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Background and Objectives: Understanding the heterogeneity of breast cancer is crucial
for improving treatment strategies. This study investigates the application of K-Means and
Hierarchical Clustering to a local dataset of breast cancer patients from Iranmehr Hospital,
Birjand, Iran, with the primary goal of identifying potential patient subgroups based on
their clinical and treatment characteristics for knowledge discovery. The potential of these
subgroups to inform future research on personalized treatment approaches is explored.
Methods: A retrospective dataset comprising pathological and clinical information was
analyzed using K-Means and Agglomerative Hierarchical Clustering to identify patient
subgroups. The optimal number of clusters was consistently determined to be two (k=2)
for both methods based on rigorous internal validation metrics (Elbow Method, Silhouette
Analysis, Calinski-Harabasz Index, and Largest Jump Analysis for Hierarchical Clustering).
Statistical tests (ANOVA and Chi-squared) were employed to assess significant differences
in features across the identified clusters from both K-Means and Hierarchical analyses,
providing insights into the key factors differentiating these groups. Internal cluster validity
was assessed using Silhouette Score and Calinski-Harabasz Index.

Results: The K-Means analysis identified two clusters exhibiting significant differences in
characteristics such as age, chemotherapy session intensity, menopausal status, nodal
involvement, and biomarker expression (ER, PR, HER2, Ki67). The Hierarchical Clustering
also yielded two clusters with varying characteristics, and a comparison between the two
methods highlighted both similarities and differences in the identified patient
stratifications. The overall agreement between K-Means and Hierarchical Clustering was
quantified by an Adjusted Rand Index (ARI) of 0.4697.

Conclusion: Both K-Means and Hierarchical Clustering effectively revealed potential
patient subgroups within the studied dataset, highlighting the heterogeneity of breast
cancer presentation and treatment at a local level These clusters exhibited statistically
significant differences across key clinical and treatment features. Future research is
needed to validate these findings in larger, multi-center studies, explore the clinical
significance of these subgroups in terms of treatment outcomes, and compare the
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effectiveness of different clustering methodologies for this purpose.
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Introduction

Cancer is among the most significant contributors to
early death globally, potentially surpassing
cardiovascular diseases in terms of prevalence and
mortality trends in modern society [1], [2]. Recent data
indicates that female breast cancer has overtaken lung
cancer as the primary form of cancer globally, with
approximately 2.3 million new cases reported in 2020,
constituting 11.7% of all cancer diagnoses. It is also the
fifth most fatal type of cancer worldwide, with 685,000
deaths. Among women, breast cancer is responsible for
one-quarter of all cancer diagnoses and one-sixth of all
cancer deaths. It is the leading cause of cancer incidence
in most countries (159 out of 185) and cancer mortality
in 110 countries [3].

Likewise, several risk factors have been strongly
associated with increased breast cancer incidence,
including obesity [4], sedentary lifestyles [5], diets high
in protein—particularly those involving red meat treated
with exogenous hormones or carcinogenic
compounds [6]—alcohol consumption [7], tobacco
use [8], and the use of oral contraceptives [9].

The different complexities involved in understanding
cancer, selecting appropriate treatment methods,
estimating survival rates, and predicting recurrence
create numerous challenging questions for researchers.
Clustering techniques offer a data-driven approach to
address these complexities by identifying intrinsic
groupings within patient data based on similarities in
their features. This study seeks to investigate the
application of unsupervised learning techniques,
specifically K-Means and Hierarchical Clustering, to a
novel local dataset of breast cancer patients from
Iranmehr Hospital, Birjand, Iran. The primary goal is to
uncover potential patient subgroups based on their
clinical and treatment characteristics, thereby facilitating
knowledge discovery relevant to this specific population.

This study aims to: 1) Analyze a newly collected local
dataset from breast cancer patients at Iranmehr Hospital
in Birjand, Iran, using their pathological and clinical
information. 2) Employ K-Means and Hierarchical
Clustering algorithms to perform knowledge discovery
and identify potential patient subgroups within this
dataset. The innovation of this research lies in the
application of these well-established clustering methods
to a unique, local dataset to reveal specific patterns of
patient stratification relevant to this Iranian population.
This approach can contribute to a better understanding
of breast cancer heterogeneity within this context,
potentially informing future research on tailored
treatment strategies. The main contributions of this
study are as follows:

1- Collecting a new local dataset from breast cancer

patients using the pathological and clinical
information of the patients under treatment from

Iranmehr Hospital of Birjand, Khorasan-e-jonoubi,
Iran.

2- Performing a knowledge discovery analysis using K-
Means and Hierarchical Clustering to extract useful
knowledge by identifying potential patient
subgroups within the collected dataset.

Related Works

Understanding the complex landscape of breast
cancer diagnosis and treatment requires robust
analytical tools. This section reviews prior work across
seven key themes: clustering methodologies and

validation, applications in breast cancer, regional
dataset-specific studies, broader machine learning
contexts, preprocessing practices, clinical

interpretability, and innovation. By synthesizing insights
from global and local studies, this review positions the
current research within the broader field of
unsupervised learning for clinical decision support.

A. Clustering Methodologies and ValidationTechniques

Clustering is a foundational unsupervised learning
method used to uncover latent patterns in medical
datasets, including breast cancer data. K-Means and
Hierarchical Clustering remain the most widely applied
due to their simplicity and effectiveness in high-
dimensional data contexts [10], [13] and [14]. K-Means is
especially valued for its computational efficiency, though
it assumes spherical clusters, which may oversimplify
real-world data distributions [10]. Hierarchical
Clustering, particularly with Ward’s linkage method,
supports interpretability through dendrogram
visualization, making it suitable for subgroup analysis in
clinical studies [14].

Validation of clustering results is critical. Pison et
al. [15] and Rousseeuw [55] emphasize the need for
internal validation indices such as the Silhouette Score
and CLUSPLOT, which assesses the cohesion and
separation of clusters. However, many breast cancer
studies still rely on heuristic methods or visual inspection
without rigorous quantitative evaluation.

These considerations guided our use of both K-Means
and Hierarchical Clustering, complemented by internal
validation using Silhouette Scores to ensure
methodological rigor.

B. Applications of Clustering in Breast Cancer

Numerous studies have applied clustering to breast
cancer data for classification, subtype discovery, and
treatment personalization. For instance, Dubey et
al. [16] used K-Means to differentiate subtypes in the
Wisconsin Breast Cancer dataset, although their focus
was largely diagnostic.

Agrawal et al. [17] proposed an ensemble clustering-
classification pipeline to uncover latent patient profiles,
while Wang et al. [18] developed a consensus clustering
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framework to stratify patients based on molecular
features. Yet, these methods often underemphasize
treatment variables, and their practical clinical relevance
remains limited without outcome validation or
interpretability.

This gap informed our focus on treatment-centered
clustering and statistical validation to ensure clinical
utility and interpretability.

C. Regional and Dataset-Specific Studies

Several Iranian studies have explored breast cancer
using local datasets. Sajjadnia et al. [19] examined
preprocessing effects on clustering outcomes from
Shiraz  hospitals but lacked treatment-outcome
connections. Ahmadi et al. [19] and Hosseini et al. [21]
conducted spatial clustering studies, providing regional
incidence insights but not patient-level treatment
stratification.

These efforts demonstrate the feasibility of clustering
in the Iranian context but underline the scarcity of work
involving rich clinical-treatment data and robust
algorithmic comparison.

In response, our study leverages a detailed, locally
curated dataset with diverse clinical and treatment
variables to provide a more comprehensive stratification
framework.

D. Machine Learning in Breast Cancer: A Broader Context

Machine learning (ML) and deep learning (DL)
methods are extensively used for prediction,
classification, and prognosis in breast cancer [22]-[24].
However, most works emphasize diagnostic accuracy
and often ignore treatment-specific subgrouping. Radak
et al. [23] and Xiao et al. [24] highlighted ML’s utility in
survival prediction, but clustering is typically peripheral
or absent in such analyses. Moreover, these models
often lack interpretability and practical guidance for
treatment decisions.

Our clustering-based approach addresses this by
prioritizing subgroup discovery tied directly to
therapeutic features and supporting statistical
interpretability.

E. Preprocessing and Mixed Data Clustering

Preprocessing is pivotal in ensuring clustering quality.
Studies by Guyon and Elisseeff [25] and Zimek et al. [26]
highlighted feature selection and outlier detection as
essential steps. Given the mixed-type nature of clinical
data, Ahmad and Dey [11], Huang [12], and Dinh et
al. [27] have proposed K-Means variants and hybrid
techniques to handle numerical and categorical values.
Boluki et al. [28] suggested avoiding imputation through
model-aware clustering, a technique relevant for
incomplete medical records.

Accordingly, we incorporated one-hot encoding and
standardized scaling to handle mixed data types and

ensure the robustness of our clustering outcomes.
F. Clinical Relevance and Model Interpretability

A critical gap in the literature is the clinical
interpretability of clusters. Many studies stop at cluster
formation without evaluating their medical implications.
The current study addresses this by using ANOVA and
Chi-square testing to assess statistically significant
differences across treatment-relevant features (e.g., ER,
PR, HER2, Ki67, chemotherapy regimen), adding
interpretability and clinical value.

This approach ensures that the resulting clusters are
not only statistically meaningful but also practically
relevant for treatment planning in clinical settings.

G. Innovation and Current Contribution

This study presents a locally curated dataset from
Iranmehr Hospital, covering 185 patients with 24
demographic, pathological, and treatment-related
features. K-Means and Hierarchical Clustering were
employed alongside internal validation using the
Silhouette Score [55]. Significant statistical testing
(ANOVA, Chi-square) highlighted  cluster-driving
variables, providing actionable insights for treatment
stratification. Importantly, this study proposes future
exploration of Federated Learning to enable multi-center
collaborations without compromising patient data
privacy [29], [30], and intends to incorporate alternative
clustering methods like DBSCAN [31] and Gaussian
Mixture Models [32] to evaluate robustness.

Dataset Description

The present study involved the creation of a unique
dataset derived from 185 breast cancer patients
receiving treatment at Iranmehr Hospital, Khorasan-e-
Jonoubi, Birjand, Iran. This dataset, assembled through a
collaborative effort with cancer specialists at the
institution, includes a unique identification number for
each patient and 24 distinct clinical, pathological, and
treatment-related features. These features aim to
capture the inherent heterogeneity in breast cancer
presentation and management within this specific
patient population at Iranmehr Hospital. The
characteristics, encoding, and clinical relevance of these
features are summarized in Table 1, while descriptive
statistics for the numerical variables and frequency
distributions for the categorical variables are presented
in the subsequent "Numerical Features: Descriptive
Statistics" and "Categorical Features: Frequency
Distributions" subsections, respectively.

