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Background and Objectives: The Internet of Things (IoT) serves as a fundamental 
communication model, enabling objects to deliver data and services to users. 
With the rapid expansion of IoT, ensuring privacy and preventing the disclosure 
of sensitive data during message exchanges between objects has become 
increasingly challenging. This paper presents an attribute-based framework 
designed to enhance privacy protection in IoT environments by leveraging 
software-defined networking (SDN) technology. 
Methods: By leveraging the SDN and the Attribute-Based Privacy Preserving 
(ABPP) model, our proposed framework employs an advanced algorithm to 
enhance privacy for client requests accessing IoT services. It focuses on 
protecting sensitive information during message transmission by implementing 
techniques for anonymity, unlinkability, and untraceability, tailored to the 
sensitivity level of each message. To further enhance message privacy within the 
IoT network, our framework incorporates IP aliasing, dynamic channel switching, 
and payload encryption. 
Results: Our proposed framework significantly enhances privacy protection in IoT 
networks by dynamically applying anonymity and concealment techniques 
tailored to the sensitivity of CoAP messages. Simulation results using 
CloudSimSDN confirm the framework's effectiveness in safeguarding sensitive 
information while maintaining optimal communication performance. Using three 
privacy-preserving methods leads to an average CPU utilization that is 0.14 units 
higher than when only one method is applied. We provide a security evaluation 
that includes formal verification techniques and informal analysis, and show that 
the proposed framework is secure against anonymity and Man in The Middle 
(MITM) attacks, replay attacks, Sybil, and IP spoofing. 
Conclusion: In this paper, we present a four-layer SDN-based framework 
designed to enhance privacy in IoT networks through the use of the Attribute-
Based Privacy Preserving (ABPP) model. The framework employs IP aliasing, 
dynamic routing, and content encryption techniques tailored to the sensitivity of 
CoAP messages to ensure data protection. Our implementation and experiments 
conducted with CloudSimSDN validate the framework's effectiveness in 
safeguarding sensitive information. 
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Introduction 

Today, numerous aspects of human life are influenced 

by the Internet of Things (IoT). The IoT is utilized across 

various domains, including agriculture, patient 

monitoring, home automation, welfare, and smart cities, 

among others. Experts predict that by 2030, the number 

of connected devices within IoT networks will exceed 29 

billion [1], [2]. Privacy entails that information about 

individuals must be safeguarded and not disclosed under 

any circumstances without explicit consent. It also 

ensures that users' identities cannot be discerned or 

tracked based on their behavior and actions within the 

system. The vast amount of data generated by billions of 

Internet of Things (IoT) devices poses a significant threat 

to user privacy, heightening the risk of breaches and 

privacy violations [2]-[5]. 

Ensuring privacy in modern systems has become 

increasingly important. The primary objectives of privacy 

techniques are to achieve anonymity, unlinkability, and 

untraceability. Anonymity ensures that a third party 

cannot identify an individual's identity among other 

identities within the system. Unlinkability refers to the 

inability to associate a person's identity with the 

information they produce. Untraceability means that it is 

difficult to track actions and information generated from 

an entity's behavior within the system [2], [4].  

A new technology, known as SDN, has been 

introduced in the networking industry. Its primary 

purpose is to decouple the control logic from the 

network equipment, such as transport devices. This 

separation allows for the implementation of control logic 

on physical devices based on the specific requirements 

of the application. SDN comprises three layers: data, 

control, and application. The application layer connects 

to the control layer via the northbound interface, while 

the control layer connects to the data layer via the 

southbound interface [6]-[8]. 

The use of SDN in computing systems to manage the 

Internet of Things (IoT) offers several advantages, 

including flexibility, scalability, redundancy, and reduced 

hardware requirements. SDN enables users to achieve 

greater flexibility in their operations and architecture, 

which is particularly important for IoT system 

architecture. The use of distributed infrastructure and 

limited resources in IoT applications further underscores 

the importance of this flexibility. As SDN is increasingly 

adopted in IoT applications, privacy challenges must be 

addressed. Proper software design and the 

implementation of various applications are necessary to 

mitigate these challenges. Although significant progress 

has been made in privacy protection for IoT, ensuring 

privacy in machine-to-machine (M2M) IoT networks 

remains a challenge. [4], [2], [9], [7], [10], [11]. 

This paper proposes ABPP-SDN, an IoT attribute-

based privacy protection framework that integrates 

encryption, anonymity, and dynamic channels using 

Software-Defined Networking (SDN) technology. The 

objective is to enhance the privacy of IoT networks by 

leveraging SDN as the network infrastructure. To 

facilitate message transfer between different devices, 

ABPP employs the Constrained Application Protocol 

(CoAP), a lightweight and widely used web-based 

protocol in IoT networks. CoAP [12], [13] supports 

resource discovery, block transfer, and asynchronous 

message exchange between devices, but it lacks 

advanced privacy enforcement mechanisms-such as 

dynamic routing and attribute-based encryption-that are 

essential for fine-grained protection in sensitive 

applications. To define different levels of privacy for IoT 

services, ABPP-SDN adopts an attribute-based privacy 

model. This framework aims to address the limitations 

identified in existing research and underscores the 

importance of IoT privacy. ABPP-SDN introduces a new 

component for the SDN controller to apply privacy 

protection levels during message transmission, thereby 

achieving privacy protection goals. The proposed 

solution involves using a new alias to anonymize the 

source address during transmission. Additionally, 

encryption, dynamic channels, padding, and 

compression techniques are employed to conceal 

sensitive information, ensuring untraceability and 

unlinkability, However, while these layered techniques 

enhance privacy guarantees, they also introduce non-

negligible computational and communication overhead. 

In summary, the main contributions of this work include: 

 We introduce our proposed framework, a four-

layer SDN-based architecture designed to enhance 

privacy protection and safeguard sensitive 

information during message transmission among 

devices in IoT networks. 

   We define ABPP, an attribute-based privacy-

preserving model, ABPP-SDN, to ensure the privacy 

of sensitive data during message transmission 

within the IoT network. This model considers the 

varying degrees of sensitivity in CoAP messages. 

We quantify the sensitivity level of each CoAP 

message and select appropriate anonymization 

and concealment techniques based on its 

respective sensitivity before transmission. 

 We simulate our proposed framework using 

CloudSimSDN and conduct several experiments to 

evaluate its performance. 

Background 

This section provides a concise overview of the 

Software-Defined Networking (SDN) paradigm and the 

Constrained Application Protocol (CoAP). 
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A.  SDN Technology 

SDN is an innovative technology that enhances 

network efficiency by decoupling the control plane from 

the data plane. This separation facilitates improved 

network management and addresses challenges such as 

security, scalability, heterogeneity, and limited capacity 

within the Internet of Things (IoT) [7], [4], [14]. 

As illustrated in Fig. 1, SDN comprises three layers: 

the application layer, the control layer, and the data 

layer [15], [7]. Each layer communicates with its 

adjacent layer through a set of interfaces. The 

application layer contains SDN applications that define 

network behavior via the northbound interface. The 

most prominent northbound interface is the REST API, 

which allows remote applications to send commands to 

or retrieve information from the controller using the 

HTTP protocol. The control layer consists of one or more 

logically centralized SDN controllers responsible for 

managing the control plane and creating a network view. 

