
J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

163

Journal of Electrical and Computer Engineering Innovations

(JECEI)

Journal homepage: http://www.jecei.sru.ac.ir

Research paper

Enhancing Privacy in Internet of Things using Software Defined
Network

Shahrbanoo Zangaraki , Seyed Hossein Erfani * , Amir Sahafi
Department of Computer Engineering, ST.C., Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received 09 June 2025
Reviewed 11 August 2025
Revised 07 September 2025
Accepted 18 September 2025

Background and Objectives: The Internet of Things (IoT) serves as a fundamental
communication model, enabling objects to deliver data and services to users.
With the rapid expansion of IoT, ensuring privacy and preventing the disclosure
of sensitive data during message exchanges between objects has become
increasingly challenging. This paper presents an attribute-based framework
designed to enhance privacy protection in IoT environments by leveraging
software-defined networking (SDN) technology.
Methods: By leveraging the SDN and the Attribute-Based Privacy Preserving
(ABPP) model, our proposed framework employs an advanced algorithm to
enhance privacy for client requests accessing IoT services. It focuses on
protecting sensitive information during message transmission by implementing
techniques for anonymity, unlinkability, and untraceability, tailored to the
sensitivity level of each message. To further enhance message privacy within the
IoT network, our framework incorporates IP aliasing, dynamic channel switching,
and payload encryption.
Results: Our proposed framework significantly enhances privacy protection in IoT
networks by dynamically applying anonymity and concealment techniques
tailored to the sensitivity of CoAP messages. Simulation results using
CloudSimSDN confirm the framework's effectiveness in safeguarding sensitive
information while maintaining optimal communication performance. Using three
privacy-preserving methods leads to an average CPU utilization that is 0.14 units
higher than when only one method is applied. We provide a security evaluation
that includes formal verification techniques and informal analysis, and show that
the proposed framework is secure against anonymity and Man in The Middle
(MITM) attacks, replay attacks, Sybil, and IP spoofing.
Conclusion: In this paper, we present a four-layer SDN-based framework
designed to enhance privacy in IoT networks through the use of the Attribute-
Based Privacy Preserving (ABPP) model. The framework employs IP aliasing,
dynamic routing, and content encryption techniques tailored to the sensitivity of
CoAP messages to ensure data protection. Our implementation and experiments
conducted with CloudSimSDN validate the framework's effectiveness in
safeguarding sensitive information.

Keywords:
IOT

SDN

Privacy Preserving

*Corresponding Author’s Email
Address: H_erfani@iau.ac.ir

This work is distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

How to cite this paper:
S. Zangaraki, S. H. Erfani, A. Sahafi, “Enhancing privacy in internet of things using software
defined network,” J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026.

DOI: 10.22061/jecei.2025.11621.821

URL: https://jecei.sru.ac.ir/article_2404.html

2345- 3044/© 2026 The Authors. Published by Shahid Rajaee Teacher Training University.

http://jecei.sru.ac.ir/
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
mailto:H_erfani@iau.ac.ir
http://creativecommons.org/licenses/by/4.0/
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
https://jecei.sru.ac.ir/article_2404.html
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X
file:///C:/Users/Fahim/Desktop/0000-0002-1931-4865
file:///C:/Users/Fahim/Desktop/0000-0002-7893-4191
file:///C:/Users/Fahim/Desktop/0000-0002-6555-670X

S. Zangaraki et al.

164 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

Introduction

Today, numerous aspects of human life are influenced

by the Internet of Things (IoT). The IoT is utilized across

various domains, including agriculture, patient

monitoring, home automation, welfare, and smart cities,

among others. Experts predict that by 2030, the number

of connected devices within IoT networks will exceed 29

billion [1], [2]. Privacy entails that information about

individuals must be safeguarded and not disclosed under

any circumstances without explicit consent. It also

ensures that users' identities cannot be discerned or

tracked based on their behavior and actions within the

system. The vast amount of data generated by billions of

Internet of Things (IoT) devices poses a significant threat

to user privacy, heightening the risk of breaches and

privacy violations [2]-[5].

Ensuring privacy in modern systems has become

increasingly important. The primary objectives of privacy

techniques are to achieve anonymity, unlinkability, and

untraceability. Anonymity ensures that a third party

cannot identify an individual's identity among other

identities within the system. Unlinkability refers to the

inability to associate a person's identity with the

information they produce. Untraceability means that it is

difficult to track actions and information generated from

an entity's behavior within the system [2], [4].

A new technology, known as SDN, has been

introduced in the networking industry. Its primary

purpose is to decouple the control logic from the

network equipment, such as transport devices. This

separation allows for the implementation of control logic

on physical devices based on the specific requirements

of the application. SDN comprises three layers: data,

control, and application. The application layer connects

to the control layer via the northbound interface, while

the control layer connects to the data layer via the

southbound interface [6]-[8].

The use of SDN in computing systems to manage the

Internet of Things (IoT) offers several advantages,

including flexibility, scalability, redundancy, and reduced

hardware requirements. SDN enables users to achieve

greater flexibility in their operations and architecture,

which is particularly important for IoT system

architecture. The use of distributed infrastructure and

limited resources in IoT applications further underscores

the importance of this flexibility. As SDN is increasingly

adopted in IoT applications, privacy challenges must be

addressed. Proper software design and the

implementation of various applications are necessary to

mitigate these challenges. Although significant progress

has been made in privacy protection for IoT, ensuring

privacy in machine-to-machine (M2M) IoT networks

remains a challenge. [4], [2], [9], [7], [10], [11].

This paper proposes ABPP-SDN, an IoT attribute-

based privacy protection framework that integrates

encryption, anonymity, and dynamic channels using

Software-Defined Networking (SDN) technology. The

objective is to enhance the privacy of IoT networks by

leveraging SDN as the network infrastructure. To

facilitate message transfer between different devices,

ABPP employs the Constrained Application Protocol

(CoAP), a lightweight and widely used web-based

protocol in IoT networks. CoAP [12], [13] supports

resource discovery, block transfer, and asynchronous

message exchange between devices, but it lacks

advanced privacy enforcement mechanisms-such as

dynamic routing and attribute-based encryption-that are

essential for fine-grained protection in sensitive

applications. To define different levels of privacy for IoT

services, ABPP-SDN adopts an attribute-based privacy

model. This framework aims to address the limitations

identified in existing research and underscores the

importance of IoT privacy. ABPP-SDN introduces a new

component for the SDN controller to apply privacy

protection levels during message transmission, thereby

achieving privacy protection goals. The proposed

solution involves using a new alias to anonymize the

source address during transmission. Additionally,

encryption, dynamic channels, padding, and

compression techniques are employed to conceal

sensitive information, ensuring untraceability and

unlinkability, However, while these layered techniques

enhance privacy guarantees, they also introduce non-

negligible computational and communication overhead.

In summary, the main contributions of this work include:

 We introduce our proposed framework, a four-

layer SDN-based architecture designed to enhance

privacy protection and safeguard sensitive

information during message transmission among

devices in IoT networks.

 We define ABPP, an attribute-based privacy-

preserving model, ABPP-SDN, to ensure the privacy

of sensitive data during message transmission

within the IoT network. This model considers the

varying degrees of sensitivity in CoAP messages.

We quantify the sensitivity level of each CoAP

message and select appropriate anonymization

and concealment techniques based on its

respective sensitivity before transmission.

 We simulate our proposed framework using

CloudSimSDN and conduct several experiments to

evaluate its performance.

Background

This section provides a concise overview of the

Software-Defined Networking (SDN) paradigm and the

Constrained Application Protocol (CoAP).

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 165

A. SDN Technology

SDN is an innovative technology that enhances

network efficiency by decoupling the control plane from

the data plane. This separation facilitates improved

network management and addresses challenges such as

security, scalability, heterogeneity, and limited capacity

within the Internet of Things (IoT) [7], [4], [14].

As illustrated in Fig. 1, SDN comprises three layers:

the application layer, the control layer, and the data

layer [15], [7]. Each layer communicates with its

adjacent layer through a set of interfaces. The

application layer contains SDN applications that define

network behavior via the northbound interface. The

most prominent northbound interface is the REST API,

which allows remote applications to send commands to

or retrieve information from the controller using the

HTTP protocol. The control layer consists of one or more

logically centralized SDN controllers responsible for

managing the control plane and creating a network view.

The controller's role is to translate application requests

into data plane instructions via the southbound interface

and provide an updated network state to the

applications. The data layer comprises devices such as

switches and routers, which are responsible for

forwarding packets. Communication between the data

layer and the control layer is facilitated through the

southbound interface, typically implemented via the

OpenFlow protocol. Consequently, SDN is often referred

to as SDN/OpenFlow [16], [8].

B. CoAP Protocol

The CoAP protocol was developed by the IETF as an

application layer protocol for IoT applications based on

the REST architecture [13], [12]. Because most IoT

devices have limited resources, including memory and

processing capability, HTTP is not well suited due to its

complexity. As a result, the CoAP protocol was

developed by adapting and simplifying specific features

of HTTP. The key characteristics of the CoAP protocol

include the following:
This protocol is designed for web usage and

implements a request/response model for limited

resources.

 Asynchronous communication is supported for
message passing.

 This protocol has lower overhead and is less
complex than HTTP.

 This feature provides assistance for various types
of content and Uniform Resource Identifiers (URIs).