The subsequent application and comparison of
established clustering algorithms, including k-means, will
leverage these data characteristics to identify potentially
clinically meaningful patient subgroups relevant to
treatment patterns and outcomes within this cohort.
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Table 1: Detailed description and clinical relevance of features in the breast cancer patient dataset

Feature Name Category ?:;2 Range/Categories Clinical Relevance
Patients ID Identifier Integer  1-197 Unique identifier for each patient.
Age Demographic  Integer 25-80 Patient's age at diagnosis or treatment.
Sex Demographic  Integer ;j::;:le Patient's biological sex.
Menopausal Demosaraphic  Integer 1=Post Menopausal status, relevant for hormonal influences
P grap 8 2=Pre (male=2) on breast cancer.
1=IDC
2=ILC
. . . 3=Tubular Microscopic classification of the tumor, influencing
Histological Type Pathological Integer 4=Papillary I A e
5=Mucinous
6=Medullary
Focality Pathological Integer ;:&Tlti Number of tumor foci in the breast.
Marginal Surgery Clinical Integer giyssgi:it\;\ée Presence of residual cancer cells after surgery.
1=TX
2=TO
3=Tis : . . .
T (Tumor size) Pathological Integer  4=T1 Size of the primary tumor, a key factor in staging and
5-T2 prognosis.
6=T3
7=T4
1=NX
. . 2=NO Extent of cancer spread to regional lymph nodes, a
N (Nodal involvement) Pathological Integer  3=N1 s " !
2=N2 critical staging component.
5=N3
Number of dissected nodes Pathological Integer  0-30 Number 9f lymph nodes removed during surgery for
pathological assessment.
0= No dissection
Node Dissection Clinical Integer  1=SLND Whether a lymph node dissection was performed.
2=ALND
Type of Surger Treatment Integer 1=BCS Type of surgical procedure performed
yp gery 13 2=Mastectomy yp gical p p .
Surgeon Clinical Integer =Gl Specialty of the surgeon who performed the procedure
2=0ncosurgeon :
. 0=Negative Status of Estrogen Receptor in tumor cells, guiding
ER (Estrogen Receptor) Pathological Integer 1=Positive endocrine therapy.
PR (Progesterone Receptor) Pathological it OiNeg.a.tlve Ste.m_Js of Proge_sterone Receptor in tumor cells, also
1=Positive guiding endocrine therapy.
HER2 (Human Epidermal pathological Integer 0=Negative Status of Human Epidermal Growth Factor Receptor 2,
Growth Factor Receptor 2) g g 1=Positive indicating potential for targeted therapies.
KI67 Pathological [ 0=Neg.a.t|ve Marker.of cell proliferation, indicating tumor
1=Positive aggressiveness.
1=Sx>ChT>RT>HoT
2=Sx>ChT>RT
3=Sx>ChT>HoT
4=Sx>ChT
Treatment Schedule Treatment Integer  5=Sx>HoT Sequence of therapeutic modalities used in treatment.
6=Sx>RT>HoT
7=Sx>RT
8=ChT>Sx>RT>HoT
9=ChT>Sx>RT
0=No ChT
. 1=1st Gen . -
Chemotherapy Regimen Treatment Integer 2=2nd Gen Specific chemotherapy drug combination used.
3=3rd Gen
O=Negative Whether the patient received Trastuzumab, a HER2-
Trastuzumab Treatment Integer "
1=Positive targeted therapy.
0=No RT
Radiation dose Treatment Integer  1=50-56 Gy Total radiation dose administered during radiotherapy.
2=42.5 Gy
Radiation Boost Dose Treatment Integer O:Neg.a.tlve Whether an additional radiation boost was given to the
1=Positive tumor bed.
Actual sessions
. administered: 0, 4, 6, 8, -
Chemotherapy Session Treatment Integer e [ e Number of chemotherapy cycles administered.
0-4)
0=No HoT
1=Tamoxifen .
Hormonetherapy Treatment Integer I=letrozole Type of hormonal therapy received.
3=Tamoxifen-Letrozole
GnRH Ana. Treatment i 0=Neg'a't|ve Stétus pf Gonadotropln-Releasmg Hormone Analog use,
1=Positive primarily in pre-menopausal women.

120
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A. Numerical Features: Descriptive Statistics

The numerical features in our lranmehr Hospital
breast cancer patient dataset, namely Age, Number of
dissected nodes, and Chemotherapy Session, are
continuous variables that provide quantitative
information about the patient cohort. Table 2 presents
the descriptive statistics for these key numerical
variables, including the count, mean, standard deviation,
minimum, 25th percentile, median (50th percentile),
75th percentile, and maximum values. These statistics
offer an initial understanding of the central tendency
and spread of these continuous characteristics within
our cohort, which will be used as input for the
subsequent clustering analysis using multiple algorithms,
including k-means, to identify potential patient
subgroups. Key observations from these statistics
include:

e Age: The cohort exhibited a mean age of 49.16
years, ranging from 25 to 80 years (Standard
Deviation = 11.09).

e Number of dissected nodes: The patients in the
study had an average of 8.19 dissected lymph nodes,
with a range from 0 to 30 (Standard Deviation =
5.85).

e Chemotherapy Session: The patients in the study
received an average of 12.39 chemotherapy
sessions, with the number of sessions ranging from 0
to 16 (Standard Deviation = 4.79).

Table 2: Descriptive Statistics of Numerical Variables in the
Breast Cancer Patient Dataset

'
o
@ s
= % 7 3
o o g’- s 3 ﬁ 2 §
2 g § 2 38 2 § 2
g = 3 § 23§ & § ¢8
s 3 2z g 2 3
g' ) % [)
2
Age 185 49.16 11.09 25 40 48 56 80
Number of
dissected 185 819 585 0 3 8 12 30
nodes
Chemother .. 1530 479 0 8 16 16 16
apy Session

B. Categorical Features: Frequency Distributions

The categorical features in our Iranmehr Hospital
breast cancer patient dataset encompass a range of
demographic, pathological, clinical, and treatment-
related characteristics. Table 3 presents the frequency
counts and percentages for each category within these
nominal and ordinal variables: Sex, Menopausal,
Histological Type, Focality, and so forth.

Table 3:

Variables in the Breast Cancer Patient Dataset

Frequency and Percentage Distribution of Categorical

Feature Category Count Percentage
Sex Female 181 97.84
Male 4 2.16
Menopausal Post 74 40
Pre 111 60
IDC 167 90.27
ILC 11 5.95
Histological Tubular 1 0.54
Type Papillary 3 1.62
Mucinous 2 1.08
Medullary 1 0.54
Unifocal 168 90.81
Focality Multifocal 17 9.19
Multicentric 0 0
Marginal Negative 173 93.51
Surgery Positive 12 6.49
Tx 6 3.24
T0 0 0
Tis 0 0
T (Tumor size) T1 40 21.62
T2 116 62.7
T3 18 9.73
T4 5 2.7
Nx 14 7.57
NO 66 35.68
N2 29 15.68
N3 20 10.81
No dissection 8 4.32
Node Dissection SLND 25 13.51
ALND 152 82.16
Type of Surgery BCS 64 34.59
Mastectomy 121 65.41
Surgeon General 137 74.05
Oncosurgeon 48 25.95
ER Negative 58 31.35
Positive 127 68.65
PR Negative 74 40
Positive 111 60
Negative 129 69.72
HER2 Positive 56 30.27
Negative 70 37.84
Kie7 Positive 115 62.16
Sx>ChT>RT>HoT 88 47.57
Sx>ChT>RT 39 21.08
Sx>ChT>HoT 21 11.35
Sx>ChT 15 8.11
Treatment Sx>HoT 2 1.08
Sx>RT>HoT 1 0.54
Sx>RT 0 0
ChT>Sx>RT>HoT 11 5.95
ChT>Sx>RT 8 4.32
No ChT 3 1.62
Chemotherapy 1st Gen 23 12.43
Regimen 2nd Gen 41 22.16
3rd Gen 118 63.78
Negative 129 69.72
Trastuzumab Positive 56 30.27
No RT 35 18.92
Radiation Dose 50-56 Gy 147 79.46
42.5 Gy 3 1.62
Radiation Boost Negative 98 53
Dose Positive 87 47
No HoT 55 29.73
Hormone Tamoxifen 72 38.92
Therapy Letroz.ole 37 20
Tamoxifen- 271 1135
Letrozole
Negative 154 83.24
GnRH Ana. Positive 31 16.76
121
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The distribution of these variables provides crucial
insights into the composition of our patient cohort
across different subgroups, which will be considered
alongside the numerical features in the subsequent
clustering analysis using various algorithms, including k-
means, to explore potential patient stratifications. The
distribution of these variables is detailed below:

e Sex: 181 female (97.84%) and 4 male (2.16%)
patients, encoded as 1 and 2.

e Menopausal: A critical factor in breast cancer risk
stratification and therapeutic planning, this variable
was classified as post-menopausal (1) or pre-
menopausal (2). Notably, male patients (n=4) were
assigned a value of 2 (pre-menopausal) for dataset
consistency, despite lacking a biological menopausal
status. Among the 185 patients, 74 (40%) were post-
menopausal, while 111 (60%) were pre-menopausal
(including 4 male patients).

e Histological type: Histological type categorizes
breast cancer based on tumor cell morphology
observed microscopically, influencing prognosis and
therapeutic strategies. The dataset includes the
following subtypes:
= |nvasive Ductal Carcinoma (IDC): 167 patients

(90.27% of the cohort).
= |nvasive Lobular Carcinoma (ILC): 11 patients
(5.95%).
= Tubular Carcinoma: 1 patient (0.54%).
= Papillary Carcinoma: 3 patients (1.62%).
= Mucinous Carcinoma: 2 patients (1.08%).
= Medullary Carcinoma: 1 patient (0.54%)
Subtypes were numerically encoded as 1-6 per their
listed order.
e Focality: Focality categorizes tumors into three
groups based on anatomical distribution:
= Unifocal (i.e., a single tumor focus; encoded as 1):
Observed in 168 patients (90.81%).

= Multifocal (i.e., multiple invasive tumors confined
to the same breast quadrant; encoded as 2):
Observed in 17 patients (9.19%).

= Multicentric (i.e., invasive tumors located in
distinct breast quadrants; encoded as 3):
Observed in 0 patients (0%).

The prognostic significance of multifocal and
multicentric tumors remains debated. While some
studies associate these classifications with poorer
outcomes [10], others report no significant impact on
prognosis [34].

e Marginal Surgery: In patients undergoing surgical
intervention, this feature indicates the status of
surgical margins post-tumor excision, distinguishing
between negative margins (0: no residual cancer
cells at the resection boundary) and positive margins
(1: residual cancer cells detected). Among the

cohort, 12 patients (6.49%) exhibited positive
margins, while 173 (93.51%) had negative margins.

e T (Tumor size): Tumor size (T) reflects the largest

diameter of the primary breast tumor. While tumor
size and nodal involvement are correlated, both
independently contribute to prognostic assessment.
Notably, in triple-negative breast cancer (TNBC), the
relationship between tumor size, nodal status, and
prognosis was significantly attenuated [35].

The dataset includes seven T categories:

= Tx(encoded asl): 6 patients (3.24%) -
Insufficient data to assess the primary tumor.

= TO (encoded as 2): 0 patients — No evidence of a
primary tumor.

= Tis (encoded as3): 0 patients —Carcinoma in
situ (non-invasive  malignancy  confined to
ducts/lobules).

= T1 (encoded as 4): 40 patients (21.62%) — Tumor
diameter <2 cm.

= T2 (encoded as 5): 116 patients (62.70%) — Tumor
diameter >2 cm but <5 cm.

= T3 (encoded as 6): 18 patients (9.73%) — Tumor
diameter >5 cm.

= T4 (encoded as 7): 5 patients (2.70%) — Tumor
invasion into the chest wall or skin, irrespective of
size.

N (Nodal involvement): In breast cancer, Nodal

involvement (N) reflects the extent of regional

lymph node metastasis and is a critical component

of the TNM staging system. This feature evaluates

whether cancer has spread to axillary lymph nodes

(underarm) or internal mammary lymph nodes (near

the breastbone) [36]. The most commonly involved

lymph nodes are the axillary lymph nodes (located

under the arm) and the internal mammary lymph

nodes (located near the breastbone). Clinical staging

involves lymph node assessment to determine

disease progression beyond breast tissue, with nodal

metastasis indicating a higher risk of systemic

spread. The dataset includes five N categories:

= Nx: 14 patients (7.57%) — Lymph nodes could not
be assessed.

= NO: 66 patients (35.68%) — No regional lymph
node metastasis.

= N1: 56 patients (30.27%) — Metastasis in 1-3
axillary or internal mammary nodes.

= N2: 29 patients (15.68%) — Metastasis in 4-9
axillary or internal mammary nodes.

= N3: 20 patients (10.81%) — Metastasis in 210
axillary  nodes, infraclavicular nodes, or
supraclavicular nodes.

