aims to spotlight the development

of a comprehensive and effective testing methodology,

merging t-way testing with the β-Hill Climbing Optimizer,

to address the combinatorial explosion problem. This

methodology, we argue, generates an optimal test suite

that elevates software product quality and reliability,

thereby mitigating potential issues that could impact

end-users.

The remainder of the paper is structured as follows.

Initially, we present the relevant background, including

an overview of the BHC algorithm and the t-way

strategy. Following that, the existing research on

software testing and optimization, with a focus on

metaheuristic algorithms for generating optimal test

suites, will be provided. In the following, we introduce

our proposed approach, utilizing the β-Hill Climbing

Optimizer for comprehensive test suite generation.

Then, the effectiveness of this method, comparing it to

existing techniques and assessing the quality of the

generated test suites, will be presented. Finally, the

conclusion section concludes the paper and discusses

directions for future research.

Background

A. β-Hill Climbing Optimizer

Hill-climbing optimizers are iterative optimization

techniques that aim to improve a solution iteratively by

making local changes. Over time, various versions of hill-

climbing have been developed to address its inherent

limitations, such as getting stuck in local optima or

inefficiency in rugged landscapes. In the continuation of

this section, we review the most notable versions. Basic

hill climbing [6] , is the simplest version of this optimizer

that moves to the best neighboring solution at each

iteration, always choosing the most favorable option.

First-choice hill climbing [7] is another version of this

optimizer, which randomly evaluates neighbors and

chooses the first one that is better than the current

solution. Other versions of this optimizer include:

random-restart hill climbing (repeatedly performs basic

hill climbing from randomly generated initial states,

keeping track of the best solution found) [8], simulated

annealing (hill climbing with cooling) [9], steepest-ascent

hill climbing (evaluates all neighbors and chooses the

one with the steepest increase in fitness (largest

improvement)) [10], parallel hill climbing (runs multiple

hill-climbing processes in parallel from different starting

points) [11], tabu search (memory-based hill climbing)

[12] and β-hill climbing optimizer (introduces a tunable

parameter β to balance exploration and exploitation) [5].

Table 1 covers the various versions of hill-climbing

optimizers and highlights their unique strengths and

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 85

weaknesses. Moreover, this optimizer is hybrid with

other algorithms such as PSO [13] and GA [14].
The Beta Hill Climbing (BHC) optimizer is an advanced

iteration of the classic hill climbing algorithm,

incorporating an exploratory operator denoted as β [5].

This operator, inspired by the uniform mutation

operator found in genetic algorithms, equips BHC with

the ability to navigate across diverse regions within the

search space. This enables BHC to break free from local

optima by experimenting with random values to choose

for decision variables. Unlike the basic hill climbing

algorithm [15], BHC effectively balances both exploration

and exploitation, mitigating the risk of converging

prematurely into local optima.

Table 1: The summary of strengths and weaknesses of various
versions of hill-climbing optimizers

Variant Strengths Weaknesses

Basic Hill
Climbing

Simple and fast
Prone to local

optima

First-Choice
Hill Climbing

Faster than
stochastic

Settles for
suboptimal

moves

Random-
Restart Hill

Climbing

Escapes local
optima effectively

High
computational

cost

Simulated
Annealing

Good exploration-
exploitation balance

Slow
convergence

Steepest-
Ascent

Finds locally best
path quickly

Expensive for
large

neighborhoods

Parallel Hill
Climbing

Increases global
optima likelihood

High
computational

demand

Tabu Search
Avoids cycles in

search

Requires
memory

management

β-HCO
Dynamic

exploration-
exploitation control

Computationally
complex

The BHC algorithm starts with an initial solution x =

{x1, x2, …, xk} that is randomly generated within the

bounds of the search space, where the value of each

variable xi lies within [lbi, ubi]. Then, the value of the

objective function f(x) is calculated, and a new solution x'

is created by applying N and β operators on the current

solution x. This process continues until the number of

iterations falls below the specified maximum,

maxIterations.

The N operator selects a neighboring solution x' from

the current solution x as follows: First, it randomly

chooses one of the variables in the current solution,

denoted as variable j-th. Then, it modifies the value of

this variable using (1):

' *j jx x rnd bw  (1)

here, bw represents the bandwidth between the current

value and the new value, and rnd is a random number

between zero and one. It's worth noting that all variable

values in the new solution x', except for the j-th variable,

remain identical to those in the current solution x.

The β operator generates a new solution based on the

existing solution x as follows: It assigns values to the

variables in the new solution using two different

strategies. It either assigns values based on the values in

the current solution with a probability of (1-β) or

randomly samples values from the available range with a

probability of β. For a more detailed representation of

the algorithm, see Algorithm 1 in the provided

pseudocode.

Algorithm 1: The BHC pseudocode

Input: maxIterations: the maximum number of iterations; k:
the dimension of the given problem; lb, ub, fit: the fitness
function; bw , beta;

Output: An individual with the highest fitness;

1: Individual x = Initialize (k, lb, ub);

2: rep =1;

3: while rep <= maxIterations do

4: Individual x’ = x;

//// The 𝒩 operator: This operator generates
new candidate solutions by adding normally
distributed noise, aiding in local exploitation
around the current solution.

5: index = a random integer number between 1 and k;

6: rnd = a random number between 0 and 1;

7: x’ [index] = x [index] +(2*rnd-1)*bw;

//// The 𝛽 operator: This operator diversifies
the search by using controlled random
perturbations to escape local optima and
explore new regions of the solution space.
//////

8: for j = 1 to k do

9: if rand(0,1) <=beta then

10: x’ [j] = lb[j]+(ub[j]-lb[j])* rand(0,1);

11: end if

12: end for

13: if fit (x’) > fit (x) then

14: x = x’;

15: end if

16: rep ++;

17: end while

18: return x;

S. A. Eshghazadi et al.

86 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

Overall, BHC stands out as a straightforward yet

highly efficient optimization algorithm, renowned for its

capability to surmount local optima and navigate across

diverse territories within the search space. At its core,

BHC leverages an exploratory operator, denoted as β,

which draws inspiration from genetic algorithms. This

distinctive feature empowers the algorithm to execute

random leaps, fostering the potential for accelerated

convergence towards the global optimum. In essence,

the N and β operators within BHC can be viewed as

complementary components, with N primarily serving as

an exploitation mechanism and β serving as the key

source of exploration in this algorithm.

B. The T-Way Strategy

Comprehensive testing of a software system requires

accounting for all possible combinations of input

parameters in the test cases. However, when dealing

with systems that have a large number of input

parameters, this approach can result in a challenge

known as the “combinatorial explosion” problem.

To tackle this challenge, the t-way combinatorial

testing technique is employed. Instead of covering all

conceivable combinations, it focuses on generating a set

of test cases that encompasses only t combinations of

system parameters [16]. The effectiveness of this

strategy hinges on selecting an appropriate value for t.

Selecting a small t could result in missing critical

combinations needed to detect errors in the generated

test suite. On the other hand, using a large t may bring

back the issue of combinatorial explosion. In this

method, t is known as the “coverage power”, which

dictates the depth of coverage. The test suite generated

using the t-way approach is called a “covering array”

(CA).

For a system that takes p parameters as input, where

each parameter can assume di (1 ≤ i ≤ p) possible values,

the covering array is denoted as CA(N; t, p, d1, …, dp),

where N signifies the number of test cases, and t

denotes the coverage strength. Assuming all di (1 ≤ i ≤ p)

are equal to d, the covering array can be abbreviated as

CA(N; t, p, d) or simply CA(N; t, dp).

Let's illustrate this concept with a hypothetical

medical system featuring six input parameters: patient

age, blood pressure, heart rate, cholesterol level,

diabetes status, and smoking status (Table 2). Suppose

age can be one of two values, blood pressure can be one

of two values, heart rate can be one of two values,

cholesterol level can be one of three values, and

smoking status can be one of three values.

To comprehensively test this system, testing all

possible combinations of input parameters would entail

2*2*2*3*3 = 72 test cases. However, this exhaustive

approach can result in a combinatorial explosion,

rendering it impractical to test every single combination.

Table 2: Hypothetical medical system

Smoking
status

Cholesterol
level

Heart

 rate
Blood

pressure
Patient

age

Healthy High Normal Normal <18

Addicted Normal Bradycardia Elevated >18

Sometimes low

To address this issue, we can employ t-way testing.

This method generates a set of test cases that

encompasses only t combinations of input parameters.

For instance, if we select t = 2, we would only need to

examine 9 test cases, covering pairs of input parameters

(Table 3). This approach substantially cuts down on the

necessary number of test cases while ensuring sufficient

coverage to identify most errors.

Table 3: Covering array CA (9; 2, 23, 32)

smoking
status

cholesterol
level

heart

rate
blood

pressure
patient

age

Addicted low Bradycardia Elevated <18 1

Addicted Normal Normal Normal >18 2

Healthy High Bradycardia Normal >18 3

Sometimes High Normal Elevated <18 4

Healthy Normal Normal Elevated <18 5

Sometimes low Normal Normal >18 6

Sometimes Normal Bradycardia Normal <18 7

Addicted High Normal Elevated >18 8

Healthy low Normal Elevated >18 9

Related Work

The t-way strategy causes the number of test cases in

a complete (non-minimal) covering array to grow

exponentially as the interaction strength, represented by

t, increases. To address this challenge, various methods

have been proposed in the literature. Some approaches,

such as Combinatorial Test Services (CTS) *17+ and

Tconfig *18+, utilize mathematical concepts like

orthogonal arrays (OA). However, these techniques often

face difficulties in generating optimal covering arrays,

particularly when dealing with larger or more complex

configurations.

In contrast, approximate techniques require less time

to identify nearly ideal covering arrays and can be

categorized into two main groups: greedy strategies and

metaheuristics.

C. Greedy Strategies

In this section, we delve into two key methods

employed by greedy strategies *19+: "One-Row-at-a-

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 87

Time" (ORT) and "One-Parameter-at-a-Time" (OPT).

