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Background and Objectives: Software testing plays a vital role in software 
development, aimed at verifying the reliability and stability of software systems. 
The generation of an effective test suite is key to this process, as it directly 
impacts the detection of defects and vulnerabilities. However, for software 
systems with numerous input parameters, the combinatorial explosion problem 
hinders the creation of comprehensive test suites. This research introduces a 
novel approach using the β-Hill Climbing optimizer, an advanced variant of the 
traditional hill climbing algorithm, to efficiently generate optimal test suites. 

Methods: The β-Hill Climbing optimizer introduces a dynamic parameter, β, 
which facilitates a precise balance between exploration and exploitation 
throughout the search process. To evaluate the performance of this proposed 
strategy (referred to as BHC), it is compared with TConfig as a mathematical 
approach, PICT and IPOG as greedy algorithms, and GS, GALP, DPSO, WOA, 
BAPSO, and GSTG as meta-heuristic methods. These strategies are tested across 
a variety of configurations to assess their relative efficiency. 

Results: The reported results confirm that BHC outperforms the others in terms 
of the size of generated test suites and convergence speed. The statistical 
analysis of the experimental results on several different configurations shows 
that BHC outperforms TConfig as a mathematical strategy, PICT and IPOG as 
greedy strategies, GS, GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristics by 
83%, 88%, 87%, 61%, 61%, 46%, 61%, 62%, and 70%, respectively. 

Conclusion: The BHC strategy presents a novel and effective approach to 
optimization, inspired by β-Hill Climbing optimizer for the generation of an 
optimal test suite. It has superior performance in the generation of test suites 
with a smaller size and higher convergence speed compared to other strategies. 
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Introduction 

Software testing plays a fundamental role in the 

software development process, ensuring that software 

systems operate reliably and meet predefined quality 

standards [1]. This validation process encompasses a 

range of methodologies, including white box testing and 

black box testing. White box testing scrutinizes the 

internal workings of software to identify potential flaws 

before release. Model checking is a formal method, 

belonging to white box testing methods that 

systematically examine the properties of a system by 

exploring all possible states of a model of a system. 

However, this method faces challenges with state space 

explosion in large and complex systems, as the memory 

requirements grow exponentially [2]. Black box testing 

evaluates software functionality from an end-user 

perspective to ensure alignment with user requirements 

[3]. The integration of these approaches aims to produce 

an optimal test suite that guarantees the software's 

expected performance under diverse conditions. 

Nevertheless, crafting an optimal test suite that 

achieves comprehensive coverage across all conceivable 

scenarios remains a formidable challenge, particularly 

for intricate software systems. This challenge is 

exacerbated by the combinatorial explosion problem, 

wherein the number of necessary test cases grows 

exponentially as the quantity of input parameters and 

their potential values expands. Various techniques have 

emerged to confront this issue, including t-way testing, 

which focuses on examining combinations of input 

parameters that significantly influence system behavior 

[4]. 

This paper presents an innovative approach that 

leverages t-way testing in conjunction with the β-Hill 

Climbing Optimizer, a metaheuristic algorithm *5+, to 

construct an optimal test suite that tackles the 

combinatorial explosion problem while maintaining a 

manageable size. Our strategy (so-called BHC) harnesses 

the β-Hill Climbing Optimizer to iteratively enhance 

candidate test suites by guiding them in the direction of 

steepest ascent until a satisfactory solution is reached. 

Meanwhile, the t-way testing technique identifies a 

subset of input combinations with a high likelihood of 

detecting software defects while keeping the test suite's 

size within bounds. This optimization method has 

demonstrated its effectiveness in producing optimal test 

suites that encompass a broad spectrum of test cases. 

To evaluate and compare the efficiency of BHC, it is 

benchmarked against TConfig as a mathematical 

approach, PICT and IPOG as greedy algorithms, and GS, 

GALP, DPSO, WOA, BAPSO, and GSTG as meta-heuristic 

techniques. They are experimented on several different 

configurations. Our experimental evaluation illustrates 

that our strategy surpasses considered strategies, 

drastically reducing the number of required test cases to 

achieve comprehensive coverage. 

Our investigation aims to spotlight the development 

of a comprehensive and effective testing methodology, 

merging t-way testing with the β-Hill Climbing Optimizer, 

to address the combinatorial explosion problem. This 

methodology, we argue, generates an optimal test suite 

that elevates software product quality and reliability, 

thereby mitigating potential issues that could impact 

end-users. 

The remainder of the paper is structured as follows. 

Initially, we present the relevant background, including 

an overview of the BHC algorithm and the t-way 

strategy. Following that, the existing research on 

software testing and optimization, with a focus on 

metaheuristic algorithms for generating optimal test 

suites, will be provided. In the following, we introduce 

our proposed approach, utilizing the β-Hill Climbing 

Optimizer for comprehensive test suite generation. 

Then, the effectiveness of this method, comparing it to 

existing techniques and assessing the quality of the 

generated test suites, will be presented. Finally, the 

conclusion section concludes the paper and discusses 

directions for future research. 

Background 

A.  β-Hill Climbing Optimizer 

Hill-climbing optimizers are iterative optimization 

techniques that aim to improve a solution iteratively by 

making local changes. Over time, various versions of hill-

climbing have been developed to address its inherent 

limitations, such as getting stuck in local optima or 

inefficiency in rugged landscapes. In the continuation of 

this section, we review the most notable versions. Basic 

hill climbing [6] , is the simplest version of this optimizer 

that moves to the best neighboring solution at each 

iteration, always choosing the most favorable option. 

First-choice hill climbing [7] is another version of this 

optimizer, which randomly evaluates neighbors and 

chooses the first one that is better than the current 

solution. Other versions of this optimizer include: 

random-restart hill climbing (repeatedly performs basic 

hill climbing from randomly generated initial states, 

keeping track of the best solution found) [8], simulated 

annealing (hill climbing with cooling) [9], steepest-ascent 

hill climbing (evaluates all neighbors and chooses the 

one with the steepest increase in fitness (largest 

improvement)) [10], parallel hill climbing (runs multiple 

hill-climbing processes in parallel from different starting 

points) [11], tabu search (memory-based hill climbing) 

[12] and β-hill climbing optimizer (introduces a tunable 

parameter β to balance exploration and exploitation) [5]. 