These categories were numerically encoded as

integers 1-5 in the dataset, corresponding to the order
listed above.
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o Node Dissection: For patients undergoing surgical
intervention, this feature specifies the type of
axillary lymph node assessment performed:
= No dissection (Encoded as 0): No axillary lymph
node dissection or sentinel lymph node biopsy
was performed on 8 patients (4.32% of the
cohort).

= Sentinel Lymph Node Biopsy (SLND) (Encoded as
1): Identification and removal of the first few
lymph nodes to which cancer cells are most likely
to spread, performed on 25 patients (13.51%).

= Axillary Lymph Node Dissection (ALND) (Encoded
as 2): Surgical removal of multiple lymph nodes in
the armpit, performed on 152 patients (82.16%).
e Type of Surgery: For patients undergoing surgical
intervention, this feature specifies the surgical
procedure performed:
= Breast-Conserving Surgery (BCS) (Encoded as 1):
Partial excision of the tumor with preservation of
breast tissue, performed on 64 patients (34.59%
of the cohort).

= Mastectomy (Encoded as 2): Complete removal of
the affected breast tissue, performed on 121
patients (65.41%).
e Surgeon: This feature identifies the
specialist who performed the procedure:
= General Surgeon (encoded as 1): Performed on
137 patients (74.05% of the cohort).

= Oncosurgeon (encoded as 2): Specialized in
oncologic surgery, performed on 48 patients
(25.95%).

While surgeon specialty is not a direct prognostic
factor, differences in surgical training (e.g., general vs.
oncologic surgery) may reflect variations in technique,
institutional protocols, or postoperative care, which
could act as confounding variables in outcome analyses.

e ER (Estrogen Receptor): ER status, a feature with
critical prognostic and therapeutic relevance, was
categorized as follows:
= ER-negative (encoded as 0): 58 patients (31.35%).
= ER-positive (encoded as 1): 127 patients (68.65%).

ER-positive tumors are more likely to exhibit
histological differentiation [37]-[39], lower proliferative
activity [40], and diploid DNA content. They are also less
frequently associated with high-risk genetic alterations,
such as TP53 mutations [41] and [42], HER2/neu
amplification [43]-[45], or HER1 (the epidermal growth
factor receptor [EGFR]) [46] and [47], which are linked to
aggressive tumor behavior and poorer prognosis.
Conversely, ER-negative tumors demonstrate higher
rates of these molecular aberrations, contributing to
their adverse clinical outcomes. ER status remains
pivotal in guiding therapeutic decisions, including
endocrine therapy for ER-positive cases.

surgical

e PR (Progesterone Receptor): Progesterone receptor
(PR) status, an independent prognostic marker
distinct from ER, was categorized as follows:
= PR-negative (encoded as 0): 74 patients (40.00%).
= PR-positive (encoded as 1): 111 patients (60.00%).

PR negativity in ER-positive tumors correlates with a
more aggressive subtype of hormone receptor-positive
breast cancer [48], often classified as the luminal B
molecular subtype [49]. These tumors are associated
with higher proliferative rates and poorer clinical
outcomes compared to ER-positive/PR-positive (luminal
A) tumors.

e HER2 (Human Epidermal Growth Factor Receptor
2): A protein that promotes cancer growth. HER2-
positive cancers are more aggressive but may
respond to drugs like trastuzumab (Herceptin). This
factor was categorized as follows:
= HER2-negative (encoded as 0):

(69.72%).
= HER2-positive
(30.27%).

e KI67: KI67, a nuclear protein marker of cellular
proliferation, was categorized as follows:

» KI67-negative (encoded as 0): 70 patients (37.84%) —
Defined as KI67 expression <10%.

» KI67-positive (encoded as 1): 115 patients (62.16%) —
Defined as KI67 expression >10%.

Higher KI67 levels correlate with increased tumor
aggressiveness and proliferative activity, serving as a
prognostic indicator for disease progression and
treatment response.

e Treatment Schedule: Treatment schedules,
representing combinations of therapeutic
modalities, were categorized into nine plans:

» Surgery - Chemotherapy - Radiation - Hormone
Therapy (88 patients, 47.57%).

» Surgery - Chemotherapy - Radiation (39 patients,
21.08%).

» Surgery - Chemotherapy - Hormone Therapy (21
patients, 11.35%).

* Surgery - Chemotherapy (15 patients, 8.11%).

= Surgery - Hormone Therapy (2 patients, 1.08%).

» Surgery - Radiation & Hormone Therapy (1 patient,
0.54%).

» Surgery -> Radiation (0 patients, 0%).

* Chemotherapy - Surgery - Radiation - Hormone
Therapy (11 patients, 5.95%).

» Chemotherapy - Surgery - Radiation (8 patients,
4.32%).

These subtypes were encoded as integers (1-9) in the
dataset, corresponding to the order listed above.

These schedules reflect clinical decision-making based
on tumor biology, stage, and patient-specific factors. The
predominance of multimodal therapy (e.g., Plan 1:

129 patients

(encoded as 1): 56 patients
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47.57%) underscores the integration of adjuvant

strategies to mitigate recurrence risk.
e Chemotherapy Regimen: The specific combination
of chemotherapy drugs used in treatment. Different
regimens are selected based on the cancer’s
characteristics. Four different regimens are used for
the patients in this study:
= No Chemotherapy (encoded as 0): 3 patients
(1.62%).

= First generation (encoded as 1): 23 patients
(12.43%).

= Second generation (encoded as 2): 41 patients
(22.16%).

= Third generation (encoded as 3): 118 patients
(63.78%).

The selection of a chemotherapy regimen can be
individualized based on several factors, such as the risk
of recurrence and the potential benefits of
chemotherapy, both relative and absolute. It is also
important to consider patient-specific factors like age,
comorbidities, and risk tolerance [50]. The decision aids
can help patients and caregivers make informed choices
about their treatment. Table 4 shows the commonly
recommended adjuvant chemotherapy regimens [50].

e Trastuzumab: A targeted therapy for HER2-positive
breast cancer. This field indicates whether the patient
received trastuzumab as part of their treatment. Thus,
for 56 patients (30.27%), with HER2-positive breast
cancer, trastuzumab was administered.

e Radiation Dose: The total amount of radiation given
during treatment, typically measured in Gray (Gy). In
the proposed dataset, the values used for the
radiation dose are categorized into three groups:

* no radiation dose (encoded as 0): 35 patients (18.92%).

* 50 Gy, 54 Gy and 56 Gy (encoded as 1): 147 patients
(79.46%)

» 42.5 Gy (encoded as 2): 3 patients (1.62%)

e Radiation Boost Dose: The administration of
additional radiation to the tumor site following
standard radiation therapy serves to minimize the
likelihood of cancer recurrence. Among the patients
treated with radiotherapy, 87 (47.02%) had received a
boost dose.

e Hormone Therapy: Indicates whether the patient
received hormone therapy (e.g.,, Tamoxifen or
aromatase inhibitors) to block hormone-sensitive
cancer growth. This feature has 4 values including:

= no hormone therapy (encoded as 0): 55 patients

(29.73%).

= Tamoxifen therapy (encoded as 1): 72 patients
(38.92).

= |etrozole therapy (encoded as 2): 37 patients
(20%).

= Tamoxifen and Letrozole therapy (encoded as 3):
21 patients (11.35).

124

Table 4: Commonly recommended adjuvant chemotherapy

regimens [50]

Recommended Recommended
Recurrence risk . . regimens: Recommended
category regimens: ER- ER/PR negative regimens:
> ositive, HER2 ’ o
and definition P ’ HER2- HER2-positive
negative N
negative
Node-Neg, T1a No No No
(very low risk)  chemotherapy  chemotherapy = chemotherapy
Consider second .
eneration Consider second
Node-Neg, T1b g generation Consider weekly
h Chemotherapy .
(low risk) : . . chemotherapy paclitaxel + H
regimen if RS is f
high regimen
Second
generation
Second
Node-Neg, T1c chgmotherapy generation Weekly
(low risk) regimen if RS is chemothera paclitaxel + H or
high (or imon Py TCH
consider if g

intermediate)
Second or third
generation
chemotherapy
regimen if RS
intermediate-
high
Third generation
chemotherapy
regimen
if RS
intermediate
high
(or 4+ positive
nodes
irrespective of
RS)

Third generation
chemotherapy
regimen

Node-Neg, T2
(moderate risk)

AC-T+HorTCH
+P

Third generation
chemotherapy
regimen

AC-T+Hor TCH
+P

1+ Pos Nodes
or T3 (high risk)

e GnRH Ana (Gonadotropin-Releasing Hormone
Analog): GnRH analogs, used to suppress ovarian
estrogen production via pituitary gland modulation,
were categorized as follows:
= GnRH Ana-negative (encoded as 0): 154 patients

(83.24%).
= GnRH Ana-positive (encoded as 1): 31 patients
(16.76%).

These agents are primarily administered to pre-
menopausal women with hormone receptor-positive
breast cancer to induce ovarian suppression, thereby
depriving tumors of estrogen and slowing disease
progression [51].

Data Visualization

To gain an initial understanding of the characteristics
and distributions of the features within the Iranmehr
Hospital breast cancer patient dataset, a series of
visualizations are presented in this subsection. These
visualizations offer insights into the central tendencies,
spread, and frequencies of both numerical and
categorical variables across the entire cohort of 185
patients. By examining these distributions, we aim to
highlight the inherent variability within the dataset,
which subsequent clustering analysis will explore to
identify potential patient subgroups. The distributions of
the numerical and categorical features within the
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dataset are illustrated in the following figures:

Fig. 1 illustrates the age distribution of the 185 breast
cancer patients in the Iranmehr Hospital cohort. The
histogram reveals a range of ages from 25 to 80 years,
with a central tendency around the late 40s and early
50s. The mean age of the cohort is 49.16 years (SD =
11.09). The distribution appears slightly right-skewed,
indicating a relatively higher frequency of older patients.
This broad age range suggests the potential for age to be
a differentiating factor in identifying patient subgroups
through subsequent clustering analysis.
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Fig. 1: Distribution of age.

Fig. 2 presents the distribution of the number of
dissected lymph nodes, ranging from 0 to 30 (mean =
8.19, SD = 5.85). The distribution is right-skewed, with a
higher frequency of patients having fewer dissected
nodes. The median was 8. This variability in the extent of
nodal assessment might contribute to the heterogeneity
observed in the patient population and could potentially
be a factor in distinguishing subgroups during clustering.
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Fig. 2: Distribution of number of dissected nodes.

Fig. 3 illustrates the distribution of the actual number
of chemotherapy sessions administered to the 185
patients, based on the current dataset and the defined
mapping (where raw codes 0, 1, 2, 3, and 4 correspond
to 0, 4, 6, 8, and 16 actual sessions, respectively). The
count plot reveals that the majority of patients, 115
(62.2%), underwent 16 actual chemotherapy sessions
(code 4). The number of patients receiving 8 actual
sessions (code 3) was also notable at 34 (18.4%),
followed by 24 patients (13.0%) receiving 6 actual
sessions (code 2), and 9 patients (4.9%) receiving 4
actual sessions (code 1). A small subset of 3 patients

(1.6%) received no chemotherapy (0 actual sessions;
code 0). The mean number of actual chemotherapy
sessions for the cohort was 12.39 (SD = 4.79). The
median (50th percentile) number of actual sessions was
16, and the 75th percentile was also 16 sessions. This
distribution highlights the variability in chemotherapy
intensity administered within the cohort, a characteristic
that will be considered in subsequent analyses.
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Fig. 3: Distribution of chemotherapy session.

Fig. 4 shows the distribution of sex, with a clear
predominance of female patients (97.84%) compared to
males (2.16%)

Female Male
Patient Sex

Fig. 4: Distribution of sex.

