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Background and Objectives: Sonar data processing helps in identifying and 
tracking targets with unstable echoes, which conventional tracking methods 
often misidentify. Recently, RLA has significantly improved the accuracy of 
undersea target detection compared to traditional sonar object recognition 
techniques that tend to lack robustness and precision. 
Methods: This research utilizes a combination of classifiers to improve the 
accuracy of Sonar data classification for complex tasks like identifying marine 
targets. Each classifier creates its own data pattern and maintains a model. 
Ultimately, a weighted voting process is carried out by the fuzzy learning 
automata algorithm among these classifiers, with the one receiving the highest 
votes being the most impactful on performance improvement. 
Results: We compared the performance of SVM, RF, DT, XGBoost, ensemble 
methods, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and 
joint models against the proposed model. Given the differences in objectives and 
databases, we focused on benchmarking the average detection rate. This 
comparison examined key parameters including, Precision, Recall, F1_Score, and 
Accuracy, to highlight the superior performance of the proposed method 
compared to the others. 
Conclusion: The results obtained with the analytical parameters Precision, Recall, 
F1_Score, and Accuracy have been examined and compared with the latest 
similar research and the values of 88.6%, 90.2%, 89.02% and 88.6% have been 
obtained for each of these parameters in the proposed method, respectively. 
Also, in this research, the impressive performance of the new method compared 
to the Sonar data fusion by the conventional learning automata method is 
evident. 
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Introduction 

The classification and recognition of underwater objects 

is a crucial area of research in modern underwater 

acoustics. As advancements in noise reduction 

technology continue, underwater targets have become 

increasingly quiet, posing challenges for passive Sonar 

detection and recognition [1]. The classification of sonar 

data constitutes a significant challenge owing to the 

complexities inherent in the underwater environment. 

Contributing factors such as sound scattering, ambient 

noise, and frequency-dependent absorption further 

exacerbate the difficulties encountered in this domain 

[2]. The identification of surface and underwater sources 

through machine learning (ML) involves the classification 

of input features. Unlike a human sonar operator, who is 

limited to observing a single direction at any given 

moment, an automated ML system can concurrently 

process data from multiple directions. Building upon the 

demonstrated success of ML techniques in enhancing 

performance through the utilization of engineered 

features, this study introduces an innovative 

methodology based on learning automata (LA) [3], [4]. 

Given the limitations outlined above and the 

inimitable benefits of artificial intelligence (AI) methods 

for addressing recognition challenges in complex and 

blurred ambiances, various researchers have begun 

employing learning-based techniques to classify 

underwater sound. Moreover, the effectiveness of AI-

based methods in similar domains, like acoustic scene 

classification [5], [6], acoustic event detection [7], and 

speaker identification [8], [9]. Considering the latest 

trends in underwater Sonar classification, we limit the 

scope of our study to learning-based procedures. 

Classical ML models perform well with small datasets but 

may not achieve satisfactory accuracy with large 

datasets that have diversified feature spaces. Given the 

success of reinforcement learning (RL) procedures in 

various fields, multiple studies have adopted and 

proposed RL-based approaches for classifying 

underwater sounds [3], [10]. However, many researchers 

have enhanced and proposed various reinforcement 

learning algorithms (RLAs) for Sonar objective 

classification and cognition [11]. In supervised ML, a 

dataset is given to the learning algorithm along with 

labels that indicate the correct output for the given data. 

Algorithms such as k-nearest neighbor (KNN), support 

vector machine (SVM), random forests (RF), and artificial 

neural networks (ANN) are examples of this learning. 

In this work, the data fusion (DF) problem in Sonar 

data classification is considered due to its importance in 

various applications such as navigation and marine 

surveillance. However, we must mention that the 

mechanism of fuzzy learning automata algorithm (FLAA) 

has not been used in this field yet. We intended to check 

whether using mechanisms related to FLAA can be 

effective and efficient in DF at the decision level. 

However, data integration at the level of data, decision, 

and feature has been used in the problem of Sonar data 

classification. But until now, the use of an ML method 

such as FLAA to increase the ability to classify targets has 

been neglected. In this article, we measured the 

remarkable performance of the proposed method for 6 

different objectives with Precision, Recall, F1_Score, 

AUC, and Accuracy indicators. Noise and acoustic 

interferences make the act of identification difficult in 

the vast and diverse oceanic and marine environments. 

In most marine devices, target detection is done by 

human operators, and with the development of this 

method in detecting various targets, the speed and 

accuracy of identification can be increased, and human 

errors can be reduced in these cases. 

Due to the numerous parameters in the learning 

automata algorithm (LAA), all of which impact 

performance, finding the optimal set of values is a 

challenging task. We spent a significant amount of time 

refining these parameters to achieve the best results. 

Our previous research required extensive adjustments to 

various LAA parameters to achieve the desired 

performance. This experience led us to consider isolating 

the more effective parameters and identifying which 

ones have the greatest impact on LAA. We also explored 

using a smart tool to automatically adjust these 

parameters when necessary, allowing us to leverage 

LAA's full capabilities and obtain answers more quickly, 

accurately, and efficiently. 