The controller's role is to translate application requests 

into data plane instructions via the southbound interface 

and provide an updated network state to the 

applications. The data layer comprises devices such as 

switches and routers, which are responsible for 

forwarding packets. Communication between the data 

layer and the control layer is facilitated through the 

southbound interface, typically implemented via the 

OpenFlow protocol. Consequently, SDN is often referred 

to as SDN/OpenFlow [16], [8]. 

B.  CoAP Protocol 

The CoAP protocol was developed by the IETF as an 

application layer protocol for IoT applications based on 

the REST architecture [13], [12]. Because most IoT 

devices have limited resources, including memory and 

processing capability, HTTP is not well suited due to its 

complexity.  As a result, the CoAP protocol was 

developed by adapting and simplifying specific features 

of HTTP. The key characteristics of the CoAP protocol 

include the following: 
This protocol is designed for web usage and 

implements a request/response model for limited 

resources. 

 Asynchronous communication is supported for 
message passing. 

 This protocol has lower overhead and is less 
complex than HTTP. 

 This feature provides assistance for various types 
of content and Uniform Resource Identifiers (URIs). 

 This feature facilitates the process of finding and 
utilizing services and resources, and also enables 
communication through multicast. 

 This protocol offers a straightforward proxy feature 
and is capable of interacting with the HTTP 
protocol. 

 The CoAP token field enables correlation between 
request and response. 

When evaluating lightweight protocols for IoT 

communication, CoAP stands out against alternatives 

such as Message Queuing Telemetry Transport (MQTT) 

[17] and Google Remote Procedure Calls (gRPC) [18] due 

to several architectural and functional distinctions [19] : 

IoT uses CoAP in resource-constrained devices with 

RESTful interactions that use web services. Features to 

support multicast communication and integration with 

proxies are also offered. The primary advantages of 

CoAP include a lightweight design coupled with a built-in 

DTLS, serving privacy and security. The disadvantages 

come from missing large sets of mechanisms: for 

example dynamic routing and attribute-based encryption 

can be a major constraint for privacy-sensitive 

applications.  

MQTT is a publish-subscribe pattern well-suited for 

applications where reliability is a major concern as it 

provides QoS (Quality of Service) levels. However, it is 

broker-based and hence may need an external QoS for 

multicast communications and RESTful interactions. 

Provision of privacy in MQTT requires external methods 

and manual configuration of TLS, often quite complex in 

itself. 

gRPC has the power and efficiency required from any 

high-performance protocol. It is based on HTTP/2 and 

uses Protocol Buffers promising high data-transfer 

efficiency. However, all these merits come with the price 

of high overhead signatures imposed on the underlying 

system making it inappropriate for use in resource-

constrained IoT systems. Furthermore, it misses out on 

providing any built-in privacy at the protocol level, which 

can be significantly detrimental for sensitive 

applications. 

Related Work 

Ensuring privacy protection is a critical requirement in 

IoT environments [2], [20]-[23]. IoT networks involve the 

exchange of sensitive data and the potential for 

unauthorized access, making privacy preservation 

imperative. While conventional privacy protection 

methods face challenges when applied to resource-

constrained IoT devices, SDN technology provides 

promising solutions to address privacy concerns. By 

leveraging SDN's centralized control and 

programmability, privacy protection methods can be 

implemented at the network level. In this section, we 

review the existing literature on privacy protection 

methods for IoT networks based on SDN technology. 

A context-aware privacy-preserving method is 

presented in [24] for IoT-based smart cities using SDN 

technology. Their method involves splitting data packets 

into different packets and managing them based on their 



S. Zangaraki et al. 

166  J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 

contexts and privacy levels. However, the method has 

some limitations. First, it requires a centralized 

controller to manage data packets, which may introduce 

a single point of failure and create a bottleneck. Second, 

it does not account for the dynamic nature of IoT 

devices’ mobility and connectivity, which could affect 

the context awareness and privacy levels of the data 

packets. 

In [25], a privacy protection method is presented to 

mitigate the risk of data leakage in IoT-SDN networks by 

periodically altering the switch-controller mapping. 

However, it is important to note that this method 

overlooks the heterogeneity, topology, and traffic 

aspects of IoT networks. 

In [26], a presented edge computing-enhanced IoT 

framework is introduced to enhance privacy 

preservation in smart cities. This framework identifies 

two key challenges related to IoT data management: (1) 

the heterogeneity of IoT devices, and (2) the 

preservation of sensitive data privacy. To address the 

heterogeneity challenge, the framework adopts an 

ontology-based data model that captures crucial 

information about IoT devices and their corresponding 

privacy levels. Additionally, to tackle the privacy 

preservation challenge, the framework presentes a 

method that periodically adjusts the privacy-preserving 

behaviours of IoT devices based on insights derived from 

the ontology. 

The method mentioned in [27], IoT-SDNPP, uses SDN 

technology for the privacy preservation aspect in smart 

cities. With IoT-SDNPP, SDN is used to separate the 

control plane from the data plane to make the 

management and flexibility more applicable to the 

network. With these privacy-preserving rules taking into 

consideration every individual IoT device's specific 

characteristics and environment, it aims to provide 

totally personalized protection in the privacy arena for 

the IoT ecosystem. 

Reference [28] introduces a novel privacy-preserving 

approach for IoT networks based on differential privacy. 

It demonstrates how differential privacy can be utilized 

to safeguard data generated by IoT devices within an IoT 

ecosystem. The proposed method assesses the 

sensitivity of the data and injects noise into the relevant 

data dimensions accordingly, ensuring privacy protection 

while maintaining data utility. As a result, the approach 

is regarded as a robust and flexible solution for 

enhancing privacy in IoT networks. 

In [29], an advanced privacy and functional 

authentication scheme is introduced, specifically 

designed for fog nodes in smart healthcare. This scheme 

leverages the capabilities of SDN technology to 

implement an efficient authentication mechanism within 

the SDN gateway. The primary objective is to validate 

the credibility of fog nodes while minimizing the 

computing overhead of IoT devices. By utilizing privacy 

and functional attributes, the scheme ensures the secure 

authentication of both fog nodes and IoT devices. This 

innovative approach offers enhanced privacy protection 

and reliable authentication mechanisms for fog 

computing in the context of smart healthcare 

applications. 

In [30], a dynamic privacy-preserving method based 

on SDN is presented for smart cities, incorporating a 

trust technique. This method leverages SDN technology 

to deploy a mechanism within the SDN controller. The 

mechanism operates based on the mutual trust among 

nodes and dynamically selects different routes from IoT 

devices to the cloud environment, depending on the 

confidence level. Additionally, the SDN controller 

reroutes packets when it detects a device that lacks trust 

in its neighbouring device. This innovative approach 

ensures privacy protection while optimizing network 

routing and enhancing trustworthiness within the smart 

city infrastructure. 

A layered architecture, termed ESDNS-DLHFS, is 

presented in [31], incorporating privacy enhancement 

and intrusion detection mechanisms within SDN-based 

IoT networks. The framework integrates min-max 

normalization with a hybrid Crow Search–Arithmetic 

Optimization approach for feature selection, and 

employs Deep BiLSTM for attack detection, alongside an 

enhanced Artificial Orca’s algorithm for hyperparameter 

optimization. It is designed to achieve a balance 

between privacy protection and computational 

efficiency by leveraging deep learning and bio-inspired 

algorithms to secure consumer IoT platforms. This study 

exemplifies the integration of machine intelligence into 

SDN-driven security architectures and contributes to 

advancing methodologies for privacy preservation in 

resource-constrained environments. 