Fig. 5 illustrates the distribution of menopausal status
within the patient cohort. The bar plot shows a higher
proportion of pre-menopausal patients (60.0%, 111
individuals) compared to post-menopausal patients
(40.0%, 74 individuals). This distribution, where both
groups are substantially represented, suggests that
menopausal status, with its associated hormonal
variations, could be a relevant factor in distinguishing
potential patient subgroups in subsequent clustering
analyses.
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a
(=]

Menopausal Situation

Fig. 5: Distribution of menopausal status.
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Fig. 6 illustrates the distribution of histological types,
with Invasive Ductal Carcinoma (IDC) being the most
common (90.27%). Other types, including ILC (5.95%),
Papillary, Mucinous, Medullary, and Tubular, were less
frequent.

175 167

Histological Type

Fig. 6: Distribution of histological types.

Fig. 7 shows that the majority of tumors were unifocal
(90.81%), with multifocal tumors being less common
(9.19%)

17

Unifocal Multifocal

Focality

Fig. 7: Distribution of focality.

Fig. 8 displays the distribution of surgical margin
status, with most patients having negative margins
(93.51%) and a smaller proportion having positive
margins (6.49%).
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Marginal Surgery Status

Fig. 8: Distribution of marginal surgery.

Fig. 9 illustrates the distribution of T stages, which
categorize the size and extent of the primary tumor,
within the patient cohort. The bar plot shows that the
most frequent T stage is T2, accounting for 62.70% of the
cases. T1 tumors represent the next largest group at
21.62%, followed by T3 at 9.73% and T4 at 2.70%. TX

(where the tumor size could not be assessed) and TO (no
evidence of primary tumor) are less common, at 3.24%
and 0% respectively.

Tis (carcinoma in situ) also has a frequency of 0%. This
distribution highlights the predominance of T2 tumors in
this cohort, while also showing the presence of other
tumor sizes, which may correlate with disease
progression and treatment approaches.
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Fig. 9: Distribution of T stage.

Fig. 10 illustrates the distribution of N stages,
indicating the extent of regional Ilymph node
involvement, within the patient cohort. The bar plot
shows that the most frequent N stage is NO (code 2),
representing no regional lymph node metastasis, which
accounts for 35.68% of the cases. N1 (code 3), indicating
metastasis to movable ipsilateral axillary lymph nodes, is
also common at 30.27%. N2 (code 4), representing
metastasis to fixed or matted ipsilateral axillary lymph
nodes, occurs in 15.68% of patients, while N3 (code 5),
indicating metastasis to infraclavicular or supraclavicular
lymph nodes, is seen in 10.81% of cases. NX (code 1),
where regional lymph nodes could not be assessed, is
the least frequent at 7.57%. This distribution highlights
the varying degrees of nodal involvement in this cohort,
a critical factor in determining prognosis and treatment
strategies.

Fig. 11 illustrates the distribution of the type of nodal
assessment performed in the patient cohort. The bar
plot reveals that Axillary Lymph Node Dissection (ALND),
a more extensive surgical procedure involving the
removal of multiple lymph nodes in the armpit, was the
most common approach (82.16%). Sentinel Lymph Node
Biopsy (SLND), a less invasive procedure to identify and
remove only the first few lymph nodes to which cancer
cells are most likely to spread, was performed in 13.51%
of the patients. A small proportion of patients (4.32%)
did not undergo any nodal dissection. The high
prevalence of ALND suggests that a comprehensive
assessment of axillary lymph nodes was the standard
practice for a majority of this cohort, potentially
reflecting the clinical stage and risk profiles of the
patients.
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Fig. 10: Distribution of N stage.
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Fig. 11: Distribution of node dissection type.

Fig. 12 illustrates the distribution of the type of
surgical procedure performed in the patient cohort. The
bar plot reveals that Mastectomy (removal of the entire
breast) was the more frequent surgical approach,
accounting for 65.41% of the cases. Breast-Conserving
Surgery (BCS), which involves the removal of the tumor
and some surrounding tissue, was performed in 34.59%
of the patients. The significant difference in the
frequency of these two surgical types suggests that the
extent of surgical intervention varied considerably within
the cohort, potentially reflecting differences in tumor
size, stage, or patient preference, and could be a
relevant factor in distinguishing patient subgroups.
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Fig. 12: Distribution of type of surgery.

Fig. 13 illustrates the distribution of the type of
surgeon who performed the primary surgical procedure.
The majority of surgeries (74.05%) were performed by
general surgeons, while oncosurgeons performed
25.95% of the cases. This distribution may reflect the
availability of specialists or the complexity of the surgical
cases within the cohort.
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Fig. 13: Distribution of surgeon.

Fig. 14 presents the distribution of Estrogen Receptor
(ER) status within the patient cohort. The bar plot shows
that the majority of patients (68.65%) had ER-positive
tumors, while 31.35% of the tumors were ER-negative.
Estrogen Receptor status is a critical biomarker in breast
cancer, influencing prognosis and guiding treatment
decisions, particularly the use of hormone therapies. The
predominance of ER-positive tumors in this cohort
suggests that a substantial proportion of patients may be
candidates for endocrine treatments, and this feature is
likely to be an important factor in defining clinically
relevant patient subgroups.
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Fig. 14: Distribution of ER status.

Fig. 15 illustrates the distribution of Progesterone
Receptor (PR) status within the patient cohort. The bar
plot indicates that a majority of the tumors (60.0%) were
PR-positive, while 40.0% were PR-negative. Similar to ER,
PR status is an important hormone receptor that
influences breast cancer biology and response to
endocrine therapies. The substantial proportion of PR-
positive tumors in this cohort suggests that many
patients may benefit from hormonal treatments, and
this feature likely contributes to the heterogeneity
observed across different patient subgroups.
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Fig. 15: Distribution of PR status.
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Fig. 16 presents the distribution of Human Epidermal
Growth Factor Receptor 2 (HER2) status within the
patient cohort. The bar plot indicates that a substantial
proportion of patients (69.73%) had HER2-negative
tumors, while 30.27% of the tumors were HER2-positive.
HER2 is a protein that can promote the growth of cancer
cells. In breast cancer, HER2 status is a crucial biomarker,
impacting treatment strategies, particularly the use of
targeted therapies like trastuzumab. The presence of
HER2-positive tumors in a notable fraction of the cohort
underscores the importance of HER2 testing in guiding
personalized treatment approaches.
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Fig. 16: Distribution of HER2 status.

Fig. 17 illustrates the distribution of KI67 status within
the patient cohort. KI67 is a cellular marker associated
with cell proliferation, and its expression level is often
used to assess tumor aggressiveness. The bar plot shows
that the majority of patients (62.16%) had Ki67-positive
tumors, indicating a higher level of cell proliferation,
while 37.84% had KI67-negative tumors. KI67 status is an
important prognostic and predictive factor in breast
cancer, often influencing treatment decisions,
particularly regarding chemotherapy. The observed
distribution suggests a considerable proportion of
tumors in this cohort exhibit higher proliferative activity.
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Fig. 17: Distribution of KI67 status.

Fig. 18 illustrates the distribution of different
treatment schedules employed in the patient cohort.
The most frequent approach was Surgery followed by
Chemotherapy, Radiation, and Hormone Therapy
(Sx>ChT>RT>HoT), accounting for 47.57% of the patients.
The next most common schedules were Surgery
followed by Chemotherapy and Radiation (Sx>ChT>RT) at

21.08%, and Surgery followed by Chemotherapy and
Hormone Therapy (Sx>ChT>HoT) at 11.35%. Less
frequent schedules included Surgery followed by
Chemotherapy alone (8.11%), Chemotherapy followed
by Surgery, Radiation, and Hormone Therapy (5.95%),
and Chemotherapy followed by Surgery and Radiation
(4.32%). The remaining schedules, Surgery followed by
Hormone Therapy, and Surgery followed by Radiation
and Hormone Therapy, were relatively rare. This
distribution highlights the variability in treatment
strategies, reflecting clinical decision-making based on
tumor characteristics, stage, and patient-specific factors.

Fig. 19 illustrates the distribution of different
chemotherapy regimens administered to the patient
cohort. The most frequently used regimen was the Third
Generation chemotherapy, accounting for 63.78% of the
patients. Second Generation chemotherapy was the next
most common at 22.16%, followed by First Generation
chemotherapy at 12.43%. A small subset of patients
(1.62%) did not receive any chemotherapy. The variation
in chemotherapy regimens likely reflects differences in
treatment protocols based on tumor characteristics,
stage of disease, and clinical guidelines, and this feature
is important for understanding potential differences in

treatment response and outcomes across patient
subgroups.
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Fig. 18: Distribution of treatment schedules.

120 118
100

B8O

Count

60

a1

40
23

20

3 - -
0 ——
&
s
=

\uQ
&
&
&
&

&

>
wa’. &

Chemotherapy Regimen
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Fig. 20 illustrates the distribution of trastuzumab use
within the patient cohort. Trastuzumab is a targeted
therapy used in patients with HER2-positive breast
cancer. The bar plot shows that the majority of patients
(69.73%) did not receive trastuzumab, while 30.27% of
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patients were treated with this agent. The use of
trastuzumab is directly linked to the HER2 status of the
tumor, and its administration in a subset of the cohort
reflects the prevalence of HER2-positive disease and the
application of targeted therapies in these cases. This
feature is crucial for understanding treatment strategies
and potential differences in outcomes based on HER2
status.

Fig. 21 illustrates the distribution of radiation doses
administered to the patient cohort. The majority of
patients (79.46%) received a conventional radiation dose
in the range of 50-56 Gy. A notable proportion of
patients (18.92%) did not receive radiation therapy (No
RT), while a small fraction (1.62%) received a dose of
42.5 Gy. Radiation therapy is a key component of breast
cancer treatment for many patients, and the variation in
dosage reflects differences in treatment protocols based
on tumor stage, location, and other clinical factors. The
predominance of the 50-56 Gy range suggests a standard
radiation protocol for a large segment of this cohort.
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Fig. 20: Distribution of trastuzumab use.
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Fig. 21: Distribution of radiotion dose.

Fig. 22 illustrates the distribution of whether patients
received a radiation boost dose in addition to their
primary radiation therapy. The bar plot shows that
slightly more than half of the patients (52.97%) did not
receive a boost dose, while 47.03% did. A radiation boost
is an additional, focused dose of radiation to the tumor
bed after the main course of radiotherapy. The decision
to administer a boost depends on various factors,
including the size and grade of the original tumor,
margin status after surgery, and individual patient risk
factors. The near-even distribution suggests that boost
radiation was a significant consideration in the

treatment protocols for this cohort.
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Fig. 22: Distribution of radiation boost dose.

Fig. 23 illustrates the distribution of different
hormonetherapy treatments received by the patient
cohort. Tamoxifen was the most frequently used agent
(38.92%), followed by patients who did not receive
hormonetherapy (No HoT, 29.73%). Letrozole was used
in 20.00% of the cases, and a combination of Tamoxifen
and Letrozole was administered to 11.35% of the
patients. Hormonetherapy is a critical adjuvant
treatment for hormone-sensitive breast cancers (ER-
positive and/or PR-positive), and the distribution of
different agents likely reflects clinical guidelines and
patient characteristics, such as menopausal status and
specific tumor biology. This feature is important for
understanding the endocrine treatment landscape
within this cohort.
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Fig. 23: Distribution of hormonetherapy type.

Fig. 24 illustrates the distribution of Gonadotropin-
Releasing Hormone (GnRH) analog use within the patient
cohort. GnRH analogs are primarily used in pre-
menopausal women with hormone-sensitive breast
cancer to suppress ovarian function, thereby reducing
estrogen production. The bar plot shows that the
majority of patients (83.24%) did not receive GnRH
analogs, while 16.76% did. The use of GnRH analogs in a
subset of the cohort suggests that these patients were
likely pre-menopausal and had hormone-sensitive
disease where ovarian suppression was deemed a
beneficial treatment strategy. This feature provides
insights into the hormonal treatment approaches
employed in this specific patient population.
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Fig. 24: Distribution of GnRH use.

