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Background and Objectives: Understanding the heterogeneity of breast cancer is crucial 
for improving treatment strategies. This study investigates the application of K-Means and 
Hierarchical Clustering to a local dataset of breast cancer patients from Iranmehr Hospital, 
Birjand, Iran, with the primary goal of identifying potential patient subgroups based on 
their clinical and treatment characteristics for knowledge discovery. The potential of these 
subgroups to inform future research on personalized treatment approaches is explored. 
Methods: A retrospective dataset comprising pathological and clinical information was 
analyzed using K-Means and Agglomerative Hierarchical Clustering to identify patient 
subgroups. The optimal number of clusters was consistently determined to be two (k=2) 
for both methods based on rigorous internal validation metrics (Elbow Method, Silhouette 
Analysis, Calinski-Harabasz Index, and Largest Jump Analysis for Hierarchical Clustering). 
Statistical tests (ANOVA and Chi-squared) were employed to assess significant differences 
in features across the identified clusters from both K-Means and Hierarchical analyses, 
providing insights into the key factors differentiating these groups. Internal cluster validity 
was assessed using Silhouette Score and Calinski-Harabasz Index. 
Results: The K-Means analysis identified two clusters exhibiting significant differences in 
characteristics such as age, chemotherapy session intensity, menopausal status, nodal 
involvement, and biomarker expression (ER, PR, HER2, Ki67). The Hierarchical Clustering 
also yielded two clusters with varying characteristics, and a comparison between the two 
methods highlighted both similarities and differences in the identified patient 
stratifications. The overall agreement between K-Means and Hierarchical Clustering was 
quantified by an Adjusted Rand Index (ARI) of 0.4697. 
Conclusion: Both K-Means and Hierarchical Clustering effectively revealed potential 
patient subgroups within the studied dataset, highlighting the heterogeneity of breast 
cancer presentation and treatment at a local level These clusters exhibited statistically 
significant differences across key clinical and treatment features. Future research is 
needed to validate these findings in larger, multi-center studies, explore the clinical 
significance of these subgroups in terms of treatment outcomes, and compare the 
effectiveness of different clustering methodologies for this purpose. 
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Introduction 

Cancer is among the most significant contributors to 

early death globally, potentially surpassing 

cardiovascular diseases in terms of prevalence and 

mortality trends in modern society ‎[1], ‎[2]. Recent data 

indicates that female breast cancer has overtaken lung 

cancer as the primary form of cancer globally, with 

approximately 2.3 million new cases reported in 2020, 

constituting 11.7% of all cancer diagnoses. It is also the 

fifth most fatal type of cancer worldwide, with 685,000 

deaths. Among women, breast cancer is responsible for 

one-quarter of all cancer diagnoses and one-sixth of all 

cancer deaths. It is the leading cause of cancer incidence 

in most countries (159 out of 185) and cancer mortality 

in 110 countries ‎[3]. 

Likewise, several risk factors have been strongly 

associated with increased breast cancer incidence, 

including obesity ‎[4], sedentary lifestyles ‎[5], diets high 

in protein—particularly those involving red meat treated 

with exogenous hormones or carcinogenic 

compounds ‎[6]—alcohol consumption ‎[7], tobacco 

use ‎[8], and the use of oral contraceptives ‎[9]. 

The different complexities involved in understanding 

cancer, selecting appropriate treatment methods, 

estimating survival rates, and predicting recurrence 

create numerous challenging questions for researchers. 

Clustering techniques offer a data-driven approach to 

address these complexities by identifying intrinsic 

groupings within patient data based on similarities in 

their features. This study seeks to investigate the 

application of unsupervised learning techniques, 

specifically K-Means and Hierarchical Clustering, to a 

novel local dataset of breast cancer patients from 

Iranmehr Hospital, Birjand, Iran. The primary goal is to 

uncover potential patient subgroups based on their 

clinical and treatment characteristics, thereby facilitating 

knowledge discovery relevant to this specific population. 

This study aims to: 1) Analyze a newly collected local 

dataset from breast cancer patients at Iranmehr Hospital 

in Birjand, Iran, using their pathological and clinical 

information. 2) Employ K-Means and Hierarchical 

Clustering algorithms to perform knowledge discovery 

and identify potential patient subgroups within this 

dataset. The innovation of this research lies in the 

application of these well-established clustering methods 

to a unique, local dataset to reveal specific patterns of 

patient stratification relevant to this Iranian population. 

This approach can contribute to a better understanding 

of breast cancer heterogeneity within this context, 

potentially informing future research on tailored 

treatment strategies. The main contributions of this 

study are as follows: 

1- Collecting a new local dataset from breast cancer 

patients using the pathological and clinical 

information of the patients under treatment from 

Iranmehr Hospital of Birjand, Khorasan-e-jonoubi, 

Iran. 

2- Performing a knowledge discovery analysis using K-

Means and Hierarchical Clustering to extract useful 

knowledge by identifying potential patient 

subgroups within the collected dataset. 

Related Works 

Understanding the complex landscape of breast 

cancer diagnosis and treatment requires robust 

analytical tools. This section reviews prior work across 

seven key themes: clustering methodologies and 

validation, applications in breast cancer, regional 

dataset-specific studies, broader machine learning 

contexts, preprocessing practices, clinical 

interpretability, and innovation. By synthesizing insights 

from global and local studies, this review positions the 

current research within the broader field of 

unsupervised learning for clinical decision support. 

A. Clustering Methodologies and ValidationTechniques 

Clustering is a foundational unsupervised learning 

method used to uncover latent patterns in medical 

datasets, including breast cancer data. K-Means and 

Hierarchical Clustering remain the most widely applied 

due to their simplicity and effectiveness in high-

dimensional data contexts ‎[10], ‎[13] and ‎[14]. K-Means is 

especially valued for its computational efficiency, though 

it assumes spherical clusters, which may oversimplify 

real-world data distributions [10]. Hierarchical 

Clustering, particularly with Ward’s linkage method, 

supports interpretability through dendrogram 

visualization, making it suitable for subgroup analysis in 

clinical studies ‎[14]. 

Validation of clustering results is critical. Pison et 

al. ‎[15] and Rousseeuw ‎[55] emphasize the need for 

internal validation indices such as the Silhouette Score 

and CLUSPLOT, which assesses the cohesion and 

separation of clusters. However, many breast cancer 

studies still rely on heuristic methods or visual inspection 

without rigorous quantitative evaluation.  

These considerations guided our use of both K-Means 

and Hierarchical Clustering, complemented by internal 

validation using Silhouette Scores to ensure 

methodological rigor. 

B. Applications of Clustering in Breast Cancer 

Numerous studies have applied clustering to breast 

cancer data for classification, subtype discovery, and 

treatment personalization. For instance, Dubey et 

al. ‎[16] used K-Means to differentiate subtypes in the 

Wisconsin Breast Cancer dataset, although their focus 

was largely diagnostic. 

Agrawal et al. ‎[17] proposed an ensemble clustering-

classification pipeline to uncover latent patient profiles, 

while Wang et al. ‎[18] developed a consensus clustering 
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framework to stratify patients based on molecular 

features. Yet, these methods often underemphasize 

treatment variables, and their practical clinical relevance 

remains limited without outcome validation or 

interpretability.  

This gap informed our focus on treatment-centered 

clustering and statistical validation to ensure clinical 

utility and interpretability. 

C. Regional and Dataset-Specific Studies 

Several Iranian studies have explored breast cancer 

using local datasets. Sajjadnia et al. ‎[19] examined 

preprocessing effects on clustering outcomes from 

Shiraz hospitals but lacked treatment-outcome 

connections. Ahmadi et al. ‎[19] and Hosseini et al. ‎[21] 

conducted spatial clustering studies, providing regional 

incidence insights but not patient-level treatment 

stratification. 

These efforts demonstrate the feasibility of clustering 

in the Iranian context but underline the scarcity of work 

involving rich clinical-treatment data and robust 

algorithmic comparison.  

In response, our study leverages a detailed, locally 

curated dataset with diverse clinical and treatment 

variables to provide a more comprehensive stratification 

framework. 

D. Machine Learning in Breast Cancer: A Broader Context 

Machine learning (ML) and deep learning (DL) 

methods are extensively used for prediction, 

classification, and prognosis in breast cancer ‎[22]-‎[24]. 

However, most works emphasize diagnostic accuracy 

and often ignore treatment-specific subgrouping. Radak 

et al. ‎[23] and Xiao et al. ‎[24] highlighted ML’s utility in 

survival prediction, but clustering is typically peripheral 

or absent in such analyses. Moreover, these models 

often lack interpretability and practical guidance for 

treatment decisions. 

Our clustering-based approach addresses this by 

prioritizing subgroup discovery tied directly to 

therapeutic features and supporting statistical 

interpretability. 

E. Preprocessing and Mixed Data Clustering 

Preprocessing is pivotal in ensuring clustering quality. 

Studies by Guyon and Elisseeff ‎[25] and Zimek et al. ‎[26] 

highlighted feature selection and outlier detection as 

essential steps. Given the mixed-type nature of clinical 

data, Ahmad and Dey ‎[11], Huang ‎[12], and Dinh et 

al. ‎[27] have proposed K-Means variants and hybrid 

techniques to handle numerical and categorical values. 

Boluki et al. ‎[28] suggested avoiding imputation through 

model-aware clustering, a technique relevant for 

incomplete medical records. 

Accordingly, we incorporated one-hot encoding and 

standardized scaling to handle mixed data types and 

ensure the robustness of our clustering outcomes. 

F. Clinical Relevance and Model Interpretability 

A critical gap in the literature is the clinical 

interpretability of clusters. Many studies stop at cluster 

formation without evaluating their medical implications. 

The current study addresses this by using ANOVA and 

Chi-square testing to assess statistically significant 

differences across treatment-relevant features (e.g., ER, 

PR, HER2, Ki67, chemotherapy regimen), adding 

interpretability and clinical value.  

This approach ensures that the resulting clusters are 

not only statistically meaningful but also practically 

relevant for treatment planning in clinical settings. 

G. Innovation and Current Contribution 

This study presents a locally curated dataset from 

Iranmehr Hospital, covering 185 patients with 24 

demographic, pathological, and treatment-related 

features. K-Means and Hierarchical Clustering were 

employed alongside internal validation using the 

Silhouette Score ‎[55]. Significant statistical testing 

(ANOVA, Chi-square) highlighted cluster-driving 

variables, providing actionable insights for treatment 

stratification. Importantly, this study proposes future 

exploration of Federated Learning to enable multi-center 

collaborations without compromising patient data 

privacy ‎[29], ‎[30], and intends to incorporate alternative 

clustering methods like DBSCAN ‎[31] and Gaussian 

Mixture Models ‎[32] to evaluate robustness. 

Dataset Description 

The present study involved the creation of a unique 

dataset derived from 185 breast cancer patients 

receiving treatment at Iranmehr Hospital, Khorasan-e-

Jonoubi, Birjand, Iran. This dataset, assembled through a 

collaborative effort with cancer specialists at the 

institution, includes a unique identification number for 

each patient and 24 distinct clinical, pathological, and 

treatment-related features. These features aim to 

capture the inherent heterogeneity in breast cancer 

presentation and management within this specific 

patient population at Iranmehr Hospital. The 

characteristics, encoding, and clinical relevance of these 

features are summarized in Table 1, while descriptive 

statistics for the numerical variables and frequency 

distributions for the categorical variables are presented 

in the subsequent "Numerical Features: Descriptive 

Statistics" and "Categorical Features: Frequency 

Distributions" subsections, respectively.  

The subsequent application and comparison of 

established clustering algorithms, including k-means, will 

leverage these data characteristics to identify potentially 

clinically meaningful patient subgroups relevant to 

treatment patterns and outcomes within this cohort. 
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Table 1: Detailed description and clinical relevance of features in the breast cancer patient dataset 

Feature Name Category 
Data 
Type 

Range/Categories Clinical Relevance 

Patients ID Identifier Integer 1-197 Unique identifier for each patient. 

Age Demographic Integer 25-80 Patient's age at diagnosis or treatment. 

Sex Demographic Integer 
1=Female 
2=Male 

Patient's biological sex. 

Menopausal Demographic Integer 
1=Post 
2=Pre (male=2) 

Menopausal status, relevant for hormonal influences 
on breast cancer. 

Histological Type Pathological Integer 

1=IDC 
 2=ILC 
3=Tubular 
4=Papillary 
5=Mucinous 
6=Medullary 

Microscopic classification of the tumor, influencing 
prognosis and treatment. 

Focality Pathological Integer 
1=Uni 
2=Multi 

Number of tumor foci in the breast. 