ORT Method:

 ORT builds the covering array (CA) incrementally,

row by row, ensuring optimal coverage.

 The "Automatic Efficient Test Generator" (AETG)

was the first ORT-based strategy. It selects a test

case from multiple candidates in a greedy manner

[20].

 Alternatives to AETG include "mAETG" and

"mAETG-SAT" [21].

 "PICT" is another ORT-based strategy that

generates interactions while randomly selecting

required test cases. However, its randomness can

result in inconsistent results [22].

 "Jenny" adopts a unique approach, initially

considering 1-way interactions and gradually

incorporating higher-order interactions. It is known

for its speed and ability to produce compact

covering arrays for many configurations [23].

ORT-Based Classification-Tree Method:

 The "Classification-Tree Editor eXtended Logics"

(CTE-XL) partitions the input domain into subsets

and combines them to create test cases, effectively

addressing t = 3 interactions [24].

 "GTWay" is another ORT-based strategy that

generates test suites up to t = 12. It employs bit

structures to store test case components, with an

index table facilitating efficient access [25].

OPT Method:

 OPT, as the name suggests, expands the covering

array by gradually adding more parameters.

 Initially, it creates a CA for two parameters,

progressively incorporating additional parameters

and their interactions.

 Notable OPT-based strategies include "IPOG-F" [26],

and SCIPOG [27].

These strategies offer diverse approaches to

efficiently construct covering arrays, each suited to

different testing requirements and scenarios.

D. Meta-Heuristic Strategies

Meta-heuristic strategies aim to find near-optimal

covering arrays efficiently, while also avoiding local

optima. These methods, similar to ORT, select test cases

with the highest weight from a list of candidates. They

operate as follows:

 Generating Candidates: A group of potential test

cases is randomly generated.

 Increasing Weights: Several operators are applied

to increase the weights of these candidates.

 Expanding Test Suite: The test suite grows by

selecting the test case with the highest weight.

This process repeats until all possible combinations of

the t input parameters are accounted for. Metaheuristic

algorithms are generally classified into nine categories

[28], [29]: biology-based, physics-based, social-based,

music-based, chemical-based, sport-based,

mathematics-based, swarm-based, and hybrid

algorithms. The following are key strategies within these

categories.

 Social-Based (TLBO) [30]: TLBO draws inspiration

from classroom learning environments. It involves

three stages: population creation, training, and

learning. TLBO outperforms other strategies like

TConfig, IPOG, Jenny, and PICT, generating compact

covering arrays for various configurations, even

supporting higher strengths up to t = 15.

 Swarm-Based (PSO) [31]: This approach models test

cases as birds searching for food. Birds represent

test cases with positions and speeds. The PSO

algorithm [32] and its variants, like BAPSO [33], are

based on this concept, supporting higher strengths

(BAPSO: up to t = 16). However, they do not handle

variable strength interactions and have issues with

parameter settings and early convergence.

 Physics-Based (GSTG) [34]: GSTG draws inspiration

from gravitational interactions. Test cases act as

objects with mass, and their gravitational pull

influences their movement. This strategy can

generate covering arrays up to t = 16 but lacks

support for variable strength interactions.

 Biology-Based (GA and GS): GA [35] uses an

evolutionary principle, creating new test cases from

the current population through crossover and

mutation. GS [16] builds on GA, continually applying

crossover and mutation, achieving efficiency and

supporting up to t = 20. It can handle variable

strength interactions but not constraints.

 Multiple Black Hole (MBH) [36]: Inspired by black

holes and the behavior of stars, MBH moves test

cases toward "black holes" with more energy

(heavier test cases). It can generate covering arrays

up to t = 4, but cannot handle variable strength

interactions or constraints.

 Mathematics-Based (SCAVS) [37], [38]: SCAVS uses

the sine cosine algorithm to solve the problem. It

can generate covering arrays up to t = 6 but does

not support constraints, although it addresses

variable strength interactions.

 Swarm-Based (ABC [39] and ABCVS [40]): These

strategies simulate the social behavior of honey

bees. HABC [41]-[45] offers interactions with

variable strength (t ≤ 6) and supports constraints.

PhABC [45], [46] is a more recent iteration.

Additional examples of metaheuristic strategies

include: HC-BAT (hybrid-based) [47], ABO (swarm-based)

S. A. Eshghazadi et al.

88 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

[48], BDA (swarm-based) [49], LSHADE (biology-based)

[50], GALP (hybrid-based) [51], ACOF (swarm-

based) [52], FATG (swarm-based) [53], SCA

(mathematics-based) [54], HAS (meta-heuristic-based)

[55], [56], HGHC (hybrid-based) [57], QWOA-EMC

(hybrid-based) [58], QSMA (meta-heuristic-based) [59],

HHOA (meta-heuristic-based) [60], BOA (meta-heuristic-

based) [61], TWGH (meta-heuristic-based) [62], TPA

(hybrid-based) [63], ImpARO (meta-heuristic-based) [64],

ROBDDs (meta-heuristic-based) [65], and SCHOP (meta-

heuristic-based) [56].

The Presented Strategy

Given the uncertainty surrounding the size of the

optimal covering array for test set generation,

metaheuristic-based strategies require multiple runs of

these algorithms to generate test samples with

maximum coverage. The algorithms are repeatedly

executed until all possible combinations of the t

coverage parameter are fully addressed. When using any

metaheuristic algorithm to solve the optimal test set

generation problem, two key adjustments are made to

its structure:

 Each test sample is represented as a solution
(chromosome or individual).

 A weight calculation function, acting as a fitness
function, is employed to compute the weight of a
test sample (representing the number of covered
combinations).
In the context of generating an optimal covering

array with p parameters, each taking values within the

range [0, d-1], the covering array is denoted as CA(N; t,

p, d). To utilize the Beta Hill Climbing (BHC) algorithm for

generating a test sample with maximum weight (i.e.,

covering the most combinations), we need to define the

structure of chromosomes and the fitness function.

 Chromosomes are represented as vectors of length
p, denoted as (v1, ..., vp), to represent each test
sample. Each gene vi takes values within the range
[0, d-1].

 The fitness function serves as a weight calculation
function, computing the weight of a test sample,
which represents the number of covered
combinations.

Following the principles outlined in Algorithm 1, the

BHC algorithm starts by randomly generating an initial

solution (test sample) where each gene lies within the

range [0, d-1]. It then iteratively enhances this test

sample by applying the N and β operators for a

maximum number of iterations specified as

maxIterations.

In the following sections, we delve into the details of

the BHC strategy, including the creation of the coverage

matrix, the method for calculating the weight of a test

sample, and the updating of the coverage matrix.

According to Algorithm 1, BHC first generates an

initial solution (test sample) randomly, where the value
of each gene lies within the range [0, d-1]. Then, it
improves this test sample by applying the N and β
operators for a maximum number of iterations called
maxIterations. In the following section, the BHC strategy
is presented, and subsequently, the creation of the
coverage matrix, the method for calculating the weight
of a test sample, and updating the coverage matrix are
explained.

E. BHC Strategy Details

Fig. 1 shows the flowchart of the BHC strategy. The

BHC strategy is employed iteratively to create a test

sample with maximum coverage. It relies on a coverage

matrix (CM) to monitor the coverage status of various

combinations and consists of three key stages:

 Initialization: In this phase, the coverage matrix
(CM) is established, and a variable called RemCov,
representing the number of remaining uncovered
combinations, is initialized to tp

d
t

 
 

 

.Additionally, an empty test set (TS) is created.
 BHC Algorithm Execution: The BHC algorithm is

executed in this stage to produce a test sample,

saved in the variable tc.

 Update Stage: In this phase, the weight of the

previously generated test sample (tc) is calculated

using the fitness function calcWeight, and this value

is subtracted from the RemCov total. The test

sample tc is subsequently added to the test set TS,

and the coverage matrix CM is updated accordingly.

The BHC algorithm and update stage continue until

either RemCov reaches zero (indicating that all possible

combinations of the t parameters are covered by the

generated test set) or the execution time surpasses 24

hours. At the conclusion of the strategy, the generated

test set TS is presented to the user.

For more clarification, the pseudocode for the BHC
strategy is presented in Algorithm 2. Similar to the
flowchart of this strategy, there are three important
phases. In the first phase (so-called initialization: lines 1-
2), the coverage matrix (CM) is constructed, and the

variable RemCov is set to the value of tp
d

t

 
 

 

.

Additionally, the empty test suite (TS) is created. In the
second phase (so-called running: lines 4-21), the BHC
algorithm is run, and the resulting test case is stored in
tc. In the third phase (so-called updating: line 22), the
weight of tc is calculated using the calcWeight fitness
function and subtracted from RemCov. Furthermore, the
test case tc is appended to the test suite TS, and the
coverage matrix CM is updated accordingly.

Overall, this explanation clarifies the approach of the

BHC strategy for generating an optimal test set,

emphasizing its iterative nature and utilization of the

coverage matrix to monitor different combination

coverage.

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 89

F. Create Coverage Matrix

As the BHC strategy generates test samples

incrementally using the BHC algorithm, a data structure

is essential to track the coverage status of all potential

combinations of the t parameters at each step. This data

structure is known as the "coverage matrix," and it

comprises p

t

 
 
 

 rows and dt columns. Here's how it

works:

 The variable p signifies the number of input

parameters in the system, each capable of taking on

d different values. Consequently, the total number

of combinations for such a system equals tp
d

t

 
 

 

.

 The coverage matrix needs to hold information for

each row, including 𝑑𝑡 columns to represent the

combinations and t columns to keep track of the

indices of combinations corresponding to that row.

 An additional column (the last column) in each row

indicates the number of combinations from that

row that are still uncovered by any test sample.

Therefore, the total number of columns in the

coverage matrix becomes t+dt+1.

Initially, when the test set is empty and no

combinations are covered, the values in all dt columns

for each row are set to zero.

The values in the last column for all rows are set to dt

indicating that all combinations are yet to be covered by

any test sample.