Summary of Data Characteristics

The dataset for this study comprises 24 distinct
clinical, pathological, and treatment-related features
collected from 185 breast cancer patients at Iranmehr
Hospital. The aim of this data collection was to capture
the heterogeneity inherent in breast cancer presentation
and management within this specific patient population,
thereby enabling the identification of potentially
clinically ~meaningful patient subgroups through
subsequent clustering analysis.

The numerical features of the cohort included an age
range of 25 to 80 years, with a mean age of 49.16 years.
The number of dissected lymph nodes varied from 0 to
30, with an average of 8.19, displaying a right-skewed
distribution. Patients received between 0 and 16
chemotherapy sessions, with a mean of 12.39 sessions
and a majority receiving 16 sessions.

The categorical features revealed a predominantly
female cohort with a notable representation of both pre-
and post-menopausal patients. Invasive Ductal
Carcinoma was the most common histological subtype,
and the majority of tumors were unifocal with negative
surgical margins. The distribution of T and N stages
indicated a prevalence of T2 and NO classifications,
respectively. Mastectomy was the more frequent
surgical procedure. In terms of biomarkers, ER-positive
and PR-positive status were more common than
negative, while HER2-negative tumors were more
frequent than HER2-positive. A majority of tumors
exhibited KI67-positive status, indicating higher
proliferative activity. The most frequently employed
treatment schedule involved surgery followed by
chemotherapy, radiation, and hormone therapy, with
third generation chemotherapy being the most common
regimen. Hormonetherapy most often involved
Tamoxifen, and the use of GnRH analogs was relatively
infrequent. Axillary Lymph Node Dissection was the
predominant type of nodal assessment, and most
surgeries were performed by general surgeons.

The variability observed across these numerical and
categorical features underscores the heterogeneity
within the Iranmehr Hospital breast cancer patient
cohort. This inherent diversity provides a strong

rationale for employing clustering algorithms to explore
the underlying structure of the data and to identify
potential patient subgroups that may exhibit distinct
patterns in their disease characteristics and treatment
approaches. The subsequent sections of this manuscript
will detail the application of these clustering
methodologies to this dataset.

Methodology

This section details the methodological approach
employed to discover potential knowledge and patterns
within the breast cancer treatment data from Iranmehr
Hospital. The data preprocessing and clustering
algorithms were implemented in Python, utilizing
libraries such as scikit-learn, and the computational
experiments were conducted using Google Colaboratory.
It encompasses the steps taken to preprocess the raw
data, the implementation of two distinct clustering
algorithms — K-means and Hierarchical Clustering — and
the methods used to evaluate the resulting clusters.

A. Data Preprocessing

To prepare the breast cancer treatment data for
clustering analysis, several preprocessing steps were
undertaken.

Handling Missing Values: The initial dataset included
197 patient records. However, a number of these
records had incomplete information for certain variables
that could not be reliably obtained. To ensure data
integrity and avoid potential bias from imputation, a
listwise deletion approach was employed, resulting in a
final dataset of 185 patients with complete data across
all analyzed features.

Feature Classification and Initial Transformation: Prior
to further feature transformation, all column names
were standardized by stripping leading/trailing spaces,
replacing spaces with underscores, and removing
specific special characters such as asterisks and periods.
Non-breaking spaces were also converted to
underscores, and any resulting double underscores were
reduced to single underscores to ensure uniformity and
facilitate programmatic access (e.g.,
df.columns.str.strip().str.replace(' ', '_').str.replace('*',
").str.replace('.', ").str.replace('', '_').str.replace('_’,
' ')). The 'patients_ID' column, serving as a unique
identifier wes excluded from the feature set used for
clustering.

The remaining 24 features were systematically classified
and then transformed based on their inherent data
types:

e True Numerical Features (Continuous or Discrete Count):
These features represent measurable quantities with
inherent order and meaningful distances between
values. This category included:
= Age
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= Dissected_Nodes
= Chemotherapy_Session
e Ordinal Categorical Features: These features represent
categories with a clear, inherent order, even if the
numerical difference between categories is not
uniform. For these features, explicit re-mapping was
performed to preserve their ordinality:
= T (Tumor size and extent): Original codes 1-7
(representing TX, TO, Tis, T1, T2, T3, T4) were re-
mapped to a sequential numerical scale as
follows: 1=TX to 0, 2=TO to 1, 3=Tis to 2, 4=T1 to
3,5=T2to4,6=T3to 5, 7=T4 to 6.

= N (Nodal involvement): Original codes 1-5
(representing NX, NO, N1, N2, N3) were re-
mapped as: 1=NX to 0, 2=NO to 1, 3=N1 to 2,
4=N2 to 3, 5=N3 to 4.

= Node_Dissection: Original codes 0-2 (representing
No dissection, SLND, ALND) were re-mapped as:
0=No dissection to 0, 1=SLND to 1, 2=ALND to 2.

= Chemotherapy_Regimen: Original codes 0-3
(representing No ChT, 1st Generation, 2nd
Generation, 3rd Generation) already possessed
an appropriate sequential order (0, 1, 2, 3) for
direct use as numerical values.

e Nominal Categorical Features: These features
represent categories without any inherent order or
ranking. This category included:
= Sex
= Menopausal_Situation
= Histological_Type
= Focality
= Marginal_Surgery
= Type_of_Surgery
= Surgeon
= ER
= PR
= HER2
= Ki67
= Trastuzumab
= Treatment_Schedule
= Radiation_dose
= Radiation_Boost_Dose
= Hormonetherapy
®= GnRH_Ana

Feature Scaling: All True Numerical features and the re-
mapped Ordinal Categorical features were subjected to
Feature Scaling using the StandardScaler from the scikit-
learn library. This standardization method transforms
these features to have a mean of zero and a standard
deviation of one, ensuring that they contribute equally
to the distance calculations performed by the clustering
algorithms and preventing features with larger scales
from dominating the results.

One-Hot Encoding: For the

Nominal Categorical

features, One-Hot Encoding was applied. This process
converts each categorical variable into new binary (0 or
1) columns, one for each unique category. This
transformation is crucial to prevent the algorithms from
misinterpreting arbitrary numerical labels (e.g., 1, 2, 3)
as ordinal relationships, which would distort distance
calculations.

Handling Outliers: During the initial data exploration,
some data points appeared as potential outliers based
on the distribution of certain numerical features.
However, upon further review and considering the
clinical context of the data, it was determined that these
extreme values represented genuine variations within
the patient cohort and were not due to measurement
errors or anomalies. Therefore, these potential outliers
were retained in the dataset to ensure a comprehensive
representation of the patient population. This decision
acknowledges that the heterogeneity inherent in clinical
data may result in values that appear statistically distant
from the mean but are nonetheless valid observations.
Feature Selection: For this exploratory study, all 24
available clinical and treatment-related features were
initially included as input for both the K-Means and
Hierarchical Clustering algorithms. The rationale for this
comprehensive inclusion was to provide an unbiased
view of the patient characteristics and treatment
modalities, allowing the algorithms to identify potential
subgroups based on the entirety of the available
information without imposing premature assumptions
on feature importance. While this approach maximizes
the breadth of initial knowledge discovery, it is
acknowledged that no explicit feature selection or
dimensionality reduction techniques were applied at this
stage to specifically optimize cluster separability. The
implications of this approach, particularly in relation to
the observed internal validity scores, are further
discussed in the 'Cluster Evaluation (Internal Validity)'
subsection.

B. Clustering-based Knowledge Discovery Approach

To identify potential patient subgroups within the
breast cancer treatment data, two distinct clustering
algorithms were employed: K-Means and Agglomerative
Hierarchical Clustering. K-Means, a widely used partitional
clustering technique, was chosen for its efficiency and
ability to handle relatively large datasets, making it
suitable for the exploratory nature of this study [52].
Hierarchical Clustering, on the other hand, was utilized to
explore the inherent hierarchical structure of the data and
to provide a different perspective on potential patient
groupings [53].

K-Means Clustering Implementation: To determine the
optimal number of clusters (k) for the K-Means
algorithm, three common internal validation methods
were employed: the Elbow method [54], Silhouette
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Analysis [55], and Calinski-Harabasz Index [56]. The
performance of the clustering was evaluated across a
range of k values from 2 to 10.

The Elbow method (Fig. 25) visually plots the Within-
Cluster Sum of Squares (WCSS) against the number of
clusters, aiming to identify a point where the rate of
decrease in WCSS significantly diminishes, resembling an
"elbow." Quantitative analysis of the steepest drops in
WCSS indicated the most significant decreases in cluster
heterogeneity. The largest decrease in WCSS was
observed from K=2 to K=3 (Drop = 203.51), followed by a
notable drop from K=3 to K=4 (Drop = 147.12), and then
from K=6 to K=7 (Drop = 111.80).

Elbow Method (WCSS) for K-Means
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Fig. 25: Elbow method (wcss) for K-Means.

Silhouette Analysis (Fig. 26) calculates the average
silhouette score, which measures how similar an object
is to its own cluster compared to other clusters. Higher
scores indicate better-defined and more separated
clusters. The analysis revealed that the highest average
silhouette score was consistently achieved at K=2
(0.1475). Other notable scores included K=5 (0.1227) and
K=4 (0.1209).

Silhouette Score for K-Means
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Fig. 26: Silhouette score for K-Means.

The Calinski-Harabasz Index (Fig. 27) quantifies the
ratio of between-cluster dispersion to within-cluster
dispersion, with higher values typically indicating more
dense and well-separated clusters. The results showed
that the highest Calinski-Harabasz Index was also
consistently achieved at K=2 (27.6996). Other high
scores were observed at K=3 (24.5557) and K=4
(22.4737).

Calinski-Harabasz Score for K-Means
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Fig. 27: Calinski Harabasz score for K-Means.

Considering the combined evidence from all three
internal validation metrics: the highest Silhouette Score
(0.1475) and the highest Calinski-Harabasz Index
(27.6996) are both consistently observed at K=2.
Furthermore, the Elbow Method's steepest WCSS drop
from K=2 to K=3 suggests a strong partitioning at K=2 or
K=3. The overall consensus across these robust metrics
indicates that K=2 provides the most optimal balance
between cluster cohesion and separation for this
dataset, supporting a parsimonious and clinically
interpretable solution.

The K-Means algorithm was implemented using the K-

Means class from the scikit-learn library with the
number of clusters set to 2 (n_clusters=2). The n_init
parameter was set to ‘'auto', which intelligently
determines the number of initializations to perform, and
a random_state of 42 was used to ensure reproducibility
of the clustering results. The K-Means algorithm for K=2
resulted in an average Silhouette Score of 0.1475 and a
Calinski-Harabasz Index of 27.6996.
Hierarchical Clustering Implementation: Agglomerative
Hierarchical Clustering, a bottom-up approach that
iteratively merges data points into clusters based on
their similarity [57], was also employed to identify
potential patient subgroups and to compare the results
with the K-Means algorithm.

The algorithm was implemented using the
AgglomerativeClustering class from the scikit-learn
library [58]. The preprocessed and scaled data
(X_processed), as described in Data Preprocessing
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Subsection, was used as input for the hierarchical
clustering algorithm.

To determine the optimal number of clusters (k) for
Hierarchical Clustering, similar internal validation
methods were applied across a range of k values (2 to
10), complementing the visual interpretation of the
dendrogram (Fig. 28).

The Hierarchical Elbow Method (Fig. 29) plots the
WCSS against k. Quantitative analysis of the steepest
drops in WCSS indicated the most significant decreases
in cluster heterogeneity. The analysis revealed that the
largest decrease in WCSS was observed from K=2 to K=3
(Drop = 209.83), followed by K=3 to K=4 (Drop = 133.75),
and then from K=4 to K=5 (Drop = 119.43).