[32] introduces a smart, new approach to protecting 

privacy in smart cities built on IoT, using the SDN 

technology. The method assesses trust levels among 

neighbouring devices to safeguard the privacy of IoT 

devices. The authors compared their approach with 

existing methods and found that, although it uses a bit 

more resources, it’s more effective at preventing 

accidental data leaks—especially in situations where 

adversaries might have some background knowledge. 

As depicted in Table 1, the proposed framework 

significantly advances privacy protection in IoT networks 

by introducing a four-layer SDN-based architecture that 

enhances the protection of sensitive information during 

device communication. Unlike previous approaches, our 

framework incorporates an attribute-based privacy 

preservation (ABPP) model, ABPP-SDN, which 

dynamically adjusts protection measures based on the 
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sensitivity of CoAP messages. By quantifying the 

sensitivity degree of each message and applying 

appropriate anonymization and concealment 

techniques, our approach ensures a higher level of 

privacy protection, addresses the limitations of existing 

studies, and provides a more dynamic privacy protection 

system for IoT networks. 

 
Table 1 : Comparison of exiting work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABPP-SDN Framework 

In this section, we will provide an overview of ABPP-

SDN, a system designed for attribute-based privacy 

protection. We will first explain the system architecture 

and then describe the ABPP model that is used to 

determine the level of privacy protection. In addition, we 

will discuss methods used to ensure different levels of 

privacy for CoAP response messages during message 

transmission. We will also discuss methods to avoid 

network analysis. 

A.  Architecture 

Generally, the system architecture of our proposed 

framework as depicted in Fig. 1, which incorporates SDN-

IOT [33], [34], consists of four layers, as illustrated in Fig. 

1. This architecture enables various CoAP servers to 

provide diverse CoAP services within the IoT network, 

which can be accessed by CoAP clients through IoT 

applications. The layers of our proposed framework are 

as follows: 

Application Layer: This layer hosts the IoT applications 

that provide different CoAP services to the CoAP clients. 

A CoAP client can register and request access to the 

CoAP services via the IoT application through this layer. 

The application layer communicates with the control 

layer via the northbound interface. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Controller: The controller component is the most critical 

software-based network element, serving as the control 

center of the system. Its responsibilities include 

generating the internal switching paths of the network 

and managing network state change events. The 

controller in our prototype comprises three sub-

components that implement different levels of privacy 

protection. When dealing with extensive or physically 

distributed systems, we add an additional set of 

controller nodes to the middleware layer to handle 

concurrent user requests. This approach ensures high 

load balancing and consistency while providing fast 

response times for a large number of requests. To 

communicate with these controller nodes, we use the 

West APIs if the system needs to be scaled. More details 

about the sub-components within this middleware are as 

follows: 

Privacy Policy Decision (PPD): This component is 

responsible for storing information related to CoAP 

clients and CoAP services. It also stores policies that 

specify various levels of privacy for messages exchanged 

between clients and services. When a CoAP client 

requests access to a specific CoAP service, the 

component performs checks to determine the 

appropriate level of privacy. In summary, this 

component manages privacy policies for client and 

server CoAP communication based on their attributes. 

The Privacy Policy Enforcement (PPE): It is responsible 

for enforcing the privacy protection decisions made by 

the Privacy Policy Decision (PPD) component. This is 

achieved by implementing privacy solutions that 

safeguard sensitive data and by employing mechanisms 

to conceal user identities. The Privacy Protection 

Enforcement (PPE) component accomplishes this 

through three subcomponents: 

Fig. 1: Our proposed framework architecture. 

Related 
Work 

Properties of Privacy Protection 
Method 

Architecture 

Type 

Support Data 
Fragmentation 

Context-
Aware 

Dynamic SDN-Based 

ABPP Yes Yes High Yes 

[24] Yes Yes Medium Yes 

[25] No Yes Medium Yes 

[26] No Yes Medium NO 

[27] Yes Yes Medium Yes 

[28] No NO Medium Yes 

[29] No Yes Medium Yes 

[30] Yes Yes Medium Yes 

[31] No Yes Medium Yes 

[32] Yes Yes Medium Yes 
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I. IP Aliasing (IA) Sub-Component: It allows a CoAP 

client to send a CoAP request to or receive a CoAP 

response from a CoAP server using a source IP 

address different from the one used in the original 

request. By employing IP aliasing, the CoAP client 

can maintain communication with the CoAP server 

even if the original IP address becomes 

unavailable. 

II. Channel Manager (CM) Sub-Component: It allows 

the frequent change of the communication 

channel between two devices, namely the CoAP 

client and CoAP server. When a CoAP client sends 

a CoAP request to a CoAP server, the information 

included in the CoAP request is used by this sub-

component to create a dynamic channel between 

the CoAP client and the CoAP server. For example, 

when a new packet (request) arrives at the 

controller and matches a certain flow in the flow 

table, the controller can use the packet counter 

(one of the flow table items) as a measure to 

determine whether a new channel is needed or 

the existing channel can be changed, used. A 

packet counter is a variable that counts the 

number of packets that match a particular flow. 

The controller can set a threshold for the packet 

counter and compare it to the current value of the 

counter for each flow. If the packet counter 

exceeds the threshold, the controller can create a 

new channel and add it to the channel table. 

Otherwise, the controller can update the existing 

channel with new packet information. In our work, 

this component is used for messages with 

sensitivity level 1. 

III. Message Encryptor (ME) Sub-Component: It 

facilitates the encryption of CoAP message 

content, ensuring that only authorized entities can 

access the information. The ME sub-component 

employs various cryptographic algorithms to 

secure the payload of CoAP messages. In our 

study, this component is utilized for messages 

classified with sensitivity level 2. 

Server Manager (SM) Component: It administers CoAP 

servers that deliver CoAP services to clients, facilitating 

more granular control over individual servers and 

enhancing monitoring and troubleshooting capabilities. 

Additionally, it optimizes the utilization of network 

resources, thereby reducing downtime and improving 

overall network performance. This component 

comprises four sub-components: 

I. Resource Discovery (RD) Sub-Component: It is 

responsible for determining the location, 

ownership, and Uniform Resource Identifier (URI) 

of IoT resources across various domains. 

II. Service Discovery (SD) Sub-Component: It 

maintains a registry of available CoAP services. 

When a CoAP client requires a specific CoAP 

service, it can submit a request to the SD sub-

component to locate the appropriate CoAP service 

hosted on a CoAP server. 

III. Domain Name System (DNS) Sub-Component: It 

maintains a mapping between resource URIs and 

their corresponding network locations. When a 

CoAP client sends a request to a specific CoAP 

server, the DNS sub-component resolves the URI 

in its mapping and returns the corresponding 

network location of the CoAP server. 

IV. Privacy Cache (PC) Sub-Component: It is designed 

to store frequent responses from the PPD for 

CoAP services, thereby providing faster privacy-

preserving services. Its primary responsibility is to 

enhance the overall performance of the proposed 

framework by reducing the time required to 

ensure privacy when accessing a specific CoAP 

service. 