In summary, the coverage matrix is a critical data

structure employed in the BHC strategy to keep tabs on

the coverage status of all possible t-parameter

combinations during the algorithm's execution. It

efficiently tracks coverage progress and plays a key role

in generating an optimal test set.

Test Suite

Yes

Create a covering matrix CM

RemCov  𝑝
𝑡
 × 𝑑𝑡

TS  ∅

The Initialization Phase

p, t, d

The Phase of Running the BHC

maxIterations, calcWeight, bw, beta

The Updating Phase

No

Fig. 1: Flowchart of the BHC strategy.

S. A. Eshghazadi et al.

90 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

Algorithm 2: The BHC strategy

Input: p: the number of parameters, d: the number of
parameter values, t: the interaction strength, maxIterations:
the maximum number of iterations, bw, beta;

Output: a test suite;

 ////// The initialization phase //////

 1: Create a coverage matrix CM;

2: RemCov =
𝑡
 × 𝑑𝑡; TS = ∅;

3: while RemCov>0 && ConsumedTime < 24h do

 ////// The running phase //////

4: lb = 0 ; ub = d-1; k = p; fit = calcWeight ();

5: Individual x=new Individual ();

6: x = Initialize (k, lb, ub); rep =1;

7: while rep <= maxIterations do

8: Individual x’ = x;

//// The 𝒩 operator: This operator generates
new candidate solutions by adding normally
distributed noise, aiding in local exploitation
around the current solution.

9: index = a random number between 1 and k;

10: rnd = a random number between 0 and 1;

11: x’ [index] = x [index] +(2*rnd-1)*bw;

 //// The 𝛽 operator

//// The 𝛽 operator: This operator diversifies
the search by using controlled random
perturbations to escape local optima and
explore new regions of the solution space.
//////

12: for j = 1 to k do

13: if rand(0,1) <=beta then

14: x’ [j] = lb[j]+(ub[j]-lb[j])* rand(0,1);

15: end if

16: end for

17: if fit (x’) > fit (x) then

18: x = x’;

19: end if

20: rep ++;

21: end while

 ////// The updating phase //////

22: TS = TS ∪ x; RemCov = RemCov – fit (x); Update CM;

23: end while

24: return TS;

To provide a clearer understanding of the coverage

matrix, let's consider a hypothetical system with p = 4

input parameters and d = 3 possible values for each

parameter. Our objective is to create the coverage

matrix for the covering array CA (N; 2, 34). Here's how

we determine the matrix dimensions:

The number of rows, denoted as p

t

 
 
 

, is calculated as

 
 
 

4

2
 which equals 6.

The total number of columns, represented as t+dt+1 is

determined as 2+32+1, summing up to 12 columns.

Now, let's break down the columns of this matrix

based on Fig. 2:

The first two columns (0 and 1) are responsible for

indicating the indices of the 6 different combinations

(12, 13, 14, 23, 24, 34).

The following nine columns (2 to 10) encompass all

possible values corresponding to the two parameters

(00, 01, 02, 10, 11, 12, 20, 21, 22).

The last column (11) is dedicated to keeping track of

the number of elements that remain uncovered.

To calculate the column number (c) for a given

combination of indices i0i1…it-1, we can utilize (2):





   
1

0

1()
t

j
j

t jc t i d (2)

In sum, the coverage matrix is a structured

representation used to track combinations of

parameters in the context of covering arrays. In our

hypothetical system, it enables us to efficiently monitor

the coverage status of various combinations and their

corresponding values, aiding in the quest to generate an

optimal test set.

For instance, in the hypothetical system we're

examining, consider the combination of indices (i0 = 2

and i1 = 1). To determine the corresponding column

number (c), you can use the following calculation: c = 2 +

(2×31+1×30) = 9.

Furthermore, the initial value of RemCov

(representing the count of elements that have not been

covered yet) equals tp
d

t

 
 

 

, which in our scenario is

2
4

3
2

 
 

 

, resulting in 54, as illustrated in Fig. 2.

Fig. 2: Structure of coverage matrix for CA (N; 2,34)

configuration.

G. Calculating Test Sample Weight and Updating the
Coverage Matrix

To determine the weight of a given test sample, we

count the number of new combinations it covers. Here's

the process:

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 91

 We consider both the values within the test sample

itself and those in the first t columns of each row in

the coverage matrix.

 First, we calculate the column number for each

combination (row) using (2) based on the test

sample's values and the t columns.

 If the value in the corresponding cell of the

coverage matrix is one, it means that this

combination has already been covered by previous

test samples and added to the test set. In such

cases, there's no need to update the weight of the

current test sample.

 However, if the value is zero, we add one to the

weight of the current test sample, and we set the

value of that cell to one, indicating that this

combination should be excluded when calculating

the weight of the next test sample.

 It's important to subtract one from the value in the

last column of the specific row to account for the

updated weight of the current test sample.

 Finally, after examining all rows, we subtract the

obtained weight for this test sample from the

RemCov value. RemCov signifies the count of

remaining combinations that have yet to be

covered.

To illustrate this process, let's consider the test

sample tc = (0, 1, 2, 0) in Fig. 2. In Fig. 3, we visually

depict how the weight is calculated for this test sample

based on the coverage matrix. As shown, we first

calculate the column number for each combination (row)

using (2) and update all corresponding cells from zero to

one. Additionally, the values in the last columns, initially

at 9, are reduced to 8. Finally, after all the updates, the

RemCov value decreases to 48. This process ensures

efficient tracking of covered combinations and

contributes to generating an optimal test set.

Fig. 3: Calculating the weight of the test sample tc = (0,1,2,0)
according to the coverage matrix of Figure 2 and updating it.

Evaluation Results

In order to assess the effectiveness of the BHC

strategy, we conducted an evaluation using MATLAB

2017a software. Our analysis involved comparing the

BHC strategy against various other strategies, including

TConfig as a mathematical approach, PICT and IPOG as

greedy methods, and GS, GALP, DPSO, WOA, BAPSO, and

GSTG as metaheuristic strategies.

Before commencing the evaluation and comparison,

we needed to determine appropriate values for two

crucial parameters: bw, which is related to the N

operator, and β, which relates to the β operator. To

achieve this, we executed the BHC strategy ten times

within the context of the CA (N; 2, p, 4) configuration,

where p ranged from 11 to 16. Our analysis of the

results, as depicted in Fig. 4, revealed that the BHC

strategy exhibited its best performance when configured

with bw = 0.5 and β = 0.2. Additionally, we acquired

suitable parameter values for the other strategies from

relevant literature, and these values are summarized in

Table 4.

Another essential parameter in our assessment is the

maximum number of function evaluations (maxFFE),

which we set to 10,000 for all strategies under

consideration. It's worth noting that the parameters

maxFFE and the number of iterations (MaxIterations) in

the algorithms are interchangeable. If we denote nFFE as

the number of function evaluations performed in each

iteration of an algorithm, then the number of iterations

can be calculated using (3):


maxFFE

MaxIterations
nFFE

 (3)

As an example, consider the WOA algorithm within

our chosen strategy, where the population size is set to

180. Consequently, the value of nFFE corresponds to

180. Using (3), we can calculate the number of

iterations, which yields MaxIterations equal to 10,000 /

180, resulting in approximately 56 iterations.

H. Results Generation

To obtain our results, we executed all the strategies a

total of 100 times across five distinct datasets, as

follows:

 CA (N; 2, p, 3) for 3 ≤ p ≤ 12

 CA (N; 3, p, d) for 7 ≤ p ≤ 12 and 2 ≤ d ≤ 3

 CA (N; t, p, 3) for 7 ≤ t ≤ 11 and t+1 ≤ p ≤ 12

 CA (N; 4, p, 5) for 5 ≤ p ≤ 15

 CA (N; t, p, 2) for 12 ≤ t ≤ 16 and 14 ≤ p ≤ 17

The hardware environment for running these

strategies was equipped with an Intel® Core™ i5 CPU and

6GB of RAM. It's important to note that in our results

table, we use "NA" and ">day" when a specific strategy

execution result is unavailable for a given configuration

or when a strategy failed to produce an optimal covering

array within a 24-hour timeframe.

S. A. Eshghazadi et al.

92 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

Table 4 Appropriate values for parameters of the meta-heuristic strategies

Table 4: Appropriate values for parameters of the meta-heuristic strategies

In Table 5, we present the sizes of the test sets

generated by all strategies for the first dataset, CA (N; 2,

p, 3), where 3 ≤ p ≤ 12. This dataset encompasses 10

distinct configurations. Notably, in 9 out of these cases,

both GALP and GS produced the smallest test sets.

Following closely, BHC generated the smallest test sets in

8 of these configurations. In contrast, TConfig, employed

as a mathematical strategy, failed to produce any test

set with the smallest size for this dataset. Among the

considered greedy strategies, IPOG consistently

produced the smallest test sets in the majority of cases.

In Table 6, we present the sizes of the test sets

generated by all strategies for the second dataset, CA (N;

3, p, d), where 7 ≤ p ≤ 12 and 2 ≤ d ≤ 3. This dataset

encompasses 13 distinct configurations. Notably, in

terms of generating test sets with the smallest size, both

GALP and BHC demonstrated the best performance

across this dataset.

In Table 7, we provide the sizes of the test sets

generated by all strategies for the third dataset, denoted

as CA (N; t, p, 3), where 7 ≤ t ≤ 11 and t + 1 ≤ p ≤ 12. This

dataset encompasses a total of 15 distinct

configurations. Notably, in 8 of these configurations, the

BHC strategy stands out by producing test sets with the

smallest size.