Marginal Surgery Clinical Integer 
0=Negative 
1=Positive 

Presence of residual cancer cells after surgery. 

T (Tumor size) Pathological Integer 

1=TX 
2=T0 
3=Tis 
4=T1 
5=T2 
6=T3 
7=T4 

Size of the primary tumor, a key factor in staging and 
prognosis. 

N (Nodal involvement) Pathological Integer 

1=NX 
2=N0 
3=N1 
4=N2 
5=N3 

Extent of cancer spread to regional lymph nodes, a 
critical staging component. 

Number of dissected nodes Pathological Integer 0-30 
Number of lymph nodes removed during surgery for 
pathological assessment. 

Node Dissection Clinical Integer 
0= No dissection     
1=SLND   
2=ALND 

Whether a lymph node dissection was performed. 

Type of Surgery Treatment Integer 
1=BCS 
2=Mastectomy 

Type of surgical procedure performed. 

Surgeon Clinical Integer 
1=General 
2=Oncosurgeon 

Specialty of the surgeon who performed the procedure. 

ER (Estrogen Receptor) Pathological Integer 
0=Negative 
1=Positive 

Status of Estrogen Receptor in tumor cells, guiding 
endocrine therapy. 

PR (Progesterone Receptor) Pathological Integer 
0=Negative 
1=Positive 

Status of Progesterone Receptor in tumor cells, also 
guiding endocrine therapy. 

HER2 (Human Epidermal 
Growth Factor Receptor 2) 

Pathological Integer 
0=Negative 
1=Positive 

Status of Human Epidermal Growth Factor Receptor 2, 
indicating potential for targeted therapies. 

KI67 Pathological Integer 
0=Negative 
1=Positive 

Marker of cell proliferation, indicating tumor 
aggressiveness. 

Treatment Schedule Treatment Integer 

1=Sx>ChT>RT>HoT 
2=Sx>ChT>RT 
3=Sx>ChT>HoT 
4=Sx>ChT 
5=Sx>HoT 
6=Sx>RT>HoT 
7=Sx>RT 
8=ChT>Sx>RT>HoT 
9=ChT>Sx>RT 

Sequence of therapeutic modalities used in treatment. 

Chemotherapy Regimen Treatment Integer 

0=No ChT 
1=1st Gen 
2=2nd Gen 
3=3rd Gen 

Specific chemotherapy drug combination used. 

Trastuzumab Treatment Integer 
0=Negative 
1=Positive 

Whether the patient received Trastuzumab, a HER2-
targeted therapy. 

Radiation dose Treatment Integer 
0=No RT 
1=50-56 Gy 
2=42.5 Gy 

Total radiation dose administered during radiotherapy. 

Radiation Boost Dose Treatment Integer 
0=Negative 
1=Positive 

Whether an additional radiation boost was given to the 
tumor bed. 

Chemotherapy Session Treatment Integer 

Actual sessions 
administered: 0, 4, 6, 8, 
or 16 (derived from codes 
0-4) 

Number of chemotherapy cycles administered. 

Hormonetherapy Treatment Integer 

0=No HoT 
1=Tamoxifen 
2=Letrozole 
3=Tamoxifen-Letrozole 

Type of hormonal therapy received. 

GnRH Ana. Treatment Integer 
0=Negative 
1=Positive 

Status of Gonadotropin-Releasing Hormone Analog use, 
primarily in pre-menopausal women. 
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A. Numerical Features: Descriptive Statistics 

The numerical features in our Iranmehr Hospital 

breast cancer patient dataset, namely Age, Number of 

dissected nodes, and Chemotherapy Session, are 

continuous variables that provide quantitative 

information about the patient cohort. Table 2 presents 

the descriptive statistics for these key numerical 

variables, including the count, mean, standard deviation, 

minimum, 25th percentile, median (50th percentile), 

75th percentile, and maximum values. These statistics 

offer an initial understanding of the central tendency 

and spread of these continuous characteristics within 

our cohort, which will be used as input for the 

subsequent clustering analysis using multiple algorithms, 

including k-means, to identify potential patient 

subgroups. Key observations from these statistics 

include: 

 Age: The cohort exhibited a mean age of 49.16 

years, ranging from 25 to 80 years (Standard 

Deviation = 11.09). 

 Number of dissected nodes: The patients in the 

study had an average of 8.19 dissected lymph nodes, 

with a range from 0 to 30 (Standard Deviation = 

5.85). 

 Chemotherapy Session: The patients in the study 

received an average of 12.39 chemotherapy 

sessions, with the number of sessions ranging from 0 

to 16 (Standard Deviation = 4.79). 

 
Table 2: Descriptive Statistics of Numerical Variables in the 
Breast Cancer Patient Dataset 
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Age 185 49.16 11.09 25 40 48 56 80 

Number of 
dissected 

nodes 
185 8.19 5.85 0 3 8 12 30 

Chemother
apy Session 

185 12.39 4.79 0 8 16 16 16 

B. Categorical Features: Frequency Distributions 

The categorical features in our Iranmehr Hospital 

breast cancer patient dataset encompass a range of 

demographic, pathological, clinical, and treatment-

related characteristics. Table 3 presents the frequency 

counts and percentages for each category within these 

nominal and ordinal variables: Sex, Menopausal, 

Histological Type, Focality, and so forth.  

Table 3: Frequency and Percentage Distribution of Categorical 
Variables in the Breast Cancer Patient Dataset 

Feature Category Count Percentage 

Sex 
Female 181 97.84 
Male 4 2.16 

Menopausal 
Post 74 40 
Pre 111 60 

Histological 
Type 

IDC 167 90.27 
ILC 11 5.95 

Tubular 1 0.54 
Papillary 3 1.62 

Mucinous 2 1.08 
Medullary 1 0.54 

Focality 
Unifocal 168 90.81 

Multifocal 17 9.19 
Multicentric 0 0 

Marginal 
Surgery 

Negative 173 93.51 
Positive 12 6.49 

T (Tumor size) 

Tx 6 3.24 
T0 0 0 
Tis 0 0 
T1 40 21.62 
T2 116 62.7 
T3 18 9.73 
T4 5 2.7 

N (Nodal 
involvement) 

Nx 14 7.57 
N0 66 35.68 
N1 56 30.27 
N2 29 15.68 
N3 20 10.81 

Node Dissection 
No dissection 8 4.32 

SLND 25 13.51 
ALND 152 82.16 

Type of Surgery 
BCS 64 34.59 

Mastectomy 121 65.41 

Surgeon 
General 137 74.05 

Oncosurgeon 48 25.95 

ER 
Negative 58 31.35 
Positive 127 68.65 

PR 
Negative 74 40 
Positive 111 60 

HER2 
Negative 129 69.72 
Positive 56 30.27 

KI67 
Negative 70 37.84 
Positive 115 62.16 

Treatment 
Schedule 

Sx>ChT>RT>HoT 88 47.57 
Sx>ChT>RT 39 21.08 

Sx>ChT>HoT 21 11.35 
Sx>ChT 15 8.11 
Sx>HoT 2 1.08 

Sx>RT>HoT 1 0.54 
Sx>RT 0 0 

ChT>Sx>RT>HoT 11 5.95 
ChT>Sx>RT 8 4.32 

Chemotherapy 
Regimen 

No ChT 3 1.62 
1st Gen 23 12.43 
2nd Gen 41 22.16 
3rd Gen 118 63.78 

Trastuzumab 
Negative 129 69.72 
Positive 56 30.27 

Radiation Dose 
No RT 35 18.92 

50-56 Gy 147 79.46 
42.5 Gy 3 1.62 

Radiation Boost 
Dose 

Negative 98 53 
Positive 87 47 

Hormone 
Therapy 

No HoT 55 29.73 
Tamoxifen 72 38.92 
Letrozole 37 20 

Tamoxifen-
Letrozole 

21 11.35 

GnRH Ana. 
Negative 154 83.24 
Positive 31 16.76 
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The distribution of these variables provides crucial 

insights into the composition of our patient cohort 

across different subgroups, which will be considered 

alongside the numerical features in the subsequent 

clustering analysis using various algorithms, including k-

means, to explore potential patient stratifications. The 

distribution of these variables is detailed below: 

 Sex: 181 female (97.84%) and 4 male (2.16%) 

patients, encoded as 1 and 2. 

 Menopausal: A critical factor in breast cancer risk 

stratification and therapeutic planning, this variable 

was classified as post-menopausal (1) or pre-

menopausal (2). Notably, male patients (n=4) were 

assigned a value of 2 (pre-menopausal) for dataset 

consistency, despite lacking a biological menopausal 

status. Among the 185 patients, 74 (40%) were post-

menopausal, while 111 (60%) were pre-menopausal 

(including 4 male patients). 

 Histological type: Histological type categorizes 

breast cancer based on tumor cell morphology 

observed microscopically, influencing prognosis and 

therapeutic strategies. The dataset includes the 

following subtypes: 

 Invasive Ductal Carcinoma (IDC): 167 patients 

(90.27% of the cohort). 

 Invasive Lobular Carcinoma (ILC): 11 patients 

(5.95%). 

 Tubular Carcinoma: 1 patient (0.54%). 

 Papillary Carcinoma: 3 patients (1.62%). 

 Mucinous Carcinoma: 2 patients (1.08%). 

 Medullary Carcinoma: 1 patient (0.54%) 

Subtypes were numerically encoded as 1–6 per their 

listed order. 

 Focality: Focality categorizes tumors into three 

groups based on anatomical distribution: 

 Unifocal (i.e., a single tumor focus; encoded as 1): 

Observed in 168 patients (90.81%). 

 Multifocal (i.e., multiple invasive tumors confined 

to the same breast quadrant; encoded as 2): 

Observed in 17 patients (9.19%). 

 Multicentric (i.e., invasive tumors located in 

distinct breast quadrants; encoded as 3): 

Observed in 0 patients (0%). 

The prognostic significance of multifocal and 

multicentric tumors remains debated. While some 

studies associate these classifications with poorer 

outcomes ‎[10], others report no significant impact on 

prognosis ‎[34]. 

 Marginal Surgery: In patients undergoing surgical 

intervention, this feature indicates the status of 

surgical margins post-tumor excision, distinguishing 

between negative margins (0: no residual cancer 

cells at the resection boundary) and positive margins 

(1: residual cancer cells detected). Among the 

cohort, 12 patients (6.49%) exhibited positive 

margins, while 173 (93.51%) had negative margins. 

 T (Tumor size): Tumor size (T) reflects the largest 

diameter of the primary breast tumor. While tumor 

size and nodal involvement are correlated, both 

independently contribute to prognostic assessment. 

Notably, in triple-negative breast cancer (TNBC), the 

relationship between tumor size, nodal status, and 

prognosis was significantly attenuated ‎[35].  

The dataset includes seven T categories: 

 Tx (encoded as 1): 6 patients (3.24%) – 

Insufficient data to assess the primary tumor. 

 T0 (encoded as 2): 0 patients – No evidence of a 

primary tumor. 

 Tis (encoded as 3): 0 patients – Carcinoma in 

situ (non-invasive malignancy confined to 

ducts/lobules). 

 T1 (encoded as 4): 40 patients (21.62%) – Tumor 

diameter ≤2 cm. 

 T2 (encoded as 5): 116 patients (62.70%) – Tumor 

diameter >2 cm but ≤5 cm. 

 T3 (encoded as 6): 18 patients (9.73%) – Tumor 

diameter >5 cm. 

 T4 (encoded as 7): 5 patients (2.70%) – Tumor 

invasion into the chest wall or skin, irrespective of 

size. 

 N (Nodal involvement): In breast cancer, Nodal 

involvement (N) reflects the extent of regional 

lymph node metastasis and is a critical component 

of the TNM staging system. This feature evaluates 

whether cancer has spread to axillary lymph nodes 

(underarm) or internal mammary lymph nodes (near 

the breastbone) ‎[36]. The most commonly involved 

lymph nodes are the axillary lymph nodes (located 

under the arm) and the internal mammary lymph 

nodes (located near the breastbone). Clinical staging 

involves lymph node assessment to determine 

disease progression beyond breast tissue, with nodal 

metastasis indicating a higher risk of systemic 

spread. The dataset includes five N categories: 

 Nx: 14 patients (7.57%) – Lymph nodes could not 

be assessed. 

 N0: 66 patients (35.68%) – No regional lymph 

node metastasis. 

 N1: 56 patients (30.27%) – Metastasis in 1–3 

axillary or internal mammary nodes. 

  N2: 29 patients (15.68%) – Metastasis in 4–9 

axillary or internal mammary nodes. 