Data layer: This layer consists of OpenFlow switches that 

are interconnected by high-speed communication links 

and are responsible for packet forwarding. All the 

devices in this layer operate under the control of the 

software-based network controller. The communication 

between the data layer and the control layer occurs 

through the southbound interface, which is the standard 

OpenFlow interface in this case. 

Object layer: This is the lowest layer in the proposed 

architecture, which comprises heterogeneous IoT 

devices (i.e., CoAP servers) that offers various services 

via CoAP protocol. 

B. Proposed Attribute-Based Privacy Protection  

The proposed framework employs an Attribute-Based 

Privacy Protection (ABPP) model to enforce varying 

levels of privacy protection during message transmission 

in Machine-to-Machine (M2M) Internet of Things (IoT) 

networks. This model comprises seven key components: 

I. Actors (SUB): Individuals or entities performing 

actions. 

II. Attributes of the Actors (SUB.ATT): Characteristics 

or properties of the actors. 

III. Entities (OBJ): Objects or entities affected by the 

actions. 

IV. Attributes of the Entities (OBJ.ATT): Characteristics 

or properties of the entities. 

V. Contextual Conditions (ENV.ATT): Environmental 

attributes where the actions occur. 

VI. Actions (OPS): The operations or activities 

performed. 
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VII. Policies (POL): Rules governing the application of 

different levels of privacy protection. 

This structured approach ensures a comprehensive 

and adaptable privacy protection mechanism within 

M2M IoT networks. 

Our proposed framework includes a Privacy Policy 

Decision (PPD) sub-component that evaluates the 

policies established by the Attribute-Based Privacy 

Protection (ABPP) model. In ABPP-SDN, we consider that 

CoAP messages can possess varying degrees of 

sensitivity. Initially, we assume three levels of sensitivity: 

Sensitive, Restricted, and Confidential. However, ABPP-

SDN can be expanded to accommodate additional levels 

if necessary. 

When a CoAP request, denoted as Req, is granted 

access to a CoAP service, the request is transmitted to 

the PPD component. The PPD component ensures the 

privacy of the CoAP response message based on the 

sensitivity of the original CoAP request. In our proposed 

ABPP model, every attribute related to subjects, objects, 

and the environment, as well as every operation, carries 

a degree of sensitivity. We assign a numerical value to 

represent the degree of sensitivity, where 0 signifies 

Sensitive, 1 denotes Restricted, and 2 indicates 

Confidential. To quantify the degree of sensitivity for 

them, we introduce a function called the Degree of 

Sensitivity (DoS), which measures their respective levels 

as follows:  

               
 

∑              
 
   

   
 

(1) 

where n is the total number of subject’s attributes in the 

request Req. 

               
 

∑              
 
   

   
 

(2) 

where m is the total number of object’s attributes in the 

request Req. 

               
 

∑              
 
   

   
 

(3) 

where o is the total number of environment’s attributes 

in the request Req. 

  
           

 
 

(4) 

The degree of sensitivity of CoAP request can be 

calculated using the following equation: 

       
       

 
 

(5) 

The PPE component can employ various techniques to 

protect the context of the CoAP response message based 

on the value of       ,as shown in Table 2. The 

selection of these techniques is as follows: 

Table 2:  Privacy levels 

                                          

      

      

            0 

    
       

      

                           

                     

1 

      

      

                            

                    

                   

2 

 Anonymity – IA sub-component: When the 

DoS_Req value is less than or equal to 0.35, the IA 

sub-component employs the IP Aliasing technique 

to replace the original source IP address with a 

newly generated alias. The CoAP response is sent 

using this pseudonymous address, effectively 

concealing the identity of the client and ensuring 

source-level anonymity. 

 doUnLinkability – CM sub-component: For 0.35 < 

DoS_Req < 0.65, the CM sub-component activates 

a combination of IP Aliasing and Dynamic Channel 

Switching. It evaluates flow-specific packet 

thresholds to select new transmission paths and 

alters communication routes unpredictably. This 

strategy anonymizes routing behavior and 

fragments traffic continuity—ensuring that 

incoming requests cannot be linked to outgoing 

responses, even under deep packet or flow pattern 

inspection by adversaries. 

 Untraceability – ME sub-component: When 

DoS_Req ≥ 0.65, the ME sub-component 

implements a multi-layered privacy strategy 

comprising IP Aliasing, Dynamic Channel Switching, 

and Content Encryption. This integrated 

mechanism anonymizes the sender, obscures the 

transmission path, and secures message payloads 

against inspection. Consequently, adversaries are 

unable to trace the origin of messages or 

reconstruct communication flows—achieving 

robust untraceability throughout the transaction 

process. 

PPD determines the appropriate level of privacy 

required for accessing a specific Constrained Application 

Protocol  

 (CoAP) service and subsequently communicates this 

privacy level to the Privacy Policy Enforcement (PPE) 

sub-component. Fig. 2 illustrates the workflow for ABPP 

enforcement within our proposed framework. As 

illustrated in Fig. 2, when a Constrained Application 

Protocol (CoAP) request (Req) is sent from the CoAP 

client to the Privacy Controller (PC), the getCache() 
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method is invoked to check whether the requested 

service has already been provided with privacy 

protection. If true, the PC sends the privacy level to the 

Privacy Policy Enforcement (PPE) sub-component; 

otherwise, it forwards the request to the Privacy Policy 

Decision (PPD) sub-component. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Workflow for privacy protection enforcement. 

The PPD sub-component maps the subject attribute 

of the request to a set of subjects by calling the 

assignedCI(SUB.ATTReq) method. All subjects and their 

attributes are then stored in the Context Information (CI) 

sub-component as an XML file. Subsequently, the PPD 

calls the assignedSI(OBJ.ATTReq) method to map the 

object attribute of the request onto a set of objects, 

which are stored in the Subject Information (SI) sub-

component as an XML file.  

The subject attribute (C), object attribute (S), and the 

requested operations (OPSReq) are mapped onto a set 

of policies using the assignedPI(C.ATT, S.ATT, OPSReq) 

method. These policies (POL) are defined by a system 

administrator and stored in the Policy Information (PI) 

sub-component as an XML file within our proposed 

framework. 

The sub-components for anonymity, untraceability, 

and unlinkability execute the doAnonymity(), 

doUnTraceability(), and doUnLinkability() methods, 

respectively, based on the policy level received by the 

Privacy Policy Enforcement (PPE) sub-component. 

Finally, the PPE sends the privacy policy level to be saved 

in the Privacy Controller (PC) to reduce the time needed 

for privacy enforcement when accessing a specific CoAP 

service. 