Hierarchical Silhouette Analysis (Fig. 30) calculates the
average silhouette score. The analysis indicated that the
highest average silhouette score was achieved at K=2
(0.1364). Other notable scores included K=5 (0.1250) and
K=4 (0.1099).

The Hierarchical Calinski-Harabasz Index (Fig. 31)
quantifies the ratio of between-cluster dispersion to
within-cluster dispersion. The results showed that the
highest Calinski-Harabasz Index was achieved at K=3
(20.5170). Other high scores were observed at K=2
(20.4309) and K=4 (18.7656).

The dendrogram (Fig. 28) visually displays the
hierarchical merging of patient data points based on
their feature similarity. The height of the vertical
branches indicates the distance at which clusters were
merged, providing insights into the structure of the

underlying groupings. A quantitative analysis of the
"Largest Jump" in merge distances from the dendrogram
(which can be computed from the linked matrix, see Fig.
28) further supports specific K values. The largest jump
in merge distance was observed at a specific merge point
(Jump Value: 4.13 at merge index 181), which suggests
an Optimal K = 2. Other significant jumps included a
Jump Value of 2.68 (at merge index 178) suggesting
Optimal K =5, and a Jump Value of 1.97 (at merge index
182) suggesting Optimal K = 1.

Considering the combined evidence from all
hierarchical internal validation metrics and the
dendrogram analysis: The highest Silhouette Score
(0.1364) is at K=2, and while the highest Calinski-
Harabasz Index (20.5170) is at K=3 (though very close to
K=2), the Elbow Method shows its steepest drop from
K=2 to K=3, and the Largest Jump Analysis for the
dendrogram also primarily suggests K=2. The linkage
criterion for Hierarchical Clustering was set to 'ward',
which aims to minimize the variance within each cluster
being merged.

The resulting dendrogram (Fig. 28) displays the
hierarchical merging of patient data points. Individual
patient labels were omitted from the dendrogram for
visual clarity, with the x-axis representing the data
points. The color_threshold parameter was set to 6 to
visually distinguish clusters at a specific level of
dissimilarity. For K=2, the hierarchical clustering yielded
an average Silhouette Score of 0.1364 and a Calinski-
Harabasz Index of 20.4309.
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Fig. 27: Generated dendrogram using the linkage and dendrogram functions.
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Hierarchical Elbow Method (WCSS)
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Fig. 29: Hierachical Elbow Method (WCSS).

wH

Hierarchical Silhouette Score

0.1354
0.1304
0.1254
g
S
2 0.1201
£
3 0.1151
1
]
0.110 4
0.105 4
0.100 4
2 3 4 5 6 7 8 9 10
Number of Clusters (K)
Fig. 30: Hierachical silhouette score.
Hierarchical Calinski-Harabasz Score
20 4
19
g
S
(2]
W15
@
o
o
m
T
i 17 A
@
£
=
o
16 4
154

T T T T T T T T T
4 5 6 7 8 9 10
Number of Clusters (K)

Fig. 31: Hierachical Calinski-Harabasz index.

C. Cluster Evaluation (Internal Validity)

The internal validity of the clusters obtained from
both the K-Means and Hierarchical Clustering algorithms
was assessed using the Silhouette Score [55] and
Calinski-Harabasz Index [56]. The Silhouette Score
measures how well each data point fits within its

assigned cluster compared to other clusters, with values
ranging from -1 to 1; higher scores indicate better-
defined and more separated clusters. The Calinski-
Harabasz Index quantifies the ratio of between-cluster
dispersion to within-cluster dispersion, with higher
values typically indicating better clustering.

For the K-Means clustering with two clusters (k=2),
the average Silhouette Score obtained was 0.1475, and
the Calinski-Harabasz Index was 27.6996. This suggests
that the K-Means clusters, while not perfectly distinct,
exhibit a reasonable structure and a moderate degree of
separation, particularly in the context of complex clinical
data.

The Hierarchical Clustering, also evaluated with two
clusters (k=2) extracted from the dendrogram using
Ward's linkage, yielded an average Silhouette Score of
0.1364 and a Calinski-Harabasz Index of 20.4309. Similar
to the K-Means result, these scores indicate clusters
that, while showing some internal structure, still exhibit
a degree of overlap and moderate separation. Notably,
the K-Means clustering demonstrated slightly higher
Silhouette and Calinski-Harabasz scores, indicating
marginally better internal consistency, compactness, and
separation in its two-cluster solution compared to
Hierarchical Clustering at k=2 for this dataset.

These internal validity scores, while confirming that
both algorithms identified potential groupings within the
patient data, also strongly suggest that the resulting
clusters exhibit a level of internal overlap and may not
be distinctly separated. This is a common and often
expected characteristic when clustering complex, high-
dimensional real-world clinical datasets. The inherent
heterogeneity of patient populations, the continuous
nature of many clinical features, and the nuanced, non-
discrete  boundaries often found in biological
phenomena mean that subgroups rarely possess
perfectly crisp or geometrically isolated boundaries that
maximize mathematical separation. Consequently,
Silhouette Scores, which primarily measure compactness
and separation, can often appear lower in such contexts.

It is crucial to interpret these scores critically: while a
lower Silhouette score mathematically indicates some
overlap, it does not necessarily negate the clinical utility
or inherent validity of the identified subgroups. Instead,
the significance of these clusters for 'knowledge
discovery' primarily stems from the statistically
significant differences in feature profiles observed across
the groups (as validated by ANOVA for numerical
features and Chi-squared tests for categorical features in
the Results section). Furthermore, the identification of
these potential subgroups, despite mathematical
overlap, aligns with the understanding and observations
of the oncology specialists who collaborated on the
dataset's collection and interpretation, thereby
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enhancing their perceived clinical relevance and practical
utility. These robust and statistically significant
differences, supported by clinical expert insight, reveal
meaningful patterns of patient characteristics and
treatment responses that can inform clinical hypotheses
and guide future research.

Results

This section presents the outcomes of applying the K-
Means and Hierarchical Clustering algorithms to the
preprocessed breast cancer treatment data from
Iranmehr Hospital. The results for each clustering
method, including the determined number of clusters,
their sizes, and characteristic profiles based on the
analyzed features, are detailed in the following
subsections. Additionally, the internal validity of the
obtained clusterings, as assessed by the Silhouette
Score, is summarized.

A. Clustering-based Knowledge Discovery in Breast
Cancer Treatment Data from Iranmehr Hospital

As described in the Methodology section, both K-
Means and Hierarchical Clustering algorithms were
implemented to identify potential patient subgroups.
Based on the rigorous evaluation using Elbow Method,
Silhouette Analysis, Calinski-Harabasz Index, and for
Hierarchical Clustering, the Largest Jump Analysis from
the dendrogram, the optimal number of clusters was
consistently identified as two (k=2) for both methods.
This choice aims to provide a robust and clinically
interpretable stratification of the patient cohort.

B. K-Means Clustering Results

The K-Means algorithm, with the number of clusters
set to two, partitioned the patient population into two
distinct clusters with varying sizes. The distribution of
patients across the two clusters was as follows: Cluster 0
(n=62) and Cluster 1 (n=123).

An analysis of the numerical and categorical features
within each cluster revealed differentiating characteristic
profiles:

e Cluster 0 (n=62): This cluster, comprising
approximately 33.5% of the cohort, is primarily
characterized by patients with a lower mean number
of dissected lymph nodes (Mean = 4.77 + 5.11) and
fewer chemotherapy sessions (Mean = 7.16 + 3.70).
These patients also tended to have lower ordinal N-
stages (Mean N = 1.34 + 0.99) and less extensive
node dissection (Mean Node_Dissection = 1.47 %
0.72). In terms of nominal features, this cluster is
entirely Female (100.0%). Menopausal Situation is
balanced (50.0% Post-menopausal vs. 50.0% Pre-
menopausal). Histological Type is predominantly IDC
(83.87%), with ILC accounting for 11.29%. The
majority underwent Total Mastectomy (66.13%)
performed by General Surgeons (75.81%). ER-

Positive status is high (75.81%), while HER2-Negative
(66.13%) and Trastuzumab-Negative (66.13%) are
more common. High percentages are observed for
Conventional Radiation Dose (64.52%) and Negative
Radiation Boost Dose (67.74%). Tamoxifen is the
most common Hormone Therapy (37.10%).
= Statistically Significant Differentiating Features (p
< 0.05 from ANOVA/Chi-squared): Age
(p=0.0172), Dissected_Nodes (p=0.0000),
Chemotherapy_Session (p=0.0000), N (Nodal
involvement, p=0.0000), Node_Dissection
(p=0.0000), Chemotherapy_Regimen (p=0.0000),
Treatment_Schedule (p=0.0082), Radiation_dose
(p=0.0016), and Radiation_Boost_Dose
(p=0.0069).

e Cluster 1 (n=123): This larger cluster, encompassing
approximately 66.5% of the cohort, presents a
contrasting profile with a higher mean number of
dissected lymph nodes (Mean = 9.91 + 5.44) and
more intensive chemotherapy sessions (Mean =
15.02 + 2.63). Correspondingly, these patients
showed higher ordinal N-stages (Mean N = 2.13 *
1.08) and more extensive node dissection (Mean
Node_Dissection = 1.93 + 0.25, closer to ALND).
Regarding nominal features, this cluster is also
predominantly Female (96.75%), with a higher
proportion of Pre-menopausal patients (65.04%)
compared to Post-menopausal (34.96%). Histological
Type is predominantly IDC (93.50%). Total
Mastectomy (65.04%) by General Surgeons (73.17%)
is common. ER-Positive (65.04%) and PR-Positive
(60.16%) statuses are prevalent, while HER2-
Negative (71.54%) and Trastuzumab-Negative
(71.54%) are common. Higher percentages are
observed for Conventional Radiation Dose (86.99%)
and Positive Radiation Boost Dose (54.47%).
Tamoxifen is the most common Hormone Therapy
(39.84%).
= Statistically Significant Differentiating Features (p <

0.05 from ANOVA/Chi-squared): Age (p=0.0172),
Dissected_Nodes (p=0.0000),
Chemotherapy_Session (p=0.0000), N (Nodal
involvement, p=0.0000), Node_Dissection
(p=0.0000), Chemotherapy_Regimen (p=0.0000),
Treatment_Schedule (p=0.0082), Radiation_dose
(p=0.0016), and Radiation_Boost_Dose
(p=0.0069).

This analysis reveals that K-Means clustering primarily
differentiates patients based on their age, the extent of

nodal involvement (Dissected_Nodes, N,
Node_Dissection), and the intensity of systemic
treatments (Chemotherapy_Session,

Chemotherapy_Regimen, Treatment_Schedule,
Radiation_dose, Radiation_Boost_Dose).
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C. Hierarchical Clustering Results

Applying Agglomerative Hierarchical Clustering with
Ward's linkage and extracting two clusters (k=2) from
the dendrogram (Fig. 28) resulted in the following cluster
sizes: Cluster 0 (n=139) and Cluster 1 (n=46).