 N3: 20 patients (10.81%) – Metastasis in ≥10 

axillary nodes, infraclavicular nodes, or 

supraclavicular nodes. 

These categories were numerically encoded as 

integers 1–5 in the dataset, corresponding to the order 

listed above. 



Clustering-Based Knowledge Discovery in Breast Cancer: Insights from a Local Clinical Dataset 

J. Electr. Comput. Eng. Innovations, 14(1): 117-144, 2026                                                                       123 

 Node Dissection: For patients undergoing surgical 

intervention, this feature specifies the type of 

axillary lymph node assessment performed: 

 No dissection (Encoded as 0): No axillary lymph 

node dissection or sentinel lymph node biopsy 

was performed on 8 patients (4.32% of the 

cohort). 

 Sentinel Lymph Node Biopsy (SLND) (Encoded as 

1): Identification and removal of the first few 

lymph nodes to which cancer cells are most likely 

to spread, performed on 25 patients (13.51%). 

 Axillary Lymph Node Dissection (ALND) (Encoded 

as 2): Surgical removal of multiple lymph nodes in 

the armpit, performed on 152 patients (82.16%). 

 Type of Surgery: For patients undergoing surgical 

intervention, this feature specifies the surgical 

procedure performed: 

 Breast-Conserving Surgery (BCS) (Encoded as 1): 

Partial excision of the tumor with preservation of 

breast tissue, performed on 64 patients (34.59% 

of the cohort). 

 Mastectomy (Encoded as 2): Complete removal of 

the affected breast tissue, performed on 121 

patients (65.41%). 

 Surgeon: This feature identifies the surgical 

specialist who performed the procedure: 

 General Surgeon (encoded as 1): Performed on 

137 patients (74.05% of the cohort). 

 Oncosurgeon (encoded as 2): Specialized in 

oncologic surgery, performed on 48 patients 

(25.95%). 

While surgeon specialty is not a direct prognostic 

factor, differences in surgical training (e.g., general vs. 

oncologic surgery) may reflect variations in technique, 

institutional protocols, or postoperative care, which 

could act as confounding variables in outcome analyses. 

 ER (Estrogen Receptor): ER status, a feature with 

critical prognostic and therapeutic relevance, was 

categorized as follows: 

 ER-negative (encoded as 0): 58 patients (31.35%). 

 ER-positive (encoded as 1): 127 patients (68.65%). 

ER-positive tumors are more likely to exhibit 

histological differentiation ‎[37]-‎[39], lower proliferative 

activity ‎[40], and diploid DNA content. They are also less 

frequently associated with high-risk genetic alterations, 

such as TP53 mutations ‎[41] and ‎[42], HER2/neu 

amplification ‎[43]-‎[45], or HER1 (the epidermal growth 

factor receptor [EGFR]) ‎[46] and ‎[47], which are linked to 

aggressive tumor behavior and poorer prognosis. 

Conversely, ER-negative tumors demonstrate higher 

rates of these molecular aberrations, contributing to 

their adverse clinical outcomes. ER status remains 

pivotal in guiding therapeutic decisions, including 

endocrine therapy for ER-positive cases. 

 PR (Progesterone Receptor): Progesterone receptor 

(PR) status, an independent prognostic marker 

distinct from ER, was categorized as follows: 

 PR-negative (encoded as 0): 74 patients (40.00%). 

 PR-positive (encoded as 1): 111 patients (60.00%). 

PR negativity in ER-positive tumors correlates with a 

more aggressive subtype of hormone receptor-positive 

breast cancer ‎[48], often classified as the luminal B 

molecular subtype ‎[49]. These tumors are associated 

with higher proliferative rates and poorer clinical 

outcomes compared to ER-positive/PR-positive (luminal 

A) tumors.  

 HER2 (Human Epidermal Growth Factor Receptor 

2): A protein that promotes cancer growth. HER2-

positive cancers are more aggressive but may 

respond to drugs like trastuzumab (Herceptin). This 

factor was categorized as follows: 

 HER2-negative (encoded as 0): 129 patients 

(69.72%). 

 HER2-positive (encoded as 1): 56 patients 

(30.27%). 

 KI67: KI67, a nuclear protein marker of cellular 

proliferation, was categorized as follows: 

 KI67-negative (encoded as 0): 70 patients (37.84%) – 

Defined as KI67 expression ≤10%. 

 KI67-positive (encoded as 1): 115 patients (62.16%) – 

Defined as KI67 expression >10%. 

Higher KI67 levels correlate with increased tumor 

aggressiveness and proliferative activity, serving as a 

prognostic indicator for disease progression and 

treatment response.  

 Treatment Schedule: Treatment schedules, 

representing combinations of therapeutic 

modalities, were categorized into nine plans: 

 Surgery → Chemotherapy → Radiation → Hormone 

Therapy (88 patients, 47.57%). 

 Surgery → Chemotherapy → Radiation (39 patients, 

21.08%). 

 Surgery → Chemotherapy → Hormone Therapy (21 

patients, 11.35%). 

 Surgery → Chemotherapy (15 patients, 8.11%). 

 Surgery → Hormone Therapy (2 patients, 1.08%). 

 Surgery → Radiation → Hormone Therapy (1 patient, 

0.54%). 

 Surgery → Radiation (0 patients, 0%). 

 Chemotherapy → Surgery → Radiation → Hormone 

Therapy (11 patients, 5.95%). 

 Chemotherapy → Surgery → Radiation (8 patients, 

4.32%). 

These subtypes were encoded as integers (1–9) in the 

dataset, corresponding to the order listed above. 

These schedules reflect clinical decision-making based 

on tumor biology, stage, and patient-specific factors. The 

predominance of multimodal therapy (e.g., Plan 1: 
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47.57%) underscores the integration of adjuvant 

strategies to mitigate recurrence risk. 

 Chemotherapy Regimen: The specific combination 

of chemotherapy drugs used in treatment. Different 

regimens are selected based on the cancer’s 

characteristics. Four different regimens are used for 

the patients in this study:  

 No Chemotherapy (encoded as 0): 3 patients 

(1.62%). 

 First generation (encoded as 1): 23 patients 

(12.43%). 

 Second generation (encoded as 2): 41 patients 

(22.16%). 

 Third generation (encoded as 3): 118 patients 

(63.78%). 

The selection of a chemotherapy regimen can be 

individualized based on several factors, such as the risk 

of recurrence and the potential benefits of 

chemotherapy, both relative and absolute. It is also 

important to consider patient-specific factors like age, 

comorbidities, and risk tolerance ‎[50]. The decision aids 

can help patients and caregivers make informed choices 

about their treatment. Table 4 shows the commonly 

recommended adjuvant chemotherapy regimens ‎[50]. 

 Trastuzumab: A targeted therapy for HER2-positive 

breast cancer. This field indicates whether the patient 

received trastuzumab as part of their treatment. Thus, 

for 56 patients (30.27%), with HER2-positive breast 

cancer, trastuzumab was administered. 

 Radiation Dose: The total amount of radiation given 

during treatment, typically measured in Gray (Gy). In 

the proposed dataset, the values used for the 

radiation dose are categorized into three groups:  

 no radiation dose (encoded as 0): 35 patients (18.92%). 

 50 Gy, 54 Gy and 56 Gy (encoded as 1): 147 patients 

(79.46%) 

 42.5 Gy (encoded as 2): 3 patients (1.62%) 

 Radiation Boost Dose: The administration of 

additional radiation to the tumor site following 

standard radiation therapy serves to minimize the 

likelihood of cancer recurrence. Among the patients 

treated with radiotherapy, 87 (47.02%) had received a 

boost dose.  

 Hormone Therapy: Indicates whether the patient 

received hormone therapy (e.g., Tamoxifen or 

aromatase inhibitors) to block hormone-sensitive 

cancer growth. This feature has 4 values including:  

 no hormone therapy (encoded as 0): 55 patients 

(29.73%). 

 Tamoxifen therapy (encoded as 1): 72 patients 

(38.92). 

 Letrozole therapy (encoded as 2): 37 patients 

(20%). 

 Tamoxifen and Letrozole therapy (encoded as 3): 

21 patients (11.35). 

Table 4: Commonly recommended adjuvant chemotherapy 
regimens ‎[50] 

Recurrence risk 
category 

and definition 

Recommended 
regimens: ER-
positive, HER2 

negative 

Recommended 
regimens: 

ER/PR negative, 
HER2- 

negative 

Recommended 
regimens: 

HER2-positive 

Node-Neg, T1a 
(very low risk) 

No 
chemotherapy 

No 
chemotherapy 

No 
chemotherapy 

Node-Neg, T1b 
(low risk) 

Consider second 
generation 

Chemotherapy 
regimen if RS is 

high 

Consider second 
generation 

chemotherapy 
regimen 

Consider weekly 
paclitaxel + H 

Node-Neg, T1c 
(low risk) 

Second 
generation 

chemotherapy 
regimen if RS is 

high (or 
consider if 

intermediate) 

Second 
generation 

chemotherapy 
regimen 

Weekly 
paclitaxel + H or 

TCH 

Node-Neg, T2 
(moderate risk) 

Second or third 
generation 

chemotherapy 
regimen if RS 
intermediate-

high 

Third generation 
chemotherapy 

regimen 

AC-T + H or TCH 
+ P 

1+ Pos Nodes 
or T3 (high risk) 

Third generation 
chemotherapy 

regimen 
if RS 

intermediate 
high 

(or 4+ positive 
nodes 

irrespective of 
RS) 

Third generation 
chemotherapy 

regimen 

AC-T + H or TCH 
+P 

 

 GnRH Ana (Gonadotropin-Releasing Hormone 

Analog): GnRH analogs, used to suppress ovarian 

estrogen production via pituitary gland modulation, 

were categorized as follows: 

 GnRH Ana-negative (encoded as 0): 154 patients 

(83.24%). 

 GnRH Ana-positive (encoded as 1): 31 patients 

(16.76%). 

These agents are primarily administered to pre-

menopausal women with hormone receptor-positive 

breast cancer to induce ovarian suppression, thereby 

depriving tumors of estrogen and slowing disease 

progression ‎[51]. 

Data Visualization 

To gain an initial understanding of the characteristics 

and distributions of the features within the Iranmehr 

Hospital breast cancer patient dataset, a series of 

visualizations are presented in this subsection. These 

visualizations offer insights into the central tendencies, 

spread, and frequencies of both numerical and 

categorical variables across the entire cohort of 185 

patients. By examining these distributions, we aim to 

highlight the inherent variability within the dataset, 

which subsequent clustering analysis will explore to 

identify potential patient subgroups. The distributions of 

the numerical and categorical features within the 
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dataset are illustrated in the following figures: 

Fig. 1 illustrates the age distribution of the 185 breast 

cancer patients in the Iranmehr Hospital cohort. The 

histogram reveals a range of ages from 25 to 80 years, 

with a central tendency around the late 40s and early 

50s. The mean age of the cohort is 49.16 years (SD = 

11.09). The distribution appears slightly right-skewed, 

indicating a relatively higher frequency of older patients. 

This broad age range suggests the potential for age to be 

a differentiating factor in identifying patient subgroups 

through subsequent clustering analysis. 

 

 
Fig. 1: Distribution of age. 

Fig. 2 presents the distribution of the number of 

dissected lymph nodes, ranging from 0 to 30 (mean = 

8.19, SD = 5.85). The distribution is right-skewed, with a 

higher frequency of patients having fewer dissected 

nodes. The median was 8. This variability in the extent of 

nodal assessment might contribute to the heterogeneity 

observed in the patient population and could potentially 

be a factor in distinguishing subgroups during clustering. 

 
Fig. 2: Distribution of number of dissected nodes. 

Fig. 3 illustrates the distribution of the actual number 

of chemotherapy sessions administered to the 185 

patients, based on the current dataset and the defined 

mapping (where raw codes 0, 1, 2, 3, and 4 correspond 

to 0, 4, 6, 8, and 16 actual sessions, respectively). The 

count plot reveals that the majority of patients, 115 

(62.2%), underwent 16 actual chemotherapy sessions 

(code 4). The number of patients receiving 8 actual 

sessions (code 3) was also notable at 34 (18.4%), 

followed by 24 patients (13.0%) receiving 6 actual 

sessions (code 2), and 9 patients (4.9%) receiving 4 

actual sessions (code 1). A small subset of 3 patients 

(1.6%) received no chemotherapy (0 actual sessions; 

code 0). The mean number of actual chemotherapy 

sessions for the cohort was 12.39 (SD = 4.79). The 

median (50th percentile) number of actual sessions was 

16, and the 75th percentile was also 16 sessions. This 

distribution highlights the variability in chemotherapy 

intensity administered within the cohort, a characteristic 

that will be considered in subsequent analyses. 