Tables 8 and 9 present the sizes of the test sets

generated by all strategies for the fourth and fifth

datasets, respectively. The fourth dataset corresponds to

Parameters and their appropriate values Strategy

bw = 0.5, beta = 0.2 BHC

N = 120, MutRate = 0.4, CossRate = 0.4 GS

N = 10-300, MutRate = 0.4..1.0, CossRate = 0.4..1.0

Mutation method : Uniform

Crossover method : ALPSOFV (Kmax = 10-20, a = 0.9, r = 4, R1 and R2: random)

GALP

N = 180 WOA

N = 100, Loudness = 0.9, PulseemissionRate = 0.9,

Minfrequency = 0, Maxfrequency =1, Tolerance = 0.025, WeightValue = 0.4,
CycWalkvalue = 1.49

BAPSO

N = 100, ElitistCheck = 1, Rpower = 1, Rnorm = 2 GSTG

Fig. 4: Average size of production test set in CA (N; 2,p,4) configuration for 11≤ p≤16.

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 93

CA (N; 4, p, 5), where 5 ≤ p ≤ 15, while the fifth dataset

pertains to CA (N; t, p, 2), where 12 ≤ t ≤ 16 and 14 ≤ p ≤

17.

Upon reviewing these tables, it becomes evident that

BHC consistently excels by producing test sets with the

smallest size across the majority of configurations in

these datasets. To demonstrate the superiority of the

BHC strategy over other existing methods, we utilized

the Friedman test. This non-parametric statistical test is

designed for comparing multiple related samples [66]

and is effective in identifying performance differences

among the various strategies. In the Friedman test

output report, the strategy with the lowest average rank

is designated as Rank 1, signifying the best performance.

Subsequently, the second lowest rank is assigned as

Rank 2, and so forth.

Table 10 provides an overview of the overall ranks

achieved by both BHC and other strategies across all the

considered datasets, totaling 54 distinct configurations.

Notably, BHC consistently secures the first rank,

demonstrating its effectiveness in generating test sets

with the smallest size.

IPOG

N.Best

PICT

N.Best

TConfig

N.Best

WOA

N.Best

DPSO

N.Best

BAPSO

N.Best

GS

N.Best

GSTG

N.Best

GALP

N.Best

BHC

N.Avg

BHC

N.Best
d, p

9 10 10 9 9 9 9 9 9 9.69 9 3, 3

9 13 10 9 9 10 9 9 9 10.28 9 3, 4

15 13 14 11 11 11 11 11 11 12.88 11 3, 5

15 14 15 14 14 14 13 13 13 14.55 13 3, 6

15 16 15 14 15 15 14 15 14 15.24 14 3, 7

15 16 17 15 15 15 15 15 15 15.92 15 3, 8

15 17 17 16 15 16 15 17 15 16.55 15 3, 9

15 18 17 16 16 17 16 18 16 17.43 16 3, 10

17 18 20 17 17 17 16 19 16 17.82 17 3, 11

21 19 20 17 16 17 16 19 16 18.23 17 3, 12

IPOG

N.Best

PICT

N.Best

TConfig

N.Best

WOA

N.Best

DPSO

N.Best

BAPSO

N.Best

GS

N.Best

GSTG

N.Best

GALP

N.Best

BHC

N.Avg

BHC

N.Best
d, p

16 15 16 12 15 12 12 12 12 15.09 12 2, 7

18 17 18 14 16 14 14 14 12 16.05 12 2, 8

20 17 20 15 16 15 16 16 16 16.25 16 2, 9

20 18 20 16 16 16 16 16 16 16.65 16 2, 10

32 34 32 27 28 27 27 28 27 31.12 27 3, 4

41 43 40 38 41 38 38 40 37 40.39 38 3, 5

46 48 48 42 33 43 43 43 40 45.10 39 3, 6

55 51 55 48 48 48 49 48 48 50.66 48 3, 7

56 59 58 53 52 52 54 53 52 54.75 52 3, 8

63 63 64 57 56 57 58 56 56 58.51 56 3, 9

66 65 68 59 59 59 61 61 59 61.78 60 3, 10

70 70 72 64 63 63 63 63 62 64.81 63 3, 11

73 72 77 65 65 65 67 65 65 67.51 65 3, 12

Table 5: Test set size generated by all strategies in 𝐶𝐴 (𝑁; 2, 𝑝, 3) for 3 ≤ p ≤ 12

Table 6: Size of the test set generated by all strategies in CA (N; 3, p, d) for 7 ≤ p ≤12 and 2 ≤ d ≤3

S. A. Eshghazadi et al.

94 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

Table 7: Size of the test set generated by all strategies in CA (N; t, p, 3) for 7 ≤ t ≤11 and t+1 ≤ p ≤12

Table 8: Size of the test set generated by all strategies in CA (N; 4, p, 5) for 5 ≤ p ≤15

Table 9: Size of the test set generated by all strategies in CA (N; t, p, 2) for 12 ≤ t ≤16 and 14 ≤ p ≤17

IPOG

N.Best

PICT

N.Best

TConfig

N.Best

WOA

N.Best

DPSO

N.Best

BAPSO

N.Best

GS

N.Best

GSTG

N.Best

GALP

N.Best

BHC

N.Avg

BHC

N.Best
t , p

NA 3143 >day 3031 2241 3029 3032 3031 3029 3013.12 2989 7, 8

NA 4618 > day 4425 4427 4425 4437 4425 4425 4435.23 4417 7, 9

NA 5884 >day 5474 5434 5472 5464 5473 5459 5484.32 5476 7, 10

NA 7116 >day 6531 6413 6515 6533 6543 6468 6437.13 6427 7, 11

NA 8314 >day 7610 >day 7614 7603 7598 7593 7563.12 7557 7, 12

NA 9763 >day 9258 9284 9273 9266 9372 9258 9292.25 9283 8, 9

NA 14599 > day 13912 13939 13912 13907 13912 13903 13902.42 13894 8, 10

NA 18,859 >day 17641 >day 17831 17792 17753 17639 17832.31 17713 8,11

NA 23112 >day 21310 >day 21631 21670 22731 20963 20513.21 20415 8, 12

NA 30181 >day 28319 21433 27813 28629 29631 28312 28445.31 28434 9, 10

NA 45521 > day 43592 >day 43931 43809 43591 43543 43495.31 43474 9, 11

NA 59966 >day 55931 >day 57931 56481 57301 56219 53865.21 53813 9, 12

NA 92435 >day 87721 >day 88351 87766 88391 87712 87031.42 86960 10, 11

NA 141990 > day 136841 >day 140315 136096 139041 135962 13394.2 133842 10, 12

NA 278993 >day 259341 >day 274102 267131 26518 267085 257342.4 246309 11, 12

IPOG

N.Best

PICT

N.Best

TConfig

N.Best

WOA

N.Best

BAPSO

N.Best

GS

N.Best

GSTG

N.Best

GALP

N.Best

BHC

N.Avg

BHC

N.Best
p

773 810 773 784 774 769 774 762 782.65 775 5

1058 1072 1092 1015 1031 984 1021 986 992.32 984 6

1293 1279 1320 1168 1181 1176 1172 1168 1174.31 1168 7

1511 1468 1532 1379 1384 1371 1353 1364 1341.45 1338 8

1702 1643 1724 1592 1531 1548 1587 1553 1494.50 1488 9

1869 1812 1878 1641 1634 1638 1747 1634 1635.21 1634 10

2024 1957 2038 1769 1853 1838 1769 1812 1767.75 1766 11

2150 2103 2178 1941 1983 1967 1923 1910 1893.50 1890 12

2296 2238 >day 2112 2031 2041 2104 2013 2005.25 2003 13

2436 2359 >day 2123 2293 2156 2251 2131 2117.75 2115 14

2538 2480 >day 2259 2258 2268 2371 2245 2220.17 2217 15

IPOG

N.Best

PICT

N.Best

TConfig

N.Best

WOA

N.Best

DPSO

N.Best

BAPSO

N.Best

GS

N.Best

GSTG

N.Best

GALP

N.Best

BHC

N.Avg

BHC

N.Best

NA 9112 > day 8874 8972 8891 8893 9021 8904 8891.32 8873 CA (N; 12, 2
14

)

NA 12441 > day 11217 >day 11731 10251 11714 11051 11210.63 11152 CA (N; 13, 2
14

)

NA 25036 > day 22862 >day 21725 23377 21983 22642 22231.33 22163 CA (N; 14, 2
15

)

NA 51127 > day 42641 >day 43624 46575 42930 41820 40512.75 40415 CA (N; 15, 2
16

)

NA 100266 > day 95326 >day 96320 95680 94941 94932 94451.63 94431 CA (N; 16, 2
17

)

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 95

Table 10: Overall ranks of BHC and other strategies in all considered data sets

Conclusion and Future Directions

Generating an optimal test set, also known as a

coverage array, is a complex NP-Hard problem.

Metaheuristic algorithms such as Genetic Algorithms,

Particle Swarm Optimization, Ant Colony Optimization,

and Tabu Search have demonstrated their remarkable

efficiency in tackling this problem. However, the issue of

handling large test set sizes remains unresolved. In this

paper, we introduced an innovative strategy based on

the Beta Hill Climbing (BHC) optimization method to

address the optimal test set generation problem. In our

evaluation and comparison, we pitted BHC against

TConfig (a mathematical strategy), PICT and IPOG

(greedy strategies), and GS, GALP, DPSO, WOA, BAPSO,

and GSTG (metaheuristic strategies) using five well-

established datasets. According to the results derived

from the Friedman test, BHC consistently ranked first in

generating test sets with the smallest size.

The primary contributions of this research include the

first-time application of the β-hill climbing (BHC)

optimizer for generating minimum covering arrays,

which demonstrates greater efficiency and supports

higher interaction strengths (t>15) than most existing

strategies.

However, BHC has certain limitations, such as its

inability to handle variable-strength interactions and

constraints, which are essential features of t-way testing.

To address these gaps, future work can focus on

extending BHC to incorporate these features.

Additionally, integrating BHC with established

metaheuristic algorithms can further improve its

efficiency and expand its utility.

Author Contributions

All authors of the paper developed the algorithm

algorithm, executed the experiments, analyzed the

results, and authored the manuscript.

Funding

This research received no external funding.