Therefore, we considered controlling these key 

parameters with a fuzzy controller and providing a soft 

computing tool that combines the capabilities of fuzzy 

systems and LA systems. In fact, the algorithm we 

introduced in this paper benefits from both systems' 

features, whereas previous research only used 

traditional LAA. This creates a pathway for LAA to be 

applied as a soft computing approach in many areas. 

In the following article, we will examine, in order of 

related research, a number of machine learning 

algorithms used, the learning automata algorithm, fuzzy 

evaluation, the method, data, and device used, and the 

results obtained. 

Related Work 

In many research studies, Environment-based 

performance is emphasized to obtain the most expected 

benefits in reinforcement learning (RL), which is one of 

the main branches in the field of ML [12]. Valdenegro-

Toro et al. used a convolutional neural network (CNN) to 

detect the object of an undersea Sonar image, and after 

training the network, the average detection rate in test 

sets reached 90% [13]. A Sonar objective cognition 

procedure based on a shallow CNN has fault cognition 
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and insufficient model strength. Ferguson et al. 

proposed the use of a deep CNN to detect the sound of 

an undersea ship in a shallow water ambiance. In this 

article, a data augmentation technique is introduced, 

and the criterion for comparing data integration 

performance at the feature level is the precision 

parameter [14]. Huo et al. proposed a classification 

method for Sonar target detection based on semi-

synthetic data training and transfer learning for small 

sample Sonar datasets. Experiments indicate that 

transfer training and semi-synthetic training can help 

increase model cognition accuracy [15]. 

In reference [16], a hybrid dragonfly algorithm is 

proposed to train a multi-layer perceptron (MLP) neural 

network to design a classifier in solving complex issues 

and to distinguish true targets from fake objectives in 

Sonar applications. In this paper, by combining DA and 

ChoA algorithms, the researchers were able to achieve a 

suitable classification rate and execution time compared 

to the separate performance of each algorithm. Using six 

ML algorithms such as KNN, RF, SVM, decision tree (DT), 

extreme gradient boosting (XGboost), and ensemble 

methods, Reddy et al. conducted research with the help 

of Sonar data to find sea mines. The Ensemble method is 

the combination of RF, XGboost, and Voting Classifier. 

Comparative results including Accuracy, Precision, Recall, 

and F1-score for all these algorithms are presented in 

this paper [17]. In this research [18], the first used 4 

classification models separately to classify Sonar data. 

Then, by combining those classifiers with LA algorithm to 

achieve the best solution and by determining the 

optimal coefficients for each classifier, they were able to 

achieve significant results compared to similar works. 

The outcomes corresponding to the analytical metrics of 

Precision, Recall, F1 Score, and Accuracy have been 

reported, with respective values of 88.6%, 90.2%, 

89.02%, and 88.6% achieved by the proposed method. 

Also, Wang et al presented a method of identifying 

active Sonar targets based on multi-domain 

transformations and precision-based fusion networks. 

The results of the experiments show that by using multi-

domain transformations, active Sonar echoes can be 

accurately detected. Improved by 10.5% compared to 

single domain methods. In addition, the identification 

performance of different fusion models such as the early 

fusion model with resnet (R-EFMD) as the backbone of 

multi-domain attention-based feature extractor (MAFE), 

early fusion model with swin transformer (T-EFMD) as 

the backbone of MAFE, late fusion model with resnet (R-

LFMD) as the backbone of single domain feature 

extractor (SFE) no attention-based feature extractor 

(AFE) module, and late fusion model with swin 

transformer (T-LFMD) as the backbone of SFE no AFE 

module has been compared [19]. Tian et al. designed a 

collaborative learning model for underwater Sonar 

recognition. In this study, a lightweight multiscale 

residual deep neural network (MSRDN) is developed 

utilizing efficient network design strategies. This 

approach results in a reduction of 64.18% in parameters 

and 79.45% in floating-point operations (FLOPs) 

compared to the original MSRDN, while maintaining 

accuracy. It decreases a little. Then, a combined model 

of wave representation and time-frequency-based 

models was presented. The results of deterministic 

experiments prove that the performance improvement 

of the proposed techniques from mutual ML has 

advantages such as favorable recognition accuracy [20]. 

Yang et al. implemented a spatial attention deep 

convolutional neural network (DCNN) for marine 

mammal call detection. This method tends to use spatial 

attention (SA) to help the DCNN achieve better detection 

performance. Time-frequency image recognition-DCNN 

(TFIR-DCNN) is designed at the beginning of this method. 

Then, SA is added to the TFIR-DCNN to help the 

TFIR_DCNN focus on the location of call features in the 

time and frequency domains. Favorable marine mammal 

contact detection test results have been reported [21]. 