 Algorithm 1 is designed to implement attribute-based 

privacy protection within our proposed framework. The 

input to the algorithm is a CoAP request, and it produces 

a secure environment as the output. The Privacy 

Controller (PC) component first checks whether the 

privacy level for the requested service is cached (lines 1-

5). The Privacy Policy Decision (PPD) sub-component 

then retrieves the policy from the Context Information 

(CI), Subject Information (SI), and Policy Information (PI) 

sub-components that match the attribute set provided 

by the CoAP request (lines 6-8). Based on the policy, the 

level of privacy protection is determined and sent to the 

Privacy Policy Enforcement (PPE) sub-component (line 

9). An anonymity technique is used by default at all 

privacy levels, which involves creating a new IP address 

to send CoAP request messages to a specific CoAP server 

(line 10). If the privacy level is one, only the 

untraceability technique is performed. Otherwise, the 

unlinkability technique is performed in addition to 

untraceability (lines 11-16). Finally, the PPE sends the 

privacy level to the PC to provide faster privacy- 

preserving services (line 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 enhances privacy-preserving CoAP 

communication by integrating alias-based 

anonymization, flow-level session tracking, and 

cryptographically bound authentication. It begins (Line 1) 

by computing a unique FlowID from request attributes 

(SUB.ATT, OBJ.ATT, OPSReq) to distinguish sessions. To 

mitigate Sybil and spoofing attacks (Lines 2–4), the 

Algorithm 1. ABPP-SDN solution 

Input: Req  CoAP request {SUB.ATT, OBJ.ATT, OPSReq}; 

Output:  Safe environment. 

 

      1:  if (getCache()) then 

      2:     return Level of privacy to PPE; 

      3:  else 

      4:      send Req to PPD; 

      5:  end If 

      6:  C assignedCI(SUB.ATTReq); 

      7:  S assignedSI(OBJ.ATTReq); 

      8:  P assignedPI(C.ATT,S.ATT,OPSReq); 

      9:  getPL();//DoS 

    10:  doAnonymity();// Algorithm 2 

    11:    if(p==1) then 

    12:           doUnLinkability ();// Algorithm 3 

    13:    else     

    14:            doUnTraceability ();// Algorithm 4 

    15:            doUnLinkability (); 

    16:    endif 

    17:  Send Level of Privacy to PC; the receiver applies 
Algorithm 5 when untraceability is selected. 
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client’s identity is authenticated using its ID, IP address, 

and MAC address, and any requests originating from 

unregistered entities are denied. Alias assignment does 

as follows: if the flow is known (Lines 5–7), the system 

retrieves its existing alias IP; otherwise, a new 

pseudonymous IP is generated and stored (Lines 8–9), 

enabling per-flow anonymity. To guarantee alias 

integrity, an authentication tag (Auth_Tag) is 

constructed (Line 11) using HMAC over the alias IP, client 

IP, and flow ID. The CoAP request is then anonymized by 

replacing its source IP with the alias and embedding the 

tag (Lines 12–13). The alias IP is linked to the client in the 

internal registry (Line 14), and a flow rule is installed 

(Line 15) to rewrite source IPs in matching packets with 

time-bound enforcement. Session metadata—including 

alias, timestamp, and client ID—is logged for traceability 

(Line 16). Finally, the anonymized, authenticated request 

is forwarded securely to its destination (Line 17), 

completing the privacy-aware transmission cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3, strengthens communication security by 

integrating session-aware flow recognition, replay 

defense, and dynamic channel switching. Initially (Line 

1), a unique FlowInfo is derived from CoAP request 

parameters to distinguish sessions. To resist replay 

attacks (Lines 2–7), a timestamp and random nonce are 

embedded and validated per client; stale or duplicate 

requests are immediately rejected. The system then 

checks whether the flow is already tracked (Lines 8–14); 

if not, a new record is created and stored. As packets 

accumulate, a counter is incremented (Line 15) and 

evaluated against a rotation threshold (Lines 16–22). If 

exceeded, a new channel is randomly assigned to break 

traffic patterns; otherwise, the current channel is 

smoothly updated. The new channel is set (Line 23) and 

the request is routed through it (Line 24) before being 

forwarded to its destination (Line 25), completing a 

privacy-aware transmission cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 provides a robust mechanism for securing 

CoAP requests by integrating identity verification, replay 

protection, and sensitivity-aware encryption. The 

process begins by validating the legitimacy of the client 

through identity binding - ensuring that the Client_ID is 

correctly associated with the claimed Client_IP (Lines 1–

3). This step mitigates Sybil and IP spoofing attacks, 

rejecting any request from unverified sources. To 

prevent replay attacks, the algorithm generates a 

Algorithm 2. doAnonymity() 

Input:   Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-, 
Client_ID, Client_IP, MAC_Address; 

Output: Anonymized and authenticated request with 
aliased source IP. 

 

   1. FlowID ← hash(SUB.ATT + OBJ.ATT + OPSReq) 

   2. if not isRegistered(Client_ID, Client_IP, MAC_Address)    
then 

   3. Reject Req  

   4. endif 

   5. if FlowID ∈ AliasTable then 

   6.     Alias_IP ← AliasTable*FlowID+ 

   7.   else 

   8.      Alias_IP ← GenerateNewAliasIP(Client_IP) 

   9.      AliasTable*FlowID+ ← Alias_IP 

10. endif 

 11. Auth_Tag ← HMAC(Alias_IP ∥ Client_IP ∥ FlowID ∥ 
Secret_Key) 

12. Req.sourceIP ← Alias_IP 

 13. Req.alias_tag ← Auth_Tag 

14. IP_Alias_Table*Client_ID+ ← Alias_IP 

15. install_flow_rule(match: {FlowID, Client_ID, Client_IP}, 

        action: rewrite_src_ip(Alias_IP),timeout: T) 

16. Update Flow_Metadata_Table*FlowID+ ← ,Alias_IP, 
timestamp, Client_ID} 

17. forward Req to next sub-com or destination 

 

Algorithm 3. doUnLinkability () 

Input:   Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-, 
Client_ID, Server_ID; 

Output:  randomized channel and replay protection. 

 

   1. FlowInfo ← hash(SUB.ATT + OBJ.ATT + OPSReq) 

  2. ts ← current_timestamp() 

  3. nonce ← generate_random_nonce() 

  4. Req.metadata ← ,ts, nonce- 

  5. if not isFresh(ts, nonce, Client_ID) then 

  6.     Reject Req  

  7.  endif 

  8. if FlowInfo ∈ FlowTable then 

  9.     flow ← FlowTable*FlowInfo+ 

10. else 

12.      flow ← CreateNewFlow(FlowInfo) 

13.    FlowTable*FlowInfo+ ← flow 

14.    endif 

15. flow.packetCounter ← flow.packetCounter + 1 

16. if flow.packetCounter ≥ Threshold then 

17.      newChannel ← GenerateRandomChannel() 

18.     ChannelTable*FlowInfo+ ← newChannel 

19.      flow.packetCounter ← 1 

20.  else 

21.     newChannel ← UpdateChannel(flow.currentChannel, 
flow.packetCounter) 