Acknowledgment

We would like to express our sincere gratitude to the

editor and anonymous reviewers for their valuable time,

insightful feedback, and constructive comments, which

greatly contributed to the improvement and quality of

this paper.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Abbreviations

ABC Artificial Bee Colony

ABCVS
Artificial Bee Colony for generating Variable
t-way Test Sets

AETG Automatic Efficient Test Generator

ALPSOFV
Adaptive Layered Population Size with
Optimal Fitness Value

BAPSO
Hybrid of Bat Algorithm and Particle Swarm
Optimization

BDA Bi-Objective Dragonfly Algorithm

BHC Beta Hill Climbing

β-HCO Beta Hill Climbing Optimizer

BOA Butterfly Optimization Algorithm

CA Covering Array

CM Coverage Matrix

CTEXL Classification-Tree Editor eXtended Logics

DPSO Discrete Particle Swarm Optimization

GALP Genetic Algorithm with Local Path

GA Genetic Algorithm

GS Genetic Strategy

GSTG Gravitational Search Test Generator

HABC Hybrid Artificial Bee Colony

HC-BAT Hybrid Hill Climbing and Bat Algorithm

HGHC Hybrid Greedy Hill Climbing

HHOA Harris Hawks Optimization Algorithm

 BHC GALP GSTG GS BAPSO DPSO WOA TConfig PICT IPOG

Friedman

Test

Mean
Rank

2.69 2.75 4.93 4.35 4.63 6.50 4.09 9.03 7.91 8.13

Rank 1 2 6 4 5 7 3 10 8 9

S. A. Eshghazadi et al.

96 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

IPOG In-Parameter-Order General

LSHADE
Linear Success-History Adaptive Differential
Evolution

MBH Multiple Black Hole

OPT One-Parameter-at-a-Time

ORT One-Row-at-a-Time

PICT Pairwise Independent Combinatorial Testing

PSO Particle Swarm Optimization

QWOA-
EMC

Q-learning Whale Optimization Algorithm
with Ensemble Model Checking

REMCOV Remaining Combinations

ROBDDs Reduced Ordered Binary Decision Diagrams

SCA Sine Cosine Algorithm

SCAVS
Sine Cosine Algorithm for Variable t-way
Test Suite

SCIPOG Seeding and Constraint Support in IPOG

TC Test Case

TLBO Teaching–Learning-Based Optimization

TP Test Parameter

TS Test Set

TPA Three-Phase Approach

TWAY t-way Combinatorial Testing

WOA Whale Optimization Algorithm

References

[1] B. S. Ahmed, T. S. Abdulsamad, M. Y. Potrus, "Achievement of
minimized combinatorial test suite for configuration-aware
software functional testing using the cuckoo search algorithm,"
Inf. Software Technol., 66: 13-29, 2015.

[2] R. Jhala, R. Majumdar, "Software model checking," ACM Comput.
Surv. (CSUR), 41(4): 1-54, 2009.

[3] L. Luo, "Software testing techniques," Institute for software
research international Carnegie mellon university Pittsburgh, PA,
vol. 15232, no. 1-19, p. 19, 2001.

[4] D. R. Kuhn, M. J. Reilly, "An investigation of the applicability of
design of experiments to software testing," in Proc. 27th Annual
NASA Goddard/IEEE Software Engineering Workshop: 91-95,
2002.

[5] M. A. Al-Betar, "β-hill climbing: an exploratory local search,"
Neural Comput. Appl., 28(Suppl 1): 153-168, 2017.

[6] B. Selman, C. P. Gomes, "Hill-climbing search," Encycl. Cognit. Sci.,
81, 2006.

[7] S. Chinnasamy, M. Ramachandran, M. Amudha, K. Ramu, "A
review on hill climbing optimization methodology," Recent Trends
Manage. Commerce, 3(1), 2022.

[8] E. R. R. Kato, G. D. de Aguiar Aranha, R. H. Tsunaki, "A new
approach to solve the flexible job shop problem based on a
hybrid particle swarm optimization and Random-Restart Hill
Climbing," Comput. Ind. Eng., 125: 178-189, 2018.

[9] E. Aarts, J. Korst, W. Michiels, "Simulated annealing," in Search
Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques: 187-210, 2005.

[10] J. Arriaga, M. Valenzuela-Rendón, "Steepest ascent hill climbing
for portfolio selection," in Proc. European Conference on the
Applications of Evolutionary Computation: 145-154, 2012.

[11] D. LaSalle, G. Karypis, "A parallel hill-climbing refinement
algorithm for graph partitioning," in Proc. 45th International
Conference on Parallel Processing (ICPP): 236-241, 2016.

[12] M. Gendreau, J. Y. Potvin, "Tabu search," in Search
Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques: 165-186, 2005.

[13] M. H. Shirvani, "A hybrid meta-heuristic algorithm for scientific
workflow scheduling in heterogeneous distributed computing
systems," Eng. Appl. Artif. Intell., 90: 103501, 2020.

[14] B. Keshanchi, N. J. Navimipour, "Priority-based task scheduling in
the cloud systems using a memetic algorithm," J. Circuits Syst.
Comput., 25(10): 1650119, 2016.

[15] B. Selman, C. P. Gomes, "Hill-climbing search," Encycl. Cognit. Sci.,
81(10): 333-335, 2006.

[16] S. Esfandyari, V. Rafe, "A tuned version of genetic algorithm for
efficient test suite generation in interactive t-way testing
strategy," Inf. Software Technol., 94: 165-185, 2018.

[17] A. Hartman, "Software and hardware testing using combinatorial
covering suites," in Graph theory, combinatorics and algorithms:
Springer, pp: 237-266, 2005.

[18] A. W. Williams, R. L. Probert, "A practical strategy for testing pair-
wise coverage of network interfaces," in Proc. 7th International
Symposium on Software Reliability Engineering (ISSRE'96) :246-
254, 1996.

[19] C. Nie, H. Leung, "A survey of combinatorial testing," ACM
Comput. Surv. (CSUR), 43(2): 1-29, 2011.

[20] D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton, "The AETG
system: An approach to testing based on combinatorial design,"
IEEE Trans. Software Eng., 23(7): 437-444, 1997.

[21] M. B. Cohen, "Designing test suites for software interactions
testing," Auckland Univ (New Zealand), 2004.

[22] J. Czerwonka, "Pairwise testing in the real world: Practical
extensions to test-case scenarios," Microsoft Corporation,
Software Testing Technical Articles, 2008.

[23] B. Jenkins, "Jenny test tool," ed, 2009.

[24] B. S. Ahmed, M. A. Sahib, M. Y. Potrus, "Generating combinatorial
test cases using Simplified Swarm Optimization (SSO) algorithm
for automated GUI functional testing," Eng. Sci. Technol., Int. J.,
17(4): 218-226, 2014.

[25] K. Z. Zamli, M. F. Klaib, M. I. Younis, N. A. M. Isa, R. Abdullah,
"Design and implementation of a t-way test data generation
strategy with automated execution tool support," Inf. Sci., 181(9):
1741-1758, 2011.

[26] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, D. R. Kuhn, "Refining
the in-parameter-order strategy for constructing covering arrays,"
J. Res. Natl. Inst. Stand. Technol., 113(5): 287, 2008.

[27] A. A. Muazu, A. S. Hashim, A. Sarlan, M. Abdullahi, "SCIPOG:
Seeding and constraint support in IPOG strategy for combinatorial
t-way testing to generate optimum test cases," J. King Saud Univ.
Comput. Inf. Sci., 35(1): 185-201, 2023.