Ahmed et al. investigated an underwater audio signal 

classification model with a deep learning method. A 

regular neural network is also implemented to classify 

audio as input features. Comparing the performance of 

this classifier and the general results of the presented 

models is promising [22].  

Algorithms 

In this section, we use classifier fusion to increase the 

accuracy of the classification of complex problems. In 

fact, each of these classifiers builds its own model on the 

data and stores this model. In the final classification 

step, a vote occurs among the classifiers, and the class 

receiving the highest number of votes is deemed to have 

had the greatest impact on the classification [18].  

K-Nearest Neighbor 

KNN is a classification algorithm and there are mainly 

two phases in classification. The first phase is learning, in 

which a classification is made using the training data, 

and in the second phase, the evaluation of the classifier 

is done [23], [24]. As presented in Fig. 1, the new data 

computes the distance of each of its neighbors according 

to the K value. Then, it specifies the class that contains 

the maximum number of nearest neighbors to it [25].  

After collecting KNN, we simply select most of them 

to predict the training sample class. The agents that 

affect the operation of this algorithm are K value, 

Euclidean distance, and parameter normalization. For a 

precise understanding of the algorithm's performance 

and according to the set of training data shown in (1), 

the steps are as follows. First, the training set is stored, 
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and then the Euclidean distance for each new unlabeled 

data among two points x and y in all training data points 

is calculated using (2). 

{( ( )  ( )) ( ( )  ( ))   ( ( )  ( ))} (1) 

  √∑(     )
 

 

   

 (2) 

KNNs are determined, and the maximum number of 

nearest neighbors is assigned to a class. After saving the 

training, all the parameters should be set to normal so 

that the calculations become easier. The value of K 

affects the algorithm because it can be used to create 

the boundaries of each class. The best solution is 

selected first by checking the data. Larger solutions of K 

are more accurate because they decrease the net noise, 

but this is not guaranteed. 

 
Fig. 1: KNN classifier method. 

Naïve Bayesian 

Bayes' theorem is one of the most widely used 

theorems for inferential calculations and many advanced 

ML models. Naïve Bayesian (NB) argument plays an 

impressive role in science [26]. This analysis permits us 

to respond problems for which frequent technical 

approaches were not constructed. In other words, the 

frequentist paradigm [27]. 

We assume that the dataset contains n samples xi, i = 

1...n, which include p features, i.e., xi = (xi1, xi2, …, xip). 

Every sample is assumed to belong to only one class y ϵ 

{y1, y2, …ym}. Most predictive models in ML produce 

numeric predictions for each sample xi. This distinction 

indicates the class membership of that item in class yj. If 

the dataset includes only negative and positive samples, 

y ϵ {0, 1}, then the predictive model can be handled as a 

ranker or a classifier. By mounting a threshold t on the 

ranking score, s(x), like that {s(x) ≥ t} = 1, the ranker 

becomes a crisp classifier [28]. 

This learning method involves creating a NB 

probabilistic model that assigns a posterior class 

eventuality to each sample: P(Y = yj | X = xi). The 

straightforward classifier utilizes these eventualities to 

assign a sample to a class. By applying the theorem 

introduced in (3) and simplifying the notation, we derive 

(4). 

 ( | )  
 ( | ) ( )

 ( )
 (3) 

 (  |  )  
 (  |  ) (  )

 (  )
 (4) 

Ward that the numerator in (4) is the joint probability 

of xi and yj. Consequently, the numerator can be 

expressed in this way. Let us consider that the 

individuals xi are independent of each other. This 

hypothesis implies that P(x1 | x2, x3,.…xp, yj) = P(x1 | yj), 

which we can plug into (4), and we obtain (5). 

 (  | )  
∏  (  |  ) (  )

 
   

 ( )
 (5) 

By applying the explicit classification principle, we can 

compute the counter value for each class and select the 

one with the highest value. This approach is known as 

the maximum posterior rule [29]. The computed class 

posterior probabilities serve as natural rating scores. 

Reapplying the probability theorem allows us to rewrite 

(5) and derive the general (6). 

 (  | )  
∏  (  |  ) (  )

 
   

∏  (  |  ) (  )
 
    ∏  (  |  

 ) (  
 ) 

   

 (6) 

Decision Tree 

Data mining is used to extract useful information from 

large datasets and to display it in easy-to-interpret 

visualizations. DTs are one of the most effective methods 

for data mining; they have been widely used in several 

disciplines [30]. They are user-friendly, unambiguous, 

and resilient even when faced with missing data. Both 

discrete and continuous variables can serve as either 

target variables or independent variables [31]. 

Inductive inference is the process of moving from 

concrete examples to common models. In one way, the 

object is to learn how to classify targets or situations by 

analyzing a set of instances whose classes are known. 

Samples are typically represented as feature-value 

vectors that give the numerical or nominal values of a 

fixed collection of properties. Learning input contains a 

set of such vectors, each belonging to a known class, and 

the output contains a mapping from feature values to 

classes. This mapping should accurately classify both the 

given samples and other unseen samples [32]. 