22.   endif 

23. flow.currentChannel ← newChannel 

24. Route Req via newChannel 

25. forward Req 
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timestamp (ts) and a random nonce, which are validated 

for freshness (Lines 4–8). Requests that fail this 

freshness check are immediately discarded. The 

Algorithm 4, (Line 9), generates a metadata string based 

on core attributes of the request, name SUB.ATT, 

OBJ.ATT, and OPSReq, which capture contextual 

sensitivity regarding the operation. A Key Identifier (KID) 

is chosen corresponding to the requesting client‑server 

pair, and the associated Pseudorandom Key (PRK) is 

retrieved. The key in question was either a pre-shared 

key (PSK) or obtained through the Elliptic Curve Diffie–

Hellman (ECDH) process (Lines 10–12). A session key is 

generated from the PRK through the HMAC-based Key 

Derivation Function (HKDF), using the nonce as salt and a 

context string comprising metadata, algorithm ID, and 

KID (Line 13). This guarantees that the encryption key is 

context-aware and unique. So, in order to protect the 

payload, the algorithm chooses a suitable Authenticated 

Encryption with Associated Data (AEAD) scheme like 

AES-CCM or ChaCha20-Poly1305, which varies from one 

to the other according to the sensitivity of the metadata 

(Line 14). Thereafter, it takes the payload and encrypts it 

with the session key and generates the cryptographic tag 

for ensuring integrity and authenticity (Line 15). The AAD 

consists of the timestamp, nonce, and flow identifier, 

binding the encryption to the request context.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the encrypted payload replaces the original 

content, and the request header is augmented with 

security metadata including the algorithm ID, key 

identifier, nonce reference, timestamp, and 

authentication tag (Lines 16–17). The secured request is 

then forwarded for processing (Line 18). 

Algorithm 5 describes the reception of a decrypted 

payload or an offense. The receiver first checks freshness 

against the timestamp and nonce; if it fails the replay 

protection check, the request is rejected right away 

(Lines 1-3). Metadata are framed from core CoAP 

attributes SUB.ATT, OBJ.ATT, and OPSReq to signify the 

context of the original request (Line 4). The receiver uses 

the KID to retrieve the PRK. This must either be a PSK or 

be derived from an ECDH exchange to remain consistent 

with the sender (Line 5). A session key is generated using 

the HKDF with nonce as salt and a context string 

containing metadata, algorithm ID, and KID (Lines 6-7). 

With this, AEAD is leveraged to decrypt the encrypted 

payload. The AAD includes the timestamp, nonce, and 

flow identifier, and the received authentication tag is 

used to verify successful decryption (Line 8). If 

decryption or validation fails, the request is rejected to 

preclude any possibility of distinguishing the request or 

forgery (Line 9). Once the message has been successfully 

decrypted, the plaintext payload will replace the 

encrypted payload, and a CoAP request containing the 

payload will be sent to the CoAP service for processing 

(Lines 10-11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Results and Discussion 

In this section, we first describe our simulation 

topology and its associated settings, followed by a 

presentation and analysis of the experimental results, 

Algorithm 4. doUntraceability () 

Input:   Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-, 
Client_ID, Client_IP; 

Output:   Encrypted and integrity-protected request. 

 

   1. if not isBound(Client_ID, Client_IP) then 

  2.    Reject Req 

  3. endif 

  4. ts ← current_timestamp() 

  5. nonce ← generate_random_nonce() 

  6. if not isFresh(ts, nonce, Client_ID) then 

  7.     Reject Req 

  8.  endif 

  9. Metadata ← (SUB.ATT ∥ OBJ.ATT ∥ OPSReq)  

10. KID ← select_key_id(Client_ID, Server_ID) 

11. PRK ← get_secret(KID) // pre-shared key or ECDH output 

12. Context ← (Metadata ∥ AlgorithmID ∥ KID) 

13.  SessionKey ← HKDF(PRK, salt=nonce, info=Context) 

14.  EncryptionAlgorithm ← 
ChooseBasedOnSensitivity(Metadata)// AES-CCM or 
ChaCha20-Poly1305 

15. (Ciphertext, Tag) ← AEAD_Encrypt(Req.payload, 
SessionKey, AAD={ts, nonce, FlowID}) 

16.   Req.payload ← Ciphertext 

17.   Req.header ← Req.header ∪ {AlgorithmID, KID, 
NonceID: nonce, ts, Tag} 

18. forward Req 

 

Algorithm 5.  Receiver: doDecryption 

Input: Req  CoAP request with {AlgorithmID, KID, 
nonce, ts, Tag}, Metadata=(SUB.ATT, OBJ.ATT, OPSReq); 

Output:   Decrypted payload or Reject. 

 

      1:  if ( not isFresh(ts, nonce, Client_ID)) then 

      2:     Reject; 

      3:  end if 

      4:  Metadata ← (SUB.ATT ∥ OBJ.ATT ∥ OPSReq) 

      5:  PRK ← get_secret(KID) // same PSK or ECDH 
context     as sender 

      6: Context ← (Metadata ∥ AlgorithmID ∥ KID) 

      7: SessionKey ← HKDF(PRK, salt=nonce, info=Context) 

      8: Plaintext ← AEAD_Decrypt(Req.payload, 
SessionKey, AAD={ts, nonce, FlowID}, tag=Tag) 

    9: if decryption/authentication fails then Reject 

    10: Req.payload ← Plaintext 

  11:            deliver Req to CoAP service    
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performance analysis and computational overhead 

evaluation and security analysis. 

A. Experimental Settings 

We used the CloudSimSDN [35] to simulate the 

proposed framework.  

All the experiments were run PC with an Intel Core i5-

8265U CPU @ 1.8GHz, 16 GB RAM, running Microsoft 

Windows 10 64-bit. 

We configured the IoT network using the 

physicalTopologyGenerator class in CloudSimSDN, which 

enabled us to save and load the network topology in 

JSON file format.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Experimental Results 

Fig. 4 illustrates the average response time for 

protecting the privacy of CoAP messages in our proposed 

framework, with the number of CoAP requests varying 

from 100 to 1000 in increments of 100. Fig. 4 clearly 

demonstrates that employing two or three privacy 

protection techniques simultaneously does not 

significantly increase the average response time. 

However, it also shows that the average response time is 

higher when all three techniques—IP Aliasing 

(doAnonymity()), Dynamic Channel (doUnTraceability()), 

and Content Encryption (doUnLinkability())—are used 

together, compared to when only one or two techniques 

are employed for privacy protection in the ABPP model. 

  

The network topology consisted of one controller 
(represented by the Network Operating System class in 
CloudSimSDN, responsible for managing the overall 
network behavior of the simulation), four OpenFlow 
switches (SW1, SW2, SW3, and SW4), 50 CoAP clients, 30 
CoAP servers, and 80 virtual machines (VM1, VM2, ..., 
VM80). The VMs were deployed on physical nodes, and 
network packets were routed between nodes via 
OpenFlow switches. Additionally, we set the network 
latency to 0.1 milliseconds and the network bandwidth 
to 250 Mbps.  

Fig. 3 illustrates the network topology used in our 
experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To further analyze the results, we conducted 

simulations with varying numbers of CoAP requests and 

applied different combinations of privacy protection 

techniques.  

The average response time for 1000 requests is as 

indicate that while the use of multiple privacy protection 

techniques increases the average response time, the 

increase is not substantial.  

Moreover, incorporating a cache into the proposed 

framework reduces response time by eliminating the 

need to execute new operations for every request, 

highlighting the framework’s efficiency and effectiveness 

in protecting CoAP message privacy. 

 

Fig. 3: Network topology used in experiments. 
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Fig. 4: Average response time for privacy protection. 
 

Fig. 5 presents the average throughput for protecting 

the privacy of CoAP messages within our proposed 

framework, with the number of CoAP requests varying. 