 
Fig. 3: Distribution of chemotherapy session. 

Fig. 4 shows the distribution of sex, with a clear 

predominance of female patients (97.84%) compared to 

males (2.16%) 

 
Fig. 4: Distribution of sex. 

Fig. 5 illustrates the distribution of menopausal status 

within the patient cohort. The bar plot shows a higher 

proportion of pre-menopausal patients (60.0%, 111 

individuals) compared to post-menopausal patients 

(40.0%, 74 individuals). This distribution, where both 

groups are substantially represented, suggests that 

menopausal status, with its associated hormonal 

variations, could be a relevant factor in distinguishing 

potential patient subgroups in subsequent clustering 

analyses. 

 
Fig. 5: Distribution of menopausal status. 
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Fig. 6 illustrates the distribution of histological types, 

with Invasive Ductal Carcinoma (IDC) being the most 

common (90.27%). Other types, including ILC (5.95%), 

Papillary, Mucinous, Medullary, and Tubular, were less 

frequent. 

 
Fig. 6: Distribution of histological types. 

Fig. 7 shows that the majority of tumors were unifocal 

(90.81%), with multifocal tumors being less common 

(9.19%) 

 
Fig. 7: Distribution of focality. 

Fig. 8 displays the distribution of surgical margin 

status, with most patients having negative margins 

(93.51%) and a smaller proportion having positive 

margins (6.49%). 

 
Fig. 8: Distribution of marginal surgery. 

Fig. 9 illustrates the distribution of T stages, which 

categorize the size and extent of the primary tumor, 

within the patient cohort. The bar plot shows that the 

most frequent T stage is T2, accounting for 62.70% of the 

cases. T1 tumors represent the next largest group at 

21.62%, followed by T3 at 9.73% and T4 at 2.70%. TX 

(where the tumor size could not be assessed) and T0 (no 

evidence of primary tumor) are less common, at 3.24% 

and 0% respectively. 

Tis (carcinoma in situ) also has a frequency of 0%. This 

distribution highlights the predominance of T2 tumors in 

this cohort, while also showing the presence of other 

tumor sizes, which may correlate with disease 

progression and treatment approaches. 

 
Fig. 9: Distribution of T stage. 

Fig. 10 illustrates the distribution of N stages, 

indicating the extent of regional lymph node 

involvement, within the patient cohort. The bar plot 

shows that the most frequent N stage is N0 (code 2), 

representing no regional lymph node metastasis, which 

accounts for 35.68% of the cases. N1 (code 3), indicating 

metastasis to movable ipsilateral axillary lymph nodes, is 

also common at 30.27%. N2 (code 4), representing 

metastasis to fixed or matted ipsilateral axillary lymph 

nodes, occurs in 15.68% of patients, while N3 (code 5), 

indicating metastasis to infraclavicular or supraclavicular 

lymph nodes, is seen in 10.81% of cases. NX (code 1), 

where regional lymph nodes could not be assessed, is 

the least frequent at 7.57%. This distribution highlights 

the varying degrees of nodal involvement in this cohort, 

a critical factor in determining prognosis and treatment 

strategies. 

Fig. 11 illustrates the distribution of the type of nodal 

assessment performed in the patient cohort. The bar 

plot reveals that Axillary Lymph Node Dissection (ALND), 

a more extensive surgical procedure involving the 

removal of multiple lymph nodes in the armpit, was the 

most common approach (82.16%). Sentinel Lymph Node 

Biopsy (SLND), a less invasive procedure to identify and 

remove only the first few lymph nodes to which cancer 

cells are most likely to spread, was performed in 13.51% 

of the patients. A small proportion of patients (4.32%) 

did not undergo any nodal dissection. The high 

prevalence of ALND suggests that a comprehensive 

assessment of axillary lymph nodes was the standard 

practice for a majority of this cohort, potentially 

reflecting the clinical stage and risk profiles of the 

patients. 
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Fig. 10: Distribution of N stage. 

 
Fig. 11: Distribution of node dissection type. 

Fig. 12 illustrates the distribution of the type of 

surgical procedure performed in the patient cohort. The 

bar plot reveals that Mastectomy (removal of the entire 

breast) was the more frequent surgical approach, 

accounting for 65.41% of the cases. Breast-Conserving 

Surgery (BCS), which involves the removal of the tumor 

and some surrounding tissue, was performed in 34.59% 

of the patients. The significant difference in the 

frequency of these two surgical types suggests that the 

extent of surgical intervention varied considerably within 

the cohort, potentially reflecting differences in tumor 

size, stage, or patient preference, and could be a 

relevant factor in distinguishing patient subgroups. 

 
Fig. 12: Distribution of type of surgery. 

Fig. 13 illustrates the distribution of the type of 

surgeon who performed the primary surgical procedure. 

The majority of surgeries (74.05%) were performed by 

general surgeons, while oncosurgeons performed 

25.95% of the cases. This distribution may reflect the 

availability of specialists or the complexity of the surgical 

cases within the cohort. 

 
Fig. 13: Distribution of surgeon. 

Fig. 14 presents the distribution of Estrogen Receptor 

(ER) status within the patient cohort. The bar plot shows 

that the majority of patients (68.65%) had ER-positive 

tumors, while 31.35% of the tumors were ER-negative. 

Estrogen Receptor status is a critical biomarker in breast 

cancer, influencing prognosis and guiding treatment 

decisions, particularly the use of hormone therapies. The 

predominance of ER-positive tumors in this cohort 

suggests that a substantial proportion of patients may be 

candidates for endocrine treatments, and this feature is 

likely to be an important factor in defining clinically 

relevant patient subgroups. 

 
Fig. 14: Distribution of ER status. 

Fig. 15 illustrates the distribution of Progesterone 

Receptor (PR) status within the patient cohort. The bar 

plot indicates that a majority of the tumors (60.0%) were 

PR-positive, while 40.0% were PR-negative. Similar to ER, 

PR status is an important hormone receptor that 

influences breast cancer biology and response to 

endocrine therapies. The substantial proportion of PR-

positive tumors in this cohort suggests that many 

patients may benefit from hormonal treatments, and 

this feature likely contributes to the heterogeneity 

observed across different patient subgroups. 

 
Fig. 15: Distribution of PR status. 
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Fig. 16 presents the distribution of Human Epidermal 

Growth Factor Receptor 2 (HER2) status within the 

patient cohort. The bar plot indicates that a substantial 

proportion of patients (69.73%) had HER2-negative 

tumors, while 30.27% of the tumors were HER2-positive. 

HER2 is a protein that can promote the growth of cancer 

cells. In breast cancer, HER2 status is a crucial biomarker, 

impacting treatment strategies, particularly the use of 

targeted therapies like trastuzumab. The presence of 

HER2-positive tumors in a notable fraction of the cohort 

underscores the importance of HER2 testing in guiding 

personalized treatment approaches. 

 
Fig. 16: Distribution of HER2 status. 

Fig. 17 illustrates the distribution of KI67 status within 

the patient cohort. KI67 is a cellular marker associated 

with cell proliferation, and its expression level is often 

used to assess tumor aggressiveness. The bar plot shows 

that the majority of patients (62.16%) had Ki67-positive 

tumors, indicating a higher level of cell proliferation, 

while 37.84% had KI67-negative tumors. KI67 status is an 

important prognostic and predictive factor in breast 

cancer, often influencing treatment decisions, 

particularly regarding chemotherapy. The observed 

distribution suggests a considerable proportion of 

tumors in this cohort exhibit higher proliferative activity. 

 
Fig. 17: Distribution of KI67 status. 

Fig. 18 illustrates the distribution of different 

treatment schedules employed in the patient cohort. 

The most frequent approach was Surgery followed by 

Chemotherapy, Radiation, and Hormone Therapy 

(Sx>ChT>RT>HoT), accounting for 47.57% of the patients. 

The next most common schedules were Surgery 

followed by Chemotherapy and Radiation (Sx>ChT>RT) at 

21.08%, and Surgery followed by Chemotherapy and 

Hormone Therapy (Sx>ChT>HoT) at 11.35%. Less 

frequent schedules included Surgery followed by 

Chemotherapy alone (8.11%), Chemotherapy followed 

by Surgery, Radiation, and Hormone Therapy (5.95%), 

and Chemotherapy followed by Surgery and Radiation 

(4.32%). The remaining schedules, Surgery followed by 

Hormone Therapy, and Surgery followed by Radiation 

and Hormone Therapy, were relatively rare. This 

distribution highlights the variability in treatment 

strategies, reflecting clinical decision-making based on 

tumor characteristics, stage, and patient-specific factors. 

Fig. 19 illustrates the distribution of different 

chemotherapy regimens administered to the patient 

cohort. The most frequently used regimen was the Third 

Generation chemotherapy, accounting for 63.78% of the 

patients. Second Generation chemotherapy was the next 

most common at 22.16%, followed by First Generation 

chemotherapy at 12.43%. A small subset of patients 

(1.62%) did not receive any chemotherapy. The variation 

in chemotherapy regimens likely reflects differences in 

treatment protocols based on tumor characteristics, 

stage of disease, and clinical guidelines, and this feature 

is important for understanding potential differences in 

treatment response and outcomes across patient 

subgroups. 

 
Fig. 18: Distribution of treatment schedules. 

 
Fig. 19: Distribution of chemotherapy regimen. 

Fig. 20 illustrates the distribution of trastuzumab use 

within the patient cohort. Trastuzumab is a targeted 

therapy used in patients with HER2-positive breast 

cancer. The bar plot shows that the majority of patients 

(69.73%) did not receive trastuzumab, while 30.27% of 
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patients were treated with this agent. The use of 

trastuzumab is directly linked to the HER2 status of the 

tumor, and its administration in a subset of the cohort 

reflects the prevalence of HER2-positive disease and the 

application of targeted therapies in these cases. This 

feature is crucial for understanding treatment strategies 

and potential differences in outcomes based on HER2 

status. 

Fig. 21 illustrates the distribution of radiation doses 

administered to the patient cohort. The majority of 

patients (79.46%) received a conventional radiation dose 

in the range of 50-56 Gy. A notable proportion of 

patients (18.92%) did not receive radiation therapy (No 

RT), while a small fraction (1.62%) received a dose of 

42.5 Gy. Radiation therapy is a key component of breast 

cancer treatment for many patients, and the variation in 

dosage reflects differences in treatment protocols based 

on tumor stage, location, and other clinical factors. The 

predominance of the 50-56 Gy range suggests a standard 

radiation protocol for a large segment of this cohort. 

 
Fig. 20: Distribution of trastuzumab use. 

 
Fig. 21: Distribution of radiotion dose. 

Fig. 22 illustrates the distribution of whether patients 

received a radiation boost dose in addition to their 

primary radiation therapy. The bar plot shows that 

slightly more than half of the patients (52.97%) did not 

receive a boost dose, while 47.03% did. A radiation boost 

is an additional, focused dose of radiation to the tumor 

bed after the main course of radiotherapy. The decision 

to administer a boost depends on various factors, 

including the size and grade of the original tumor, 

margin status after surgery, and individual patient risk 

factors. The near-even distribution suggests that boost 

radiation was a significant consideration in the 

treatment protocols for this cohort. 

 
Fig. 22: Distribution of radiation boost dose. 

Fig. 23 illustrates the distribution of different 

hormonetherapy treatments received by the patient 

cohort. Tamoxifen was the most frequently used agent 

(38.92%), followed by patients who did not receive 

hormonetherapy (No HoT, 29.73%). Letrozole was used 

in 20.00% of the cases, and a combination of Tamoxifen 

and Letrozole was administered to 11.35% of the 

patients. Hormonetherapy is a critical adjuvant 

treatment for hormone-sensitive breast cancers (ER-

positive and/or PR-positive), and the distribution of 

different agents likely reflects clinical guidelines and 

patient characteristics, such as menopausal status and 

specific tumor biology. This feature is important for 

understanding the endocrine treatment landscape 

within this cohort. 

 
Fig. 23: Distribution of hormonetherapy type. 

Fig. 24 illustrates the distribution of Gonadotropin-

Releasing Hormone (GnRH) analog use within the patient 

cohort. GnRH analogs are primarily used in pre-

menopausal women with hormone-sensitive breast 

cancer to suppress ovarian function, thereby reducing 

estrogen production. The bar plot shows that the 

majority of patients (83.24%) did not receive GnRH 

analogs, while 16.76% did. The use of GnRH analogs in a 

subset of the cohort suggests that these patients were 

likely pre-menopausal and had hormone-sensitive 

disease where ovarian suppression was deemed a 

beneficial treatment strategy. This feature provides 

insights into the hormonal treatment approaches 

employed in this specific patient population. 
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Fig. 24: Distribution of GnRH use. 