Table 1 covers the various versions of hill-climbing 

optimizers and highlights their unique strengths and 
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weaknesses. Moreover, this optimizer is hybrid with 

other algorithms such as PSO [13] and GA [14]. 
The Beta Hill Climbing (BHC) optimizer is an advanced 

iteration of the classic hill climbing algorithm, 

incorporating an exploratory operator denoted as β [5]. 

This operator, inspired by the uniform mutation 

operator found in genetic algorithms, equips BHC with 

the ability to navigate across diverse regions within the 

search space. This enables BHC to break free from local 

optima by experimenting with random values to choose 

for decision variables. Unlike the basic hill climbing 

algorithm [15], BHC effectively balances both exploration 

and exploitation, mitigating the risk of converging 

prematurely into local optima. 

 
Table 1: The summary of strengths and weaknesses of various 
versions of hill-climbing optimizers 

 

Variant Strengths Weaknesses 

Basic Hill 
Climbing 

Simple and fast 
Prone to local 

optima 

First-Choice 
Hill Climbing 

Faster than 
stochastic 

Settles for 
suboptimal 

moves 

Random-
Restart Hill 

Climbing 

Escapes local 
optima effectively 

High 
computational 

cost 

Simulated 
Annealing 

Good exploration-
exploitation balance 

Slow 
convergence 

Steepest-
Ascent 

Finds locally best 
path quickly 

Expensive for 
large 

neighborhoods 

Parallel Hill 
Climbing 

Increases global 
optima likelihood 

High 
computational 

demand 

Tabu Search 
Avoids cycles in 

search 

Requires 
memory 

management 

β-HCO 
Dynamic 

exploration-
exploitation control 

Computationally 
complex 

 

The BHC algorithm starts with an initial solution x = 

{x1, x2, …, xk} that is randomly generated within the 

bounds of the search space, where the value of each 

variable xi lies within [lbi, ubi]. Then, the value of the 

objective function f(x) is calculated, and a new solution x' 

is created by applying N and β operators on the current 

solution x. This process continues until the number of 

iterations falls below the specified maximum, 

maxIterations. 

The N operator selects a neighboring solution x' from 

the current solution x as follows: First, it randomly 

chooses one of the variables in the current solution, 

denoted as variable j-th. Then, it modifies the value of 

this variable using (1): 

' *j jx x rnd bw            (1) 

here, bw represents the bandwidth between the current 

value and the new value, and rnd is a random number 

between zero and one. It's worth noting that all variable 

values in the new solution x', except for the j-th variable, 

remain identical to those in the current solution x. 

The β operator generates a new solution based on the 

existing solution x as follows: It assigns values to the 

variables in the new solution using two different 

strategies. It either assigns values based on the values in 

the current solution with a probability of (1-β) or 

randomly samples values from the available range with a 

probability of β. For a more detailed representation of 

the algorithm, see Algorithm 1 in the provided 

pseudocode. 

 
Algorithm 1: The BHC pseudocode 

Input: maxIterations: the maximum number of iterations; k: 
the dimension of the given problem;  lb, ub, fit: the fitness 
function; bw , beta; 

Output: An individual with the highest fitness; 

1:  Individual x = Initialize (k, lb, ub);   

2:  rep =1; 

3:  while rep <= maxIterations do 

4:         Individual x’ = x; 

//// The 𝒩 operator: This operator generates 
new candidate solutions by adding normally 
distributed noise, aiding in local exploitation 
around the current solution. 

5:         index = a random integer number between 1 and k; 

6:         rnd = a random number between 0 and 1; 

7:         x’ [index] = x [index] +(2*rnd-1)*bw;   

//// The 𝛽 operator: This operator diversifies 
the search by using         controlled random 
perturbations to escape local optima and 
explore new regions of the solution space. 
////// 

8:        for j = 1 to k do 

9: if rand(0,1) <=beta then 

10:               x’ [j] = lb[j]+(ub[j]-lb[j])* rand(0,1);  

11:           end if 

12:        end for 

13:        if fit (x’) > fit (x) then 

14:     x = x’; 

15:        end if  

16:       rep ++;  

17: end while         

18: return x; 
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Overall, BHC stands out as a straightforward yet 

highly efficient optimization algorithm, renowned for its 

capability to surmount local optima and navigate across 

diverse territories within the search space. At its core, 

BHC leverages an exploratory operator, denoted as β, 

which draws inspiration from genetic algorithms. This 

distinctive feature empowers the algorithm to execute 

random leaps, fostering the potential for accelerated 

convergence towards the global optimum. In essence, 

the N and β operators within BHC can be viewed as 

complementary components, with N primarily serving as 

an exploitation mechanism and β serving as the key 

source of exploration in this algorithm. 

B.  The T-Way Strategy 

Comprehensive testing of a software system requires 

accounting for all possible combinations of input 

parameters in the test cases. However, when dealing 

with systems that have a large number of input 

parameters, this approach can result in a challenge 

known as the “combinatorial explosion” problem. 

To tackle this challenge, the t-way combinatorial 

testing technique is employed. Instead of covering all 

conceivable combinations, it focuses on generating a set 

of test cases that encompasses only t combinations of 

system parameters [16]. The effectiveness of this 

strategy hinges on selecting an appropriate value for t. 

Selecting a small t could result in missing critical 

combinations needed to detect errors in the generated 

test suite. On the other hand, using a large t may bring 

back the issue of combinatorial explosion. In this 

method, t is known as the “coverage power”, which 

dictates the depth of coverage. The test suite generated 

using the t-way approach is called a “covering array” 

(CA). 

For a system that takes p parameters as input, where 

each parameter can assume di (1 ≤ i ≤ p) possible values, 

the covering array is denoted as CA(N; t, p, d1, …, dp), 

where N signifies the number of test cases, and t 

denotes the coverage strength. Assuming all di (1 ≤ i ≤ p) 

are equal to d, the covering array can be abbreviated as 

CA(N; t, p, d) or simply CA(N; t, dp). 