 This feature facilitates the process of finding and
utilizing services and resources, and also enables
communication through multicast.

 This protocol offers a straightforward proxy feature
and is capable of interacting with the HTTP
protocol.

 The CoAP token field enables correlation between
request and response.

When evaluating lightweight protocols for IoT

communication, CoAP stands out against alternatives

such as Message Queuing Telemetry Transport (MQTT)

[17] and Google Remote Procedure Calls (gRPC) [18] due

to several architectural and functional distinctions [19] :

IoT uses CoAP in resource-constrained devices with

RESTful interactions that use web services. Features to

support multicast communication and integration with

proxies are also offered. The primary advantages of

CoAP include a lightweight design coupled with a built-in

DTLS, serving privacy and security. The disadvantages

come from missing large sets of mechanisms: for

example dynamic routing and attribute-based encryption

can be a major constraint for privacy-sensitive

applications.

MQTT is a publish-subscribe pattern well-suited for

applications where reliability is a major concern as it

provides QoS (Quality of Service) levels. However, it is

broker-based and hence may need an external QoS for

multicast communications and RESTful interactions.

Provision of privacy in MQTT requires external methods

and manual configuration of TLS, often quite complex in

itself.

gRPC has the power and efficiency required from any

high-performance protocol. It is based on HTTP/2 and

uses Protocol Buffers promising high data-transfer

efficiency. However, all these merits come with the price

of high overhead signatures imposed on the underlying

system making it inappropriate for use in resource-

constrained IoT systems. Furthermore, it misses out on

providing any built-in privacy at the protocol level, which

can be significantly detrimental for sensitive

applications.

Related Work

Ensuring privacy protection is a critical requirement in

IoT environments [2], [20]-[23]. IoT networks involve the

exchange of sensitive data and the potential for

unauthorized access, making privacy preservation

imperative. While conventional privacy protection

methods face challenges when applied to resource-

constrained IoT devices, SDN technology provides

promising solutions to address privacy concerns. By

leveraging SDN's centralized control and

programmability, privacy protection methods can be

implemented at the network level. In this section, we

review the existing literature on privacy protection

methods for IoT networks based on SDN technology.

A context-aware privacy-preserving method is

presented in [24] for IoT-based smart cities using SDN

technology. Their method involves splitting data packets

into different packets and managing them based on their

S. Zangaraki et al.

166 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

contexts and privacy levels. However, the method has

some limitations. First, it requires a centralized

controller to manage data packets, which may introduce

a single point of failure and create a bottleneck. Second,

it does not account for the dynamic nature of IoT

devices’ mobility and connectivity, which could affect

the context awareness and privacy levels of the data

packets.

In [25], a privacy protection method is presented to

mitigate the risk of data leakage in IoT-SDN networks by

periodically altering the switch-controller mapping.

However, it is important to note that this method

overlooks the heterogeneity, topology, and traffic

aspects of IoT networks.

In [26], a presented edge computing-enhanced IoT

framework is introduced to enhance privacy

preservation in smart cities. This framework identifies

two key challenges related to IoT data management: (1)

the heterogeneity of IoT devices, and (2) the

preservation of sensitive data privacy. To address the

heterogeneity challenge, the framework adopts an

ontology-based data model that captures crucial

information about IoT devices and their corresponding

privacy levels. Additionally, to tackle the privacy

preservation challenge, the framework presentes a

method that periodically adjusts the privacy-preserving

behaviours of IoT devices based on insights derived from

the ontology.

The method mentioned in [27], IoT-SDNPP, uses SDN

technology for the privacy preservation aspect in smart

cities. With IoT-SDNPP, SDN is used to separate the

control plane from the data plane to make the

management and flexibility more applicable to the

network. With these privacy-preserving rules taking into

consideration every individual IoT device's specific

characteristics and environment, it aims to provide

totally personalized protection in the privacy arena for

the IoT ecosystem.

Reference [28] introduces a novel privacy-preserving

approach for IoT networks based on differential privacy.

It demonstrates how differential privacy can be utilized

to safeguard data generated by IoT devices within an IoT

ecosystem. The proposed method assesses the

sensitivity of the data and injects noise into the relevant

data dimensions accordingly, ensuring privacy protection

while maintaining data utility. As a result, the approach

is regarded as a robust and flexible solution for

enhancing privacy in IoT networks.

In [29], an advanced privacy and functional

authentication scheme is introduced, specifically

designed for fog nodes in smart healthcare. This scheme

leverages the capabilities of SDN technology to

implement an efficient authentication mechanism within

the SDN gateway. The primary objective is to validate

the credibility of fog nodes while minimizing the

computing overhead of IoT devices. By utilizing privacy

and functional attributes, the scheme ensures the secure

authentication of both fog nodes and IoT devices. This

innovative approach offers enhanced privacy protection

and reliable authentication mechanisms for fog

computing in the context of smart healthcare

applications.

In [30], a dynamic privacy-preserving method based

on SDN is presented for smart cities, incorporating a

trust technique. This method leverages SDN technology

to deploy a mechanism within the SDN controller. The

mechanism operates based on the mutual trust among

nodes and dynamically selects different routes from IoT

devices to the cloud environment, depending on the

confidence level. Additionally, the SDN controller

reroutes packets when it detects a device that lacks trust

in its neighbouring device. This innovative approach

ensures privacy protection while optimizing network

routing and enhancing trustworthiness within the smart

city infrastructure.

A layered architecture, termed ESDNS-DLHFS, is

presented in [31], incorporating privacy enhancement

and intrusion detection mechanisms within SDN-based

IoT networks. The framework integrates min-max

normalization with a hybrid Crow Search–Arithmetic

Optimization approach for feature selection, and

employs Deep BiLSTM for attack detection, alongside an

enhanced Artificial Orca’s algorithm for hyperparameter

optimization. It is designed to achieve a balance

between privacy protection and computational

efficiency by leveraging deep learning and bio-inspired

algorithms to secure consumer IoT platforms. This study

exemplifies the integration of machine intelligence into

SDN-driven security architectures and contributes to

advancing methodologies for privacy preservation in

resource-constrained environments.

[32] introduces a smart, new approach to protecting

privacy in smart cities built on IoT, using the SDN

technology. The method assesses trust levels among

neighbouring devices to safeguard the privacy of IoT

devices. The authors compared their approach with

existing methods and found that, although it uses a bit

more resources, it’s more effective at preventing

accidental data leaks—especially in situations where

adversaries might have some background knowledge.

As depicted in Table 1, the proposed framework

significantly advances privacy protection in IoT networks

by introducing a four-layer SDN-based architecture that

enhances the protection of sensitive information during

device communication. Unlike previous approaches, our

framework incorporates an attribute-based privacy

preservation (ABPP) model, ABPP-SDN, which

dynamically adjusts protection measures based on the

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 167

sensitivity of CoAP messages. By quantifying the

sensitivity degree of each message and applying

appropriate anonymization and concealment

techniques, our approach ensures a higher level of

privacy protection, addresses the limitations of existing

studies, and provides a more dynamic privacy protection

system for IoT networks.

Table 1 : Comparison of exiting work

ABPP-SDN Framework

In this section, we will provide an overview of ABPP-

SDN, a system designed for attribute-based privacy

protection. We will first explain the system architecture

and then describe the ABPP model that is used to

determine the level of privacy protection. In addition, we

will discuss methods used to ensure different levels of

privacy for CoAP response messages during message

transmission. We will also discuss methods to avoid

network analysis.

A. Architecture

Generally, the system architecture of our proposed

framework as depicted in Fig. 1, which incorporates SDN-

IOT [33], [34], consists of four layers, as illustrated in Fig.

1. This architecture enables various CoAP servers to

provide diverse CoAP services within the IoT network,

which can be accessed by CoAP clients through IoT

applications. The layers of our proposed framework are

as follows:

Application Layer: This layer hosts the IoT applications

that provide different CoAP services to the CoAP clients.

A CoAP client can register and request access to the

CoAP services via the IoT application through this layer.

The application layer communicates with the control

layer via the northbound interface.

Controller: The controller component is the most critical

software-based network element, serving as the control

center of the system. Its responsibilities include

generating the internal switching paths of the network

and managing network state change events. The

controller in our prototype comprises three sub-

components that implement different levels of privacy

protection. When dealing with extensive or physically

distributed systems, we add an additional set of

controller nodes to the middleware layer to handle

concurrent user requests. This approach ensures high

load balancing and consistency while providing fast

response times for a large number of requests. To

communicate with these controller nodes, we use the

West APIs if the system needs to be scaled. More details

about the sub-components within this middleware are as

follows:

Privacy Policy Decision (PPD): This component is

responsible for storing information related to CoAP

clients and CoAP services. It also stores policies that

specify various levels of privacy for messages exchanged

between clients and services. When a CoAP client

requests access to a specific CoAP service, the

component performs checks to determine the

appropriate level of privacy. In summary, this

component manages privacy policies for client and

server CoAP communication based on their attributes.

The Privacy Policy Enforcement (PPE): It is responsible

for enforcing the privacy protection decisions made by

the Privacy Policy Decision (PPD) component. This is

achieved by implementing privacy solutions that

safeguard sensitive data and by employing mechanisms

to conceal user identities. The Privacy Protection

Enforcement (PPE) component accomplishes this

through three subcomponents:

Fig. 1: Our proposed framework architecture.