Summary of Data Characteristics 

The dataset for this study comprises 24 distinct 

clinical, pathological, and treatment-related features 

collected from 185 breast cancer patients at Iranmehr 

Hospital. The aim of this data collection was to capture 

the heterogeneity inherent in breast cancer presentation 

and management within this specific patient population, 

thereby enabling the identification of potentially 

clinically meaningful patient subgroups through 

subsequent clustering analysis. 

The numerical features of the cohort included an age 

range of 25 to 80 years, with a mean age of 49.16 years. 

The number of dissected lymph nodes varied from 0 to 

30, with an average of 8.19, displaying a right-skewed 

distribution. Patients received between 0 and 16 

chemotherapy sessions, with a mean of 12.39 sessions 

and a majority receiving 16 sessions. 

The categorical features revealed a predominantly 

female cohort with a notable representation of both pre- 

and post-menopausal patients. Invasive Ductal 

Carcinoma was the most common histological subtype, 

and the majority of tumors were unifocal with negative 

surgical margins. The distribution of T and N stages 

indicated a prevalence of T2 and N0 classifications, 

respectively. Mastectomy was the more frequent 

surgical procedure. In terms of biomarkers, ER-positive 

and PR-positive status were more common than 

negative, while HER2-negative tumors were more 

frequent than HER2-positive. A majority of tumors 

exhibited KI67-positive status, indicating higher 

proliferative activity. The most frequently employed 

treatment schedule involved surgery followed by 

chemotherapy, radiation, and hormone therapy, with 

third generation chemotherapy being the most common 

regimen. Hormonetherapy most often involved 

Tamoxifen, and the use of GnRH analogs was relatively 

infrequent. Axillary Lymph Node Dissection was the 

predominant type of nodal assessment, and most 

surgeries were performed by general surgeons. 

The variability observed across these numerical and 

categorical features underscores the heterogeneity 

within the Iranmehr Hospital breast cancer patient 

cohort. This inherent diversity provides a strong 

rationale for employing clustering algorithms to explore 

the underlying structure of the data and to identify 

potential patient subgroups that may exhibit distinct 

patterns in their disease characteristics and treatment 

approaches. The subsequent sections of this manuscript 

will detail the application of these clustering 

methodologies to this dataset. 

Methodology 

This section details the methodological approach 

employed to discover potential knowledge and patterns 

within the breast cancer treatment data from Iranmehr 

Hospital. The data preprocessing and clustering 

algorithms were implemented in Python, utilizing 

libraries such as scikit-learn, and the computational 

experiments were conducted using Google Colaboratory. 

It encompasses the steps taken to preprocess the raw 

data, the implementation of two distinct clustering 

algorithms – K-means and Hierarchical Clustering – and 

the methods used to evaluate the resulting clusters. 

A. Data Preprocessing 

To prepare the breast cancer treatment data for 

clustering analysis, several preprocessing steps were 

undertaken. 

Handling Missing Values: The initial dataset included 

197 patient records. However, a number of these 

records had incomplete information for certain variables 

that could not be reliably obtained. To ensure data 

integrity and avoid potential bias from imputation, a 

listwise deletion approach was employed, resulting in a 

final dataset of 185 patients with complete data across 

all analyzed features.  
Feature Classification and Initial Transformation: Prior 

to further feature transformation, all column names 

were standardized by stripping leading/trailing spaces, 

replacing spaces with underscores, and removing 

specific special characters such as asterisks and periods. 

Non-breaking spaces were also converted to 

underscores, and any resulting double underscores were 

reduced to single underscores to ensure uniformity and 

facilitate programmatic access (e.g., 

df.columns.str.strip().str.replace(' ', '_').str.replace('*', 

'').str.replace('.', '').str.replace(' ', '_').str.replace('__', 

'_')). The 'patients_ID' column, serving as a unique 

identifier wes excluded from the feature set used for 

clustering. 

The remaining 24 features were systematically classified 

and then transformed based on their inherent data 

types: 

 True Numerical Features (Continuous or Discrete Count): 

These features represent measurable quantities with 

inherent order and meaningful distances between 

values. This category included: 

 Age 
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 Dissected_Nodes  

 Chemotherapy_Session  

 Ordinal Categorical Features: These features represent 

categories with a clear, inherent order, even if the 

numerical difference between categories is not 

uniform. For these features, explicit re-mapping was 

performed to preserve their ordinality: 

 T (Tumor size and extent): Original codes 1-7 

(representing TX, T0, Tis, T1, T2, T3, T4) were re-

mapped to a sequential numerical scale as 

follows: 1=TX to 0, 2=T0 to 1, 3=Tis to 2, 4=T1 to 

3, 5=T2 to 4, 6=T3 to 5, 7=T4 to 6. 

 N (Nodal involvement): Original codes 1-5 

(representing NX, N0, N1, N2, N3) were re-

mapped as: 1=NX to 0, 2=N0 to 1, 3=N1 to 2, 

4=N2 to 3, 5=N3 to 4. 

 Node_Dissection: Original codes 0-2 (representing 

No dissection, SLND, ALND) were re-mapped as: 

0=No dissection to 0, 1=SLND to 1, 2=ALND to 2. 

 Chemotherapy_Regimen: Original codes 0-3 

(representing No ChT, 1st Generation, 2nd 

Generation, 3rd Generation) already possessed 

an appropriate sequential order (0, 1, 2, 3) for 

direct use as numerical values. 

 Nominal Categorical Features: These features 

represent categories without any inherent order or 

ranking. This category included: 

 Sex 

 Menopausal_Situation 

 Histological_Type 

 Focality 

 Marginal_Surgery 

 Type_of_Surgery 

 Surgeon 

 ER 

 PR 

 HER2 

 Ki67 

 Trastuzumab 

 Treatment_Schedule 

 Radiation_dose 

 Radiation_Boost_Dose 

 Hormonetherapy 

 GnRH_Ana 

Feature Scaling: All True Numerical features and the re-

mapped Ordinal Categorical features were subjected to 

Feature Scaling using the StandardScaler from the scikit-

learn library. This standardization method transforms 

these features to have a mean of zero and a standard 

deviation of one, ensuring that they contribute equally 

to the distance calculations performed by the clustering 

algorithms and preventing features with larger scales 

from dominating the results. 

One-Hot Encoding: For the Nominal Categorical 

features, One-Hot Encoding was applied. This process 

converts each categorical variable into new binary (0 or 

1) columns, one for each unique category. This 

transformation is crucial to prevent the algorithms from 

misinterpreting arbitrary numerical labels (e.g., 1, 2, 3) 

as ordinal relationships, which would distort distance 

calculations. 

Handling Outliers: During the initial data exploration, 

some data points appeared as potential outliers based 

on the distribution of certain numerical features. 

However, upon further review and considering the 

clinical context of the data, it was determined that these 

extreme values represented genuine variations within 

the patient cohort and were not due to measurement 

errors or anomalies. Therefore, these potential outliers 

were retained in the dataset to ensure a comprehensive 

representation of the patient population. This decision 

acknowledges that the heterogeneity inherent in clinical 

data may result in values that appear statistically distant 

from the mean but are nonetheless valid observations. 

Feature Selection: For this exploratory study, all 24 

available clinical and treatment-related features were 

initially included as input for both the K-Means and 

Hierarchical Clustering algorithms. The rationale for this 

comprehensive inclusion was to provide an unbiased 

view of the patient characteristics and treatment 

modalities, allowing the algorithms to identify potential 

subgroups based on the entirety of the available 

information without imposing premature assumptions 

on feature importance. While this approach maximizes 

the breadth of initial knowledge discovery, it is 

acknowledged that no explicit feature selection or 

dimensionality reduction techniques were applied at this 

stage to specifically optimize cluster separability. The 

implications of this approach, particularly in relation to 

the observed internal validity scores, are further 

discussed in the 'Cluster Evaluation (Internal Validity)' 

subsection. 

B. Clustering-based Knowledge Discovery Approach 

To identify potential patient subgroups within the 

breast cancer treatment data, two distinct clustering 

algorithms were employed: K-Means and Agglomerative 

Hierarchical Clustering. K-Means, a widely used partitional 

clustering technique, was chosen for its efficiency and 

ability to handle relatively large datasets, making it 

suitable for the exploratory nature of this study ‎[52]. 

Hierarchical Clustering, on the other hand, was utilized to 

explore the inherent hierarchical structure of the data and 

to provide a different perspective on potential patient 

groupings ‎[53]. 

K-Means Clustering Implementation: To determine the 

optimal number of clusters (k) for the K-Means 

algorithm, three common internal validation methods 

were employed: the Elbow method ‎[54], Silhouette 
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Analysis [55], and Calinski-Harabasz Index ‎[56]. The 

performance of the clustering was evaluated across a 

range of k values from 2 to 10. 

The Elbow method (Fig. 25) visually plots the Within-

Cluster Sum of Squares (WCSS) against the number of 

clusters, aiming to identify a point where the rate of 

decrease in WCSS significantly diminishes, resembling an 

"elbow." Quantitative analysis of the steepest drops in 

WCSS indicated the most significant decreases in cluster 

heterogeneity. The largest decrease in WCSS was 

observed from K=2 to K=3 (Drop = 203.51), followed by a 

notable drop from K=3 to K=4 (Drop = 147.12), and then 

from K=6 to K=7 (Drop = 111.80). 

 
Fig. 25: Elbow method (wcss) for K-Means. 

Silhouette Analysis (Fig. 26) calculates the average 

silhouette score, which measures how similar an object 

is to its own cluster compared to other clusters. Higher 

scores indicate better-defined and more separated 

clusters. The analysis revealed that the highest average 

silhouette score was consistently achieved at K=2 

(0.1475). Other notable scores included K=5 (0.1227) and 

K=4 (0.1209). 

 
Fig. 26: Silhouette score for K-Means. 

The Calinski-Harabasz Index (Fig. 27) quantifies the 

ratio of between-cluster dispersion to within-cluster 

dispersion, with higher values typically indicating more 

dense and well-separated clusters. The results showed 

that the highest Calinski-Harabasz Index was also 

consistently achieved at K=2 (27.6996). Other high 

scores were observed at K=3 (24.5557) and K=4 

(22.4737). 

 
Fig. 27: Calinski Harabasz score for K-Means. 

Considering the combined evidence from all three 

internal validation metrics: the highest Silhouette Score 

(0.1475) and the highest Calinski-Harabasz Index 

(27.6996) are both consistently observed at K=2. 

Furthermore, the Elbow Method's steepest WCSS drop 

from K=2 to K=3 suggests a strong partitioning at K=2 or 

K=3. The overall consensus across these robust metrics 

indicates that K=2 provides the most optimal balance 

between cluster cohesion and separation for this 

dataset, supporting a parsimonious and clinically 

interpretable solution. 

The K-Means algorithm was implemented using the K-

Means class from the scikit-learn library with the 

number of clusters set to 2 (n_clusters=2). The n_init 

parameter was set to 'auto', which intelligently 

determines the number of initializations to perform, and 

a random_state of 42 was used to ensure reproducibility 

of the clustering results. The K-Means algorithm for K=2 

resulted in an average Silhouette Score of 0.1475 and a 

Calinski-Harabasz Index of 27.6996. 

Hierarchical Clustering Implementation: Agglomerative 

Hierarchical Clustering, a bottom-up approach that 

iteratively merges data points into clusters based on 

their similarity ‎[57], was also employed to identify 

potential patient subgroups and to compare the results 

with the K-Means algorithm. 

The algorithm was implemented using the 

AgglomerativeClustering class from the scikit-learn 

library ‎[58]. The preprocessed and scaled data 

(X_processed), as described in Data Preprocessing 
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Subsection, was used as input for the hierarchical 

clustering algorithm. 

To determine the optimal number of clusters (k) for 

Hierarchical Clustering, similar internal validation 

methods were applied across a range of k values (2 to 

10), complementing the visual interpretation of the 

dendrogram (Fig. 28). 

The Hierarchical Elbow Method (Fig. 29) plots the 

WCSS against k. Quantitative analysis of the steepest 

drops in WCSS indicated the most significant decreases 

in cluster heterogeneity. The analysis revealed that the 

largest decrease in WCSS was observed from K=2 to K=3 

(Drop = 209.83), followed by K=3 to K=4 (Drop = 133.75), 

and then from K=4 to K=5 (Drop = 119.43). 

Hierarchical Silhouette Analysis (Fig. 30) calculates the 

average silhouette score. The analysis indicated that the 

highest average silhouette score was achieved at K=2 

(0.1364). Other notable scores included K=5 (0.1250) and 

K=4 (0.1099). 