https://www.sciencedirect.com/science/article/abs/pii/S0950584915001020
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001020
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001020
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001020
https://dl.acm.org/doi/abs/10.1145/1592434.1592438
https://dl.acm.org/doi/abs/10.1145/1592434.1592438
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ieeexplore.ieee.org/abstract/document/1199454/
https://ieeexplore.ieee.org/abstract/document/1199454/
https://ieeexplore.ieee.org/abstract/document/1199454/
https://ieeexplore.ieee.org/abstract/document/1199454/
https://link.springer.com/article/10.1007/s00521-016-2328-2
https://link.springer.com/article/10.1007/s00521-016-2328-2
https://www.cs.cornell.edu/selman/papers/pdf/02.encycl-hillclimbing.pdf
https://www.cs.cornell.edu/selman/papers/pdf/02.encycl-hillclimbing.pdf
https://d1wqtxts1xzle7.cloudfront.net/87163532/1.-A-Review-on-Hill-Climbing-Optimization-Methodology-libre.pdf?1654637083=&response-content-disposition=inline%3B+filename%3DA_Review_on_Hill_Climbing_Optimization_M.pdf&Expires=1746039767&Signature=be~OnzQ34M4lg64hOLJkOmrgBavSpf4AUGC9HpszkMUqAdL7M3FH5UFAyYIfkiyILevF3xkUet3jlwybMWtiEvLwYise4PsOkkwATAA-biYWDwcEQPeTW5UDXBnBfvhUI-44fU9btCSftZlQSwmdHbnkzMwJIMpaadkVzTkFgHtXiAcHekoIzd~7ZJ6dxo~CBYk8foUNeWUAsU6t3wSbsrx1hZnss85eB8hyiJ2FUsiFvO7LLN2ImVWWpA5XpfRwiiYauEGV3JSU8KhqKOOSYR0krZTfLsyrKcyTMo3L5v8r57ZTYEAJ5gzDdCD~oWbncURwF7bssf3J3vqxP7QGIg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87163532/1.-A-Review-on-Hill-Climbing-Optimization-Methodology-libre.pdf?1654637083=&response-content-disposition=inline%3B+filename%3DA_Review_on_Hill_Climbing_Optimization_M.pdf&Expires=1746039767&Signature=be~OnzQ34M4lg64hOLJkOmrgBavSpf4AUGC9HpszkMUqAdL7M3FH5UFAyYIfkiyILevF3xkUet3jlwybMWtiEvLwYise4PsOkkwATAA-biYWDwcEQPeTW5UDXBnBfvhUI-44fU9btCSftZlQSwmdHbnkzMwJIMpaadkVzTkFgHtXiAcHekoIzd~7ZJ6dxo~CBYk8foUNeWUAsU6t3wSbsrx1hZnss85eB8hyiJ2FUsiFvO7LLN2ImVWWpA5XpfRwiiYauEGV3JSU8KhqKOOSYR0krZTfLsyrKcyTMo3L5v8r57ZTYEAJ5gzDdCD~oWbncURwF7bssf3J3vqxP7QGIg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87163532/1.-A-Review-on-Hill-Climbing-Optimization-Methodology-libre.pdf?1654637083=&response-content-disposition=inline%3B+filename%3DA_Review_on_Hill_Climbing_Optimization_M.pdf&Expires=1746039767&Signature=be~OnzQ34M4lg64hOLJkOmrgBavSpf4AUGC9HpszkMUqAdL7M3FH5UFAyYIfkiyILevF3xkUet3jlwybMWtiEvLwYise4PsOkkwATAA-biYWDwcEQPeTW5UDXBnBfvhUI-44fU9btCSftZlQSwmdHbnkzMwJIMpaadkVzTkFgHtXiAcHekoIzd~7ZJ6dxo~CBYk8foUNeWUAsU6t3wSbsrx1hZnss85eB8hyiJ2FUsiFvO7LLN2ImVWWpA5XpfRwiiYauEGV3JSU8KhqKOOSYR0krZTfLsyrKcyTMo3L5v8r57ZTYEAJ5gzDdCD~oWbncURwF7bssf3J3vqxP7QGIg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://www.sciencedirect.com/science/article/pii/S0360835218304029
https://www.sciencedirect.com/science/article/pii/S0360835218304029
https://www.sciencedirect.com/science/article/pii/S0360835218304029
https://www.sciencedirect.com/science/article/pii/S0360835218304029
https://link.springer.com/chapter/10.1007/0-387-28356-0_7
https://link.springer.com/chapter/10.1007/0-387-28356-0_7
https://link.springer.com/chapter/10.1007/0-387-28356-0_7
https://link.springer.com/chapter/10.1007/978-3-642-29178-4_15
https://link.springer.com/chapter/10.1007/978-3-642-29178-4_15
https://link.springer.com/chapter/10.1007/978-3-642-29178-4_15
https://ieeexplore.ieee.org/abstract/document/7573823
https://ieeexplore.ieee.org/abstract/document/7573823
https://ieeexplore.ieee.org/abstract/document/7573823
https://link.springer.com/chapter/10.1007/0-387-28356-0_6
https://link.springer.com/chapter/10.1007/0-387-28356-0_6
https://link.springer.com/chapter/10.1007/0-387-28356-0_6
https://www.sciencedirect.com/science/article/abs/pii/S0952197620300166
https://www.sciencedirect.com/science/article/abs/pii/S0952197620300166
https://www.sciencedirect.com/science/article/abs/pii/S0952197620300166
https://www.worldscientific.com/doi/abs/10.1142/S021812661650119X
https://www.worldscientific.com/doi/abs/10.1142/S021812661650119X
https://www.worldscientific.com/doi/abs/10.1142/S021812661650119X
https://www.cs.cornell.edu/selman/papers/pdf/02.encycl-hillclimbing.pdf
https://www.cs.cornell.edu/selman/papers/pdf/02.encycl-hillclimbing.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0950584917300897
https://www.sciencedirect.com/science/article/abs/pii/S0950584917300897
https://www.sciencedirect.com/science/article/abs/pii/S0950584917300897
https://link.springer.com/chapter/10.1007/0-387-25036-0_10
https://link.springer.com/chapter/10.1007/0-387-25036-0_10
https://link.springer.com/chapter/10.1007/0-387-25036-0_10
https://ieeexplore.ieee.org/abstract/document/558835
https://ieeexplore.ieee.org/abstract/document/558835
https://ieeexplore.ieee.org/abstract/document/558835
https://ieeexplore.ieee.org/abstract/document/558835
https://dl.acm.org/doi/abs/10.1145/1883612.1883618
https://dl.acm.org/doi/abs/10.1145/1883612.1883618
https://ieeexplore.ieee.org/abstract/document/605761
https://ieeexplore.ieee.org/abstract/document/605761
https://ieeexplore.ieee.org/abstract/document/605761
https://apps.dtic.mil/sti/citations/ADA628448
https://apps.dtic.mil/sti/citations/ADA628448
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3343a4e9c2a94dea39c218d4ec7c61306b0552e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3343a4e9c2a94dea39c218d4ec7c61306b0552e4
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3343a4e9c2a94dea39c218d4ec7c61306b0552e4
https://burtleburtle.net/bob/math/jenny.html
https://www.sciencedirect.com/science/article/pii/S2215098614000469
https://www.sciencedirect.com/science/article/pii/S2215098614000469
https://www.sciencedirect.com/science/article/pii/S2215098614000469
https://www.sciencedirect.com/science/article/pii/S2215098614000469
https://www.sciencedirect.com/science/article/abs/pii/S002002551100003X
https://www.sciencedirect.com/science/article/abs/pii/S002002551100003X
https://www.sciencedirect.com/science/article/abs/pii/S002002551100003X
https://www.sciencedirect.com/science/article/abs/pii/S002002551100003X
https://pmc.ncbi.nlm.nih.gov/articles/PMC4652878/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4652878/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4652878/
https://www.sciencedirect.com/science/article/pii/S1319157822004086
https://www.sciencedirect.com/science/article/pii/S1319157822004086
https://www.sciencedirect.com/science/article/pii/S1319157822004086
https://www.sciencedirect.com/science/article/pii/S1319157822004086

Using β-Hill Climbing Optimizer to Generate Optimal Test Suite

J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026 97

[28] S. Akyol, B. Alatas, "Plant intelligence based metaheuristic
optimization algorithms," Artif. Intell. Rev., 47: 417-462, 2017.

[29] B. Alatas, "ACROA: Artificial chemical reaction optimization
algorithm for global optimization," Expert Syst. Appl., 38(10):
13170-13180, 2011.

[30] Z. Abbasi, S. Esfandyari, and V. Rafe, "Covering array generation
using teaching learning base optimization algorithm," Tabriz J.
Electr. Eng., 48(1): 161-171, 2018.

[31] J. Kennedy, R. Eberhart, "Particle swarm optimization," in Proc.
ICNN'95-International Conference on Neural Networks, 4: 1942-
1948, 1995.

[32] S. Esfandyari, V. Rafe, "Using the particle swarm optimization
algorithm to generate the minimum test suite in covering array
with uniform strength," Soft Comput. J., 8(2): 66-79, 2021.

[33] Y. A. Alsariera, A. H. Al Omari, M. A. Albawaleez, Y. K. Sanjalawe,
K. Z. Zamli, "Hybridized BA & PSO t-way Algorithm for Test Case
Generation," Int. J. Comput. Sci. Network Secur. (IJCSNS), 21(10):
343, 2021.

[34] K. M. Htay, R. R. Othman, A. Amir, J. M. H. Alkanaani,
"Gravitational search algorithm based strategy for combinatorial
t-way test suite generation," J. King Saud Univ. Comput. Inf. Sci.,
34(8A): 4860- 4873, 2022.

[35] D. Whitley, "A genetic algorithm tutorial," Stat. Comput., 4(2): 65-
85, 1994.

[36] H. N. N. Al-Sammarraie, D. N. Jawawi, "Multiple black hole
inspired meta-heuristic searching optimization for combinatorial
testing," IEEE Access, 8: 33406-33418, 2020.

[37] J. M. Altmemi, R. Othman, R. Ahmad, "SCAVS: Implement Sine
Cosine Algorithm for generating Variable t-way test suite," in
Proc. IOP Conference Series: Materials Science and Engineering,
917(1): 012011, 2020.

[38] S. Mirjalili, "SCA: A sine cosine algorithm for solving optimization
problems," Knowledge-Based Syst., 96: 120-133, 2016.

[39] A. K. Alazzawi, H. M. Rais, S. Basri, "Artificial bee colony algorithm
for t-way test suite generation," in Proc. 2018 4th International
Conference on Computer and Information Sciences (ICCOINS): 1-
6, 2018.

[40] A. K. Alazzawi, H. M. Rais, S. Basri, "ABCVS: An artificial bee
colony for generating variable t-way test sets," Int. J. Adv.
Comput. Sci. Appl., 10(4): 259-274, 2019.

[41] A. K. Alazzawi, H. M. Rais, S. Basri, Y. A. Alsariera, "Pairwise test
suite generation based on hybrid artificial bee colony algorithm,"
in Advances in Electronics Engineering, Springer, pp. 137-145,
2020.

[42] A. K. Alazzawi, H. Rais, S. Basri, "HABC: Hybrid artificial bee colony
for generating variable t-way test sets," J. Eng. Sci. Technol.,
15(2): 746-767, 2020.

[43] A. K. Alazzawi, H. M. Rais, S. Basri, "Parameters tuning of hybrid
artificial bee colony search based strategy for t-way testing," Int.
J. Innov. Technol. Exploring Eng, 8(5S): 204-212, 2019.

[44] A. K. Alazzawi, H. M. Rais, S. Basri, "Hybrid artificial bee colony
algorithm for t-way interaction test suite generation," in Proc.
Computer Science On-line Conference: 192-199, 2019.

[45] A. K. Alazzawi, H. M. Rais, S. Basri, Y. A. Alsariera, A. O. Balogun,
A. A. Imam, "A hybrid artificial bee colony strategy for t-way test
set generation with constraints support," J. Phys. Conf. Ser.,
1529(4): 042068, 2020.

[46] A. K. Alazzawi, H. M. Rais, S. Basri, Y. A. Alsariera, "PhABC: A
hybrid artificial bee colony strategy for pairwise test suite
generation with constraints support," in Proc. 2019 IEEE Student
Conference on Research and Development (SCOReD): 106-111,
2019.

[47] S. Esfandyari and V. Rafe, "A hybrid solution for software testing
to minimum test suite generation using hill climbing and bat
search algorithms," Tabriz J. Electr. Eng., 46(3): 25-35, 2016.