Related
Work

Properties of Privacy Protection
Method

Architecture

Type

Support Data
Fragmentation

Context-
Aware

Dynamic SDN-Based

ABPP Yes Yes High Yes

[24] Yes Yes Medium Yes

[25] No Yes Medium Yes

[26] No Yes Medium NO

[27] Yes Yes Medium Yes

[28] No NO Medium Yes

[29] No Yes Medium Yes

[30] Yes Yes Medium Yes

[31] No Yes Medium Yes

[32] Yes Yes Medium Yes

S. Zangaraki et al.

168 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

I. IP Aliasing (IA) Sub-Component: It allows a CoAP

client to send a CoAP request to or receive a CoAP

response from a CoAP server using a source IP

address different from the one used in the original

request. By employing IP aliasing, the CoAP client

can maintain communication with the CoAP server

even if the original IP address becomes

unavailable.

II. Channel Manager (CM) Sub-Component: It allows

the frequent change of the communication

channel between two devices, namely the CoAP

client and CoAP server. When a CoAP client sends

a CoAP request to a CoAP server, the information

included in the CoAP request is used by this sub-

component to create a dynamic channel between

the CoAP client and the CoAP server. For example,

when a new packet (request) arrives at the

controller and matches a certain flow in the flow

table, the controller can use the packet counter

(one of the flow table items) as a measure to

determine whether a new channel is needed or

the existing channel can be changed, used. A

packet counter is a variable that counts the

number of packets that match a particular flow.

The controller can set a threshold for the packet

counter and compare it to the current value of the

counter for each flow. If the packet counter

exceeds the threshold, the controller can create a

new channel and add it to the channel table.

Otherwise, the controller can update the existing

channel with new packet information. In our work,

this component is used for messages with

sensitivity level 1.

III. Message Encryptor (ME) Sub-Component: It

facilitates the encryption of CoAP message

content, ensuring that only authorized entities can

access the information. The ME sub-component

employs various cryptographic algorithms to

secure the payload of CoAP messages. In our

study, this component is utilized for messages

classified with sensitivity level 2.

Server Manager (SM) Component: It administers CoAP

servers that deliver CoAP services to clients, facilitating

more granular control over individual servers and

enhancing monitoring and troubleshooting capabilities.

Additionally, it optimizes the utilization of network

resources, thereby reducing downtime and improving

overall network performance. This component

comprises four sub-components:

I. Resource Discovery (RD) Sub-Component: It is

responsible for determining the location,

ownership, and Uniform Resource Identifier (URI)

of IoT resources across various domains.

II. Service Discovery (SD) Sub-Component: It

maintains a registry of available CoAP services.

When a CoAP client requires a specific CoAP

service, it can submit a request to the SD sub-

component to locate the appropriate CoAP service

hosted on a CoAP server.

III. Domain Name System (DNS) Sub-Component: It

maintains a mapping between resource URIs and

their corresponding network locations. When a

CoAP client sends a request to a specific CoAP

server, the DNS sub-component resolves the URI

in its mapping and returns the corresponding

network location of the CoAP server.

IV. Privacy Cache (PC) Sub-Component: It is designed

to store frequent responses from the PPD for

CoAP services, thereby providing faster privacy-

preserving services. Its primary responsibility is to

enhance the overall performance of the proposed

framework by reducing the time required to

ensure privacy when accessing a specific CoAP

service.

Data layer: This layer consists of OpenFlow switches that

are interconnected by high-speed communication links

and are responsible for packet forwarding. All the

devices in this layer operate under the control of the

software-based network controller. The communication

between the data layer and the control layer occurs

through the southbound interface, which is the standard

OpenFlow interface in this case.

Object layer: This is the lowest layer in the proposed

architecture, which comprises heterogeneous IoT

devices (i.e., CoAP servers) that offers various services

via CoAP protocol.

B. Proposed Attribute-Based Privacy Protection

The proposed framework employs an Attribute-Based

Privacy Protection (ABPP) model to enforce varying

levels of privacy protection during message transmission

in Machine-to-Machine (M2M) Internet of Things (IoT)

networks. This model comprises seven key components:

I. Actors (SUB): Individuals or entities performing

actions.

II. Attributes of the Actors (SUB.ATT): Characteristics

or properties of the actors.

III. Entities (OBJ): Objects or entities affected by the

actions.

IV. Attributes of the Entities (OBJ.ATT): Characteristics

or properties of the entities.

V. Contextual Conditions (ENV.ATT): Environmental

attributes where the actions occur.

VI. Actions (OPS): The operations or activities

performed.

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 169

VII. Policies (POL): Rules governing the application of

different levels of privacy protection.

This structured approach ensures a comprehensive

and adaptable privacy protection mechanism within

M2M IoT networks.

Our proposed framework includes a Privacy Policy

Decision (PPD) sub-component that evaluates the

policies established by the Attribute-Based Privacy

Protection (ABPP) model. In ABPP-SDN, we consider that

CoAP messages can possess varying degrees of

sensitivity. Initially, we assume three levels of sensitivity:

Sensitive, Restricted, and Confidential. However, ABPP-

SDN can be expanded to accommodate additional levels

if necessary.

When a CoAP request, denoted as Req, is granted

access to a CoAP service, the request is transmitted to

the PPD component. The PPD component ensures the

privacy of the CoAP response message based on the

sensitivity of the original CoAP request. In our proposed

ABPP model, every attribute related to subjects, objects,

and the environment, as well as every operation, carries

a degree of sensitivity. We assign a numerical value to

represent the degree of sensitivity, where 0 signifies

Sensitive, 1 denotes Restricted, and 2 indicates

Confidential. To quantify the degree of sensitivity for

them, we introduce a function called the Degree of

Sensitivity (DoS), which measures their respective levels

as follows:

∑

(1)

where n is the total number of subject’s attributes in the

request Req.

∑

(2)

where m is the total number of object’s attributes in the

request Req.

∑

(3)

where o is the total number of environment’s attributes

in the request Req.

(4)

The degree of sensitivity of CoAP request can be

calculated using the following equation:

(5)

The PPE component can employ various techniques to

protect the context of the CoAP response message based

on the value of ,as shown in Table 2. The

selection of these techniques is as follows:

Table 2: Privacy levels

 0

1

2

 Anonymity – IA sub-component: When the

DoS_Req value is less than or equal to 0.35, the IA

sub-component employs the IP Aliasing technique

to replace the original source IP address with a

newly generated alias. The CoAP response is sent

using this pseudonymous address, effectively

concealing the identity of the client and ensuring

source-level anonymity.

 doUnLinkability – CM sub-component: For 0.35 <

DoS_Req < 0.65, the CM sub-component activates

a combination of IP Aliasing and Dynamic Channel

Switching. It evaluates flow-specific packet

thresholds to select new transmission paths and

alters communication routes unpredictably. This

strategy anonymizes routing behavior and

fragments traffic continuity—ensuring that

incoming requests cannot be linked to outgoing

responses, even under deep packet or flow pattern

inspection by adversaries.

 Untraceability – ME sub-component: When

DoS_Req ≥ 0.65, the ME sub-component

implements a multi-layered privacy strategy

comprising IP Aliasing, Dynamic Channel Switching,

and Content Encryption. This integrated

mechanism anonymizes the sender, obscures the

transmission path, and secures message payloads

against inspection. Consequently, adversaries are

unable to trace the origin of messages or

reconstruct communication flows—achieving

robust untraceability throughout the transaction

process.

PPD determines the appropriate level of privacy

required for accessing a specific Constrained Application

Protocol

 (CoAP) service and subsequently communicates this

privacy level to the Privacy Policy Enforcement (PPE)

sub-component. Fig. 2 illustrates the workflow for ABPP

enforcement within our proposed framework. As

illustrated in Fig. 2, when a Constrained Application

Protocol (CoAP) request (Req) is sent from the CoAP

client to the Privacy Controller (PC), the getCache()

S. Zangaraki et al.

170 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

method is invoked to check whether the requested

service has already been provided with privacy

protection. If true, the PC sends the privacy level to the

Privacy Policy Enforcement (PPE) sub-component;

otherwise, it forwards the request to the Privacy Policy

Decision (PPD) sub-component.

Fig. 2: Workflow for privacy protection enforcement.

The PPD sub-component maps the subject attribute

of the request to a set of subjects by calling the

assignedCI(SUB.ATTReq) method. All subjects and their

attributes are then stored in the Context Information (CI)

sub-component as an XML file. Subsequently, the PPD

calls the assignedSI(OBJ.ATTReq) method to map the

object attribute of the request onto a set of objects,

which are stored in the Subject Information (SI) sub-

component as an XML file.

The subject attribute (C), object attribute (S), and the

requested operations (OPSReq) are mapped onto a set

of policies using the assignedPI(C.ATT, S.ATT, OPSReq)

method. These policies (POL) are defined by a system

administrator and stored in the Policy Information (PI)

sub-component as an XML file within our proposed

framework.

The sub-components for anonymity, untraceability,

and unlinkability execute the doAnonymity(),

doUnTraceability(), and doUnLinkability() methods,

respectively, based on the policy level received by the

Privacy Policy Enforcement (PPE) sub-component.

Finally, the PPE sends the privacy policy level to be saved

in the Privacy Controller (PC) to reduce the time needed

for privacy enforcement when accessing a specific CoAP

service.