Let's illustrate this concept with a hypothetical 

medical system featuring six input parameters: patient 

age, blood pressure, heart rate, cholesterol level, 

diabetes status, and smoking status (Table 2). Suppose 

age can be one of two values, blood pressure can be one 

of two values, heart rate can be one of two values, 

cholesterol level can be one of three values, and 

smoking status can be one of three values. 

To comprehensively test this system, testing all 

possible combinations of input parameters would entail 

2*2*2*3*3 = 72 test cases. However, this exhaustive 

approach can result in a combinatorial explosion, 

rendering it impractical to test every single combination. 

Table 2: Hypothetical medical system 
 

Smoking 
status 

Cholesterol 
level 

Heart 

 rate 
Blood 

pressure 
Patient 

age 

Healthy High Normal Normal <18 

Addicted Normal Bradycardia Elevated >18 

Sometimes low    

 

To address this issue, we can employ t-way testing. 

This method generates a set of test cases that 

encompasses only t combinations of input parameters. 

For instance, if we select t = 2, we would only need to 

examine 9 test cases, covering pairs of input parameters 

(Table 3). This approach substantially cuts down on the 

necessary number of test cases while ensuring sufficient 

coverage to identify most errors. 

 
Table 3: Covering array CA (9; 2, 23, 32) 
 

smoking 
status 

cholesterol 
level 

heart  

rate 
blood 

pressure 
patient 

age 

# 

 

Addicted low Bradycardia Elevated <18 1 

Addicted Normal Normal Normal >18 2 

Healthy High Bradycardia Normal >18 3 

Sometimes High Normal Elevated <18 4 

Healthy Normal Normal Elevated <18 5 

Sometimes low Normal Normal >18 6 

Sometimes Normal Bradycardia Normal <18 7 

Addicted High Normal Elevated >18 8 

Healthy low Normal Elevated >18 9 
 

Related Work 

The t-way strategy causes the number of test cases in 

a complete (non-minimal) covering array to grow 

exponentially as the interaction strength, represented by 

t, increases. To address this challenge, various methods 

have been proposed in the literature. Some approaches, 

such as Combinatorial Test Services (CTS) *17+ and 

Tconfig *18+, utilize mathematical concepts like 

orthogonal arrays (OA). However, these techniques often 

face difficulties in generating optimal covering arrays, 

particularly when dealing with larger or more complex 

configurations. 

In contrast, approximate techniques require less time 

to identify nearly ideal covering arrays and can be 

categorized into two main groups: greedy strategies and 

metaheuristics. 

C.  Greedy Strategies 

In this section, we delve into two key methods 

employed by greedy strategies *19+: "One-Row-at-a-
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Time" (ORT) and  "One-Parameter-at-a-Time" (OPT). 

ORT Method: 

 ORT builds the covering array (CA) incrementally, 

row by row, ensuring optimal coverage. 

 The "Automatic Efficient Test Generator" (AETG) 

was the first ORT-based strategy. It selects a test 

case from multiple candidates in a greedy manner 

[20]. 

 Alternatives to AETG include "mAETG" and 

"mAETG-SAT" [21]. 

 "PICT" is another ORT-based strategy that 

generates interactions while randomly selecting 

required test cases. However, its randomness can 

result in inconsistent results [22]. 

 "Jenny" adopts a unique approach, initially 

considering 1-way interactions and gradually 

incorporating higher-order interactions. It is known 

for its speed and ability to produce compact 

covering arrays for many configurations [23]. 

ORT-Based Classification-Tree Method: 

 The "Classification-Tree Editor eXtended Logics" 

(CTE-XL) partitions the input domain into subsets 

and combines them to create test cases, effectively 

addressing t = 3 interactions [24]. 

 "GTWay" is another ORT-based strategy that 

generates test suites up to t = 12. It employs bit 

structures to store test case components, with an 

index table facilitating efficient access [25]. 

OPT Method: 

 OPT, as the name suggests, expands the covering 

array by gradually adding more parameters. 

 Initially, it creates a CA for two parameters, 

progressively incorporating additional parameters 

and their interactions. 

 Notable OPT-based strategies include "IPOG-F" [26], 

and SCIPOG [27]. 

These strategies offer diverse approaches to 

efficiently construct covering arrays, each suited to 

different testing requirements and scenarios. 

D.  Meta-Heuristic Strategies 

Meta-heuristic strategies aim to find near-optimal 

covering arrays efficiently, while also avoiding local 

optima. These methods, similar to ORT, select test cases 

with the highest weight from a list of candidates. They 

operate as follows: 

 Generating Candidates: A group of potential test 

cases is randomly generated. 

 Increasing Weights: Several operators are applied 

to increase the weights of these candidates. 

 Expanding Test Suite: The test suite grows by 

selecting the test case with the highest weight. 

This process repeats until all possible combinations of 

the t input parameters are accounted for. Metaheuristic 

algorithms are generally classified into nine categories 

[28], [29]: biology-based, physics-based, social-based, 

music-based, chemical-based, sport-based, 

mathematics-based, swarm-based, and hybrid 

algorithms. The following are key strategies within these 

categories. 

 Social-Based (TLBO) [30]: TLBO draws inspiration 

from classroom learning environments. It involves 

three stages: population creation, training, and 

learning. TLBO outperforms other strategies like 

TConfig, IPOG, Jenny, and PICT, generating compact 

covering arrays for various configurations, even 

supporting higher strengths up to t = 15. 

 Swarm-Based (PSO) [31]: This approach models test 

cases as birds searching for food. Birds represent 

test cases with positions and speeds. The PSO 

algorithm [32] and its variants, like BAPSO [33], are 

based on this concept, supporting higher strengths 

(BAPSO: up to t = 16). However, they do not handle 

variable strength interactions and have issues with 

parameter settings and early convergence. 

 Physics-Based (GSTG) [34]: GSTG draws inspiration 

from gravitational interactions. Test cases act as 

objects with mass, and their gravitational pull 

influences their movement. This strategy can 

generate covering arrays up to t = 16 but lacks 

support for variable strength interactions. 