A DT is a tree-based technique where any path 

starting from the root is defined by a data-separating 

sequence until a Boolean outcome is reached at the leaf 
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node [33]-[36]. It serves as a hierarchical representation 

of knowledge relationships that includes nodes and 

connections. When relationships are used for 

classification, nodes represent objectives [37]-[39]. 

Classification algorithms are capable of handling a vast 

volume of information. It can be used to make 

assumptions regarding categorical class names, to 

classify knowledge on the basis of training sets and class 

labels, and to classify newly obtainable data. Fig. 2 

illustrates the general structure of DT. 

 

 

Fig. 2: General structure of Decision Tree [40]. 

Multi-Layer Perceptron 

ANNs are structures inspired by brain performance. 

These networks can compute model performance 

estimation and manage non-linear and linear functions 

by learning from data generalizing and their 

relationships to unsighted situations. One of the most 

main ANNs is MLP. It is a potent modeling tool that 

exerts a supervised learning method using data samples 

with certain outputs. This method creates a non-linear 

function model that makes it possible to predict the 

output data from the given input data [41]. To 

comprehend MLP, a short description of single-layer 

perceptron (SLP) and single neuron perceptron has been 

prepared. The first type is the simplest ANN and has only 

one output to which all inputs are linked, and the values 

of xi, wi and y are inputs, weighting of the neuron and 

predictive binary class respectively, which are described 

in Fig. 3 of the steps of weighting, summation and 

transfer function.  

 

Fig. 3: Perceptron steps: weighting, sum, and transfer steps. 

Also, Fig. 4 shows its simplified model and the 

transfer function is calculated in (7). 

   ( )         ∑    

 

   

 (7) 

 

Fig. 4: Perceptron models: a) steps. b) Simplified. 

x0=1, y is the output and w0 is the bias or threshold 

value. The transfer function has different forms such as 

unit step, linear, and sigmoid. Fig. 5 shows an example of 

the linear and nonlinear functions, which detaches the 

data into two classes. A Function can be represented by 

the dot product among the input and the weight vectors 

in (8). 

 

 

Fig. 5: Input patterns: a) linear. b) nonlinear. 

∑    

 

   

   (8) 

Learning Automata Algorithm 

Automatic learning is an easy model for adaptive 

decision-making in an anonymous stochastic ambiance. 

It is purported that its performance can be considered 

analogous to the learning processes exhibited by living 

organisms in similar environments. General instances of 

such positions are cases where an inexperienced person 

learns to perform the right motions or an individual who 

finds the best track from home to the office. The 

structure efforts various operations and chooses new 

operations based on the response of the environment to 

the past acts. The structure of such adaptive selection of 

operations and decisions is indicated by LA. The learning 

problem the appropriate operation is complicated by the 

verity that ambiance responses are not entirely reliable 

because they are stochastic and the corresponding 

probability distribution is anonymous [18], [42]. 

The learning method in the field of LA is as follows. 

Every time it cooperates with the environment, it 

automatically and stochastically selects an action based 

on a probability distribution. After the ambiance 

responds to a chosen action, it automatically updates its 

operation probability distribution. Then, a new operation 

is chosen according to the renovated eventuality 

distribution, and the solution of the environment is 

extracted for this act, and this method is rerun. The 
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updated algorithm for the operation probability 

distribution is called the RLA [42]. LA is more practical 

and effective in discovering the exact best solutions for 

complicated optimization issues. The dimensions (DIMs) 

of the points are equal to the number of automata used 

in the LAA. In other words, for the N-DIM problem, this 

algorithm contains N automata [43]. 

Every automata is accountable for exploring one DIM 

and operates separately in the ambiance. The i-th LA can 

be defined as the model ⟨xi, Ai, r, Pi, U⟩ where xi = {xi} 

represents the set of possible positions in the i-th DIM. 

As well as, xi is the next state in the DIM i (xi ϵ [xmin,i, 

xmax,i]), the maximum and minimum amounts in DIM i are 

xmax,i and xmin,i, respectively. In automatic learning, Ai = 

{al,η} is the set of feasible operations that the LA can 

perform in the DIM i, al,η demonstrates that an operation 

is right (l=2) or left (l=1) moves and η is the length of 

step. Note that r is a scalar value and represents a RL 

signal that is generated through the ambiance to 

demonstrate the quality of the movement xi during the 

step in the selected route. As well as, Pi includes two 

possibilities p1 and p2. p1 and p2 respectively 

demonstrate the probability of choosing the right route 

and the left route in the i-th DIM. Suppose the right 

route is chosen, and the probability of selecting one cell 

among k cells located on the route determines the 

probability p2. As well as, U is a procedure for calculating 

the eventualities of operations, P. 

In the proposed method, each DIM is divided into D 

cells. This means that xi is segmented into D subsets, 

with each subset containing all the dimensional states 

that are found within the respective cell. Thus, D×N cells 

are generated for the N-dimensional space of 

exploration where ωc,i is a cell width in the DIM i and is 

computed using (9). 