 Algorithm 1 is designed to implement attribute-based

privacy protection within our proposed framework. The

input to the algorithm is a CoAP request, and it produces

a secure environment as the output. The Privacy

Controller (PC) component first checks whether the

privacy level for the requested service is cached (lines 1-

5). The Privacy Policy Decision (PPD) sub-component

then retrieves the policy from the Context Information

(CI), Subject Information (SI), and Policy Information (PI)

sub-components that match the attribute set provided

by the CoAP request (lines 6-8). Based on the policy, the

level of privacy protection is determined and sent to the

Privacy Policy Enforcement (PPE) sub-component (line

9). An anonymity technique is used by default at all

privacy levels, which involves creating a new IP address

to send CoAP request messages to a specific CoAP server

(line 10). If the privacy level is one, only the

untraceability technique is performed. Otherwise, the

unlinkability technique is performed in addition to

untraceability (lines 11-16). Finally, the PPE sends the

privacy level to the PC to provide faster privacy-

preserving services (line 17).

Algorithm 2 enhances privacy-preserving CoAP

communication by integrating alias-based

anonymization, flow-level session tracking, and

cryptographically bound authentication. It begins (Line 1)

by computing a unique FlowID from request attributes

(SUB.ATT, OBJ.ATT, OPSReq) to distinguish sessions. To

mitigate Sybil and spoofing attacks (Lines 2–4), the

Algorithm 1. ABPP-SDN solution

Input: Req  CoAP request {SUB.ATT, OBJ.ATT, OPSReq};

Output: Safe environment.

 1: if (getCache()) then

 2: return Level of privacy to PPE;

 3: else

 4: send Req to PPD;

 5: end If

 6: C assignedCI(SUB.ATTReq);

 7: S assignedSI(OBJ.ATTReq);

 8: P assignedPI(C.ATT,S.ATT,OPSReq);

 9: getPL();//DoS

 10: doAnonymity();// Algorithm 2

 11: if(p==1) then

 12: doUnLinkability ();// Algorithm 3

 13: else

 14: doUnTraceability ();// Algorithm 4

 15: doUnLinkability ();

 16: endif

 17: Send Level of Privacy to PC; the receiver applies
Algorithm 5 when untraceability is selected.

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 171

client’s identity is authenticated using its ID, IP address,

and MAC address, and any requests originating from

unregistered entities are denied. Alias assignment does

as follows: if the flow is known (Lines 5–7), the system

retrieves its existing alias IP; otherwise, a new

pseudonymous IP is generated and stored (Lines 8–9),

enabling per-flow anonymity. To guarantee alias

integrity, an authentication tag (Auth_Tag) is

constructed (Line 11) using HMAC over the alias IP, client

IP, and flow ID. The CoAP request is then anonymized by

replacing its source IP with the alias and embedding the

tag (Lines 12–13). The alias IP is linked to the client in the

internal registry (Line 14), and a flow rule is installed

(Line 15) to rewrite source IPs in matching packets with

time-bound enforcement. Session metadata—including

alias, timestamp, and client ID—is logged for traceability

(Line 16). Finally, the anonymized, authenticated request

is forwarded securely to its destination (Line 17),

completing the privacy-aware transmission cycle.

Algorithm 3, strengthens communication security by

integrating session-aware flow recognition, replay

defense, and dynamic channel switching. Initially (Line

1), a unique FlowInfo is derived from CoAP request

parameters to distinguish sessions. To resist replay

attacks (Lines 2–7), a timestamp and random nonce are

embedded and validated per client; stale or duplicate

requests are immediately rejected. The system then

checks whether the flow is already tracked (Lines 8–14);

if not, a new record is created and stored. As packets

accumulate, a counter is incremented (Line 15) and

evaluated against a rotation threshold (Lines 16–22). If

exceeded, a new channel is randomly assigned to break

traffic patterns; otherwise, the current channel is

smoothly updated. The new channel is set (Line 23) and

the request is routed through it (Line 24) before being

forwarded to its destination (Line 25), completing a

privacy-aware transmission cycle.

Algorithm 4 provides a robust mechanism for securing

CoAP requests by integrating identity verification, replay

protection, and sensitivity-aware encryption. The

process begins by validating the legitimacy of the client

through identity binding - ensuring that the Client_ID is

correctly associated with the claimed Client_IP (Lines 1–

3). This step mitigates Sybil and IP spoofing attacks,

rejecting any request from unverified sources. To

prevent replay attacks, the algorithm generates a

Algorithm 2. doAnonymity()

Input: Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-,
Client_ID, Client_IP, MAC_Address;

Output: Anonymized and authenticated request with
aliased source IP.

 1. FlowID ← hash(SUB.ATT + OBJ.ATT + OPSReq)

 2. if not isRegistered(Client_ID, Client_IP, MAC_Address)
then

 3. Reject Req

 4. endif

 5. if FlowID ∈ AliasTable then

 6. Alias_IP ← AliasTable*FlowID+

 7. else

 8. Alias_IP ← GenerateNewAliasIP(Client_IP)

 9. AliasTable*FlowID+ ← Alias_IP

10. endif

 11. Auth_Tag ← HMAC(Alias_IP ∥ Client_IP ∥ FlowID ∥
Secret_Key)

12. Req.sourceIP ← Alias_IP

 13. Req.alias_tag ← Auth_Tag

14. IP_Alias_Table*Client_ID+ ← Alias_IP

15. install_flow_rule(match: {FlowID, Client_ID, Client_IP},

 action: rewrite_src_ip(Alias_IP),timeout: T)

16. Update Flow_Metadata_Table*FlowID+ ← ,Alias_IP,
timestamp, Client_ID}

17. forward Req to next sub-com or destination

Algorithm 3. doUnLinkability ()

Input: Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-,
Client_ID, Server_ID;

Output: randomized channel and replay protection.

 1. FlowInfo ← hash(SUB.ATT + OBJ.ATT + OPSReq)

 2. ts ← current_timestamp()

 3. nonce ← generate_random_nonce()

 4. Req.metadata ← ,ts, nonce-

 5. if not isFresh(ts, nonce, Client_ID) then

 6. Reject Req

 7. endif

 8. if FlowInfo ∈ FlowTable then

 9. flow ← FlowTable*FlowInfo+

10. else

12. flow ← CreateNewFlow(FlowInfo)

13. FlowTable*FlowInfo+ ← flow

14. endif

15. flow.packetCounter ← flow.packetCounter + 1

16. if flow.packetCounter ≥ Threshold then

17. newChannel ← GenerateRandomChannel()

18. ChannelTable*FlowInfo+ ← newChannel

19. flow.packetCounter ← 1

20. else

21. newChannel ← UpdateChannel(flow.currentChannel,
flow.packetCounter)

22. endif

23. flow.currentChannel ← newChannel

24. Route Req via newChannel

25. forward Req

S. Zangaraki et al.

172 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

timestamp (ts) and a random nonce, which are validated

for freshness (Lines 4–8). Requests that fail this

freshness check are immediately discarded. The

Algorithm 4, (Line 9), generates a metadata string based

on core attributes of the request, name SUB.ATT,

OBJ.ATT, and OPSReq, which capture contextual

sensitivity regarding the operation. A Key Identifier (KID)

is chosen corresponding to the requesting client‑server

pair, and the associated Pseudorandom Key (PRK) is

retrieved. The key in question was either a pre-shared

key (PSK) or obtained through the Elliptic Curve Diffie–

Hellman (ECDH) process (Lines 10–12). A session key is

generated from the PRK through the HMAC-based Key

Derivation Function (HKDF), using the nonce as salt and a

context string comprising metadata, algorithm ID, and

KID (Line 13). This guarantees that the encryption key is

context-aware and unique. So, in order to protect the

payload, the algorithm chooses a suitable Authenticated

Encryption with Associated Data (AEAD) scheme like

AES-CCM or ChaCha20-Poly1305, which varies from one

to the other according to the sensitivity of the metadata

(Line 14). Thereafter, it takes the payload and encrypts it

with the session key and generates the cryptographic tag

for ensuring integrity and authenticity (Line 15). The AAD

consists of the timestamp, nonce, and flow identifier,

binding the encryption to the request context.

Finally, the encrypted payload replaces the original

content, and the request header is augmented with

security metadata including the algorithm ID, key

identifier, nonce reference, timestamp, and

authentication tag (Lines 16–17). The secured request is

then forwarded for processing (Line 18).

Algorithm 5 describes the reception of a decrypted

payload or an offense. The receiver first checks freshness

against the timestamp and nonce; if it fails the replay

protection check, the request is rejected right away

(Lines 1-3). Metadata are framed from core CoAP

attributes SUB.ATT, OBJ.ATT, and OPSReq to signify the

context of the original request (Line 4). The receiver uses

the KID to retrieve the PRK. This must either be a PSK or

be derived from an ECDH exchange to remain consistent

with the sender (Line 5). A session key is generated using

the HKDF with nonce as salt and a context string

containing metadata, algorithm ID, and KID (Lines 6-7).

With this, AEAD is leveraged to decrypt the encrypted

payload. The AAD includes the timestamp, nonce, and

flow identifier, and the received authentication tag is

used to verify successful decryption (Line 8). If

decryption or validation fails, the request is rejected to

preclude any possibility of distinguishing the request or

forgery (Line 9). Once the message has been successfully

decrypted, the plaintext payload will replace the

encrypted payload, and a CoAP request containing the

payload will be sent to the CoAP service for processing

(Lines 10-11).