Analyzing the mean of the numerical and re-mapped
ordinal features for these hierarchical clusters, and the
frequency distributions of the nominal features,
provided insights into their characteristics:

e Cluster 0 (n=139): This larger cluster, comprising
approximately 75.1% of the cohort, is characterized
by a mean age of 47.05 + 10.51 years. These patients
tend to have a higher mean number of dissected
nodes (9.37 + 5.56), receive more chemotherapy
sessions (mean 13.81 + 3.90), and show higher N-
stage (mean N = 2.01 + 1.06) and Node_Dissection
(mean 1.95 * 0.22, closer to ALND). In terms of
nominal features, this cluster is predominantly
Female (97.12%). It has a higher proportion of Pre-
menopausal patients (69.78%) compared to Post-
menopausal  (30.22%).  Histological Type is
overwhelmingly IDC (93.53%). The majority
underwent Total Mastectomy (64.03%) by General
Surgeons (76.26%). ER-Positive (63.31%), PR-Positive
(57.55%), HER2-Negative (71.94%), and
Trastuzumab-Negative  (71.94%) statuses are
common. Conventional Radiation Dose (84.17%) is
prevalent, and Positive Radiation Boost Dose
(52.52%) is slightly more common than Negative.
Tamoxifen is the most common Hormone Therapy
(39.57%). GnRH Analog use is largely Negative
(82.01%).
= Statistically Significant Differentiating Features (p <

0.05): Age (p=0.0000), Dissected_Nodes
(p=0.0000), Chemotherapy_Session (p=0.0000), N
(Nodal involvement, p=0.0013), Node_Dissection
(p=0.0000), Chemotherapy_Regimen (p=0.0000),
Menopausal_Situation (p=0.0000), ER (p=0.0112),
Treatment_Schedule (p=0.0017), Radiation_dose
(p=0.0047), Radiation_Boost_Dose (p=0.0151),
Hormonetherapy (p=0.0055).

e Cluster 1 (n=46): This smaller cluster, approximately
24.9% of the cohort, presents a contrasting profile
with patients being noticeably older on average
(Mean Age = 55.54 + 10.43 years). They tend to have
a lower mean number of dissected lymph nodes
(4.61 + 5.26) and significantly fewer chemotherapy
sessions (Mean = 8.09 + 4.69). Their N-stage (mean
N = 1.41 + 1.17) and Node_Dissection (mean 1.26 +
0.74, closer to SLND/No Dissection) also reflect less
extensive nodal involvement and dissection.
Regarding nominal features, this cluster is also
entirely Female (100.0%). It shows a higher
proportion of Post-menopausal patients (69.57%)

compared to Pre-menopausal (30.43%). Histological
Type is predominantly IDC (80.43%), but with a
notably higher proportion of ILC (13.04%) than
Cluster 0. The majority underwent Total Mastectomy
(69.57%) by General Surgeons (67.39%). ER-Positive
(84.78%) and PR-Positive (67.39%) statuses are
highly prevalent. HER2-Negative (63.04%) is still
common, but a higher proportion are HER2-Positive
(36.96%) and Trastuzumab-Positive (36.96%).
Conventional Radiation Dose (65.22%) is common,
but a higher percentage received No RT (34.78%)
compared to Cluster 0, and Negative Radiation Boost
Dose (69.57%) is more common. Tamoxifen (36.96%)
and Letrozole (32.61%) are common Hormone
Therapies. GnRH Analog use is largely Negative
(86.96%).
= Statistically Significant Differentiating Features (p <
0.05):  Age (p=0.0000), Dissected_Nodes
(p=0.0000), Chemotherapy_Session (p=0.0000), N
(Nodal involvement, p=0.0013), Node_Dissection
(p=0.0000), Chemotherapy_Regimen (p=0.0000),
Menopausal_Situation (p=0.0000), ER (p=0.0112),
Treatment_Schedule (p=0.0017), Radiation_dose
(p=0.0047), Radiation_Boost_Dose (p=0.0151),
Hormonetherapy (p=0.0055).
This analysis reveals that Hierarchical Clustering's

differentiation  primarily  revolves around Age,
Menopausal_Situation, nodal involvement
(Dissected_Nodes, N, Node_Dissection), and the
intensity/type of systemic treatments

(Chemotherapy_Session, Chemotherapy_Regimen,
Treatment_Schedule, Radiation_dose,
Radiation_Boost_Dose, Hormonetherapy, ER).

D. Comparison of K-Means and Hierarchical Clustering
Results

Comparing the outcomes of the K-Means and
Hierarchical Clustering algorithms reveals both areas of
substantial agreement and notable differences in the
identified patient subgroups. Both methods, when
constrained to produce two clusters, succeeded in
partitioning the patient cohort based on distinct clinical
characteristics.

To provide a detailed quantitative assessment of the
patient archetypes identified by both methods, Table 5
presents a side-by-side analysis of key demographic,
pathological, and treatment features for the two clusters
derived from each algorithm.

This quantitative comparison, presented in Table 5,
reveals that while the overall patient assignment
agreement between the two distinct clustering solutions
was moderate (as quantified by an Adjusted Rand Index
(ARI) of 0.4697), both algorithms consistently identified
groups sharing fundamental clinical characteristics.

For instance, K-Means Cluster 0 (n=62) is
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characterized by lower mean dissected lymph nodes,
fewer chemotherapy sessions, and lower N-stages.
Conversely, K-Means Cluster 1 (n=123) shows a
contrasting profile with a higher mean number of
dissected lymph nodes, more intensive chemotherapy
sessions, and higher N-stages. Notably, both K-Means
clusters are predominantly female, with varying
proportions of menopausal status and histological types,
but share high rates of ER-positive status.

Similarly, the Hierarchical Clustering algorithm also
partitioned the cohort into two clusters: Cluster O
(n=139) and Cluster 1 (n=46). Hierarchical Cluster 0
largely aligns with the higher intensity/severity profile,
showing  higher mean dissected nodes and
chemotherapy sessions. Hierarchical Cluster 1 presents a

profile with a lower mean number of dissected lymph
nodes and fewer chemotherapy sessions.

The statistical tests confirm several key differentiating
features. For K-Means, Age, Dissected_Nodes,
Chemotherapy_Session, N, Node_Dissection,
Chemotherapy_Regimen, Treatment_Schedule,
Radiation_dose, and Radiation_Boost_Dose were all
found to be statistically significant differentiators (P <
0.05). For Hierarchical Clustering, in addition to all the
features significant for K-Means (except for Age, which
showed a stronger P-value, and N, which showed a
slightly weaker P-value, but still significant),
Menopausal_Situation, ER Status, and Hormone Therapy
also emerged as statistically significant differentiating
features (P < 0.05).

Table 5: Quantitative comparison of identified patient subgroups by K-Means and hierarchical clustering

Feature

K-Means Cluster 0

K-Means Cluster 1

Hierarchical Cluster 0

Hierarchical Cluster 1

(n=62) (n=123) (n=139) (n=46)
Mean Age 51.89 47.79 47.05 55.54
Mean Dissected Nodes 477 9_'91 ?'37 4.61
(Lower) (Higher) (Higher) (Lower)
Mean N Stage 1.34 2.13 2.01 1.41
(Lower) (Higher) (Higher) (Lower)
1.47 1.93 1.95 1.26
Mean Node Dissection (Less Extensive) (More Extensive, closer (More Extensive, closer  (Less Extensive, closer to
to ALND) to ALND) SLND)
Mean Chemotherapy 7.16 15.02 13.81 8.09
Sessions (Fewer) (More Intensive) (More Intensive) (Fewer)
Mean Chemotherapy 1.65 2.90 2.73 1.74
Regimen (Lower Ordinal) (Higher Ordinal) (Higher Ordinal) (Lower Ordinal)
0, 0,
Treatment Schedule Sx>C:'?'.>3R2T/:H0T; A2 ISP Sx>Cﬁ'8I'.>2:T/:HoT; GBI NP

Radiation Dose

varied schedules

64.52% Conventional

varied schedules

86.99% Conventional RT

RT
Radiation Boost Dose 67.74% Negative 54.47% Positive
Post-Menopausal 50.00% 34.96%
ER-Positive 75.81% 65.04%
HER2-Positive 33.87% 28.46%
Ki67-Negative 43.55% 34.96%

Hormone Therapy

37.10% Tamoxifen
(Most Common)

39.84% Tamoxifen
(Most Common)

varied schedules
84.17% Conventional RT

52.52% Positive
30.22%
63.31%
28.06%
38.13%

39.57% Tamoxifen
(Most Common)

varied schedules
34.78% No RT /
65.22% Conventional RT

69.57% Negative

69.57%

84.78%

36.96%

36.96%

36.96% Tamoxifen /
32.61% Letrozole

However, the quantitative analysis also highlights
notable discrepancies in specific feature distributions
between the conceptually similar clusters, underscoring
the influence of the algorithmic approach on patient
stratification in complex data. For example, while K-
Means differentiation for nominal features primarily
revolved around Treatment_Schedule, Radiation_dose,
and Radiation_Boost_Dose, Hierarchical Clustering
showed a broader differentiation across
Menopausal_Situation, ER, and Hormonetherapy as well.
This suggests that Hierarchical Clustering might be more
sensitive to demographic and biomarker-related nuances

in defining its groups.

Furthermore, despite similar overall profiles, the
specific compositions and sizes of the most comparable
clusters can differ. For instance, the older age and
predominantly post-menopausal status of Hierarchical
Cluster 1 (Mean Age = 55.54 years, 69.57% Post-
menopausal) create a more distinct demographic profile
than what is primarily driven by age in K-Means. This
further illustrates the differing sensitivities of the two
algorithms to various feature combinations, leading to
unique patient groupings not perfectly mirrored across
methods.
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As discussed in the 'Cluster Evaluation (Internal
Validity)' subsection, the internal validity of the two-
cluster solutions was assessed using key metrics
including the Silhouette Score and the Calinski-Harabasz
Index. The relatively low values obtained for both
methods (e.g., K-Means Silhouette Score of 0.1475 and
Hierarchical Silhouette Score of 0.1364) are indicative of
inherent overlap and non-distinct separation within
these patient groupings. This underscores that while
both algorithms identified potential groupings, the
identified patterns are not perfectly distinct, and
interpretations should be cautious. The hierarchical
structure revealed by the dendrogram offers a different
perspective compared to the discrete clusters produced
by K-Means. While we chose to cut the dendrogram at a
level yielding two clusters for comparison, the visual
representation suggests that other numbers of clusters
might also be meaningful and could capture different
aspects of the data's underlying structure.

Discussion

This study successfully employed K-Means and
Agglomerative Hierarchical Clustering algorithms to
identify potential patient subgroups within the breast
cancer treatment dataset from Iranmehr Hospital. Based
on rigorous internal validation metrics (Elbow Method,
Silhouette Analysis, Calinski-Harabasz Index, and Largest
Jump Analysis for Hierarchical Clustering), the optimal
number of clusters was consistently determined to be
two (k=2) for both methods, providing a robust and
clinically interpretable stratification of the patient
cohort.

The K-Means algorithm partitioned the patient
population into two distinct clusters: Cluster 0 (n=62,
33.5% of cohort) and Cluster 1 (n=123, 66.5% of cohort).
Cluster 0 is predominantly characterized by patients with
a lower mean number of dissected lymph nodes (Mean =
4.77 + 5.11), fewer chemotherapy sessions (Mean = 7.16
+ 3.70), and generally lower ordinal N-stages (Mean N =
1.34 % 0.99), suggesting a less aggressive disease profile
or less intensive treatment approach. Conversely, Cluster
1 presented a contrasting profile, indicative of more
advanced disease or intensive treatment, with a higher
mean number of dissected lymph nodes (Mean =9.91 +
5.44), more intensive chemotherapy sessions (Mean
15.02 + 2.63), and higher ordinal N-stages (Mean N =
2.13 +1.08). Both K-Means clusters showed high rates of
ER-positive  status,  with HER2-negative  and
Trastuzumab-negative statuses being more common.
Statistically significant differentiators for K-Means
clusters (P < 0.05) included Age, Dissected_Nodes,
Chemotherapy_Session, N, Node_Dissection,
Chemotherapy_Regimen, Treatment_Schedule,
Radiation_dose, and Radiation_Boost_Dose.