 Biology-Based (GA and GS): GA [35] uses an 

evolutionary principle, creating new test cases from 

the current population through crossover and 

mutation. GS [16] builds on GA, continually applying 

crossover and mutation, achieving efficiency and 

supporting up to t = 20. It can handle variable 

strength interactions but not constraints. 

 Multiple Black Hole (MBH) [36]: Inspired by black 

holes and the behavior of stars, MBH moves test 

cases toward "black holes" with more energy 

(heavier test cases). It can generate covering arrays 

up to t = 4, but cannot handle variable strength 

interactions or constraints. 

 Mathematics-Based (SCAVS) [37], [38]: SCAVS uses 

the sine cosine algorithm to solve the problem. It 

can generate covering arrays up to t = 6 but does 

not support constraints, although it addresses 

variable strength interactions. 

 Swarm-Based (ABC [39] and ABCVS [40]): These 

strategies simulate the social behavior of honey 

bees. HABC [41]-[45] offers interactions with 

variable strength (t ≤ 6) and supports constraints. 

PhABC [45], [46] is a more recent iteration. 

Additional examples of metaheuristic strategies 

include: HC-BAT (hybrid-based) [47], ABO (swarm-based) 
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[48], BDA (swarm-based) [49], LSHADE (biology-based) 

[50], GALP (hybrid-based) [51], ACOF (swarm-

based) [52], FATG (swarm-based) [53], SCA 

(mathematics-based) [54], HAS (meta-heuristic-based) 

[55], [56], HGHC (hybrid-based) [57], QWOA-EMC 

(hybrid-based) [58], QSMA (meta-heuristic-based) [59], 

HHOA (meta-heuristic-based) [60], BOA (meta-heuristic-

based) [61], TWGH (meta-heuristic-based) [62], TPA 

(hybrid-based) [63], ImpARO (meta-heuristic-based) [64], 

ROBDDs (meta-heuristic-based) [65], and SCHOP (meta-

heuristic-based) [56]. 

The Presented Strategy 

Given the uncertainty surrounding the size of the 

optimal covering array for test set generation, 

metaheuristic-based strategies require multiple runs of 

these algorithms to generate test samples with 

maximum coverage. The algorithms are repeatedly 

executed until all possible combinations of the t 

coverage parameter are fully addressed. When using any 

metaheuristic algorithm to solve the optimal test set 

generation problem, two key adjustments are made to 

its structure: 

 Each test sample is represented as a solution 
(chromosome or individual). 

 A weight calculation function, acting as a fitness 
function, is employed to compute the weight of a 
test sample (representing the number of covered 
combinations). 
In the context of generating an optimal covering 

array with p parameters, each taking values within the 

range [0, d-1], the covering array is denoted as CA(N; t, 

p, d). To utilize the Beta Hill Climbing (BHC) algorithm for 

generating a test sample with maximum weight (i.e., 

covering the most combinations), we need to define the 

structure of chromosomes and the fitness function. 

 Chromosomes are represented as vectors of length 
p, denoted as (v1, ..., vp), to represent each test 
sample. Each gene vi takes values within the range 
[0, d-1]. 

 The fitness function serves as a weight calculation 
function, computing the weight of a test sample, 
which represents the number of covered 
combinations. 

Following the principles outlined in Algorithm 1, the 

BHC algorithm starts by randomly generating an initial 

solution (test sample) where each gene lies within the 

range [0, d-1]. It then iteratively enhances this test 

sample by applying the N and β operators for a 

maximum number of iterations specified as 

maxIterations. 

In the following sections, we delve into the details of 

the BHC strategy, including the creation of the coverage 

matrix, the method for calculating the weight of a test 

sample, and the updating of the coverage matrix. 

According to Algorithm 1, BHC first generates an 

initial solution (test sample) randomly, where the value 
of each gene lies within the range [0, d-1]. Then, it 
improves this test sample by applying the N and β 
operators for a maximum number of iterations called 
maxIterations. In the following section, the BHC strategy 
is presented, and subsequently, the creation of the 
coverage matrix, the method for calculating the weight 
of a test sample, and updating the coverage matrix are 
explained. 

E.  BHC Strategy Details 

Fig. 1 shows the flowchart of the BHC strategy. The 

BHC strategy is employed iteratively to create a test 

sample with maximum coverage. It relies on a coverage 

matrix (CM) to monitor the coverage status of various 

combinations and consists of three key stages: 

 Initialization: In this phase, the coverage matrix 
(CM) is established, and a variable called RemCov, 
representing the number of remaining uncovered 
combinations, is initialized to tp

d
t

 
 

 

.Additionally, an empty test set (TS) is created. 
 BHC Algorithm Execution: The BHC algorithm is 

executed in this stage to produce a test sample, 

saved in the variable tc. 

 Update Stage: In this phase, the weight of the 

previously generated test sample (tc) is calculated 

using the fitness function calcWeight, and this value 

is subtracted from the RemCov total. The test 

sample tc is subsequently added to the test set TS, 

and the coverage matrix CM is updated accordingly. 

The BHC algorithm and update stage continue until 

either RemCov reaches zero (indicating that all possible 

combinations of the t parameters are covered by the 

generated test set) or the execution time surpasses 24 

hours. At the conclusion of the strategy, the generated 

test set TS is presented to the user. 

For more clarification, the pseudocode for the BHC 
strategy is presented in Algorithm 2. Similar to the 
flowchart of this strategy, there are three important 
phases. In the first phase (so-called initialization: lines 1-
2), the coverage matrix (CM) is constructed, and the 

variable RemCov is set to the value of tp
d

t

 
 

 

. 

Additionally, the empty test suite (TS) is created. In the 
second phase (so-called running: lines 4-21), the BHC 
algorithm is run, and the resulting test case is stored in 
tc. In the third phase (so-called updating: line 22), the 
weight of tc is calculated using the calcWeight fitness 
function and subtracted from RemCov. Furthermore, the 
test case tc is appended to the test suite TS, and the 
coverage matrix CM is updated accordingly. 