Results and Discussion

In this section, we first describe our simulation

topology and its associated settings, followed by a

presentation and analysis of the experimental results,

Algorithm 4. doUntraceability ()

Input: Req ← CoAP request ,SUB.ATT, OBJ.ATT, OPSReq-,
Client_ID, Client_IP;

Output: Encrypted and integrity-protected request.

 1. if not isBound(Client_ID, Client_IP) then

 2. Reject Req

 3. endif

 4. ts ← current_timestamp()

 5. nonce ← generate_random_nonce()

 6. if not isFresh(ts, nonce, Client_ID) then

 7. Reject Req

 8. endif

 9. Metadata ← (SUB.ATT ∥ OBJ.ATT ∥ OPSReq)

10. KID ← select_key_id(Client_ID, Server_ID)

11. PRK ← get_secret(KID) // pre-shared key or ECDH output

12. Context ← (Metadata ∥ AlgorithmID ∥ KID)

13. SessionKey ← HKDF(PRK, salt=nonce, info=Context)

14. EncryptionAlgorithm ←
ChooseBasedOnSensitivity(Metadata)// AES-CCM or
ChaCha20-Poly1305

15. (Ciphertext, Tag) ← AEAD_Encrypt(Req.payload,
SessionKey, AAD={ts, nonce, FlowID})

16. Req.payload ← Ciphertext

17. Req.header ← Req.header ∪ {AlgorithmID, KID,
NonceID: nonce, ts, Tag}

18. forward Req

Algorithm 5. Receiver: doDecryption

Input: Req  CoAP request with {AlgorithmID, KID,
nonce, ts, Tag}, Metadata=(SUB.ATT, OBJ.ATT, OPSReq);

Output: Decrypted payload or Reject.

 1: if (not isFresh(ts, nonce, Client_ID)) then

 2: Reject;

 3: end if

 4: Metadata ← (SUB.ATT ∥ OBJ.ATT ∥ OPSReq)

 5: PRK ← get_secret(KID) // same PSK or ECDH
context as sender

 6: Context ← (Metadata ∥ AlgorithmID ∥ KID)

 7: SessionKey ← HKDF(PRK, salt=nonce, info=Context)

 8: Plaintext ← AEAD_Decrypt(Req.payload,
SessionKey, AAD={ts, nonce, FlowID}, tag=Tag)

 9: if decryption/authentication fails then Reject

 10: Req.payload ← Plaintext

 11: deliver Req to CoAP service

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 173

performance analysis and computational overhead

evaluation and security analysis.

A. Experimental Settings

We used the CloudSimSDN [35] to simulate the

proposed framework.

All the experiments were run PC with an Intel Core i5-

8265U CPU @ 1.8GHz, 16 GB RAM, running Microsoft

Windows 10 64-bit.

We configured the IoT network using the

physicalTopologyGenerator class in CloudSimSDN, which

enabled us to save and load the network topology in

JSON file format.

B. Experimental Results

Fig. 4 illustrates the average response time for

protecting the privacy of CoAP messages in our proposed

framework, with the number of CoAP requests varying

from 100 to 1000 in increments of 100. Fig. 4 clearly

demonstrates that employing two or three privacy

protection techniques simultaneously does not

significantly increase the average response time.

However, it also shows that the average response time is

higher when all three techniques—IP Aliasing

(doAnonymity()), Dynamic Channel (doUnTraceability()),

and Content Encryption (doUnLinkability())—are used

together, compared to when only one or two techniques

are employed for privacy protection in the ABPP model.

The network topology consisted of one controller
(represented by the Network Operating System class in
CloudSimSDN, responsible for managing the overall
network behavior of the simulation), four OpenFlow
switches (SW1, SW2, SW3, and SW4), 50 CoAP clients, 30
CoAP servers, and 80 virtual machines (VM1, VM2, ...,
VM80). The VMs were deployed on physical nodes, and
network packets were routed between nodes via
OpenFlow switches. Additionally, we set the network
latency to 0.1 milliseconds and the network bandwidth
to 250 Mbps.

Fig. 3 illustrates the network topology used in our
experiments.

To further analyze the results, we conducted

simulations with varying numbers of CoAP requests and

applied different combinations of privacy protection

techniques.

The average response time for 1000 requests is as

indicate that while the use of multiple privacy protection

techniques increases the average response time, the

increase is not substantial.

Moreover, incorporating a cache into the proposed

framework reduces response time by eliminating the

need to execute new operations for every request,

highlighting the framework’s efficiency and effectiveness

in protecting CoAP message privacy.

Fig. 3: Network topology used in experiments.

S. Zangaraki et al.

174 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

Fig. 4: Average response time for privacy protection.

Fig. 5 presents the average throughput for protecting

the privacy of CoAP messages within our proposed

framework, with the number of CoAP requests varying.

As depicted in Fig. 5, it is evident that employing

additional privacy protection techniques for CoAP

requests results in a decrease in average throughput.

This inverse relationship between throughput and

response time indicates that the average throughput

diminishes further when all three techniques are applied

simultaneously.

Fig. 5: Average throughput for privacy protection.

Fig. 6 illustrates the CPU utilization for privacy

protection within our proposed framework, with varying

numbers of CoAP requests. As demonstrated in Fig. 6,

the CPU utilization is higher when the ABPP model

employs the combination of IP Aliasing, Dynamic

Channel, and Content Encryption compared to other

scenarios.

This increased utilization is attributed to the greater

computational resources required for privacy protection

operations, such as generating new IP addresses,

switching communication channels, and encrypting

content.

Fig. 6: CPU utilization for privacy protection.

C. Performance Analysis and Computational Overhead
Evaluation

One of the limitations of the proposed framework is

the computational overhead introduced by the layered

privacy mechanisms in ABPP-SDN. To mitigate this issue,

a caching mechanism was employed. A series of

simulations was conducted using the CloudSimSDN

environment to evaluate performance. The results,

presented in Fig. 7 and Fig. 8, provide a comparative

analysis of performance metrics across different

configurations: ABPP-SDN with caching (featuring PC

capability), ABPP-SDN without caching, and baseline

methods from previous studies [27] and [30].

Fig. 7: Average response time.

The integration of the storage mechanism (PC) within

the ABPP-SDN architecture demonstrably mitigates

computational overhead, resulting in reduced response

latency and substantially lower CPU usage. As depicted

in Fig. 8, CPU consumption exhibits a direct correlation

with the volume of CoAP requests; however, the variant

of ABPP-SDN enhanced with caching consistently

0

50

100

150

200

250

300

350

100 200 300 400 500 600 700 800 900 1000

R
ep

o
n

se
 t

im
e

(S
)

Requests

doAnonymity()+doUnTraceability()+doUnLin

kability()

doAnonymity()+doUnTraceability()

doAnonymity()

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 200 300 400 500 600 700 800 900 1000

Th
ro

u
gh

p
u

t
(R

/S
)

Requests

doAnonymity()+doUnTraceability()+doUnLinkabilit

y()
doAnonymity()+doUnTraceability()

doAnonymity()

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

C
P

U
 u

ti
liz

at
io

n

Requests

doAnonymity()+doUnTraceability()+doUnLinkability()

doAnonymity()+doUnTraceability()

doAnonymity()

0

50

100

150

200

250

300

350

400

100 200 300 400 500 600 700 800 900 1000

R
es

p
o

n
se

 t
im

e
(S

)

Requests

[30]

[27]

Proposed with cache

Proposed without cache

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 175

maintains lower resource utilization compared to its

non-caching counterpart. This observation underscores

the computational efficiency of the proposed framework

and reinforces its viability for deployment in resource-

constrained IoT platforms.

Fig. 8: CPU utilization.

D. Energy Consumption Analysis

To evaluate the framework’s suitability for resource-

constrained IoT environments, we conducted targeted

simulations using CloudSimSDN to measure energy

consumption under varying CoAP request volumes. The

results indicate that the ABPP-SDN architecture

equipped with the caching mechanism (PC) exhibits

notably lower energy usage compared to its non-caching

counterpart and [27], [30]. This reduction stems from

the avoidance of repeated computations and the reuse

of previously coordinated responses, which minimizes

the frequency and intensity of processing and

communication tasks.

The energy-aware behavior of the caching-enabled

model confirms the framework’s capacity to maintain

privacy protection while optimizing resource

consumption, validating its efficiency for deployment in

low-power IoT platforms.

Fig. 9 illustrates the energy consumption behavior of

the proposed ABPP-SDN framework under varying CoAP

traffic volumes, comparing its caching-enabled and non-

caching configurations and [27], [30].

As shown, the caching mechanism significantly

reduces energy usage by minimizing repetitive

processing and network activities. The energy

consumption of the proposed with cache is on average

27.5% better than [27] and 30.4% more efficient than

[30].

This validates the framework’s resource-awareness

and confirms its suitability for deployment in energy-

constrained IoT infrastructures.

Fig. 9: Energy consumption.

E. Packet Delivery Ratio (PDR)

To evaluate the performance of the proposed

framework in terms of Packet Delivery Ratio (PDR), a

simulation was conducted using the CloudSim-SDN

environment.

At a specific point during the simulation, a random

path failure was introduced by disabling one of the

switches or links in the network. This disruption was

designed to emulate unpredictable failures in real-world

IoT environments. The PDR was calculated using the

following formula:

 (6)

This scenario was executed multiple times under

varying traffic loads and topologies to obtain an average

PDR for each method under comparison.