As depicted in Fig. 5, it is evident that employing 

additional privacy protection techniques for CoAP 

requests results in a decrease in average throughput. 

This inverse relationship between throughput and 

response time indicates that the average throughput 

diminishes further when all three techniques are applied 

simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Average throughput for privacy protection. 

 

Fig. 6 illustrates the CPU utilization for privacy 

protection within our proposed framework, with varying 

numbers of CoAP requests. As demonstrated in Fig. 6, 

the CPU utilization is higher when the ABPP model 

employs the combination of IP Aliasing, Dynamic 

Channel, and Content Encryption compared to other 

scenarios.  

This increased utilization is attributed to the greater 

computational resources required for privacy protection 

operations, such as generating new IP addresses, 

switching communication channels, and encrypting 

content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6: CPU utilization for privacy protection. 
 

C. Performance Analysis and Computational Overhead 
Evaluation 

One of the limitations of the proposed framework is 

the computational overhead introduced by the layered 

privacy mechanisms in ABPP-SDN. To mitigate this issue, 

a caching mechanism was employed. A series of 

simulations was conducted using the CloudSimSDN 

environment to evaluate performance. The results, 

presented in Fig. 7 and Fig. 8, provide a comparative 

analysis of performance metrics across different 

configurations: ABPP-SDN with caching (featuring PC 

capability), ABPP-SDN without caching, and baseline 

methods from previous studies [27] and [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Average response time. 
 

The integration of the storage mechanism (PC) within 

the ABPP-SDN architecture demonstrably mitigates 

computational overhead, resulting in reduced response 

latency and substantially lower CPU usage. As depicted 

in Fig. 8, CPU consumption exhibits a direct correlation 

with the volume of CoAP requests; however, the variant 

of ABPP-SDN enhanced with caching consistently 
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maintains lower resource utilization compared to its 

non-caching counterpart. This observation underscores 

the computational efficiency of the proposed framework 

and reinforces its viability for deployment in resource-

constrained IoT platforms. 

 

 

 

 

 

 

 

 

 

Fig. 8: CPU utilization. 

D. Energy Consumption Analysis 

To evaluate the framework’s suitability for resource-

constrained IoT environments, we conducted targeted 

simulations using CloudSimSDN to measure energy 

consumption under varying CoAP request volumes. The 

results indicate that the ABPP-SDN architecture 

equipped with the caching mechanism (PC) exhibits 

notably lower energy usage compared to its non-caching 

counterpart and [27], [30]. This reduction stems from 

the avoidance of repeated computations and the reuse 

of previously coordinated responses, which minimizes 

the frequency and intensity of processing and 

communication tasks.  

The energy-aware behavior of the caching-enabled 

model confirms the framework’s capacity to maintain 

privacy protection while optimizing resource 

consumption, validating its efficiency for deployment in 

low-power IoT platforms. 

Fig. 9 illustrates the energy consumption behavior of 

the proposed ABPP-SDN framework under varying CoAP 

traffic volumes, comparing its caching-enabled and non-

caching configurations and [27], [30].  

As shown, the caching mechanism significantly 

reduces energy usage by minimizing repetitive 

processing and network activities. The energy 

consumption of the proposed with cache is on average 

27.5% better than [27] and 30.4% more efficient than 

[30].  

This validates the framework’s resource-awareness 

and confirms its suitability for deployment in energy-

constrained IoT infrastructures. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 9: Energy consumption. 

 

E. Packet Delivery Ratio (PDR) 

To evaluate the performance of the proposed 

framework in terms of Packet Delivery Ratio (PDR), a 

simulation was conducted using the CloudSim-SDN 

environment.  

At a specific point during the simulation, a random 

path failure was introduced by disabling one of the 

switches or links in the network. This disruption was 

designed to emulate unpredictable failures in real-world 

IoT environments. The PDR was calculated using the 

following formula: 

    
                      

                  
                                       (6) 

This scenario was executed multiple times under 

varying traffic loads and topologies to obtain an average 

PDR for each method under comparison.  

The results of the simulation revealed that our 

proposed framework, the ABPP model, achieved 

superior packet delivery performance compared to 

existing approaches. Table 3 summarizes the average 

PDR values. 

 
Table 3: PDR 

Method Average PDR (%) 

ABPP with cache 94.3 

ABPP without cache 90.1 

[27] 89.2 

[30] 86.7 

 

The results indicate that the combination of ABPP, 

encryption techniques, and adaptive routing 

mechanisms in our framework markedly reduces packet 

loss while enhancing reliability, especially under the 

high-traffic and failure-prone conditions typical of smart 

city IoT systems 
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F. Throughput Analysis 

Throughput is a key performance metric that 

quantifies the amount of data successfully delivered over 

a network per unit time. It reflects the efficiency of data 

transmission and is particularly critical in resource-

constrained IoT environments. The throughput is 

calculated using the following formula: 

           
∑   
         
   

 
                                           (7) 

                
                                          

                                                        
                                                    

Units of throughput are typically expressed in bits per 

second (bps), kilobits per second (Kbps), or megabits per 

second (Mbps).  

To validate the performance of the proposed 

framework, throughput results are compared against 

[27], [30]. The comparative data is summarized in Table 

4. 

 
Table 4: Average throughput 

Method Average Throughput (Kbps) 

ABPP with cache 512.4 

ABPP without cache 476.3 

[27] 472.1 

[30] 438.7 

 

Indeed, the performance in terms of throughput for 

the implemented ABPP-SDN framework has been found 

to be more potent than that of the current available 

privacy-preserving techniques as reflected in the 

simulation results. Multiple privacy-enhancing 

mechanisms, from anonymity and unlinkability to 

untraceability, IP aliasing, dynamic channel switching, 

and payload encryption, are well placed within the 

framework while delivering a very high data delivery 

rate.  

Thus, the system can protect critical information 

about clients without compromising upon transmission 

efficiency. Decoupling message sensitivity levels from 

privacy requirements, ABPP-SDN is able to better 

optimize the routing quality through SDN, thus achieving 

a more optimal security-performance trade-off for 

smart-city IoT environments, where both privacy and 

responsiveness are critical. 

G. Security Analysis 

In this section, we present a comprehensive security 

evaluation of the proposed framework, encompassing 

both formal verification and informal analysis 

techniques. 

 Informal Analysis 

Anonymity: The proposed framework enforces 

anonymity by decoupling a client’s true identity     and 

real IP address     in transmitted packets via IP aliasing, 

denoted as                    . To prevent spoofing, 

each alias is bound to an authenticated mapping and 

verified using an authentication tag      

         ∥     , where      is a hash-based 

message authentication code and   is a controller-

issued secret key. This binding ensures that even if an 

attacker forges    
 , the mismatch with      will result 

in rejection. 

Unlinkability: It is achieved via dynamic channel 

switching, where each flow    between a client and 

server is assigned a per-session channel    ∈  , 

updated when a threshold condition            is 

met. This prevents correlation of successive requests 

          from being linked through static flow or path 

patterns, thus concealing user activity over time. 

Untraceability and man-in-the-middle (MITM) attacks: 

Untraceability of content is guaranteed by encrypting 

CoAP payloads   as        , with optional encryption 

of metadata based on sensitivity level  ∈ {     }. 