Overall, this explanation clarifies the approach of the 

BHC strategy for generating an optimal test set, 

emphasizing its iterative nature and utilization of the 

coverage matrix to monitor different combination 

coverage. 
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F.  Create Coverage Matrix 

As the BHC strategy generates test samples 

incrementally using the BHC algorithm, a data structure 

is essential to track the coverage status of all potential 

combinations of the t parameters at each step. This data 

structure is known as the "coverage matrix," and it 

comprises p

t

 
 
 

 rows and dt columns. Here's how it 

works: 

 The variable p signifies the number of input 

parameters in the system, each capable of taking on 

d different values. Consequently, the total number 

of combinations for such a system equals tp
d

t

 
 

 

. 

 The coverage matrix needs to hold information for 

each row, including 𝑑𝑡 columns to represent the 

combinations and t columns to keep track of the 

indices of combinations corresponding to that row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 An additional column (the last column) in each row 

indicates the number of combinations from that 

row that are still uncovered by any test sample. 

Therefore, the total number of columns in the 

coverage matrix becomes t+dt+1. 

Initially, when the test set is empty and no 

combinations are covered, the values in all dt columns 

for each row are set to zero.  

The values in the last column for all rows are set to dt 

indicating that all combinations are yet to be covered by 

any test sample. 

In summary, the coverage matrix is a critical data 

structure employed in the BHC strategy to keep tabs on 

the coverage status of all possible t-parameter 

combinations during the algorithm's execution. It 

efficiently tracks coverage progress and plays a key role 

in generating an optimal test set. 

Test Suite 

Yes  

Create a covering matrix CM 

RemCov   𝑝
𝑡
 × 𝑑𝑡 

TS  ∅ 

The Initialization Phase 

p, t, d 

The Phase of Running the BHC 

maxIterations, calcWeight, bw, beta 

The Updating Phase  

No  

Fig. 1: Flowchart of the BHC strategy. 
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Algorithm 2: The BHC strategy 

Input: p: the number of parameters, d: the number of 
parameter values, t: the interaction strength, maxIterations: 
the maximum number of iterations, bw, beta; 

Output: a test suite; 

                   ////// The initialization phase ////// 

   1:  Create a coverage matrix CM; 

2:  RemCov =   
𝑡
 × 𝑑𝑡; TS = ∅; 

3:  while RemCov>0 && ConsumedTime < 24h do 

               ////// The running phase  ////// 

4:  lb = 0 ; ub = d-1; k = p; fit = calcWeight (); 

5: Individual x=new Individual (); 

6: x = Initialize (k, lb, ub); rep =1; 

7:   while rep <= maxIterations do 

8:         Individual x’ = x; 

//// The 𝒩 operator: This operator generates 
new candidate solutions by adding normally 
distributed noise, aiding in local exploitation 
around the current solution. 

9:               index = a random number between 1 and k; 

10:                 rnd = a random number between 0 and 1; 

11:                     x’ [index] = x [index] +(2*rnd-1)*bw;   

                         //// The 𝛽 operator 

//// The 𝛽 operator: This operator diversifies 
the search by using controlled random 
perturbations to escape local optima and 
explore new regions of the solution space. 
////// 

12:              for j = 1 to k do 

13:            if rand(0,1) <=beta then 

14:                           x’ [j] = lb[j]+(ub[j]-lb[j])* rand(0,1); 

15:                    end if 

16:              end for 

17:              if fit (x’) > fit (x) then 

18:            x = x’; 

19:              end if 

20:         rep ++;  

21:      end while 

                   ////// The updating phase ////// 

22:      TS = TS ∪ x; RemCov = RemCov – fit (x); Update CM; 

23: end while         

24: return TS; 

 

To provide a clearer understanding of the coverage 

matrix, let's consider a hypothetical system with p = 4 

input parameters and d = 3 possible values for each 

parameter. Our objective is to create the coverage 

matrix for the covering array CA (N; 2, 34). Here's how 

we determine the matrix dimensions: 

The number of rows, denoted as  p

t

 
 
 

, is calculated as 

 
 
 

4

2
 which equals 6. 

The total number of columns, represented as t+dt+1 is 

determined as 2+32+1, summing up to 12 columns. 

Now, let's break down the columns of this matrix 

based on Fig. 2: 

The first two columns (0 and 1) are responsible for 

indicating the indices of the 6 different combinations 

(12, 13, 14, 23, 24, 34). 

The following nine columns (2 to 10) encompass all 

possible values corresponding to the two parameters 

(00, 01, 02, 10, 11, 12, 20, 21, 22). 

The last column (11) is dedicated to keeping track of 

the number of elements that remain uncovered. 

To calculate the column number (c) for a given 

combination of indices i0i1…it-1, we can utilize (2): 





   
1

0

1( )
t

j
j

t jc t i d          (2) 

In sum, the coverage matrix is a structured 

representation used to track combinations of 

parameters in the context of covering arrays. In our 

hypothetical system, it enables us to efficiently monitor 

the coverage status of various combinations and their 

corresponding values, aiding in the quest to generate an 

optimal test set. 

For instance, in the hypothetical system we're 

examining, consider the combination of indices (i0 = 2 

and i1 = 1). To determine the corresponding column 

number (c), you can use the following calculation: c = 2 + 

(2×31+1×30) = 9. 

Furthermore, the initial value of RemCov 

(representing the count of elements that have not been 

covered yet) equals tp
d

t

 
 

 

, which in our scenario is 

2
4

3
2

 
 

 

, resulting in 54, as illustrated in Fig. 2. 

 
Fig. 2: Structure of coverage matrix for CA (N; 2,34) 

configuration. 

G.  Calculating Test Sample Weight and Updating the 
Coverage Matrix 

To determine the weight of a given test sample, we 

count the number of new combinations it covers. Here's 

the process: 
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 We consider both the values within the test sample 

itself and those in the first t columns of each row in 

the coverage matrix. 

 First, we calculate the column number for each 

combination (row) using (2) based on the test 

sample's values and the t columns. 

 If the value in the corresponding cell of the 

coverage matrix is one, it means that this 

combination has already been covered by previous 

test samples and added to the test set. In such 

cases, there's no need to update the weight of the 

current test sample. 

 However, if the value is zero, we add one to the 

weight of the current test sample, and we set the 

value of that cell to one, indicating that this 

combination should be excluded when calculating 

the weight of the next test sample. 