The results of the simulation revealed that our

proposed framework, the ABPP model, achieved

superior packet delivery performance compared to

existing approaches. Table 3 summarizes the average

PDR values.

Table 3: PDR

Method Average PDR (%)

ABPP with cache 94.3

ABPP without cache 90.1

[27] 89.2

[30] 86.7

The results indicate that the combination of ABPP,

encryption techniques, and adaptive routing

mechanisms in our framework markedly reduces packet

loss while enhancing reliability, especially under the

high-traffic and failure-prone conditions typical of smart

city IoT systems

0%

20%

40%

60%

80%

100%

120%

100 200 300 400 500 600 700 800 900 1000

C
P

U
 u

ti
liz

at
io

n

Requests

[30]

[27]

Proposed with cache

Proposed without cache

0

20

40

60

80

100

120

140

160

180

200

100 200 300 400 500 600 700 800 900 1000

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J
)

Requests

Proposed with cache

Proposed without cache

[30]

[27]

S. Zangaraki et al.

176 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

F. Throughput Analysis

Throughput is a key performance metric that

quantifies the amount of data successfully delivered over

a network per unit time. It reflects the efficiency of data

transmission and is particularly critical in resource-

constrained IoT environments. The throughput is

calculated using the following formula:

∑

 (7)

Units of throughput are typically expressed in bits per

second (bps), kilobits per second (Kbps), or megabits per

second (Mbps).

To validate the performance of the proposed

framework, throughput results are compared against

[27], [30]. The comparative data is summarized in Table

4.

Table 4: Average throughput

Method Average Throughput (Kbps)

ABPP with cache 512.4

ABPP without cache 476.3

[27] 472.1

[30] 438.7

Indeed, the performance in terms of throughput for

the implemented ABPP-SDN framework has been found

to be more potent than that of the current available

privacy-preserving techniques as reflected in the

simulation results. Multiple privacy-enhancing

mechanisms, from anonymity and unlinkability to

untraceability, IP aliasing, dynamic channel switching,

and payload encryption, are well placed within the

framework while delivering a very high data delivery

rate.

Thus, the system can protect critical information

about clients without compromising upon transmission

efficiency. Decoupling message sensitivity levels from

privacy requirements, ABPP-SDN is able to better

optimize the routing quality through SDN, thus achieving

a more optimal security-performance trade-off for

smart-city IoT environments, where both privacy and

responsiveness are critical.

G. Security Analysis

In this section, we present a comprehensive security

evaluation of the proposed framework, encompassing

both formal verification and informal analysis

techniques.

 Informal Analysis

Anonymity: The proposed framework enforces

anonymity by decoupling a client’s true identity and

real IP address in transmitted packets via IP aliasing,

denoted as . To prevent spoofing,

each alias is bound to an authenticated mapping and

verified using an authentication tag

 ∥ , where is a hash-based

message authentication code and is a controller-

issued secret key. This binding ensures that even if an

attacker forges
 , the mismatch with will result

in rejection.

Unlinkability: It is achieved via dynamic channel

switching, where each flow between a client and

server is assigned a per-session channel ∈ ,

updated when a threshold condition is

met. This prevents correlation of successive requests

 from being linked through static flow or path

patterns, thus concealing user activity over time.

Untraceability and man-in-the-middle (MITM) attacks:

Untraceability of content is guaranteed by encrypting

CoAP payloads as , with optional encryption

of metadata based on sensitivity level ∈ { }.

Furthermore, each message includes a MAC tag

 ∥ ∥ to ensure integrity

and prevent message tampering, effectively mitigating

MITM attacks.

Replay attacks: To counter these attacks, the controller

and CoAP server maintain a replay window

 , where is the timestamp space and is the nonce

space. A message with ∈ is considered

invalid. Assuming secure clocks and bounded drift ,

this defense remains efficient and lightweight.

Sybil attacks: To mitigate sybil attacks, each client is

required to register through a validation mechanism that

binds . Multiple identity claims from

a single MAC or IP subnet are detected through

statistical thresholds , where is a

system-defined sybil detection parameter.

IP spoofing: It is neutralized via source validation by the

SDN controller, which drops packets where

, with being the maintained mapping of

legitimate identities to IP/MAC pairs.

Others security concerns: The system is resilient to

traffic analysis attacks by leveraging per-flow encryption

and dynamic alias rotation, thereby disrupting pattern

matching. It is also resistant to resource exhaustion or

Denial of Service (DoS) attacks through rate-limiting

policies: any client sending more than messages in

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 177

a time window will be temporarily throttled or

quarantined.

 Cryptographic Instantiation and Decryption Process

For CoAP messages assigned the untraceability level,

the payload is encrypted with a session key derived via

HKDF-SHA256. The secret input, Pseudorandom Key

(PRK), is either a pre-shared key (PSK) or an ephemeral

Diffie–Hellman output, referenced by a short Key

Identifier (KID). The nonce, generated per message, is

included in the header and used as HKDF salt, ensuring

freshness and binding keys to individual transmissions.

The HKDF info string is defined as (SUB.ATT ∥ OBJ.ATT ∥

OPSReq ∥ AlgorithmID ∥ KID).

The resulting session key is used with an

Authenticated Encryption with Associated Data (AEAD)

scheme. By default, we employ AES-CCM-128, the

recommended mode in constrained IoT and OSCORE,

though ChaCha20-Poly1305 and AES-GCM are also

supported. Integrity and replay protection are achieved

by: (i) authenticating the (timestamp, nonce, FlowID)

fields as AEAD associated data (AAD), and (ii) checking

freshness of (timestamp, nonce) at the receiver. Keys are

never transmitted; both sender and receiver compute

them independently.

 Security proof using ROM

The Random Oracle Model (ROM) is a theoretical

framework in which all parties (including attackers)

interact with a public oracle that responds to each

unique input with a truly random output ,

consistent across repeated queries [36]. In ROM,

cryptographic hash functions (e.g., SHA-256) are treated

as idealized random functions. Let’s define a series of

games and evaluate the attacker's advantage

under ROM. We assume a probabilistic polynomial-time

attacker , and define the following standard security

games:

Anonymity Game (In this game, the adversary

tries to distinguish between two clients and

sending anonymized messages via IP aliasing. Challenger

picks

← { } uses to generate a message with

alias to who outputs guess . We assume IP

aliasing is randomized per client via ∥

 with inaccesible mapping table. The advantage

of is:

 | []

| (8)

Under ROM, 's probability of linking alias to a

specific ID is negligible unless it breaks the oracle (which

behaves randomly).

Unlinkability Game (). In this game, the

adversary determines whether two messages come from

the same user despite dynamic channel switching and

aliasing. The challenger prepares two messages and

 : one from a repeated session (same user) and one

from a new user (both encrypted via different

pseudonymous channels). receives both and guesses

which is the repeat session. We assume dynamic

channels ∥ and IPs and

flows are randomized per session. ‘s advantage is:

 | []

| (9)

 has negligible advantage since all observable values

(IP, channel ID, message tags) are randomized through

the oracle.

Message Privacy Game (). Here, the adversary

distinguishes between two encrypted messages

and under symmetric encryption with ROM-derived

keys. The challenger picks bit ∈ { }, encrypts

using key ∥ and transmits ciphertext

 to . receives ciphertext , tries to

guess . We assume encryption is secure against

indistinguishability under chosen plaintext attacks (IND-

CPA) and keys derived via ROM hash oracle. The

advantage of in winning the game is:

 (10)

where, is the IND-CPA advantage, is the number

of hash queries, and is hash output length (256 bits).

This shows that the attacker can only win if it queries the

oracle with the correct input used to derive , which is

infeasible for large .

Conclusion

In this paper, we presented a novel four-layer SDN-

based framework designed to enhance privacy

protection in IoT networks. The framework utilizes an

ABPP model to specify policies and employs various

privacy protection techniques, such as IP aliasing,

dynamic routing, and content encryption, to enhance

the privacy of CoAP messages during transmission based

on their sensitivity levels.

The framework anonymizes all CoAP messages using

IP aliasing and applies dynamic routing for sensitive

CoAP messages. Additionally, it employs different

encryption algorithms for highly sensitive CoAP

messages, augmenting existing techniques to prevent

data disclosure within CoAP messages. We implemented

the proposed framework using CloudSimSDN and

evaluated its performance through several experiments.

The use of a cache in our proposed framework helps

reduce the response time by avoiding the need to

perform new operations for each request. This

demonstrates the efficiency and effectiveness of our

framework in providing privacy protection for CoAP

messages.

S. Zangaraki et al.

178 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

Although the proposed framework exhibits higher

response times compared to existing approaches from

[30], that use only one method for privacy preservation,

this limitation is compensated by significant

improvements in other critical performance metrics.

Basically, the incorporation of dynamic routing and a

cache mechanism into an SDN-based architecture brings

out improved energy efficiency, higher rates of packet

delivery, and better overall throughput. These

optimizations become critical in resource-constrained

IoT environments, where efficiency gains of the network

and its scaling capability are concerned. Therefore, it

reflects real benefits in operational up-hold by our

design in return for the latency penalty being incurred.

The incorporation of dynamic routing and cache

mechanism to the SDN-based architecture has

specifically yielded gains in more efficient energy

consumption, increased packet delivery rates, and better

overall throughput. Such optimizations become critical in

resource-constrained IoT environments, for efficiency

gains and scalability of the network.