[48] J. B. Odili, A. B. Nasser, A. Noraziah, M. H. A. Wahab, M. Ahmed,
"African buffalo optimization algorithm based t-way test suite
generation strategy for electronic-payment transactions," in Proc.
International Conference on Emerging Technologies and
Intelligent Systems (ICETIS 2021): 160-174, 2022.

[49] M. Ahmed, A. B. Nasser, K. Z. Zamli, "Construction of prioritized t-
way test suite using bi-objective dragonfly algorithm," IEEE
Access, 10: 71683-71698, 2022.

[50] E. Pira, V. Rafe, S. Esfandyari, "Minimum covering array
generation using success-history and linear population size
reduction based adaptive differential evolution algorithm," Tabriz
J. Electr. Eng., 52(2): 77-89, 2022.

[51] S. Esfandyari, V. Rafe, "GALP: A hybrid artificial intelligence
algorithm for generating covering array," Soft Comput., 25(11):
7673-7689, 2021.

[52] M. Z. Z. Ahmad, R. R. Othman, M. S. A. R. Ali, N. Ramli, "A self-
adapting Ant Colony Optimization Algorithm Using Fuzzy logic
(ACOF) for combinatorial test suite generation," in Proc. IOP
Conference Series: Materials Science and Engineering, 767(1):
012017, 2020.

[53] A. A. Alsewari, L. M. Xuan, K. Z. Zamli, "Firefly combinatorial
testing strategy," in Proc. Science and Information Conference:
936-944, 2018.

[54] K. Z. Zamli, F. Din, A. B. Nasser, A. Alsewari, "Combinatorial test
suite generation strategy using enhanced sine cosine algorithm,"
in Proc. 5th International Conference on Electrical, Control &
Computer Engineering: 127-137, 2020.

[55] A. S. Ghiduk, A. Alharbi, "Generating of test data by harmony
search against genetic algorithms," Intell. Autom. Soft Comput.,
36(1): 647, 2023.

[56] A. A. Muazu, A. S. Hashim, U. I. i. Audi, U. D. Maiwada, "Refining a
one-parameter-at-a-time approach using harmony search for
optimizing test suite size in combinatorial t-way testing," IEEE
Access, 12: 137373-137398, 2024.

[57] H. M. Fadhil, M. Abdullah, M. Younis, "Innovations in T-way test
creation based on a hybrid hill climbing-greedy algorithm," IAES
Int. J. Artif. Intell., 12(2): 794, 2023.

[58] A. A. Hassan, S. Abdullah, K. Z. Zamli, R. Razali, "Q-learning whale
optimization algorithm for test suite generation with constraints
support," Neural Comput. Appl., 35(34): 24069-24090, 2023.

[59] X. Guo, X. Song, J. t. Zhou, F. Wang, "A tolerance-based memetic
algorithm for constrained covering array generation," Memet.
Comput., 15(3): 319-340, 2023.

[60] B. Arasteh, K. Arasteh, A. Ghaffari, "An automatic software test-
generation method to discover the faults using fusion of machine
learning and horse herd algorithm," J. Supercomput., 81(5): 1-36,
2025.

[61] B. Arasteh et al., "A bioinspired test generation method using
discretized and modified bat optimization algorithm,"
Mathematics, 12(2): 186, 2024.

[62] H. M. Fadhil, M. N. Abdullah, M. I. Younis, "Dynamic TWGH:
Client-server optimization for scalable combinatorial test suite
generation," in Proc. BIO Web of Conferences: 00115, 2024.

[63] E. Pira, V. Rafe, S. Esfandyari, "A three-phase approach to
improve the functionality of t-way strategy," Soft Comput., 28(1):
415-435, 2024.

[64] E. Pira, M. Khodizadeh-Nahari, "Combinatorial t-way test suite
generation using an improved asexual reproduction optimization
algorithm," Appl. Soft Comput., 150: 111070, 2024.

https://link.springer.com/article/10.1007/s10462-016-9486-6
https://link.springer.com/article/10.1007/s10462-016-9486-6
https://www.sciencedirect.com/science/article/abs/pii/S0957417411006531
https://www.sciencedirect.com/science/article/abs/pii/S0957417411006531
https://www.sciencedirect.com/science/article/abs/pii/S0957417411006531
https://journals.tabrizu.ac.ir/article_7370_455eda53490e851ea7372e0b0a1443be.pdf
https://journals.tabrizu.ac.ir/article_7370_455eda53490e851ea7372e0b0a1443be.pdf
https://journals.tabrizu.ac.ir/article_7370_455eda53490e851ea7372e0b0a1443be.pdf
https://ieeexplore.ieee.org/abstract/document/488968
https://ieeexplore.ieee.org/abstract/document/488968
https://ieeexplore.ieee.org/abstract/document/488968
https://scj.kashanu.ac.ir/article_111445.html?lang=en
https://scj.kashanu.ac.ir/article_111445.html?lang=en
https://scj.kashanu.ac.ir/article_111445.html?lang=en
https://www.researchgate.net/profile/Yazan-Alsariera/publication/356840566_Hybridized_BA_PSO_t-way_Algorithm_for_Test_Case_Generation/links/61b509631d88475981e11a4d/Hybridized-BA-PSO-t-way-Algorithm-for-Test-Case-Generation.pdf
https://www.researchgate.net/profile/Yazan-Alsariera/publication/356840566_Hybridized_BA_PSO_t-way_Algorithm_for_Test_Case_Generation/links/61b509631d88475981e11a4d/Hybridized-BA-PSO-t-way-Algorithm-for-Test-Case-Generation.pdf
https://www.researchgate.net/profile/Yazan-Alsariera/publication/356840566_Hybridized_BA_PSO_t-way_Algorithm_for_Test_Case_Generation/links/61b509631d88475981e11a4d/Hybridized-BA-PSO-t-way-Algorithm-for-Test-Case-Generation.pdf
https://www.researchgate.net/profile/Yazan-Alsariera/publication/356840566_Hybridized_BA_PSO_t-way_Algorithm_for_Test_Case_Generation/links/61b509631d88475981e11a4d/Hybridized-BA-PSO-t-way-Algorithm-for-Test-Case-Generation.pdf
https://www.sciencedirect.com/science/article/pii/S1319157821001671
https://www.sciencedirect.com/science/article/pii/S1319157821001671
https://www.sciencedirect.com/science/article/pii/S1319157821001671
https://www.sciencedirect.com/science/article/pii/S1319157821001671
https://link.springer.com/article/10.1007/BF00175354
https://link.springer.com/article/10.1007/BF00175354
https://ieeexplore.ieee.org/abstract/document/8998290
https://ieeexplore.ieee.org/abstract/document/8998290
https://ieeexplore.ieee.org/abstract/document/8998290
https://iopscience.iop.org/article/10.1088/1757-899X/917/1/012011/meta
https://iopscience.iop.org/article/10.1088/1757-899X/917/1/012011/meta
https://iopscience.iop.org/article/10.1088/1757-899X/917/1/012011/meta
https://iopscience.iop.org/article/10.1088/1757-899X/917/1/012011/meta
https://www.sciencedirect.com/science/article/abs/pii/S0950705115005043
https://www.sciencedirect.com/science/article/abs/pii/S0950705115005043
https://ieeexplore.ieee.org/abstract/document/8510601
https://ieeexplore.ieee.org/abstract/document/8510601
https://ieeexplore.ieee.org/abstract/document/8510601
https://ieeexplore.ieee.org/abstract/document/8510601
https://www.academia.edu/download/88070483/Paper_31-ABCVS_An_Artificial_Bee_Colony.pdf
https://www.academia.edu/download/88070483/Paper_31-ABCVS_An_Artificial_Bee_Colony.pdf
https://www.academia.edu/download/88070483/Paper_31-ABCVS_An_Artificial_Bee_Colony.pdf
https://link.springer.com/chapter/10.1007/978-981-15-1289-6_13
https://link.springer.com/chapter/10.1007/978-981-15-1289-6_13
https://link.springer.com/chapter/10.1007/978-981-15-1289-6_13
https://link.springer.com/chapter/10.1007/978-981-15-1289-6_13
https://jestec.taylors.edu.my/Vol%2015%20issue%202%20April%202020/15_2_1.pdf
https://jestec.taylors.edu.my/Vol%2015%20issue%202%20April%202020/15_2_1.pdf
https://jestec.taylors.edu.my/Vol%2015%20issue%202%20April%202020/15_2_1.pdf
https://www.researchgate.net/profile/Ammar-Alazzawi/publication/333089085_Parameters_Tuning_of_Hybrid_Artificial_Bee_Colony_Search_based_Strategy_for_t-way_Testing/links/5cdc246c92851c4eaba0beab/Parameters-Tuning-of-Hybrid-Artificial-Bee-Colony-Search-based-Strategy-for-t-way-Testing.pdf
https://www.researchgate.net/profile/Ammar-Alazzawi/publication/333089085_Parameters_Tuning_of_Hybrid_Artificial_Bee_Colony_Search_based_Strategy_for_t-way_Testing/links/5cdc246c92851c4eaba0beab/Parameters-Tuning-of-Hybrid-Artificial-Bee-Colony-Search-based-Strategy-for-t-way-Testing.pdf
https://www.researchgate.net/profile/Ammar-Alazzawi/publication/333089085_Parameters_Tuning_of_Hybrid_Artificial_Bee_Colony_Search_based_Strategy_for_t-way_Testing/links/5cdc246c92851c4eaba0beab/Parameters-Tuning-of-Hybrid-Artificial-Bee-Colony-Search-based-Strategy-for-t-way-Testing.pdf
https://link.springer.com/chapter/10.1007/978-3-030-19807-7_19
https://link.springer.com/chapter/10.1007/978-3-030-19807-7_19
https://link.springer.com/chapter/10.1007/978-3-030-19807-7_19
https://iopscience.iop.org/article/10.1088/1742-6596/1529/4/042068/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/4/042068/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/4/042068/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/4/042068/meta
https://ieeexplore.ieee.org/abstract/document/8896324
https://ieeexplore.ieee.org/abstract/document/8896324
https://ieeexplore.ieee.org/abstract/document/8896324
https://ieeexplore.ieee.org/abstract/document/8896324
https://ieeexplore.ieee.org/abstract/document/8896324
https://journals.tabrizu.ac.ir/article_5127_c1d04d3a67d8a7e6f0a35cbfd61aefb7.pdf
https://journals.tabrizu.ac.ir/article_5127_c1d04d3a67d8a7e6f0a35cbfd61aefb7.pdf
https://journals.tabrizu.ac.ir/article_5127_c1d04d3a67d8a7e6f0a35cbfd61aefb7.pdf
https://link.springer.com/chapter/10.1007/978-3-030-82616-1_15
https://link.springer.com/chapter/10.1007/978-3-030-82616-1_15
https://link.springer.com/chapter/10.1007/978-3-030-82616-1_15
https://link.springer.com/chapter/10.1007/978-3-030-82616-1_15
https://link.springer.com/chapter/10.1007/978-3-030-82616-1_15
https://ieeexplore.ieee.org/abstract/document/9815851
https://ieeexplore.ieee.org/abstract/document/9815851
https://ieeexplore.ieee.org/abstract/document/9815851
https://tjee.tabrizu.ac.ir/article_15427.html
https://tjee.tabrizu.ac.ir/article_15427.html
https://tjee.tabrizu.ac.ir/article_15427.html
https://tjee.tabrizu.ac.ir/article_15427.html
https://link.springer.com/article/10.1007/s00500-021-05788-0
https://link.springer.com/article/10.1007/s00500-021-05788-0
https://link.springer.com/article/10.1007/s00500-021-05788-0
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://iopscience.iop.org/article/10.1088/1757-899X/767/1/012017/meta
https://link.springer.com/chapter/10.1007/978-3-030-01174-1_72
https://link.springer.com/chapter/10.1007/978-3-030-01174-1_72
https://link.springer.com/chapter/10.1007/978-3-030-01174-1_72
https://link.springer.com/chapter/10.1007/978-981-15-2317-5_12
https://link.springer.com/chapter/10.1007/978-981-15-2317-5_12
https://link.springer.com/chapter/10.1007/978-981-15-2317-5_12
https://link.springer.com/chapter/10.1007/978-981-15-2317-5_12
https://openurl.ebsco.com/EPDB%3Agcd%3A1%3A25781841/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A160664077&crl=c&link_origin=none
https://openurl.ebsco.com/EPDB%3Agcd%3A1%3A25781841/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A160664077&crl=c&link_origin=none
https://openurl.ebsco.com/EPDB%3Agcd%3A1%3A25781841/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A160664077&crl=c&link_origin=none
https://ieeexplore.ieee.org/abstract/document/10688412
https://ieeexplore.ieee.org/abstract/document/10688412
https://ieeexplore.ieee.org/abstract/document/10688412
https://ieeexplore.ieee.org/abstract/document/10688412
https://www.proquest.com/openview/685ad926b537b4441d550ec630d88ff3/1?cbl=1686339&pq-origsite=gscholar
https://www.proquest.com/openview/685ad926b537b4441d550ec630d88ff3/1?cbl=1686339&pq-origsite=gscholar
https://www.proquest.com/openview/685ad926b537b4441d550ec630d88ff3/1?cbl=1686339&pq-origsite=gscholar
https://link.springer.com/article/10.1007/s00521-023-09000-2
https://link.springer.com/article/10.1007/s00521-023-09000-2
https://link.springer.com/article/10.1007/s00521-023-09000-2
https://link.springer.com/article/10.1007/s12293-023-00392-1
https://link.springer.com/article/10.1007/s12293-023-00392-1
https://link.springer.com/article/10.1007/s12293-023-00392-1
https://link.springer.com/article/10.1007/s11227-025-07219-5
https://link.springer.com/article/10.1007/s11227-025-07219-5
https://link.springer.com/article/10.1007/s11227-025-07219-5
https://link.springer.com/article/10.1007/s11227-025-07219-5
https://www.mdpi.com/2227-7390/12/2/186
https://www.mdpi.com/2227-7390/12/2/186
https://www.mdpi.com/2227-7390/12/2/186
https://www.bio-conferences.org/articles/bioconf/abs/2024/16/bioconf_iscku2024_00115/bioconf_iscku2024_00115.html
https://www.bio-conferences.org/articles/bioconf/abs/2024/16/bioconf_iscku2024_00115/bioconf_iscku2024_00115.html
https://www.bio-conferences.org/articles/bioconf/abs/2024/16/bioconf_iscku2024_00115/bioconf_iscku2024_00115.html
https://link.springer.com/article/10.1007/s00500-023-08199-5
https://link.springer.com/article/10.1007/s00500-023-08199-5
https://link.springer.com/article/10.1007/s00500-023-08199-5
https://www.mdpi.com/2076-3417/14/2/753
https://www.mdpi.com/2076-3417/14/2/753
https://www.mdpi.com/2076-3417/14/2/753