The Hierarchical Calinski-Harabasz Index (Fig. 31) 

quantifies the ratio of between-cluster dispersion to 

within-cluster dispersion. The results showed that the 

highest Calinski-Harabasz Index was achieved at K=3 

(20.5170). Other high scores were observed at K=2 

(20.4309) and K=4 (18.7656). 

The dendrogram (Fig. 28) visually displays the 

hierarchical merging of patient data points based on 

their feature similarity. The height of the vertical 

branches indicates the distance at which clusters were 

merged, providing insights into the structure of the 

underlying groupings. A quantitative analysis of the 

"Largest Jump" in merge distances from the dendrogram 

(which can be computed from the linked matrix, see Fig. 

28) further supports specific K values. The largest jump 

in merge distance was observed at a specific merge point 

(Jump Value: 4.13 at merge index 181), which suggests 

an Optimal K = 2. Other significant jumps included a 

Jump Value of 2.68 (at merge index 178) suggesting 

Optimal K = 5, and a Jump Value of 1.97 (at merge index 

182) suggesting Optimal K = 1. 

Considering the combined evidence from all 

hierarchical internal validation metrics and the 

dendrogram analysis: The highest Silhouette Score 

(0.1364) is at K=2, and while the highest Calinski-

Harabasz Index (20.5170) is at K=3 (though very close to 

K=2), the Elbow Method shows its steepest drop from 

K=2 to K=3, and the Largest Jump Analysis for the 

dendrogram also primarily suggests K=2. The linkage 

criterion for Hierarchical Clustering was set to 'ward', 

which aims to minimize the variance within each cluster 

being merged.  

The resulting dendrogram (Fig. 28) displays the 

hierarchical merging of patient data points. Individual 

patient labels were omitted from the dendrogram for 

visual clarity, with the x-axis representing the data 

points. The color_threshold parameter was set to 6 to 

visually distinguish clusters at a specific level of 

dissimilarity. For K=2, the hierarchical clustering yielded 

an average Silhouette Score of 0.1364 and a Calinski-

Harabasz Index of 20.4309.

 

 
Fig. 27: Generated dendrogram using the linkage and dendrogram functions. 



O. Dehghantanha et al. 

134  J. Electr. Comput. Eng. Innovations, 14(1): 117-144, 2026 

 

 
Fig. 29: Hierachical Elbow Method (WCSS).  

 

 
Fig. 30: Hierachical silhouette score. 

 

 
Fig. 31: Hierachical Calinski-Harabasz index. 

C. Cluster Evaluation (Internal Validity)  

The internal validity of the clusters obtained from 

both the K-Means and Hierarchical Clustering algorithms 

was assessed using the Silhouette Score ‎[55] and 

Calinski-Harabasz Index ‎[56]. The Silhouette Score 

measures how well each data point fits within its 

assigned cluster compared to other clusters, with values 

ranging from -1 to 1; higher scores indicate better-

defined and more separated clusters. The Calinski-

Harabasz Index quantifies the ratio of between-cluster 

dispersion to within-cluster dispersion, with higher 

values typically indicating better clustering. 

For the K-Means clustering with two clusters (k=2), 

the average Silhouette Score obtained was 0.1475, and 

the Calinski-Harabasz Index was 27.6996. This suggests 

that the K-Means clusters, while not perfectly distinct, 

exhibit a reasonable structure and a moderate degree of 

separation, particularly in the context of complex clinical 

data. 

The Hierarchical Clustering, also evaluated with two 

clusters (k=2) extracted from the dendrogram using 

Ward's linkage, yielded an average Silhouette Score of 

0.1364 and a Calinski-Harabasz Index of 20.4309. Similar 

to the K-Means result, these scores indicate clusters 

that, while showing some internal structure, still exhibit 

a degree of overlap and moderate separation. Notably, 

the K-Means clustering demonstrated slightly higher 

Silhouette and Calinski-Harabasz scores, indicating 

marginally better internal consistency, compactness, and 

separation in its two-cluster solution compared to 

Hierarchical Clustering at k=2 for this dataset. 

These internal validity scores, while confirming that 

both algorithms identified potential groupings within the 

patient data, also strongly suggest that the resulting 

clusters exhibit a level of internal overlap and may not 

be distinctly separated. This is a common and often 

expected characteristic when clustering complex, high-

dimensional real-world clinical datasets. The inherent 

heterogeneity of patient populations, the continuous 

nature of many clinical features, and the nuanced, non-

discrete boundaries often found in biological 

phenomena mean that subgroups rarely possess 

perfectly crisp or geometrically isolated boundaries that 

maximize mathematical separation. Consequently, 

Silhouette Scores, which primarily measure compactness 

and separation, can often appear lower in such contexts. 

It is crucial to interpret these scores critically: while a 

lower Silhouette score mathematically indicates some 

overlap, it does not necessarily negate the clinical utility 

or inherent validity of the identified subgroups. Instead, 

the significance of these clusters for 'knowledge 

discovery' primarily stems from the statistically 

significant differences in feature profiles observed across 

the groups (as validated by ANOVA for numerical 

features and Chi-squared tests for categorical features in 

the Results section). Furthermore, the identification of 

these potential subgroups, despite mathematical 

overlap, aligns with the understanding and observations 

of the oncology specialists who collaborated on the 

dataset's collection and interpretation, thereby 
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enhancing their perceived clinical relevance and practical 

utility. These robust and statistically significant 

differences, supported by clinical expert insight, reveal 

meaningful patterns of patient characteristics and 

treatment responses that can inform clinical hypotheses 

and guide future research. 

Results 

This section presents the outcomes of applying the K-

Means and Hierarchical Clustering algorithms to the 

preprocessed breast cancer treatment data from 

Iranmehr Hospital. The results for each clustering 

method, including the determined number of clusters, 

their sizes, and characteristic profiles based on the 

analyzed features, are detailed in the following 

subsections. Additionally, the internal validity of the 

obtained clusterings, as assessed by the Silhouette 

Score, is summarized. 

A. Clustering-based Knowledge Discovery in Breast 
Cancer Treatment Data from Iranmehr Hospital 

As described in the Methodology section, both K-

Means and Hierarchical Clustering algorithms were 

implemented to identify potential patient subgroups. 

Based on the rigorous evaluation using Elbow Method, 

Silhouette Analysis, Calinski-Harabasz Index, and for 

Hierarchical Clustering, the Largest Jump Analysis from 

the dendrogram, the optimal number of clusters was 

consistently identified as two (k=2) for both methods. 

This choice aims to provide a robust and clinically 

interpretable stratification of the patient cohort. 

B. K-Means Clustering Results 

The K-Means algorithm, with the number of clusters 

set to two, partitioned the patient population into two 

distinct clusters with varying sizes. The distribution of 

patients across the two clusters was as follows: Cluster 0 

(n=62) and Cluster 1 (n=123). 

An analysis of the numerical and categorical features 

within each cluster revealed differentiating characteristic 

profiles: 

 Cluster 0 (n=62): This cluster, comprising 

approximately 33.5% of the cohort, is primarily 

characterized by patients with a lower mean number 

of dissected lymph nodes (Mean = 4.77 ± 5.11) and 

fewer chemotherapy sessions (Mean = 7.16 ± 3.70). 

These patients also tended to have lower ordinal N-

stages (Mean N = 1.34 ± 0.99) and less extensive 

node dissection (Mean Node_Dissection = 1.47 ± 

0.72). In terms of nominal features, this cluster is 

entirely Female (100.0%). Menopausal Situation is 

balanced (50.0% Post-menopausal vs. 50.0% Pre-

menopausal). Histological Type is predominantly IDC 

(83.87%), with ILC accounting for 11.29%. The 

majority underwent Total Mastectomy (66.13%) 

performed by General Surgeons (75.81%). ER-

Positive status is high (75.81%), while HER2-Negative 

(66.13%) and Trastuzumab-Negative (66.13%) are 

more common. High percentages are observed for 

Conventional Radiation Dose (64.52%) and Negative 

Radiation Boost Dose (67.74%). Tamoxifen is the 

most common Hormone Therapy (37.10%). 

 Statistically Significant Differentiating Features (p 

< 0.05 from ANOVA/Chi-squared): Age 

(p=0.0172), Dissected_Nodes (p=0.0000), 

Chemotherapy_Session (p=0.0000), N (Nodal 

involvement, p=0.0000), Node_Dissection 

(p=0.0000), Chemotherapy_Regimen (p=0.0000), 

Treatment_Schedule (p=0.0082), Radiation_dose 

(p=0.0016), and Radiation_Boost_Dose 

(p=0.0069). 

 Cluster 1 (n=123): This larger cluster, encompassing 

approximately 66.5% of the cohort, presents a 

contrasting profile with a higher mean number of 

dissected lymph nodes (Mean = 9.91 ± 5.44) and 

more intensive chemotherapy sessions (Mean = 

15.02 ± 2.63). Correspondingly, these patients 

showed higher ordinal N-stages (Mean N = 2.13 ± 

1.08) and more extensive node dissection (Mean 

Node_Dissection = 1.93 ± 0.25, closer to ALND). 

Regarding nominal features, this cluster is also 

predominantly Female (96.75%), with a higher 

proportion of Pre-menopausal patients (65.04%) 

compared to Post-menopausal (34.96%). Histological 

Type is predominantly IDC (93.50%). Total 

Mastectomy (65.04%) by General Surgeons (73.17%) 

is common. ER-Positive (65.04%) and PR-Positive 

(60.16%) statuses are prevalent, while HER2-

Negative (71.54%) and Trastuzumab-Negative 

(71.54%) are common. Higher percentages are 

observed for Conventional Radiation Dose (86.99%) 

and Positive Radiation Boost Dose (54.47%). 

Tamoxifen is the most common Hormone Therapy 

(39.84%). 
 Statistically Significant Differentiating Features (p < 

0.05 from ANOVA/Chi-squared): Age (p=0.0172), 

Dissected_Nodes (p=0.0000), 

Chemotherapy_Session (p=0.0000), N (Nodal 

involvement, p=0.0000), Node_Dissection 

(p=0.0000), Chemotherapy_Regimen (p=0.0000), 

Treatment_Schedule (p=0.0082), Radiation_dose 

(p=0.0016), and Radiation_Boost_Dose 

(p=0.0069). 

This analysis reveals that K-Means clustering primarily 

differentiates patients based on their age, the extent of 

nodal involvement (Dissected_Nodes, N, 

Node_Dissection), and the intensity of systemic 

treatments (Chemotherapy_Session, 

Chemotherapy_Regimen, Treatment_Schedule, 

Radiation_dose, Radiation_Boost_Dose). 
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C. Hierarchical Clustering Results 

Applying Agglomerative Hierarchical Clustering with 

Ward's linkage and extracting two clusters (k=2) from 

the dendrogram (Fig. 28) resulted in the following cluster 

sizes: Cluster 0 (n=139) and Cluster 1 (n=46). 

Analyzing the mean of the numerical and re-mapped 

ordinal features for these hierarchical clusters, and the 

frequency distributions of the nominal features, 

provided insights into their characteristics: 

 Cluster 0 (n=139): This larger cluster, comprising 

approximately 75.1% of the cohort, is characterized 

by a mean age of 47.05 ± 10.51 years. These patients 

tend to have a higher mean number of dissected 

nodes (9.37 ± 5.56), receive more chemotherapy 

sessions (mean 13.81 ± 3.90), and show higher N-

stage (mean N = 2.01 ± 1.06) and Node_Dissection 

(mean 1.95 ± 0.22, closer to ALND). In terms of 

nominal features, this cluster is predominantly 

Female (97.12%). It has a higher proportion of Pre-

menopausal patients (69.78%) compared to Post-

menopausal (30.22%). Histological Type is 

overwhelmingly IDC (93.53%). The majority 

underwent Total Mastectomy (64.03%) by General 

Surgeons (76.26%). ER-Positive (63.31%), PR-Positive 

(57.55%), HER2-Negative (71.94%), and 

Trastuzumab-Negative (71.94%) statuses are 

common. Conventional Radiation Dose (84.17%) is 

prevalent, and Positive Radiation Boost Dose 

(52.52%) is slightly more common than Negative. 

Tamoxifen is the most common Hormone Therapy 

(39.57%). GnRH Analog use is largely Negative 

(82.01%).  
 Statistically Significant Differentiating Features (p < 

0.05): Age (p=0.0000), Dissected_Nodes 

(p=0.0000), Chemotherapy_Session (p=0.0000), N 

(Nodal involvement, p=0.0013), Node_Dissection 

(p=0.0000), Chemotherapy_Regimen (p=0.0000), 

Menopausal_Situation (p=0.0000), ER (p=0.0112), 

Treatment_Schedule (p=0.0017), Radiation_dose 

(p=0.0047), Radiation_Boost_Dose (p=0.0151), 

Hormonetherapy (p=0.0055). 