 It's important to subtract one from the value in the 

last column of the specific row to account for the 

updated weight of the current test sample. 

 Finally, after examining all rows, we subtract the 

obtained weight for this test sample from the 

RemCov value. RemCov signifies the count of 

remaining combinations that have yet to be 

covered.  

To illustrate this process, let's consider the test 

sample tc = (0, 1, 2, 0) in Fig. 2. In Fig. 3, we visually 

depict how the weight is calculated for this test sample 

based on the coverage matrix. As shown, we first 

calculate the column number for each combination (row) 

using (2) and update all corresponding cells from zero to 

one. Additionally, the values in the last columns, initially 

at 9, are reduced to 8. Finally, after all the updates, the 

RemCov value decreases to 48. This process ensures 

efficient tracking of covered combinations and 

contributes to generating an optimal test set. 

 

Fig. 3: Calculating the weight of the test sample tc = (0,1,2,0) 
according to the coverage matrix of Figure 2 and updating it. 

Evaluation Results 

In order to assess the effectiveness of the BHC 

strategy, we conducted an evaluation using MATLAB 

2017a software. Our analysis involved comparing the 

BHC strategy against various other strategies, including 

TConfig as a mathematical approach, PICT and IPOG as 

greedy methods, and GS, GALP, DPSO, WOA, BAPSO, and 

GSTG as metaheuristic strategies. 

Before commencing the evaluation and comparison, 

we needed to determine appropriate values for two 

crucial parameters: bw, which is related to the N 

operator, and β, which relates to the β operator. To 

achieve this, we executed the BHC strategy ten times 

within the context of the CA (N; 2, p, 4) configuration, 

where p ranged from 11 to 16. Our analysis of the 

results, as depicted in Fig. 4, revealed that the BHC 

strategy exhibited its best performance when configured 

with bw = 0.5 and β = 0.2. Additionally, we acquired 

suitable parameter values for the other strategies from 

relevant literature, and these values are summarized in 

Table 4. 

Another essential parameter in our assessment is the 

maximum number of function evaluations (maxFFE), 

which we set to 10,000 for all strategies under 

consideration. It's worth noting that the parameters 

maxFFE and the number of iterations (MaxIterations) in 

the algorithms are interchangeable. If we denote nFFE as 

the number of function evaluations performed in each 

iteration of an algorithm, then the number of iterations 

can be calculated using (3): 


maxFFE

MaxIterations
nFFE

        (3) 

As an example, consider the WOA algorithm within 

our chosen strategy, where the population size is set to 

180. Consequently, the value of nFFE corresponds to 

180. Using (3), we can calculate the number of 

iterations, which yields MaxIterations equal to 10,000 / 

180, resulting in approximately 56 iterations. 

H.  Results Generation 

To obtain our results, we executed all the strategies a 

total of 100 times across five distinct datasets, as 

follows: 

 CA (N; 2, p, 3) for 3 ≤ p ≤ 12 

 CA (N; 3, p, d) for 7 ≤ p ≤ 12 and 2 ≤ d ≤ 3 

 CA (N; t, p, 3) for 7 ≤ t ≤ 11 and t+1 ≤ p ≤ 12 

 CA (N; 4, p, 5) for 5 ≤ p ≤ 15 

 CA (N; t, p, 2) for 12 ≤ t ≤ 16 and 14 ≤ p ≤ 17 

The hardware environment for running these 

strategies was equipped with an Intel® Core™ i5 CPU and 

6GB of RAM. It's important to note that in our results 

table, we use "NA" and ">day" when a specific strategy 

execution result is unavailable for a given configuration 

or when a strategy failed to produce an optimal covering 

array within a 24-hour timeframe. 
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Table 4 Appropriate values for parameters of the meta-heuristic strategies 

 

 

 

 

 

 

 

Table 4: Appropriate values for parameters of the meta-heuristic strategies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In Table 5, we present the sizes of the test sets 

generated by all strategies for the first dataset, CA (N; 2, 

p, 3), where 3 ≤ p ≤ 12. This dataset encompasses 10 

distinct configurations. Notably, in 9 out of these cases, 

both GALP and GS produced the smallest test sets. 

Following closely, BHC generated the smallest test sets in 

8 of these configurations. In contrast, TConfig, employed 

as a mathematical strategy, failed to produce any test 

set with the smallest size for this dataset. Among the 

considered greedy strategies, IPOG consistently 

produced the smallest test sets in the majority of cases. 

In Table 6, we present the sizes of the test sets 

generated by all strategies for the second dataset, CA (N; 

3, p, d), where 7 ≤ p ≤ 12 and 2 ≤ d ≤ 3. This dataset 

encompasses 13 distinct configurations. Notably, in 

terms of generating test sets with the smallest size, both 

GALP and BHC demonstrated the best performance 

across this dataset. 

In Table 7, we provide the sizes of the test sets 

generated by all strategies for the third dataset, denoted 

as CA (N; t, p, 3), where 7 ≤ t ≤ 11 and t + 1 ≤ p ≤ 12. This 

dataset encompasses a total of 15 distinct 

configurations. Notably, in 8 of these configurations, the 

BHC strategy stands out by producing test sets with the 

smallest size. 

Tables 8 and 9 present the sizes of the test sets 

generated by all strategies for the fourth and fifth 

datasets, respectively. The fourth dataset corresponds to 

Parameters and their appropriate values Strategy 

bw = 0.5, beta = 0.2 BHC 

N = 120, MutRate = 0.4, CossRate = 0.4 GS  

N = 10-300, MutRate = 0.4..1.0, CossRate = 0.4..1.0 

Mutation method : Uniform 

Crossover method : ALPSOFV (Kmax = 10-20, a = 0.9, r = 4, R1 and R2: random) 

GALP 

N = 180 WOA 

N = 100, Loudness = 0.9, PulseemissionRate = 0.9, 

Minfrequency = 0, Maxfrequency =1, Tolerance = 0.025, WeightValue = 0.4, 
CycWalkvalue = 1.49 

BAPSO 

N = 100, ElitistCheck = 1, Rpower = 1, Rnorm = 2 GSTG 

Fig. 4: Average size of production test set in CA (N; 2,p,4) configuration for 11≤ p≤16. 
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CA (N; 4, p, 5), where 5 ≤ p ≤ 15, while the fifth dataset 

pertains to CA (N; t, p, 2), where 12 ≤ t ≤ 16 and 14 ≤ p ≤ 

17. 