Furthermore, each message includes a MAC tag 

           ∥   ∥        to ensure integrity 

and prevent message tampering, effectively mitigating 

MITM attacks. 

Replay attacks: To counter these attacks, the controller 

and CoAP server maintain a replay window     
   

 , where   is the timestamp space and   is the nonce 

space. A message with           ∈   is considered 

invalid. Assuming secure clocks and bounded drift   , 

this defense remains efficient and lightweight. 

Sybil attacks: To mitigate sybil attacks, each client is 

required to register through a validation mechanism that 

binds             . Multiple identity claims from 

a single MAC or IP subnet are detected through 

statistical thresholds            , where   is a 

system-defined sybil detection parameter. 

IP spoofing: It is neutralized via source validation by the 

SDN controller, which drops packets where       

    
, with   being the maintained mapping of 

legitimate identities to IP/MAC pairs. 

Others security concerns: The system is resilient to 

traffic analysis attacks by leveraging per-flow encryption 

and dynamic alias rotation, thereby disrupting pattern 

matching. It is also resistant to resource exhaustion or 

Denial of Service (DoS) attacks through rate-limiting 

policies: any client     sending more than   messages in 
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a time window    will be temporarily throttled or 

quarantined. 

 Cryptographic Instantiation and Decryption Process 

For CoAP messages assigned the untraceability level, 

the payload is encrypted with a session key derived via 

HKDF-SHA256. The secret input, Pseudorandom Key 

(PRK), is either a pre-shared key (PSK) or an ephemeral 

Diffie–Hellman output, referenced by a short Key 

Identifier (KID). The nonce, generated per message, is 

included in the header and used as HKDF salt, ensuring 

freshness and binding keys to individual transmissions. 

The HKDF info string is defined as (SUB.ATT ∥ OBJ.ATT ∥ 

OPSReq ∥ AlgorithmID ∥ KID). 

The resulting session key is used with an 

Authenticated Encryption with Associated Data (AEAD) 

scheme. By default, we employ AES-CCM-128, the 

recommended mode in constrained IoT and OSCORE, 

though ChaCha20-Poly1305 and AES-GCM are also 

supported. Integrity and replay protection are achieved 

by: (i) authenticating the (timestamp, nonce, FlowID) 

fields as AEAD associated data (AAD), and (ii) checking 

freshness of (timestamp, nonce) at the receiver. Keys are 

never transmitted; both sender and receiver compute 

them independently. 

 Security proof using ROM 

The Random Oracle Model (ROM) is a theoretical 

framework in which all parties (including attackers) 

interact with a public oracle    that responds to each 

unique input   with a truly random output        , 

consistent across repeated queries [36]. In ROM, 

cryptographic hash functions (e.g., SHA-256) are treated 

as idealized random functions. Let’s define a series of 

games and evaluate the attacker's advantage      

under ROM. We assume a probabilistic polynomial-time 

attacker  , and define the following standard security 

games: 

Anonymity Game (        In this game, the adversary 

tries to distinguish between two clients     and     

sending anonymized messages via IP aliasing. Challenger 

picks  
 
← {   }  uses     to generate a message with 

alias     to   who outputs guess   . We assume IP 

aliasing is randomized per client via          ∥

       with inaccesible mapping table. The advantage 

of   is: 

    
      |  [    ]  

 

 
|                                      (8) 

Under ROM,  's probability of linking alias     to a 

specific ID is negligible unless it breaks the oracle (which 

behaves randomly). 

Unlinkability Game (       ). In this game, the 

adversary determines whether two messages come from 

the same user despite dynamic channel switching and 

aliasing. The challenger prepares two messages    and 

  : one from a repeated session (same user) and one 

from a new user (both encrypted via different 

pseudonymous channels).   receives both and guesses 

which is the repeat session. We assume dynamic 

channels          ∥               and IPs and 

flows are randomized per session.  ‘s advantage is: 

    
       |  [    ]  

 

 
|                                       (9) 

  has negligible advantage since all observable values 

(IP, channel ID, message tags) are randomized through 

the oracle.  

Message Privacy Game (     ). Here, the adversary 

distinguishes between two encrypted messages    

and    under symmetric encryption with ROM-derived 

keys. The challenger picks bit  ∈ {   }, encrypts    

using key         ∥      and transmits ciphertext 

           to  .   receives ciphertext  , tries to 

guess  . We assume encryption is secure against 

indistinguishability under chosen plaintext attacks (IND-

CPA) and keys derived via ROM hash oracle. The 

advantage of   in winning the game is: 

    
    

                                                          (10) 

where,      is the IND-CPA advantage,    is the number 

of hash queries, and   is hash output length (256 bits). 

This shows that the attacker can only win if it queries the 

oracle with the correct input used to derive  , which is 

infeasible for large  . 

Conclusion 

In this paper, we presented a novel four-layer SDN-

based framework designed to enhance privacy 

protection in IoT networks. The framework utilizes an 

ABPP model to specify policies and employs various 

privacy protection techniques, such as IP aliasing, 

dynamic routing, and content encryption, to enhance 

the privacy of CoAP messages during transmission based 

on their sensitivity levels.  

The framework anonymizes all CoAP messages using 

IP aliasing and applies dynamic routing for sensitive 

CoAP messages. Additionally, it employs different 

encryption algorithms for highly sensitive CoAP 

messages, augmenting existing techniques to prevent 

data disclosure within CoAP messages. We implemented 

the proposed framework using CloudSimSDN and 

evaluated its performance through several experiments. 

The use of a cache in our proposed framework helps 

reduce the response time by avoiding the need to 

perform new operations for each request. This 

demonstrates the efficiency and effectiveness of our 

framework in providing privacy protection for CoAP 

messages. 
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Although the proposed framework exhibits higher 

response times compared to existing approaches from 

[30], that use only one method for privacy preservation, 

this limitation is compensated by significant 

improvements in other critical performance metrics. 

Basically, the incorporation of dynamic routing and a 

cache mechanism into an SDN-based architecture brings 

out improved energy efficiency, higher rates of packet 

delivery, and better overall throughput. These 

optimizations become critical in resource-constrained 

IoT environments, where efficiency gains of the network 

and its scaling capability are concerned. Therefore, it 

reflects real benefits in operational up-hold by our 

design in return for the latency penalty being incurred. 

The incorporation of dynamic routing and cache 

mechanism to the SDN-based architecture has 

specifically yielded gains in more efficient energy 

consumption, increased packet delivery rates, and better 

overall throughput. Such optimizations become critical in 

resource-constrained IoT environments, for efficiency 

gains and scalability of the network.  

Thus, the latency trade-off is well warranted with the 

broader operational advantages gained through our 

design. 

We provided a security proof using random oracle 

model and informal analysis shows that the proposed 

framework is secure against anonymity violation attacks, 

MITM attacks, replay attacks, sybil attacks, and IP 

spoofing. 

In the future, we plan to extend this research in two 

directions: 

• Extending our proposed ABPP model to explore the 

integration of machine learning algorithms to 

dynamically adjust privacy-preserving techniques 

based on real-time network conditions and threat 

levels. 

• Developing novel privacy prevention techniques to 

avoid network traffic analysis in our proposed 

framework. 

 Re-architecting the proposed framework for edge 

processing to further improve computational 

overhead. 
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