 Cluster 1 (n=46): This smaller cluster, approximately 

24.9% of the cohort, presents a contrasting profile 

with patients being noticeably older on average 

(Mean Age = 55.54 ± 10.43 years). They tend to have 

a lower mean number of dissected lymph nodes 

(4.61 ± 5.26) and significantly fewer chemotherapy 

sessions (Mean = 8.09 ± 4.69). Their N-stage (mean 

N = 1.41 ± 1.17) and Node_Dissection (mean 1.26 ± 

0.74, closer to SLND/No Dissection) also reflect less 

extensive nodal involvement and dissection. 

Regarding nominal features, this cluster is also 

entirely Female (100.0%). It shows a higher 

proportion of Post-menopausal patients (69.57%) 

compared to Pre-menopausal (30.43%). Histological 

Type is predominantly IDC (80.43%), but with a 

notably higher proportion of ILC (13.04%) than 

Cluster 0. The majority underwent Total Mastectomy 

(69.57%) by General Surgeons (67.39%). ER-Positive 

(84.78%) and PR-Positive (67.39%) statuses are 

highly prevalent. HER2-Negative (63.04%) is still 

common, but a higher proportion are HER2-Positive 

(36.96%) and Trastuzumab-Positive (36.96%). 

Conventional Radiation Dose (65.22%) is common, 

but a higher percentage received No RT (34.78%) 

compared to Cluster 0, and Negative Radiation Boost 

Dose (69.57%) is more common. Tamoxifen (36.96%) 

and Letrozole (32.61%) are common Hormone 

Therapies. GnRH Analog use is largely Negative 

(86.96%). 
 Statistically Significant Differentiating Features (p < 

0.05): Age (p=0.0000), Dissected_Nodes 

(p=0.0000), Chemotherapy_Session (p=0.0000), N 

(Nodal involvement, p=0.0013), Node_Dissection 

(p=0.0000), Chemotherapy_Regimen (p=0.0000), 

Menopausal_Situation (p=0.0000), ER (p=0.0112), 

Treatment_Schedule (p=0.0017), Radiation_dose 

(p=0.0047), Radiation_Boost_Dose (p=0.0151), 

Hormonetherapy (p=0.0055). 

This analysis reveals that Hierarchical Clustering's 

differentiation primarily revolves around Age, 

Menopausal_Situation, nodal involvement 

(Dissected_Nodes, N, Node_Dissection), and the 

intensity/type of systemic treatments 

(Chemotherapy_Session, Chemotherapy_Regimen, 

Treatment_Schedule, Radiation_dose, 

Radiation_Boost_Dose, Hormonetherapy, ER). 

D. Comparison of K-Means and Hierarchical Clustering 

Results 

Comparing the outcomes of the K-Means and 

Hierarchical Clustering algorithms reveals both areas of 

substantial agreement and notable differences in the 

identified patient subgroups. Both methods, when 

constrained to produce two clusters, succeeded in 

partitioning the patient cohort based on distinct clinical 

characteristics. 

To provide a detailed quantitative assessment of the 

patient archetypes identified by both methods, Table 5 

presents a side-by-side analysis of key demographic, 

pathological, and treatment features for the two clusters 

derived from each algorithm. 

This quantitative comparison, presented in Table 5, 

reveals that while the overall patient assignment 

agreement between the two distinct clustering solutions 

was moderate (as quantified by an Adjusted Rand Index 

(ARI) of 0.4697), both algorithms consistently identified 

groups sharing fundamental clinical characteristics. 

For instance, K-Means Cluster 0 (n=62) is 
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characterized by lower mean dissected lymph nodes, 

fewer chemotherapy sessions, and lower N-stages. 

Conversely, K-Means Cluster 1 (n=123) shows a 

contrasting profile with a higher mean number of 

dissected lymph nodes, more intensive chemotherapy 

sessions, and higher N-stages. Notably, both K-Means 

clusters are predominantly female, with varying 

proportions of menopausal status and histological types, 

but share high rates of ER-positive status. 

Similarly, the Hierarchical Clustering algorithm also 

partitioned the cohort into two clusters: Cluster 0 

(n=139) and Cluster 1 (n=46). Hierarchical Cluster 0 

largely aligns with the higher intensity/severity profile, 

showing higher mean dissected nodes and 

chemotherapy sessions. Hierarchical Cluster 1 presents a 

profile with a lower mean number of dissected lymph 

nodes and fewer chemotherapy sessions. 

The statistical tests confirm several key differentiating 

features. For K-Means, Age, Dissected_Nodes, 

Chemotherapy_Session, N, Node_Dissection, 

Chemotherapy_Regimen, Treatment_Schedule, 

Radiation_dose, and Radiation_Boost_Dose were all 

found to be statistically significant differentiators (P < 

0.05). For Hierarchical Clustering, in addition to all the 

features significant for K-Means (except for Age, which 

showed a stronger P-value, and N, which showed a 

slightly weaker P-value, but still significant), 

Menopausal_Situation, ER Status, and Hormone Therapy 

also emerged as statistically significant differentiating 

features (P < 0.05). 

 
Table 5: Quantitative comparison of identified patient subgroups by K-Means and hierarchical clustering 

Feature 
K-Means Cluster 0 

(n=62) 

K-Means Cluster 1 

(n=123) 

Hierarchical Cluster 0 
(n=139) 

Hierarchical Cluster 1 
(n=46) 

Mean Age 51.89 47.79 47.05 55.54 

Mean Dissected Nodes 
4.77  

(Lower) 

9.91  

(Higher) 

9.37  

(Higher) 

4.61  

(Lower) 

Mean N Stage 
1.34  

(Lower) 

2.13  

(Higher) 

2.01  

(Higher) 

1.41  

(Lower) 

Mean Node Dissection 
1.47 

(Less Extensive) 

1.93  

(More Extensive, closer 
to ALND) 

1.95  

(More Extensive, closer 
to ALND) 

1.26 

(Less Extensive, closer to 
SLND) 

Mean Chemotherapy 
Sessions 

7.16  

(Fewer) 

15.02  

(More Intensive) 

13.81  

(More Intensive) 

8.09  

(Fewer) 

Mean Chemotherapy 
Regimen 

1.65  

(Lower Ordinal) 

2.90  

(Higher Ordinal) 

2.73  

(Higher Ordinal) 

1.74  

(Lower Ordinal) 

Treatment Schedule 

40.32% 
Sx>ChT>RT>HoT;  

varied schedules 

51.22% Sx>ChT>RT>HoT;  

varied schedules 

48.20% 
Sx>ChT>RT>HoT;  

varied schedules 

45.65% Sx>ChT>RT>HoT;  

varied schedules 

Radiation Dose 
64.52% Conventional 

RT 
86.99% Conventional RT 84.17% Conventional RT 

34.78% No RT / 

 65.22% Conventional RT 

Radiation Boost Dose 67.74% Negative 54.47% Positive 52.52% Positive 69.57% Negative 

Post-Menopausal 50.00% 34.96% 30.22% 69.57% 

ER-Positive 75.81% 65.04% 63.31% 84.78% 

HER2-Positive 33.87% 28.46% 28.06% 36.96% 

Ki67-Negative 43.55% 34.96% 38.13% 36.96% 

Hormone Therapy 
37.10% Tamoxifen 

(Most Common) 

39.84% Tamoxifen 

(Most Common) 

39.57% Tamoxifen 

(Most Common) 

36.96% Tamoxifen / 

32.61% Letrozole 

 

However, the quantitative analysis also highlights 

notable discrepancies in specific feature distributions 

between the conceptually similar clusters, underscoring 

the influence of the algorithmic approach on patient 

stratification in complex data. For example, while K-

Means differentiation for nominal features primarily 

revolved around Treatment_Schedule, Radiation_dose, 

and Radiation_Boost_Dose, Hierarchical Clustering 

showed a broader differentiation across 

Menopausal_Situation, ER, and Hormonetherapy as well. 

This suggests that Hierarchical Clustering might be more 

sensitive to demographic and biomarker-related nuances 

in defining its groups. 

Furthermore, despite similar overall profiles, the 

specific compositions and sizes of the most comparable 

clusters can differ. For instance, the older age and 

predominantly post-menopausal status of Hierarchical 

Cluster 1 (Mean Age = 55.54 years, 69.57% Post-

menopausal) create a more distinct demographic profile 

than what is primarily driven by age in K-Means. This 

further illustrates the differing sensitivities of the two 

algorithms to various feature combinations, leading to 

unique patient groupings not perfectly mirrored across 

methods. 
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As discussed in the 'Cluster Evaluation (Internal 

Validity)' subsection, the internal validity of the two-

cluster solutions was assessed using key metrics 

including the Silhouette Score and the Calinski-Harabasz 

Index. The relatively low values obtained for both 

methods (e.g., K-Means Silhouette Score of 0.1475 and 

Hierarchical Silhouette Score of 0.1364) are indicative of 

inherent overlap and non-distinct separation within 

these patient groupings. This underscores that while 

both algorithms identified potential groupings, the 

identified patterns are not perfectly distinct, and 

interpretations should be cautious. The hierarchical 

structure revealed by the dendrogram offers a different 

perspective compared to the discrete clusters produced 

by K-Means. While we chose to cut the dendrogram at a 

level yielding two clusters for comparison, the visual 

representation suggests that other numbers of clusters 

might also be meaningful and could capture different 

aspects of the data's underlying structure. 

Discussion 

This study successfully employed K-Means and 

Agglomerative Hierarchical Clustering algorithms to 

identify potential patient subgroups within the breast 

cancer treatment dataset from Iranmehr Hospital. Based 

on rigorous internal validation metrics (Elbow Method, 

Silhouette Analysis, Calinski-Harabasz Index, and Largest 

Jump Analysis for Hierarchical Clustering), the optimal 

number of clusters was consistently determined to be 

two (k=2) for both methods, providing a robust and 

clinically interpretable stratification of the patient 

cohort. 

The K-Means algorithm partitioned the patient 

population into two distinct clusters: Cluster 0 (n=62, 

33.5% of cohort) and Cluster 1 (n=123, 66.5% of cohort). 

Cluster 0 is predominantly characterized by patients with 

a lower mean number of dissected lymph nodes (Mean = 

4.77 ± 5.11), fewer chemotherapy sessions (Mean = 7.16 

± 3.70), and generally lower ordinal N-stages (Mean N = 

1.34 ± 0.99), suggesting a less aggressive disease profile 

or less intensive treatment approach. Conversely, Cluster 

1 presented a contrasting profile, indicative of more 

advanced disease or intensive treatment, with a higher 

mean number of dissected lymph nodes (Mean = 9.91 ± 

5.44), more intensive chemotherapy sessions (Mean = 

15.02 ± 2.63), and higher ordinal N-stages (Mean N = 

2.13 ± 1.08). Both K-Means clusters showed high rates of 

ER-positive status, with HER2-negative and 

Trastuzumab-negative statuses being more common. 

Statistically significant differentiators for K-Means 

clusters (P < 0.05) included Age, Dissected_Nodes, 

Chemotherapy_Session, N, Node_Dissection, 

Chemotherapy_Regimen, Treatment_Schedule, 

Radiation_dose, and Radiation_Boost_Dose. 

Similarly, the Hierarchical Clustering algorithm also 

partitioned the cohort into two clusters: Cluster 0 

(n=139, 75.1% of cohort) and Cluster 1 (n=46, 24.9% of 

cohort). Hierarchical Cluster 0 largely aligned with the K-

Means "higher intensity/severity" profile, exhibiting 

higher mean dissected nodes (9.37 ± 5.56) and more 

chemotherapy sessions (mean 13.81 ± 3.90), along with 

higher N-stages. In contrast, Hierarchical Cluster 1 

presented a distinct profile, characterized by patients 

who were noticeably older on average (Mean Age = 

55.54 ± 10.43 years) and had a lower mean number of 

dissected lymph nodes (4.61 ± 5.26) and significantly 

fewer chemotherapy sessions (Mean = 8.09 ± 4.69). This 

cluster also showed a higher proportion of Post-

menopausal patients (69.57%), a higher percentage of 

ER-Positive (84.78%) and HER2-Positive (36.96%) 

statuses compared to Hierarchical Cluster 0, and a 

notable percentage receiving no radiation therapy. 