     
             

 
 (9) 

At the beginning of the operation exploration, it must 

be able to select one of two possible directions to 

appraise the selection of the best solution in the route. 

Therefore, the value of L2(xi) is determined by the 

amounts of the k adjacent cells in the right route, where 

k is a predefined integer amount and ci,j is cell j in DIM i. 

As well as, j is computed by (10) and the amount of a 

route can be evaluated by (11). 

       (
         

    

) (10) 

  (  )  (    ) ∑   
       

  

   

   

  
       

               (11) 

where     
  represent the variable of the vector m that is 

placed in the direction of l. Also,    is computed with the 

conditions        and (    )∑   
      

      
     , 

provided that the relation (    )  
      

    is 

established. The two probabilities p1 and p2 are obtained 

from (12) and (13). 

  (  (  ))  
 

  (  )
 

∑  
  (  )

  
   

                    (12) 

  (      )  
 

( (  )|         )

  

∑  
( (  )|         )

   
   

                 (13) 

where V(xi) is the cell value. The τ parameter makes a 

balance among search and utilization. With selecting a 

cell, the operation proceeds to the new cell with a step 

length that can be expressed in the act of η in (14). Thus, 

when L1 is chosen, the current dimensional state of xi 

changes to xi = xi − η and when L2 is selected, xi moves to 

xi = xi + η. 

𝜂      (   )     (     (14) 

where the distance among the former cell and the 

chosen cell ζ and ξ is a stochastic number. Next, an 

amplification signal is applied to investigate the next 

state   . Just after the dimensional state    is transferred 

to   
 , the i-th variable of the current state  (  ) is 

changed by  (  
 ). According to (15), the amplification 

signal is allocated to cell ci,j. The amplification signal is 

used to update the cell value ci,j and is obtained 

according to (16). 

 ( (  
 ))  {

      ( (  
 ))   (     )

           
 (15) 

 (  )|       
  ( (  ))     (  )|       

 

                  (    )((    )    (  )        (  ))  
(16) 

The solution is desirable when r=1 and r=0 indicates 

an unfavorable answer. Also, Lmax (xi) = max {L1 (xi), L2 

(xi)} and Lmin (xi) = min {L1 (xi), L2(xi)} are two estimated 

path values at xi. Lmax (xi) has a greater impression on the 

cell value than Lmin (xi). Thus, the parameter λ2 must be 

given in such a way that this relation (1− λ2) > λ2 is true. 

The weights α1 and (1-α1) show the impression of past 

evaluations and route values on the new evaluation, 

respectively. In equation (17), the relationship among 

Xbest and X and is shown [44]. 

      {

 (  
 )  (  

 )  

 [            
            

     

      

         
 (17) 

Fuzzy Evaluation 

The model proposed in this research employs a fuzzy 

inference system (FIS), which is an optimization method 

that receives distinct inputs and relates those inputs to 

output with some rules. The final output is obtained 

from the aggregated optimized result of the exclusive 
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rule [45]. FIS is the process of formulating the mapping 

from a given input to an output using fuzzy logic. The 

mapping then prepares a basis from which decisions can 

be made, or patterns discerned. The FIS process in the 

Fuzzy Logic Toolbox includes the sections of fuzzing input 

variables, using a fuzzy operator (AND or OR) in the 

antecedent, the concept from antecedent to result, 

aggregating the consequences into rules, and 

fuzzification, which is also shown in Fig. 6. These 

sometimes cryptic and odd names have very specific 

meaning that is defined in the following steps. 

 

Fig. 6: Fuzzy evaluation steps. 

Methodology 

To increase the classification accuracy of complex 

problems, it is possible to use a combination of 

classifications that use the same learning algorithm but 

with different complexities and parameters. Hybrid 

classifiers use the fusion of several classifiers. In fact, 

these classifiers each build their own pattern on the data 

and save this model. Eventually, for the final 

classification, a vote is held between these 

classifications, and the class that gets the most votes will 

be the class that has had the greatest impact on the 

classification. In this work, we defined coefficients to 

weight the classifiers, and in order to achieve the best 

accuracy, we implemented voting and found the optimal 

coefficients by FLAA. We proceeded with this process in 

five steps. Fig. 7 shows the overall process. 

In the first step, we created and stored Sonar data in 

six classes with specific DIMs and samples. 

In the second step, we loaded those data into the 

introduced classification training algorithm and after 

running the algorithm, we saved the precision, recall, 

F1_score, AUC, and accuracy results of each of the 

classification models related to the Sonar data. Four 

classifiers (KNN, NB, DT, and MLP) were used in this 

research. 

In the third step, the stored models and data were 

loaded into the FLAA. 

In the fourth step, we created and integrated 

functions for weighting the categories. 

In the fifth step, a fuzzy system was included in the 

algorithm to find optimal control parameters. 