Upon reviewing these tables, it becomes evident that 

BHC consistently excels by producing test sets with the 

smallest size across the majority of configurations in 

these datasets. To demonstrate the superiority of the 

BHC strategy over other existing methods, we utilized 

the Friedman test. This non-parametric statistical test is 

designed for comparing multiple related samples [66] 

and is effective  in  identifying  performance  differences  

 

 

 

 

 

 

 

 

 

 

among the various strategies. In the Friedman test 

output report, the strategy with the lowest average rank 

is designated as Rank 1, signifying the best performance. 

Subsequently, the second lowest rank is assigned as 

Rank 2, and so forth.  

Table 10 provides an overview of the overall ranks 

achieved by both BHC and other strategies across all the 

considered datasets, totaling 54 distinct configurations. 

Notably, BHC consistently secures the first rank, 

demonstrating its effectiveness in generating test sets 

with the smallest size. 

 

 

 

 

 

 

 

 

 

 

IPOG 

N.Best 

PICT 

N.Best 

TConfig 

N.Best 

WOA 

N.Best 

DPSO 

N.Best 

BAPSO 

N.Best 

GS 

N.Best 

GSTG 

N.Best 

GALP 

N.Best 

BHC 

N.Avg 

BHC 

N.Best 
d, p 

9 10 10 9 9 9 9 9 9 9.69 9 3, 3 

9 13 10 9 9 10 9 9 9 10.28 9 3, 4 

15 13 14 11 11 11 11 11 11 12.88 11 3, 5 

15 14 15 14 14 14 13 13 13 14.55 13 3, 6 

15 16 15 14 15 15 14 15 14 15.24 14 3, 7 

15 16 17 15 15 15 15 15 15 15.92 15 3, 8 

15 17 17 16 15 16 15 17 15 16.55 15 3, 9 

15 18 17 16 16 17 16 18 16 17.43 16 3, 10 

17 18 20 17 17 17 16 19 16 17.82 17 3, 11 

21 19 20 17 16 17 16 19 16 18.23 17 3, 12 

IPOG 

N.Best 

PICT 

N.Best 

TConfig 

N.Best 

WOA 

N.Best 

DPSO 

N.Best 

BAPSO 

N.Best 

GS 

N.Best 

GSTG 

N.Best 

GALP 

N.Best 

BHC 

N.Avg 

BHC 

N.Best 
d, p 

16 15 16 12 15 12 12 12 12 15.09 12 2, 7 

18 17 18 14 16 14 14 14 12 16.05 12 2, 8 

20 17 20 15 16 15 16 16 16 16.25 16 2, 9 

20 18 20 16 16 16 16 16 16 16.65 16 2, 10 

32 34 32 27 28 27 27 28 27 31.12 27 3, 4 

41 43 40 38 41 38 38 40 37 40.39 38 3, 5 

46 48 48 42 33 43 43 43 40 45.10 39 3, 6 

55 51 55 48 48 48 49 48 48 50.66 48 3, 7 

56 59 58 53 52 52 54 53 52 54.75 52 3, 8 

63 63 64 57 56 57 58 56 56 58.51 56 3, 9 

66 65 68 59 59 59 61 61 59 61.78 60 3, 10 

70 70 72 64 63 63 63 63 62 64.81 63 3, 11 

73 72 77 65 65 65 67 65 65 67.51 65 3, 12 

Table 5: Test set size generated by all strategies in 𝐶𝐴 (𝑁;  2, 𝑝, 3) for 3 ≤  p ≤ 12 

Table 6: Size of the test set generated by all strategies in CA (N; 3, p, d) for 7 ≤ p ≤12 and 2 ≤ d ≤3 
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Table 7: Size of the test set generated by all strategies in CA (N; t, p, 3) for 7 ≤ t ≤11 and t+1 ≤ p ≤12 

 

Table 8: Size of the test set generated by all strategies in CA (N; 4, p, 5) for 5 ≤ p ≤15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 9: Size of the test set generated by all strategies in CA (N; t, p, 2) for 12 ≤ t ≤16 and 14 ≤ p ≤17 

 