Statistically significant differentiators for Hierarchical 

clusters (P < 0.05) encompassed all those for K-Means, 

with the crucial addition of Menopausal_Situation, ER 

Status, and Hormonetherapy, highlighting a broader set 

of discriminating factors. 

A quantitative comparison of the two distinct 

clustering solutions revealed a moderate overall patient 

assignment agreement, as quantified by an Adjusted 

Rand Index (ARI) of 0.4697. This score, significantly 

above random chance, indicates that while the 

algorithms identified a shared fundamental partitioning 

of the patient population, they also exhibited differences 

in specific data point assignments or cluster boundary 

definitions. Both algorithms consistently highlighted the 

importance of nodal involvement (Dissected_Nodes, N, 

Node_Dissection) and the intensity/type of systemic 

treatments (Chemotherapy_Session, 

Chemotherapy_Regimen, Treatment_Schedule, 

Radiation_dose, Radiation_Boost_Dose) as key 

differentiating factors. However, the Hierarchical 

Clustering method demonstrated a more pronounced 

ability to differentiate based on demographic and 

biomarker features such as Menopausal_Situation, ER 

Status, and Hormone Therapy, which were less 

statistically significant in the K-Means solution. This 

suggests that Hierarchical Clustering may be more 

sensitive to these nuanced patient characteristics, 

leading to a cluster (Hierarchical Cluster 1) that is more 

distinctly defined by age and menopausal status. The 

differing cluster sizes between the two methods further 

reflect these algorithmic sensitivities. 

As discussed in the 'Cluster Evaluation (Internal 

Validity)' subsection, the internal validity scores for the 

two-cluster solutions (K-Means Silhouette Score = 

0.1475; Hierarchical Silhouette Score = 0.1364) were 

relatively low. These values, while confirming the 

identification of potential groupings, suggest a degree of 
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inherent overlap and non-distinct separation within the 

clusters. This is a common and often expected 

characteristic when clustering complex, high-

dimensional real-world clinical datasets, where patient 

heterogeneity and the continuous nature of clinical 

variables rarely result in perfectly isolated subgroups. 

Despite this, the observed robust and statistically 

significant differences in feature profiles across the 

identified clusters, validated by ANOVA and Chi-squared 

tests, combined with insights from collaborating 

oncology specialists, suggest the clinical relevance and 

practical utility of these groupings for knowledge 

discovery. 

A. Clinical Relevance 

The identification of two distinct patient subgroups 

within the breast cancer cohort at Iranmehr Hospital 

holds significant implications for understanding disease 

heterogeneity and advancing personalized treatment 

strategies. The characterization of these clusters, 

grounded in statistically significant differentiating 

features as detailed in Table 5, provides valuable insights 

for generating clinically relevant hypotheses.  

Cluster 0 (K-Means and Hierarchical alignment in 

general concept): This cluster, broadly defined by higher 

nodal involvement and intensive systemic treatments, 

likely represents patients with a more aggressive disease 

presentation or those requiring more comprehensive 

therapeutic approaches. For these patients, the clusters 

suggest a need for vigilant follow-up, potentially more 

aggressive adjuvant therapies, or consideration for novel 

treatment regimens to mitigate the risk of recurrence. 

Cluster 1 (K-Means and Hierarchical alignment in 

general concept, with Hierarchical showing a unique 

subset): This cluster, generally characterized by lower 

nodal involvement and less intensive systemic 

treatments, may represent patients with a more 

favorable prognosis or those for whom de-escalation of 

therapy could be considered, thereby minimizing 

unnecessary exposure to treatment-related toxicities 

and improving quality of life. 

Crucially, Hierarchical Cluster 1 (the older, 

predominantly post-menopausal subgroup with lower 

disease intensity but distinct biomarker profiles) 

highlights a particularly relevant patient archetype. 

Understanding the specific factors influencing treatment 

decisions and outcomes in this older cohort, and the 

implications of their hormonal and HER2 statuses, could 

inform more tailored management guidelines for 

geriatric breast cancer patients. This subgroup's unique 

profile suggests a potential for distinct therapeutic 

considerations that go beyond general age-based 

guidelines. 

The identified stratifications provide a data-driven 

foundation for generating specific clinical hypotheses. 

For example, correlating these clusters with long-term 

patient outcomes (e.g., disease-free survival, overall 

survival) in future prospective studies is essential. Such 

validation could establish the prognostic or predictive 

value of these subgroups, ultimately guiding 

personalized treatment decisions and patient counseling 

based on a more granular understanding of their clinical 

and biological profiles. 

B. Strengths and Limitations 

A key strength of this study lies in the development of 

a dedicated dataset for breast cancer patients at 

Iranmehr Hospital, collected with the direct 

collaboration and expertise of two oncology specialists. 

This collaboration ensures the clinical relevance and 

accuracy of the included features, reflecting real-world 

data and treatment practices within this specific medical 

center. The subsequent application of K-Means and 

Hierarchical Clustering to this local dataset allowed for 

the identification of patient subgroups specific to this 

population, potentially capturing nuances missed in 

broader, more heterogeneous datasets. Furthermore, 

the statistical validation of feature differences across the 

identified clusters using ANOVA and Chi-squared tests 

adds rigorous scientific support to the interpretation of 

these subgroups. The consistent identification of two 

optimal clusters across multiple internal validation 

metrics (Elbow method, Silhouette analysis, Calinski-

Harabasz index, and Largest Jump analysis) and the 

moderate Adjusted Rand Index (ARI) of 0.4697 between 

the two distinct clustering solutions further strengthens 

the robustness and interpretability of these findings, 

indicating a stable underlying data structure. 

Despite these strengths, several limitations must be 

acknowledged. Firstly, the study is based on a 

retrospective dataset from a single institution, which 

inherently limits the generalizability of the findings to 

other populations or healthcare settings with different 

treatment protocols and patient demographics. While 

the local specificity can be a strength for understanding 

patterns within Iranmehr Hospital, it necessitates 

caution when extrapolating these findings. 

Secondly, while k=2 was consistently identified as the 

optimal number of clusters based on internal validity 

metrics, the choice of 'k' inherently involves a degree of 

subjectivity in unsupervised learning. Exploring 

alternative 'k' values or employing different clustering 

algorithms might reveal alternative or more clinically 

relevant patient segmentations, although for this study, 

the two-cluster solution offers a parsimonious and 

interpretable stratification. 

Thirdly, the relatively low Silhouette Scores for both 

K-Means (0.1475) and Hierarchical Clustering (0.1364) 

suggest a degree of overlap and heterogeneity within 

the identified clusters, indicating that the boundaries 
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between these subgroups may not be sharply defined. 

This is often attributable to the inherent complexity and 

continuous nature of clinical variables in real-world 

patient data, where subgroups rarely form perfectly 

discrete or geometrically isolated clusters. 

Fourthly, the observed imbalance in the distribution 

of certain treatment combinations reflects the real-

world clinical practices at this institution. While this is an 

inherent characteristic of the data, future analyses could 

explore the impact of this imbalance on the clustering 

results and consider using techniques specifically 

designed for imbalanced datasets, if deemed necessary. 

Fifthly, consistent with the methodology, no explicit 

feature selection or dimensionality reduction techniques 

were applied at this stage to specifically optimize cluster 

separability. While this approach provided an unbiased 

view of patient characteristics, it is possible that such 

techniques could enhance cluster compactness and 

separation.  

Finally, while we have discussed potential clinical 

relevance, this study is primarily descriptive. Further 

research correlating these clusters with long-term 

clinical outcomes (e.g., survival, recurrence) is needed to 

validate their prognostic or predictive value and to 

establish their utility in guiding treatment decisions. The 

cross-sectional nature of the data also limits our ability 

to infer temporal relationships or the evolution of 

treatment strategies over time. 

C. Future Work 

Several promising avenues for future research 

emerge from this study, building upon the identified 

two-cluster patient stratifications. Firstly, to address the 

limitation of single-center data, it would be invaluable to 

validate the identified patient subgroups in larger, 

potentially multi-center datasets. To facilitate this while 

respecting data privacy, future research could explore 

the application of Federated Learning techniques. This 

approach would allow for collaborative analysis across 

institutions without the need to centralize sensitive 

patient information.  

Secondly, future work should explore the application 

of a wider range of clustering algorithms beyond K-

Means and Hierarchical Clustering, including density-

based (e.g., DBSCAN), distribution-based (e.g., Gaussian 

Mixture Models), and other partitioning methods. 

Comparing the results of these algorithms and 

evaluating their performance using appropriate internal 

and external validation metrics could lead to a more 

robust and clinically meaningful patient segmentation.  

Thirdly, given the potential clinical relevance 

suggested by the characteristics of the identified two 

clusters, a critical next step is to correlate these clusters 

with long-term clinical outcomes such as disease-free 

survival, overall survival, and 5-year survival rates. This 

would provide strong evidence for the prognostic value 

of these subgroups and their potential utility in guiding 

personalized treatment decisions and patient 

counseling.  

Fourthly, future studies could investigate the 

integration of other relevant data sources, such as 

detailed molecular and genomic information, imaging 

data, and patient-reported outcomes, to further refine 

the identified clusters and gain a more comprehensive 

understanding of the underlying biological and clinical 

characteristics of these patient subgroups.  

Fifthly, to address the challenge of feature 

dimensionality and potentially enhance cluster 

separability, future analyses will rigorously investigate 

various feature selection and dimensionality reduction 

techniques. Methods such as Principal Component 

Analysis (PCA) for linear dimensionality reduction, 

Recursive Feature Elimination (RFE), or filter methods 

based on statistical tests (e.g., correlation-based feature 

selection) will be explored to identify the most 

informative and discriminative features for patient 

stratification.  

This systematic approach is anticipated to reduce 

noise, improve computational efficiency, and potentially 

yield more compact and well-separated clusters, thereby 

further refining the interpretability of identified patient 

subgroups.  

Finally, future research could explore the implications 

of the inherent treatment imbalance in the dataset on 

the identified clusters and investigate whether 

alternative clustering approaches or specific techniques 

for imbalanced data analysis could provide further 

insights. Sensitivity analyses on the clustering 

parameters would also be beneficial to assess the 

robustness of the identified clusters. 

Conclusion 

This study effectively utilized K-Means and 

Agglomerative Hierarchical Clustering to identify two 

distinct potential patient subgroups of breast cancer 

patients within the Iranmehr Hospital dataset, revealing 

significant stratifications based on their clinical and 

treatment characteristics.  

Through rigorous internal validation, k=2 was 

consistently identified as the optimal number of clusters 

for both methodologies. The identified clusters exhibited 

statistically significant differences across key features 

such as age, chemotherapy intensity, nodal involvement, 

menopausal status, and ER expression, suggesting 

underlying heterogeneity in the patient population and 

treatment approaches. The moderate agreement 

between the two clustering methods, quantified by an 

Adjusted Rand Index of 0.4697, indicates a shared 

foundational partitioning while also highlighting areas of 
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distinct algorithmic sensitivity. 

While the findings offer valuable initial insights into 

patient stratification within this specific clinical context, 

the study's limitations, including its single-center, 

retrospective nature, and the inherent complexity of 

clustering real-world clinical data, necessitate further 

investigation.  

Nevertheless, the identified two clusters provide a 

data-driven foundation for future research aimed at 

understanding their clinical relevance, particularly in 

terms of long-term treatment outcomes and potential 

for personalized medicine strategies. 

Future work should focus on validating these findings 

in larger, potentially multi-center cohorts, and exploring 

the utility of alternative clustering algorithms and 

feature selection techniques, including dimensionality 

reduction methods. To facilitate analysis across multiple 

institutions while preserving data privacy, future 

research could also explore the application of Federated 

Learning techniques. Importantly, future studies should 

correlate the identified patient subgroups with crucial 

clinical endpoints such as recurrence rates and survival 

outcomes. Integrating multi-omics data could further 

refine our understanding of these patient stratifications 

and pave the way for more tailored and effective breast 

cancer management. 
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AI Artificial Intelligence 

ALND Axillary Lymph Node Dissection 

ARI Adjusted Rand Index 

BC Breast Cancer 
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ChT Chemotherapy 
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EGFR Epidermal Growth Factor 

Receptor 

ER Estrogen Receptor 
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Analog 
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HoT Hormone Therapy 
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KI67 Ki67 (nuclear protein marker of 
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ML Machine Learning 

PCA Principal Component Analysis 

PR Progesterone Receptor 

RFE Recursive Feature Elimination 

RT Radiation 

Sx Surgery 

SLND Sentinel Lymph Node Biopsy 

SVM Support Vector Machines 
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TNBC Triple-Negative Breast Cancer 
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WCSS Within-Cluster Sum of Squares 
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