Thus, the latency trade-off is well warranted with the

broader operational advantages gained through our

design.

We provided a security proof using random oracle

model and informal analysis shows that the proposed

framework is secure against anonymity violation attacks,

MITM attacks, replay attacks, sybil attacks, and IP

spoofing.

In the future, we plan to extend this research in two

directions:

• Extending our proposed ABPP model to explore the

integration of machine learning algorithms to

dynamically adjust privacy-preserving techniques

based on real-time network conditions and threat

levels.

• Developing novel privacy prevention techniques to

avoid network traffic analysis in our proposed

framework.

 Re-architecting the proposed framework for edge

processing to further improve computational

overhead.

Author Contributions

Conceptualization and design: S.H. Erfani; Formal

Analysis: A. Sahafi; Software: Sh. Zangaraki; Research:

three authors; Writing - preparation of the first draft: Sh.

Zangaraki; Writing - review and editing: S.H. Erfani;

Supervision: S.H. Erfani and A. Sahafi.

Acknowledgment

The authors express their sincere gratitude to Dr.

Meghdad Mirabi for his invaluable support and expert

guidance in formulating the research problem.

Funding

This research received no external funding.

Conflict of Interest

The authors declare no potential conflict of interest

regarding the publication of this work. In addition, the

ethical issues including plagiarism, informed consent,

misconduct, data fabrication and, or falsification, double

publication and, or submission, and redundancy have

been completely witnessed by the authors.

Abbreviations

SDN Software Define Network

ABPP Attribute Base Privacy Preserving

PPD Privacy Policy Decision

PPE Privacy Policy Enforcement

IA IP Aliasing

CM Channel Manager

ME Message Encryptor

SM Server Manager

RD Resource Discovery

SD Service Discovery

DNS Domain Name System

PC Privacy Cache

References

[1] 20 10 2023. [Online].
Available:https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/.

[2] D. E. Kouicem, A. Bouabdallah, H. Lakhlef, “Internet of things
security: A top-down survey,” Comput. Networks, 141: 199-221,
2018.

[3] G. Yang, "An Overview Of Current Solutions For Privacy In The
Internet Of Things," Front. Artif. Intell., 5(812732): 8, 2022.

[4] H. Ahmadvand, C. Lal, H. Hemmati, M. Sookhak, M. Conti,
“Privacy-preserving and security in sdn-based IOT: A survey,” IEEE
Access, 11: 44772 - 44786, 2023.

[5] M. Amiri-Zarandi, R. A. Dara, E. Fraser, "A survey of machine
learning-based solutions to protect privacy in the Internet of
Things," Comput. Secur., 96, 101921, 2020.

[6] B. Ayodele, V. Buttigieg, “SDN as a defence mechanism: a
comprehensive survey,” Int. J. Inf. Secur., 23(1): 141-185, 2024.

[7] S. Bera, S. Misra, A. . V. Vasilakos, "Software-defined networking
for internet of things: A survey," IEEE Internet Things J. , 4(6):
1994-2008, 2017.

[8] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, "Software-defined networking: A comprehensive
survey," Proc. IEEE, 103(1): 14-76, 2015.

[9] P. M. Chanal, M. S. Kakkasageri, “Security and privacy in IoT: A
survey,” Wireless Pers. Commun., 115(2): 1667-1693, 2020.

[10] S. Ullah, S. Ullah, M. Imran, “Recent developments in
authentication schemes used in machine-type communication

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1016/j.comnet.2018.03.012
https://doi.org/10.1016/j.comnet.2018.03.012
https://doi.org/10.1016/j.comnet.2018.03.012
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.812732/full
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.812732/full
https://doi.org/10.1109/ACCESS.2023.3267764
https://doi.org/10.1109/ACCESS.2023.3267764
https://doi.org/10.1109/ACCESS.2023.3267764
https://doi.org/10.1109/ACCESS.2023.3267764
https://doi.org/10.1016/j.cose.2020.101921
https://doi.org/10.1016/j.cose.2020.101921
https://doi.org/10.1016/j.cose.2020.101921
https://link.springer.com/article/10.1007/s10207-023-00764-1
https://link.springer.com/article/10.1007/s10207-023-00764-1
https://ieeexplore.ieee.org/document/8017556
https://ieeexplore.ieee.org/document/8017556
https://ieeexplore.ieee.org/document/8017556
https://ieeexplore.ieee.org/abstract/document/6994333
https://ieeexplore.ieee.org/abstract/document/6994333
https://ieeexplore.ieee.org/abstract/document/6994333
https://link.springer.com/article/10.1007/s11277-020-07649-9
https://link.springer.com/article/10.1007/s11277-020-07649-9
https://openurl.ebsco.com/EPDB%3Agcd%3A9%3A1405065/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A176916240&crl=c&link_origin=scholar.google.com
https://openurl.ebsco.com/EPDB%3Agcd%3A9%3A1405065/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A176916240&crl=c&link_origin=scholar.google.com

Enhancing Privacy in Internet of Things using Software Defined Network

J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026 179

devices in machine-to-machine communication: Issues and
challenges,” Comput. Mater. Continua, 79(1): 93-115, 2024.

[11] S. R. Mishra, B. Shanmugam, K. C. Yeo, S. Thennadil, “SDN-
enabled IoT security frameworks—A review of existing
challenges,” Technologies, 13(3): 121, 2025.

[12] C. Bormann, A. P. Castellani, Z. Shelby, “CoAP: An application
protocol for billions of tiny internet nodes,” IEEE Comput. Soc.,
16(2): 62-67, 2012.

[13] Z. Shelby, K. Hartke, C. Bormann, "The Constrained Application
Protocol (CoAP)," Internet Eng. Task Force (IETF), 2014. [Online].
Available: https://tools.ietf.org/html/rfc7252.

[14] W. Bekri, R. Jmal, L. C. Fourati, “Internet of things management
based on software defined,” Int. J. Wireless Inf. Networks,
27(September): 385-410, 2020.

[15] H. Farhady, H. Lee, A. Nakao, "Software-defined networking: A
survey," Comput. Networks, 81: 79-95, 2015.

[16] I. Alsmadi, D. Xu, "Security of software defined networks: A
survey," Comput. Secur., 1(53): 79-108, 2015.

[17] B. MISHRA, A. KERTESZ, “The use of MQTT in M2M and IoT
Systems: A Survey,” IEEE Access, 8: 201071-201086, 2020.

[18] W. Wang, H. Zhao, J. Zhu, “GRPC: A communication cooperation
mechanism in distributed systems,” ACM SIGOPS Oper. Syst. Rev.,
27(3): 75–86, 1993.

[19] S. Zangarak, M. Mirabi, S. H. Erfani, A. Sahafi, “SecShield: An IoT
access control framework with edge caching using software
defined network,” Peer-to-Peer Networking Appl., 18(56), 2025.

[20] M. Seliem, K. Elgazzar, K. Khalil, "Towards privacy preserving iot
environments: A survey," Wireless Commun. Mobile Comput.,
2018(2): 15, 2018.

[21] A. A. A. Sen, F. A. Eassa, K. Jambi, M. Yamin , "Preserving privacy
in internet of things: a survey," Int. J. Inf. Technol., 10(2): 189-
200, 2018.

[22] G. Yang, “An overview of current solutions for privacy in the
internet of things,” Front. Artif. Intell., 5, 812732: 8, 2022.

[23] Q. Razi, R. Piyush, A. Chakrabarti, A. Singh, V. Hassija, G. S.
Chalapathi, “Enhancing data privacy: A comprehensive survey of
privacy-enabling technologies,” IEEE Access, 13: 40354 – 40385,
2025.

[24] M. Gheisariy, G. Wang, W. Z. Khanz, C. Fernandez-Campusano, "A
context-aware privacy-preserving method for IoT-based smart
city using software defined networking," Comput. Secur., 87,
101470, 2019.

[25] V. Sridharan, K. Sudheera, K. Liyanage, M. Gurusamy, "Privacy-
aware switch-controller mapping in SDN-based IoT networks," in
Proc. International Conference on COMmunication Systems &
NETworkS (COMSNETS), 2020.

[26] M. Gheisari, G. Wang, S. Chen, "An edge computing-enhanced
internet of things framework for privacy-preserving in smart city,"
Comput. Electr. Eng., 81: 106504, 2020.

[27] M. Gheisari, G. Wang, S. Chen, H. Ghorbani, "IoT-SDNPP: A
method for privacy-preserving in smart city with software defined
networking," in Proc. International Conference on Algorithms and
Architectures for Parallel Processing, 2018.

[28] M. Gheisari, G. Wang, S. Chen, A. Seyfollahi, "A method for
privacy-preserving in IoT-SDN integration environment," in Proc.
IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data
& Cloud Computing, Social Computing & Networking, Sustainable
Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018.

[29] C. Ke, Z. Zhu, F. Xiao, Z. Huang, Y. Meng, "SDN-based privacy and
functional authentication scheme for fog nodes of smart
healthcare," IEEE Internet Things J., 9(18): 17989-18001, 2022.

[30] J. A. Alzubi, A. Movassagh, M. Gheisari, H. E. Najafabadi, A. A.
Abbasi, Y. Liu, Z. Pingmei, M. Izadpanahkakhk, A. P. Najafabadi, "A
dynamic SDN-based privacy-preserving approach for smart city
using trust technique," in Proc. 2022 9th Iranian Joint Congress on
Fuzzy and Intelligent Systems (CFIS): 1-5, 2022.