In the last step, to find the best accuracy answer with 

the majority vote, we ran the FLAA to find the optimal 

coefficients of the classifiers and saved the results. 
 

 

Fig. 7: The general process of the proposed method. 

 

Data and Device 

In this work, a dataset of Sonar targets with six 

different classes and DIM of 123x129 was used. The 

sonar datasets employed in this study are derived from 

micro-Doppler signatures and data collected through 

practical experimentation within a cavitation tunnel. 

These datasets are systematically organized utilizing a 

mathematical model that characterizes the return signal 

of the target propellers.  

Also, these targets in different subclasses include 

different viewing angles and signal-to-noise ratios. The 

Specifications of the targets are demonstrated in Table 

1. 
 

Table 1: Specification of objects 

Class 

Number 
Name 

Type of 

Application 

1 logistic Military 

2 aircraft carrier Military 

3 Destroyer Military 

4 Landing ship Military 

5 Submarine Military 

6 Chinese oceanic Tug boat 

 
This program is implemented on a system with Intel® 

Core™ i7-6500U CPU (2.50-2.59) GHz processor 

specifications, 8 GB RAM, and MATLAB R2020b software. 

Results and Discussion 

In this study, we intend to investigate how selecting 

appropriate control parameters through a fuzzy system 

fuzzification of inputs 
application of fuzzy 

operator 

implication 
method 

aggregation of 
all outputs 

defuzzification 
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can improve the performance of classification 

combinations using LA. Also, to better examine the 

models' efficiency, the Accuracy, Precision, Recall, 

F1_Score, and AUC methods are reported in Tables 3 to 

5.  

The graphs of each model are also shown in Fig. 8 to 

15.  

These metrics are derived from the Confusion Matrix 

is given in Table 2. 

 
Table 2: Confusion matrix for calculating evaluation criteria 

  Predicted Class 

  Positive Negative 

A
ct

u
al

 C
la

ss
 

Po
si

ti
ve

 

True Positives 

(TP) 

False 

Negatives 

(FN) 

N
eg

ati
ve

 

False 

Positives (FP) 

True 

Negatives 

(TN) 

 

True Positive gives the count of predictions that 

belong to positive classes and are correctly identified. 

True negative gives the count of predictions that belong 

to the negative class and correctly classified as negative. 

False Positive gives the counts which are predicted are 

true but actually not true and vice versa for False 

Negative.  

In (18), Precision represents the probability that the 

predicted category is consistent with the actual category. 

Recall represents the probability that the actual category 

is consistent with the predicted category in (19). Also, 

(20) represents the probability that Accuracy can predict 

the actual category. And the criterion F1-Score 

represents the harmonic results between Precision and 

Recall in (21). 

           
  

     
 (18) 

        
  

     
 (19) 

          
     

           
 (20) 

          
                  

                
 (21) 

Initial Classification 

In the first model, the data was trained by a KNN 

classifier with a nearest neighbor rate of 5. The results 

obtained from this run are listed in Table 3. Fig. 8 and 

Fig. 9 show the performance of Model 1 on Sonar data 

with confusion matrix and ROC plots for 6 different 

classes. 

 

 
Fig. 8: Confusion matrix chart for KNN - 1st Model. 

 
Fig. 9: ROC chart for KNN - 1st Model. 

In the second model, the data was trained by an NB 

classifier. The results obtained from this run are listed in 

Table 4. Fig. 10 and Fig. 11 show the performance of 

Model 2 on Sonar data with a confusion matrix and ROC 

plots for 6 different classes. 
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Table 3: KNN model performance results 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 94.73 100 97.29 0.99 

62.60 

2 48.14 59.09 53.06 0.84 

3 50 59.09 54.16 0.87 

4 54.28 90.47 67.85 0.93 

5 75 27.27 40 0.88 

6 100 44.44 61.53 0.97 

  
Table 4: NB model performance results 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 78.26 100 87.80 0.98 

66.66 

2 54.54 27.27 36.36 0.83 

3 45.71 72.72 56.14 0.88 

4 64.28 85.71 73.46 0.95 

5 91.66 50 64.70 0.89 

6 92.85 72.22 81.25 0.98 

 
Table 5: DT model performance results 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 100 100 100 1 

88.61 

2 76.92 90.90 83.33 0.98 

3 82.60 86.36 84.44 0.98 

4 94.73 85.70 90 0.99 

5 86.95 90.90 88.88 0.98 

6 100 77.77 87.5 0.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Confusion matrix chart for NB - 2nd Model. 

 

 
Fig. 11: ROC chart for NB - 2nd Model. 
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In the third model, the data was trained by a DT 

classifier. The results obtained from this run are listed in 

Table 5. Fig. 12 and Fig. 13 show the performance of 

Model 3 on Sonar data with confusion matrix and ROC 

plots for 6 different classes. 

 

 

 

 

 
Fig. 12: Confusion matrix chart for DT - 3rd Model. 