S. A. Eshghazadi et al.

98 J. Electr. Comput. Eng. Innovations, 14(1): 83-98, 2026

[65] S. Li, Y. Song, Y. Zhang, "Combinatorial test case generation based
on ROBDD and improved particle swarm optimization algorithm,"
Appl. Sci., 14(2): 753, 2024.

[66] M. Friedman, "A comparison of alternative tests of significance
for the problem of m rankings," Ann. Math. Stat., 11(1): 86-92,
1940.

Biographies

Seyyed AmirHossein Eshghazadi received his
B.Sc. degree in Computer Sciense from the
Azarbaijan Shahid Madani University, Tabriz,
Iran. [2017- 2021], the M.Sc. degree in
Computer Engineering (Software) from the
Azarbaijan Shahid Madani University, Tabriz,
Iran. [2021- 2023] Currently, he is the CEO
and developer of Dolphin Technology
Pioneers Co. His activities are in the field of

medical software engineering and software testing and
implementation.

 Email: ea.amirhossein@gmail.com

 ORCID: 0009-0009-1282-4326

 Web of Science Researcher ID: NA

 Scopus Author ID: NA

 Homepage: NA

Einollah Pira received his B.Sc. degree in
Computer Engineering (software) from the
University of Kharazmi, Tehran, Iran [1996–
2000], the M.Sc. degree in Computer
Engineering (software) from the Sharif
University of Technology, Tehran, Iran [2000–
2002], and Ph.D degree in Computer
Engineering (software) from Arak University,
Iran [2013-2017]. Currently, he is an Associate

Professor with Department of Computer Engineering, Azarbaijan
Shahid Madani University, Tabriz, Iran. His research interests include
model checking, formal methods, software testing, evolutionary
computation, and machine learning.

 Email: pira@azaruniv.ac.ir

 ORCID: 0000-0001-9010-6113

 Web of Science Researcher ID: NA

 Scopus Author ID: 55941352000

 Homepage:
http://pajouhesh.azaruniv.ac.ir/_Pages/ResearcherEn.aspx?ID=6617

Mohammad Khodizadeh-Nahari received his
B.Sc. degree in Computer Software
Engineering from the Isfahan University of
Technology in 1998, and the M.Sc. degree in
Information Technology (e-commerce) from
the Amirkabir University of Technology in
2008, and his Ph.D. in Computer Software
Engineering from the Isfahan University of
Technology in 2020. He is currently an

Assistant Professor at Azarbaijan Shahid Madani University (ASMU). He
worked for different companies in public and private sectors for 10+
years before joining ASMU. He also served as the head of Information
Technology department at the ASMU from 2010 to 2015, and as the
head of E-Learning department at the ASMU from 2020 until now. His
research interests include big data algorithms, data mining, machine
learning, data fusion, data integrity and Blockchain.

 Email: m.khodizadeh@azaruniv.ac.ir

 ORCID: 0009-0007-7416-3100

 Web of Science Researcher ID: NKP-5936-2025

 Scopus Author ID: 57201367872

 Homepage:
http://pajouhesh.azaruniv.ac.ir/_Pages/Researcher.aspx?ID=1122

Alireza Rouhi received his B.Sc. at Kharazmi

University of Tehran in September, 2000;

M.Sc. at Sharif University of Technology in

June 2004, and Ph.D. at University of Isfahan

in September 2017, all in Software Engineering

field. He rewarded as outstanding researcher

of Ph.D. students at Faculty of Computer

Engineering, University of Isfahan in 2017.

Currently, he is an Associate Professor at

Azarbaijan Shahid Madani University, Tabriz, Iran. He is interested in

Software Engineering in general and Formal Specification, Model

Transformation, Metaheuristics, and Social Networks in particular.

 Email: rouhi@azaruniv.ac.ir

 ORCID: 0000-0003-1494-3467

 Web of Science Researcher ID: L-2209-2018

 Scopus Author ID: 57189992181

 Homepage:
http://pajouhesh.azaruniv.ac.ir/_Pages/ResearcherEn.aspx?ID=5384

https://www.mdpi.com/2076-3417/14/2/753
https://www.mdpi.com/2076-3417/14/2/753
https://www.mdpi.com/2076-3417/14/2/753
https://www.mdpi.com/2076-3417/14/2/753
https://www.jstor.org/stable/2235971
https://www.jstor.org/stable/2235971
https://www.jstor.org/stable/2235971
mailto:ea.amirhossein@gmail.com
https://orcid.org/0000-0001-9010-6113
mailto:pira@azaruniv.ac.ir
https://orcid.org/0000-0001-9010-6113
http://pajouhesh.azaruniv.ac.ir/_Pages/ResearcherEn.aspx?ID=6617
http://pajouhesh.azaruniv.ac.ir/_Pages/Researcher.aspx?ID=1122
mailto:rouhi@azaruniv.ac.ir
https://orcid.org/0000-0003-1494-3467
http://pajouhesh.azaruniv.ac.ir/_Pages/ResearcherEn.aspx?ID=5384