[31] S. R. Alotaibi, H. Alfraihi, N. Alruwais, M. Maray, A. B. Miled, A. M.
Al-Sharafi, M. Alotaibi, S. H. Alajmani, “Two-tiered privacy
preserving framework for software-defined networking driven
defence mechanism for consumer platforms,” IEEE Access, 13:
26684 – 26694, 2025.

[32] M. Gheisari, H. Tahaei, M. Malik, E. Mnkandla, Z. Wang, “A
flexible software-defined networking-based privacy-preserving
method for internet of things-based smart city environment
based on the neighbors situation,” Comput., 58(5): 27-36, 2025.

[33] M. Conti, P. Kaliyar, C. Lal, "CENSOR: Cloud-enabled secure IoT
architecture over SDN," Concurrency Comput. Pract. Exper.,
31(8): e4978, 2019.

[34] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk,
A. Rindos, "SDIOT: a software defined based internet of things
framework," J. Ambient Intell. Human Comput., 6(4): 453-461,
2015.

[35] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, Y. Y. Buyya,
“CloudSimSDN: Modeling and simulation of software-defined
cloud data centers,” in Proc. 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2015.

[36] S. ZakeriKia, R. Hajian, S. H. Erfani, A. M. Rahmani, “Robust and
anonymous handover authentication scheme without key escrow
problem in vehicular sensor networks,” Wireless Networks, 27(7):
4997-5028, 2021.

 Biographies

Shahrbanoo Zangaraki was born in Farahan,
Iran, in 1984. She received the B.Sc. in
Software Engineering from Arak University,
Iran in 2007, the M.Sc. in Software
Engineering from Islamic Azad University of
Arak, Iran, in 2009. She is currently pursuing
the full-time Ph.D. degree in Computer
Engineering in Islamic Azad University of
South Tehran Branch, Iran. She joined the

Department of Computer Engineering, Islamic Azad University of
Khomein, as an instructor. Her research interests include SDN, internet
of things, security and privacy.

 Email: sh.zangaraki@iau.ac.ir

 ORCID: 0000-0002-1931-4865

 Web of Science Researcher ID: AAO-5817-2021

 Scopus Author ID: 35811598900

 Homepage: NA

Seyed Hossein Erfani received his B.Sc. in
Computer Engineering from Azad University,
North Tehran branch, Iran, in 2006, the MS
and PhD degrees in Computer Engineering
from Azad University, Science and Research
branch, Iran, in 2009 and 2014. Currently, he
is an Associate Professor in the department
of Computer Engineering at Azad University,
South Tehran branch, Iran. He is the
author/co-author of more than 10

publications in technical journals and conferences. His research
interests are in the areas of security, cloud computing, wireless
networks, internet of things and evolutionary computing.

 Email: H_erfani@iau.ac.ir

 ORCID: 0000-0002-7893-4191

 Web of Science Researcher ID: NA

 Scopus Author ID: 25421134100

 Homepage: NA

https://openurl.ebsco.com/EPDB%3Agcd%3A9%3A1405065/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A176916240&crl=c&link_origin=scholar.google.com
https://openurl.ebsco.com/EPDB%3Agcd%3A9%3A1405065/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A176916240&crl=c&link_origin=scholar.google.com
https://www.mdpi.com/2227-7080/13/3/121
https://www.mdpi.com/2227-7080/13/3/121
https://www.mdpi.com/2227-7080/13/3/121
https://ieeexplore.ieee.org/abstract/document/6159216
https://ieeexplore.ieee.org/abstract/document/6159216
https://ieeexplore.ieee.org/abstract/document/6159216
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://link.springer.com/article/10.1007/s10776-020-00488-2
https://link.springer.com/article/10.1007/s10776-020-00488-2
https://link.springer.com/article/10.1007/s10776-020-00488-2
https://www.sciencedirect.com/science/article/abs/pii/S1389128615000614
https://www.sciencedirect.com/science/article/abs/pii/S1389128615000614
https://www.sciencedirect.com/science/article/abs/pii/S016740481500070X
https://www.sciencedirect.com/science/article/abs/pii/S016740481500070X
https://ieeexplore.ieee.org/abstract/document/9247996
https://ieeexplore.ieee.org/abstract/document/9247996
https://dl.acm.org/doi/abs/10.1145/155870.155881
https://dl.acm.org/doi/abs/10.1145/155870.155881
https://dl.acm.org/doi/abs/10.1145/155870.155881
https://link.springer.com/article/10.1007/s12083-024-01825-5
https://link.springer.com/article/10.1007/s12083-024-01825-5
https://link.springer.com/article/10.1007/s12083-024-01825-5
https://onlinelibrary.wiley.com/doi/full/10.1155/2018/1032761
https://onlinelibrary.wiley.com/doi/full/10.1155/2018/1032761
https://onlinelibrary.wiley.com/doi/full/10.1155/2018/1032761
https://link.springer.com/article/10.1007/s41870-018-0113-4
https://link.springer.com/article/10.1007/s41870-018-0113-4
https://link.springer.com/article/10.1007/s41870-018-0113-4
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.812732/full
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.812732/full
https://ieeexplore.ieee.org/abstract/document/10908383
https://ieeexplore.ieee.org/abstract/document/10908383
https://ieeexplore.ieee.org/abstract/document/10908383
https://ieeexplore.ieee.org/abstract/document/10908383
https://www.sciencedirect.com/science/article/abs/pii/S0167404818313336
https://www.sciencedirect.com/science/article/abs/pii/S0167404818313336
https://www.sciencedirect.com/science/article/abs/pii/S0167404818313336
https://www.sciencedirect.com/science/article/abs/pii/S0167404818313336
https://ieeexplore.ieee.org/abstract/document/9027467
https://ieeexplore.ieee.org/abstract/document/9027467
https://ieeexplore.ieee.org/abstract/document/9027467
https://ieeexplore.ieee.org/abstract/document/9027467
https://www.sciencedirect.com/science/article/abs/pii/S0045790618329082
https://www.sciencedirect.com/science/article/abs/pii/S0045790618329082
https://www.sciencedirect.com/science/article/abs/pii/S0045790618329082
https://link.springer.com/chapter/10.1007/978-3-030-05063-4_24
https://link.springer.com/chapter/10.1007/978-3-030-05063-4_24
https://link.springer.com/chapter/10.1007/978-3-030-05063-4_24
https://link.springer.com/chapter/10.1007/978-3-030-05063-4_24
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/8672263
https://ieeexplore.ieee.org/abstract/document/9741253
https://ieeexplore.ieee.org/abstract/document/9741253
https://ieeexplore.ieee.org/abstract/document/9741253
https://ieeexplore.ieee.org/abstract/document/9756458
https://ieeexplore.ieee.org/abstract/document/9756458
https://ieeexplore.ieee.org/abstract/document/9756458
https://ieeexplore.ieee.org/abstract/document/9756458
https://ieeexplore.ieee.org/abstract/document/9756458
https://ieeexplore.ieee.org/abstract/document/10870212
https://ieeexplore.ieee.org/abstract/document/10870212
https://ieeexplore.ieee.org/abstract/document/10870212
https://ieeexplore.ieee.org/abstract/document/10870212
https://ieeexplore.ieee.org/abstract/document/10870212
https://ieeexplore.ieee.org/abstract/document/10970196
https://ieeexplore.ieee.org/abstract/document/10970196
https://ieeexplore.ieee.org/abstract/document/10970196
https://ieeexplore.ieee.org/abstract/document/10970196
https://ieeexplore.ieee.org/abstract/document/10970196
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4978
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4978
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4978
https://link.springer.com/article/10.1007/s12652-015-0290-y
https://link.springer.com/article/10.1007/s12652-015-0290-y
https://link.springer.com/article/10.1007/s12652-015-0290-y
https://link.springer.com/article/10.1007/s12652-015-0290-y
https://ieeexplore.ieee.org/document/7152513
https://ieeexplore.ieee.org/document/7152513
https://ieeexplore.ieee.org/document/7152513
https://ieeexplore.ieee.org/document/7152513
https://link.springer.com/article/10.1007/s11276-021-02729-5
https://link.springer.com/article/10.1007/s11276-021-02729-5
https://link.springer.com/article/10.1007/s11276-021-02729-5
https://link.springer.com/article/10.1007/s11276-021-02729-5
mailto:sh.zangaraki@iau.ac.ir
mailto:H_erfani@iau.ac.ir

S. Zangaraki et al.

180 J. Electr. Comput. Eng. Innovations, 14(1): 163-180, 2026

Amir Sahafi received the B.Sc. degree from
Shahed University of Tehran, Iran, in 2005,
and the M.Sc. and Ph.D. degrees from
Islamic Azad University, Science and
Research Branch, Tehran, in 2007 and 2012,
respectively, all in Computer Engineering. He
is currently an Assistant Professor with the
Department of Computer Engineering,
Islamic Azad University, South Tehran
Branch, Tehran. His current research

interests include distributed and cloud computing.

 Email: sahafi@iau.ac.ir

 ORCID: 0000-0002-6555-670X

 Web of Science Researcher ID: NA

 Scopus Author ID: 24528878600

 Homepage: NA

mailto:sahafi@iau.ac.ir
http://www.scopus.com/inward/authorDetails.url?authorID=24528878600&partnerID=MN8TOARS