Similarly, the Hierarchical Clustering algorithm also

partitioned the cohort into two clusters: Cluster 0
(n=139, 75.1% of cohort) and Cluster 1 (n=46, 24.9% of
cohort). Hierarchical Cluster 0 largely aligned with the K-
Means "higher intensity/severity" profile, exhibiting
higher mean dissected nodes (9.37 + 5.56) and more
chemotherapy sessions (mean 13.81 + 3.90), along with
higher N-stages. In contrast, Hierarchical Cluster 1
presented a distinct profile, characterized by patients
who were noticeably older on average (Mean Age =
55.54 + 10.43 years) and had a lower mean number of
dissected lymph nodes (4.61 + 5.26) and significantly
fewer chemotherapy sessions (Mean = 8.09 + 4.69). This
cluster also showed a higher proportion of Post-
menopausal patients (69.57%), a higher percentage of
ER-Positive (84.78%) and HER2-Positive (36.96%)
statuses compared to Hierarchical Cluster 0, and a
notable percentage receiving no radiation therapy.
Statistically significant differentiators for Hierarchical
clusters (P < 0.05) encompassed all those for K-Means,
with the crucial addition of Menopausal_Situation, ER
Status, and Hormonetherapy, highlighting a broader set
of discriminating factors.

A quantitative comparison of the two distinct
clustering solutions revealed a moderate overall patient
assignment agreement, as quantified by an Adjusted
Rand Index (ARI) of 0.4697. This score, significantly
above random chance, indicates that while the
algorithms identified a shared fundamental partitioning
of the patient population, they also exhibited differences
in specific data point assignments or cluster boundary
definitions. Both algorithms consistently highlighted the
importance of nodal involvement (Dissected_Nodes, N,
Node_Dissection) and the intensity/type of systemic
treatments (Chemotherapy_Session,
Chemotherapy_Regimen, Treatment_Schedule,
Radiation_dose, Radiation_Boost_Dose) as key
differentiating factors. However, the Hierarchical
Clustering method demonstrated a more pronounced
ability to differentiate based on demographic and
biomarker features such as Menopausal_Situation, ER
Status, and Hormone Therapy, which were less
statistically significant in the K-Means solution. This
suggests that Hierarchical Clustering may be more
sensitive to these nuanced patient characteristics,
leading to a cluster (Hierarchical Cluster 1) that is more
distinctly defined by age and menopausal status. The
differing cluster sizes between the two methods further
reflect these algorithmic sensitivities.

As discussed in the 'Cluster Evaluation (Internal
Validity)' subsection, the internal validity scores for the
two-cluster solutions (K-Means Silhouette Score =
0.1475; Hierarchical Silhouette Score = 0.1364) were
relatively low. These values, while confirming the
identification of potential groupings, suggest a degree of
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inherent overlap and non-distinct separation within the
clusters. This is a common and often expected
characteristic  when  clustering complex, high-
dimensional real-world clinical datasets, where patient
heterogeneity and the continuous nature of clinical
variables rarely result in perfectly isolated subgroups.
Despite this, the observed robust and statistically
significant differences in feature profiles across the
identified clusters, validated by ANOVA and Chi-squared
tests, combined with insights from collaborating
oncology specialists, suggest the clinical relevance and
practical utility of these groupings for knowledge
discovery.

A. Clinical Relevance

The identification of two distinct patient subgroups
within the breast cancer cohort at Iranmehr Hospital
holds significant implications for understanding disease
heterogeneity and advancing personalized treatment
strategies. The characterization of these clusters,
grounded in statistically significant differentiating
features as detailed in Table 5, provides valuable insights
for generating clinically relevant hypotheses.

Cluster 0 (K-Means and Hierarchical alignment in
general concept): This cluster, broadly defined by higher
nodal involvement and intensive systemic treatments,
likely represents patients with a more aggressive disease
presentation or those requiring more comprehensive
therapeutic approaches. For these patients, the clusters
suggest a need for vigilant follow-up, potentially more
aggressive adjuvant therapies, or consideration for novel
treatment regimens to mitigate the risk of recurrence.

Cluster 1 (K-Means and Hierarchical alignment in
general concept, with Hierarchical showing a unique
subset): This cluster, generally characterized by lower
nodal involvement and less intensive systemic
treatments, may represent patients with a more
favorable prognosis or those for whom de-escalation of
therapy could be considered, thereby minimizing
unnecessary exposure to treatment-related toxicities
and improving quality of life.

Crucially, Hierarchical Cluster 1 (the older,
predominantly post-menopausal subgroup with lower
disease intensity but distinct biomarker profiles)
highlights a particularly relevant patient archetype.
Understanding the specific factors influencing treatment
decisions and outcomes in this older cohort, and the
implications of their hormonal and HER2 statuses, could
inform more tailored management guidelines for
geriatric breast cancer patients. This subgroup's unique
profile suggests a potential for distinct therapeutic
considerations that go beyond general age-based
guidelines.

The identified stratifications provide a data-driven
foundation for generating specific clinical hypotheses.

For example, correlating these clusters with long-term
patient outcomes (e.g., disease-free survival, overall
survival) in future prospective studies is essential. Such
validation could establish the prognostic or predictive
value of these subgroups, ultimately guiding
personalized treatment decisions and patient counseling
based on a more granular understanding of their clinical
and biological profiles.

B. Strengths and Limitations

A key strength of this study lies in the development of
a dedicated dataset for breast cancer patients at
Iranmehr  Hospital, collected with the direct
collaboration and expertise of two oncology specialists.
This collaboration ensures the clinical relevance and
accuracy of the included features, reflecting real-world
data and treatment practices within this specific medical
center. The subsequent application of K-Means and
Hierarchical Clustering to this local dataset allowed for
the identification of patient subgroups specific to this
population, potentially capturing nuances missed in
broader, more heterogeneous datasets. Furthermore,
the statistical validation of feature differences across the
identified clusters using ANOVA and Chi-squared tests
adds rigorous scientific support to the interpretation of
these subgroups. The consistent identification of two
optimal clusters across multiple internal validation
metrics (Elbow method, Silhouette analysis, Calinski-
Harabasz index, and Largest Jump analysis) and the
moderate Adjusted Rand Index (ARI) of 0.4697 between
the two distinct clustering solutions further strengthens
the robustness and interpretability of these findings,
indicating a stable underlying data structure.

Despite these strengths, several limitations must be
acknowledged. Firstly, the study is based on a
retrospective dataset from a single institution, which
inherently limits the generalizability of the findings to
other populations or healthcare settings with different
treatment protocols and patient demographics. While
the local specificity can be a strength for understanding
patterns within Iranmehr Hospital, it necessitates
caution when extrapolating these findings.

Secondly, while k=2 was consistently identified as the
optimal number of clusters based on internal validity
metrics, the choice of 'k’ inherently involves a degree of
subjectivity in  unsupervised learning. Exploring
alternative 'k' values or employing different clustering
algorithms might reveal alternative or more clinically
relevant patient segmentations, although for this study,
the two-cluster solution offers a parsimonious and
interpretable stratification.

Thirdly, the relatively low Silhouette Scores for both
K-Means (0.1475) and Hierarchical Clustering (0.1364)
suggest a degree of overlap and heterogeneity within
the identified clusters, indicating that the boundaries
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between these subgroups may not be sharply defined.
This is often attributable to the inherent complexity and
continuous nature of clinical variables in real-world
patient data, where subgroups rarely form perfectly
discrete or geometrically isolated clusters.

Fourthly, the observed imbalance in the distribution
of certain treatment combinations reflects the real-
world clinical practices at this institution. While this is an
inherent characteristic of the data, future analyses could
explore the impact of this imbalance on the clustering
results and consider using techniques specifically
designed for imbalanced datasets, if deemed necessary.
Fifthly, consistent with the methodology, no explicit
feature selection or dimensionality reduction techniques
were applied at this stage to specifically optimize cluster
separability. While this approach provided an unbiased
view of patient characteristics, it is possible that such
techniques could enhance cluster compactness and
separation.

Finally, while we have discussed potential clinical
relevance, this study is primarily descriptive. Further
research correlating these clusters with long-term
clinical outcomes (e.g., survival, recurrence) is needed to
validate their prognostic or predictive value and to
establish their utility in guiding treatment decisions. The
cross-sectional nature of the data also limits our ability
to infer temporal relationships or the evolution of
treatment strategies over time.

C. Future Work

Several promising avenues for future research
emerge from this study, building upon the identified
two-cluster patient stratifications. Firstly, to address the
limitation of single-center data, it would be invaluable to
validate the identified patient subgroups in larger,
potentially multi-center datasets. To facilitate this while
respecting data privacy, future research could explore
the application of Federated Learning techniques. This
approach would allow for collaborative analysis across
institutions without the need to centralize sensitive
patient information.

Secondly, future work should explore the application
of a wider range of clustering algorithms beyond K-
Means and Hierarchical Clustering, including density-
based (e.g., DBSCAN), distribution-based (e.g., Gaussian
Mixture Models), and other partitioning methods.
Comparing the results of these algorithms and
evaluating their performance using appropriate internal
and external validation metrics could lead to a more
robust and clinically meaningful patient segmentation.

Thirdly, given the potential clinical relevance
suggested by the characteristics of the identified two
clusters, a critical next step is to correlate these clusters
with long-term clinical outcomes such as disease-free
survival, overall survival, and 5-year survival rates. This

would provide strong evidence for the prognostic value
of these subgroups and their potential utility in guiding

personalized treatment decisions and patient
counseling.
Fourthly, future studies could investigate the

integration of other relevant data sources, such as
detailed molecular and genomic information, imaging
data, and patient-reported outcomes, to further refine
the identified clusters and gain a more comprehensive
understanding of the underlying biological and clinical
characteristics of these patient subgroups.

Fifthly, to address the challenge of feature
dimensionality and potentially enhance cluster
separability, future analyses will rigorously investigate
various feature selection and dimensionality reduction
techniques. Methods such as Principal Component
Analysis (PCA) for linear dimensionality reduction,
Recursive Feature Elimination (RFE), or filter methods
based on statistical tests (e.g., correlation-based feature
selection) will be explored to identify the most
informative and discriminative features for patient
stratification.

This systematic approach is anticipated to reduce
noise, improve computational efficiency, and potentially
yield more compact and well-separated clusters, thereby
further refining the interpretability of identified patient
subgroups.

Finally, future research could explore the implications
of the inherent treatment imbalance in the dataset on
the identified clusters and investigate whether
alternative clustering approaches or specific techniques
for imbalanced data analysis could provide further
insights.  Sensitivity analyses on the clustering
parameters would also be beneficial to assess the
robustness of the identified clusters.

Conclusion

This study effectively utilized K-Means and
Agglomerative Hierarchical Clustering to identify two
distinct potential patient subgroups of breast cancer
patients within the Iranmehr Hospital dataset, revealing
significant stratifications based on their clinical and
treatment characteristics.

Through rigorous internal validation, k=2 was
consistently identified as the optimal number of clusters
for both methodologies. The identified clusters exhibited
statistically significant differences across key features
such as age, chemotherapy intensity, nodal involvement,
menopausal status, and ER expression, suggesting
underlying heterogeneity in the patient population and
treatment approaches. The moderate agreement
between the two clustering methods, quantified by an
Adjusted Rand Index of 0.4697, indicates a shared
foundational partitioning while also highlighting areas of
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distinct algorithmic sensitivity.

While the findings offer valuable initial insights into
patient stratification within this specific clinical context,
the study's limitations, including its single-center,
retrospective nature, and the inherent complexity of
clustering real-world clinical data, necessitate further
investigation.

Nevertheless, the identified two clusters provide a
data-driven foundation for future research aimed at
understanding their clinical relevance, particularly in
terms of long-term treatment outcomes and potential
for personalized medicine strategies.

Future work should focus on validating these findings
in larger, potentially multi-center cohorts, and exploring
the utility of alternative clustering algorithms and
feature selection techniques, including dimensionality
reduction methods. To facilitate analysis across multiple
institutions while preserving data privacy, future
research could also explore the application of Federated
Learning techniques. Importantly, future studies should
correlate the identified patient subgroups with crucial
clinical endpoints such as recurrence rates and survival
outcomes. Integrating multi-omics data could further
refine our understanding of these patient stratifications
and pave the way for more tailored and effective breast
cancer management.
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