IPOG 

N.Best 

PICT 

N.Best 

TConfig 

N.Best 

WOA 

N.Best 

DPSO 

N.Best 

BAPSO 

N.Best 

GS 

N.Best 

GSTG 

N.Best 

GALP 

N.Best 

BHC 

N.Avg 

BHC 

N.Best 
t , p 

NA 3143 >day 3031 2241 3029 3032 3031 3029 3013.12 2989 7, 8 

NA 4618 > day 4425 4427 4425 4437 4425 4425 4435.23 4417 7, 9 

NA 5884 >day 5474 5434 5472 5464 5473 5459 5484.32 5476 7, 10 

NA 7116 >day 6531 6413 6515 6533 6543 6468 6437.13 6427 7, 11 

NA 8314 >day 7610 >day 7614 7603 7598 7593 7563.12 7557 7, 12 

NA 9763 >day 9258 9284 9273 9266 9372 9258 9292.25 9283 8, 9 

NA 14599 > day 13912 13939 13912 13907 13912 13903 13902.42 13894 8, 10 

NA 18,859 >day 17641 >day 17831 17792 17753 17639 17832.31 17713 8,11 

NA 23112 >day 21310 >day 21631 21670 22731 20963 20513.21 20415 8, 12 

NA 30181 >day 28319 21433 27813 28629 29631 28312 28445.31 28434 9, 10 

NA 45521 > day 43592 >day 43931 43809 43591 43543 43495.31 43474 9, 11 

NA 59966 >day 55931 >day 57931 56481 57301 56219 53865.21 53813 9, 12 

NA 92435 >day 87721 >day 88351 87766 88391 87712 87031.42 86960 10, 11 

NA 141990 > day 136841 >day 140315 136096 139041 135962 13394.2 133842 10, 12 

NA 278993 >day 259341 >day 274102 267131 26518 267085 257342.4 246309 11, 12 

IPOG 

N.Best 

PICT 

N.Best 

TConfig 

N.Best 

WOA 

N.Best 

BAPSO 

N.Best 

GS 

N.Best 

GSTG 

N.Best 

GALP 

N.Best 

BHC 

N.Avg 

BHC 

N.Best 
p 

773 810 773 784 774 769 774 762 782.65 775 5 

1058 1072 1092 1015 1031 984 1021 986 992.32 984 6 

1293 1279 1320 1168 1181 1176 1172 1168 1174.31 1168 7 

1511 1468 1532 1379 1384 1371 1353 1364 1341.45 1338 8 

1702 1643 1724 1592 1531 1548 1587 1553 1494.50 1488 9 

1869 1812 1878 1641 1634 1638 1747 1634 1635.21 1634 10 

2024 1957 2038 1769 1853 1838 1769 1812 1767.75 1766 11 

2150 2103 2178 1941 1983 1967 1923 1910 1893.50 1890 12 

2296 2238 >day 2112 2031 2041 2104 2013 2005.25 2003 13 

2436 2359 >day 2123 2293 2156 2251 2131 2117.75 2115 14 

2538 2480 >day 2259 2258 2268 2371 2245 2220.17 2217 15 

IPOG 

N.Best 

PICT 

N.Best 

TConfig 

N.Best 

WOA 

N.Best 

DPSO 

N.Best 

BAPSO 

N.Best 

GS 

N.Best 

GSTG 

N.Best 

GALP 

N.Best 

BHC 

N.Avg 

BHC 

N.Best 
 

NA 9112 > day 8874 8972 8891 8893 9021 8904 8891.32 8873 CA (N; 12, 2
14

) 

NA 12441 > day 11217 >day 11731 10251 11714 11051 11210.63 11152 CA (N; 13, 2
14

) 

NA 25036 > day 22862 >day 21725 23377 21983 22642 22231.33 22163 CA (N; 14, 2
15

) 

NA 51127 > day 42641 >day 43624 46575 42930 41820 40512.75 40415 CA (N; 15, 2
16

) 

NA 100266 > day 95326 >day 96320 95680 94941 94932 94451.63 94431 CA (N; 16, 2
17

) 
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Table 10: Overall ranks of BHC and other strategies in all considered data sets 

 

Conclusion and Future Directions 

Generating an optimal test set, also known as a 

coverage array, is a complex NP-Hard problem. 

Metaheuristic algorithms such as Genetic Algorithms, 

Particle Swarm Optimization, Ant Colony Optimization, 

and Tabu Search have demonstrated their remarkable 

efficiency in tackling this problem. However, the issue of 

handling large test set sizes remains unresolved. In this 

paper, we introduced an innovative strategy based on 

the Beta Hill Climbing (BHC) optimization method to 

address the optimal test set generation problem. In our 

evaluation and comparison, we pitted BHC against 

TConfig (a mathematical strategy), PICT and IPOG 

(greedy strategies), and GS, GALP, DPSO, WOA, BAPSO, 

and GSTG (metaheuristic strategies) using five well-

established datasets. According to the results derived 

from the Friedman test, BHC consistently ranked first in 

generating test sets with the smallest size. 

The primary contributions of this research include the 

first-time application of the β-hill climbing (BHC) 

optimizer for generating minimum covering arrays, 

which demonstrates greater efficiency and supports 

higher interaction strengths (t>15) than most existing 

strategies.  

However, BHC has certain limitations, such as its 

inability to handle variable-strength interactions and 

constraints, which are essential features of t-way testing. 

To address these gaps, future work can focus on 

extending BHC to incorporate these features. 

Additionally, integrating BHC with established 

metaheuristic algorithms can further improve its 

efficiency and expand its utility. 
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Abbreviations  

ABC Artificial Bee Colony 

ABCVS 
Artificial Bee Colony for generating Variable 
t-way Test Sets 

AETG Automatic Efficient Test Generator 

ALPSOFV 
Adaptive Layered Population Size with 
Optimal Fitness Value 

BAPSO 
Hybrid of Bat Algorithm and Particle Swarm 
Optimization 

BDA Bi-Objective Dragonfly Algorithm 

BHC Beta Hill Climbing 

β-HCO Beta Hill Climbing Optimizer 

BOA Butterfly Optimization Algorithm 

CA Covering Array 

CM Coverage Matrix 

CTEXL Classification-Tree Editor eXtended Logics 

DPSO Discrete Particle Swarm Optimization 

GALP Genetic Algorithm with Local Path 

GA Genetic Algorithm 

GS Genetic Strategy 

GSTG Gravitational Search Test Generator 

HABC Hybrid Artificial Bee Colony 

HC-BAT Hybrid Hill Climbing and Bat Algorithm 

HGHC Hybrid Greedy Hill Climbing 

HHOA Harris Hawks Optimization Algorithm 

  BHC GALP GSTG GS BAPSO DPSO WOA TConfig PICT IPOG 

Friedman 

Test 

Mean 
Rank 

2.69 2.75 4.93 4.35 4.63 6.50 4.09 9.03 7.91 8.13 

Rank 1 2 6 4 5 7 3 10 8 9 
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IPOG In-Parameter-Order General 

LSHADE 
Linear Success-History Adaptive Differential 
Evolution 

MBH Multiple Black Hole 

OPT One-Parameter-at-a-Time 

ORT One-Row-at-a-Time 

PICT Pairwise Independent Combinatorial Testing 

PSO Particle Swarm Optimization 

QWOA-
EMC 

Q-learning Whale Optimization Algorithm 
with Ensemble Model Checking 

REMCOV Remaining Combinations 

ROBDDs Reduced Ordered Binary Decision Diagrams 

SCA Sine Cosine Algorithm 

SCAVS 
Sine Cosine Algorithm for Variable t-way 
Test Suite 

SCIPOG Seeding and Constraint Support in IPOG 

TC Test Case 

TLBO Teaching–Learning-Based Optimization 

TP Test Parameter 

TS Test Set 

TPA Three-Phase Approach 

TWAY t-way Combinatorial Testing 

WOA Whale Optimization Algorithm 
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