 
Fig. 13: ROC chart for DT - 3rd Model. 

 

In the fourth model, the data was trained by an MLP 

classifier.  

The results obtained from this run are listed in Table 

6. Fig. 14 and Fig. 15 show the performance of Model 4 

on Sonar data with confusion matrix and ROC plots for 6 

different classes. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 14: Confusion matrix chart for MLP - 4th Model. 

 
Fig. 15: ROC chart for MLP - 4th Model. 

Fuzzy System Specifications 

According to the explanations provided in the 

previous section, Fig. 16 presents a general diagram of 

the fuzzy system used in the LA algorithm, where the 

parameters (Nfe(max) and BestNfe) constitute the inputs 

and the parameters K and D constitute the outputs of 

this system.  

Also, Table 7 shows the rules used in this system and 

the specifications of the parameters. 
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Table 6: MLP model performance results 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 94.73 100 97.29 0.99 

72.35 

2 75 68.18 71.42 0.81 

3 62.96 77.27 69.38 0.83 

4 61.76 100 76.36 0.93 

5 75 27.27 40 0.62 

6 80 66.66 72.72 0.81 

 
Table 7: FLAA rules specifications 

Number 

If 

BestNfe 

And 

Nfe(max) 

Then 

K 

And 

D 

1 Good Primary Low Low 

2 Good Middle Low Low 

3 Good Final Low Low 

4 Bad Primary Low High 

5 Bad Middle High Low 

6 Bad Final High High 

 

 

 

Fig. 16: general diagram of the fuzzy system. 

The three-dimensional phase diagram of K, Nfe(max) 

and BestNfe is shown in Fig. 17 and the three-

dimensional phase diagram of D, Nfe(max) and BestNfe 

is shown in Fig. 18. 

 

Fig. 17: The 3D phase diagram of K, Nfe(max) and BestNfe. 

 

 

Fig. 18: The 3D phase diagram of D, Nfe(max) and BestNfe. 

Fusion Operation 

As described in the work process in the previous 

sections. The stored models of each class are weighted 

using the FLAA and weighted summation functions in the 

defined range. To achieve the best accuracy and decision 

by obtaining the best solutions for the classifications and 

fusion it by the FLAA. Due to the fact that in this process 

the effective parameters in the FLAA are very effective. 

The results of Accuracy, Precision, Recall, F1_Score, and 

AUC are reported for the K, D, and Nfe(max) fuzzy 

parameters. 

Also, for better comparison, the fusion operation has 

been performed with a conventional LA algorithm, the 

performance results of which are reported in Table 8. 

The complexity matrix and ROC plots of this 

performance for the values of K = 200, D = 200, and 

Nfe(max) = 15 are shown in Fig. 19 and Fig. 20. 
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Table 8: LA performance results for selected weights [w1:2, w2:2, w3:4, w4:3] 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 100 94.73 97.29 0.97 

85.36 

2 90.90 83.33 86.95 0.90 

3 95.45 80.76 87.50 0.89 

4 95.23 71.42 81.63 0.85 

5 59.09 100 74.28 0.95 

6 72.22 100 83.87 0.97 

 

 
Fig. 19: Confusion matrix chart in LA. 

 
Fig. 20: ROC chart in LA. 

In Table 9, the results are reported by changing the 

values of weighted of classifiers parameters. Also, the 

performance of Sonar DF by the FLAA is shown in Fig. 21 

and Fig. 22. 

 
Fig. 21: Confusion matrix chart in FLAA. 

 
Fig. 22: ROC chart in FLAA. 
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Table 9: FLAA performance results for selected weights [w1:1, w2:3, w3:5, w4:5] 

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%) 

1 100 100 100 1 

88.61 

2 90.90 76.92 83.33 0.87 

3 86.36 82.60 84.44 0.89 

4 85.71 94.73 90 0.95 

5 90.90 86.95 88.88 0.92 

6 77.77 100 87.50 0.98 

 
Table 10: Performance comparison of conventional and fused classification models 

No. Model Precision (%) Recall (%) F1_Score (%) Accuracy (%) 

1 SVM 71.4 70 70 83.9 

2 RF 70 77.78 73.68 76.19 

3 DT 90 75 81.81 80.95 

4 XGboost 80 80 80 80.95 

5 Ensemble Method 60 75 66.67 71.45 

6 R-EFMD 79.27 76.5 77.86 78.25 

7 T-EFMD 79.51 81.5 80.49 80.25 

8 R-LFMD 78.82 80 79.4 79.25 

9 T-LFMD 83.17 86.5 84.8 84.5 

10 ANN 63.71 64.58 64.14 65.57 

11 CNN 78.47 79.39 78.92 65.57 

12 TFIR-DCNN+SA 73.55 66.14 69.65 66.14 

13 Joint 79.5 80.12 79.49 79.8 

14 FLAA (proposed) 88.6 90.2 89.02 88.6 

Table 11: Comparison of the performance of the combined models with LAA and FLAA. 

No. Model Precision (%) Recall (%) F1_Score (%) Accuracy (%) 

1 LAA 85.48 88.37 85.25 85.36 

2 FLAA (proposed) 88.6 90.2 89.02 88.6 
 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 23: Functional comparison of Precision, Recall, F1_Score, and Accuracy parameters. 
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Table 10 shows the important parameters and 

computational requirements of introduced models such 

as SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-

EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and 

joint. The results of these models have been compared 

with the proposed model. Considering that the 

objectives and databases are different, we benchmarked 

the average detection rate. In this comparison, Precision, 

Recall, F1_Score, and Accuracy parameters have been 

considered and investigated to show the superior 

performance of the proposed method compared to 

other procedures. Table 11 highlights that the most 

significant finding is the superior performance of the 

FLAA method relative to the prior approach that did not 

incorporate fuzzy control. This enhancement in 

performance provides strong evidence for the efficacy of 

employing an intelligent system. Notably, even though 

the complexity of the problem was increased by 

expanding the number of classes, the proposed method 

consistently outperformed all alternative methods. Also, 

in Fig. 23, the graph of this comparison is illustrated to 

show the results of each of the models side by side, and 

the optimal performance of the DF method with the 

other algorithms is quite evident. 

Conclusion 

This study addresses the challenge of integrating 

classification results derived from FLAA and Sonar 

datasets. The Sonar dataset, comprising six distinct 

target categories characterized by varying capabilities 

and specifications, was analyzed utilizing the FLAA 

approach. The detection of targets in marine 

environments is complicated by sound wave 

interference and ambient noise, which pose significant 

obstacles. Traditionally, classification of such data has 

been performed manually, a process prone to a high 

likelihood of target misidentification. The application 

and combination of machine learning techniques offer 

the potential to enhance target detection accuracy. In 

this research, four classification models were initially 

applied independently to the Sonar data. Subsequently, 

these classifiers were integrated using the LAA to 

optimize performance by determining the optimal 

weighting coefficients for each classifier. This combined 

approach yielded results that surpass those reported in 

comparable studies. Performance metrics including 

Precision, Recall, F1_Score, and Accuracy were evaluated 

and compared against recent literature, with the 

proposed method achieving values of 88.6%, 88.53%, 

90.2%, and 88.6%, respectively. Furthermore, the study 

demonstrates the superior efficacy of the proposed 

method relative to the conventional LA-based Sonar DF 

approach. 

The main advantage of this work was to provide a soft 

computing method for dealing with sonar data. In this 

method, unlike LAA, the parameters are not controlled 

manually but are controlled intelligently using a fuzzy 

controller. This innovation prevents LAA from getting 

stuck in local solutions in the search space. In this way, 

we were able to improve the performance in terms of 

both speed and accuracy. Furthermore, numerous 

parameters within the LAA exhibit stochastic variability 

and lack adaptive intelligence. To address this, we 

enhanced these parameters by integrating fuzzy 

systems, thereby facilitating more rapid and improved 

convergence. 

Some limitations can be mentioned. The proper 

setting of FLAA rules is the proper selection of basic 

classifiers and the existence of appropriate databases for 

training basic classifiers. In the future, it is possible to 

perform tasks such as optimizing LA control parameters 

using meta-heuristic methods for better convergence, 

using intelligent methods for optimal parameter 

selection, and using the proposed method in dealing 

with incomplete and missing databases. This also adds 

some complexity to our system.  

Previously, it was just an LAA, but now a fuzzy system 

has been added to it, and we may have to pay more for 

implementation.  

We recommend that, despite the implementation of a 

fuzzy system in this study, certain components of the 

system—specifically the membership functions and the 

rule base—may not have been optimized. Future work 

should focus on refining these elements to enhance 

system performance. 
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Abbreviations  

SONAR Sound and Range Navigation 

DF Data Fusion 

RLA Reinforcement Learning Algorithm 

CNN Convolutional Neural Network 

AI Artificial Intelligence 

ML Machine Learning 

SVM Support Vector Machine 

KNN K-Nearest Neighbor 

RF Random Forest 

DT Decision Tree 

XGboost Extreme Gradient Boosting 

R-EFMD Early Fusion Model with Resnet 

T-EFMD Early Fusion Model with Swin 
Transformer 

R-LFMD Late Fusion Model with Resnet 

T-LFMD Late Fusion Model with Swin 
Transformer 

SA Spatial Attention 

TFIR Time Frequency Image Recognition 

DCNN Deep CNN 

SLP Single-Layer Perceptron 

MLP Multi-Layer Perceptron 

NB Naïve Bayesian 

LA Learning Automata 

DIM Dimension 

LAA Learning Automata Algorithm 

FLAA Fuzzy Learning Automata Algorithm 

FIS Fuzzy Inference System 

AUC Area Under the ROC Curve 

CM Confusion Matrix 

ROC Receiver Operating Characteristic 
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