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Background and Objectives: Sonar data processing helps in identifying and
tracking targets with unstable echoes, which conventional tracking methods
often misidentify. Recently, RLA has significantly improved the accuracy of
undersea target detection compared to traditional sonar object recognition
techniques that tend to lack robustness and precision.

Methods: This research utilizes a combination of classifiers to improve the
accuracy of Sonar data classification for complex tasks like identifying marine
targets. Each classifier creates its own data pattern and maintains a model.
Ultimately, a weighted voting process is carried out by the fuzzy learning
automata algorithm among these classifiers, with the one receiving the highest
votes being the most impactful on performance improvement.

Results: We compared the performance of SVM, RF, DT, XGBoost, ensemble
methods, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and
joint models against the proposed model. Given the differences in objectives and
databases, we focused on benchmarking the average detection rate. This
comparison examined key parameters including, Precision, Recall, F1_Score, and
Accuracy, to highlight the superior performance of the proposed method
compared to the others.

Conclusion: The results obtained with the analytical parameters Precision, Recall,
F1_Score, and Accuracy have been examined and compared with the latest
similar research and the values of 88.6%, 90.2%, 89.02% and 88.6% have been
obtained for each of these parameters in the proposed method, respectively.
Also, in this research, the impressive performance of the new method compared
to the Sonar data fusion by the conventional learning automata method is
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Introduction

The classification and recognition of underwater objects
is a crucial area of research in modern underwater
acoustics. As advancements in noise reduction
technology continue, underwater targets have become
increasingly quiet, posing challenges for passive Sonar
detection and recognition [1]. The classification of sonar
data constitutes a significant challenge owing to the
complexities inherent in the underwater environment.
Contributing factors such as sound scattering, ambient
noise, and frequency-dependent absorption further
exacerbate the difficulties encountered in this domain
[2]. The identification of surface and underwater sources
through machine learning (ML) involves the classification
of input features. Unlike a human sonar operator, who is
limited to observing a single direction at any given
moment, an automated ML system can concurrently
process data from multiple directions. Building upon the
demonstrated success of ML techniques in enhancing
performance through the utilization of engineered
features, this study introduces an innovative
methodology based on learning automata (LA) [3], [4].

Given the limitations outlined above and the
inimitable benefits of artificial intelligence (Al) methods
for addressing recognition challenges in complex and
blurred ambiances, various researchers have begun
employing learning-based techniques to classify
underwater sound. Moreover, the effectiveness of Al-
based methods in similar domains, like acoustic scene
classification [5], [6], acoustic event detection [7], and
speaker identification [8], [9]. Considering the latest
trends in underwater Sonar classification, we limit the
scope of our study to learning-based procedures.
Classical ML models perform well with small datasets but
may not achieve satisfactory accuracy with large
datasets that have diversified feature spaces. Given the
success of reinforcement learning (RL) procedures in
various fields, multiple studies have adopted and
proposed RL-based approaches for classifying
underwater sounds [3], [10]. However, many researchers
have enhanced and proposed various reinforcement
learning algorithms (RLAs) for Sonar objective
classification and cognition [11]. In supervised ML, a
dataset is given to the learning algorithm along with
labels that indicate the correct output for the given data.
Algorithms such as k-nearest neighbor (KNN), support
vector machine (SVM), random forests (RF), and artificial
neural networks (ANN) are examples of this learning.

In this work, the data fusion (DF) problem in Sonar
data classification is considered due to its importance in
various applications such as navigation and marine
surveillance. However, we must mention that the
mechanism of fuzzy learning automata algorithm (FLAA)
has not been used in this field yet. We intended to check

whether using mechanisms related to FLAA can be
effective and efficient in DF at the decision level.
However, data integration at the level of data, decision,
and feature has been used in the problem of Sonar data
classification. But until now, the use of an ML method
such as FLAA to increase the ability to classify targets has
been neglected. In this article, we measured the
remarkable performance of the proposed method for 6
different objectives with Precision, Recall, F1_Score,
AUC, and Accuracy indicators. Noise and acoustic
interferences make the act of identification difficult in
the vast and diverse oceanic and marine environments.
In most marine devices, target detection is done by
human operators, and with the development of this
method in detecting various targets, the speed and
accuracy of identification can be increased, and human
errors can be reduced in these cases.

Due to the numerous parameters in the learning
automata algorithm (LAA), all of which impact
performance, finding the optimal set of values is a
challenging task. We spent a significant amount of time
refining these parameters to achieve the best results.
Our previous research required extensive adjustments to
various LAA parameters to achieve the desired
performance. This experience led us to consider isolating
the more effective parameters and identifying which
ones have the greatest impact on LAA. We also explored
using a smart tool to automatically adjust these
parameters when necessary, allowing us to leverage
LAA's full capabilities and obtain answers more quickly,
accurately, and efficiently.

Therefore, we considered controlling these key
parameters with a fuzzy controller and providing a soft
computing tool that combines the capabilities of fuzzy
systems and LA systems. In fact, the algorithm we
introduced in this paper benefits from both systems'
features, whereas previous research only used
traditional LAA. This creates a pathway for LAA to be
applied as a soft computing approach in many areas.

In the following article, we will examine, in order of
related research, a number of machine learning
algorithms used, the learning automata algorithm, fuzzy
evaluation, the method, data, and device used, and the
results obtained.

Related Work

In many research studies, Environment-based
performance is emphasized to obtain the most expected
benefits in reinforcement learning (RL), which is one of
the main branches in the field of ML [12]. Valdenegro-
Toro et al. used a convolutional neural network (CNN) to
detect the object of an undersea Sonar image, and after
training the network, the average detection rate in test
sets reached 90% [13]. A Sonar objective cognition
procedure based on a shallow CNN has fault cognition
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and insufficient model strength. Ferguson et al.
proposed the use of a deep CNN to detect the sound of
an undersea ship in a shallow water ambiance. In this
article, a data augmentation technique is introduced,
and the criterion for comparing data integration
performance at the feature level is the precision
parameter [14]. Huo et al. proposed a classification
method for Sonar target detection based on semi-
synthetic data training and transfer learning for small
sample Sonar datasets. Experiments indicate that
transfer training and semi-synthetic training can help
increase model cognition accuracy [15].

In reference [16], a hybrid dragonfly algorithm is
proposed to train a multi-layer perceptron (MLP) neural
network to design a classifier in solving complex issues
and to distinguish true targets from fake objectives in
Sonar applications. In this paper, by combining DA and
ChoA algorithms, the researchers were able to achieve a
suitable classification rate and execution time compared
to the separate performance of each algorithm. Using six
ML algorithms such as KNN, RF, SVM, decision tree (DT),
extreme gradient boosting (XGboost), and ensemble
methods, Reddy et al. conducted research with the help
of Sonar data to find sea mines. The Ensemble method is
the combination of RF, XGboost, and Voting Classifier.
Comparative results including Accuracy, Precision, Recall,
and Fl-score for all these algorithms are presented in
this paper [17]. In this research [18], the first used 4
classification models separately to classify Sonar data.
Then, by combining those classifiers with LA algorithm to
achieve the best solution and by determining the
optimal coefficients for each classifier, they were able to
achieve significant results compared to similar works.
The outcomes corresponding to the analytical metrics of
Precision, Recall, F1 Score, and Accuracy have been
reported, with respective values of 88.6%, 90.2%,
89.02%, and 88.6% achieved by the proposed method.
Also, Wang et al presented a method of identifying
active Sonar targets based on multi-domain
transformations and precision-based fusion networks.
The results of the experiments show that by using multi-
domain transformations, active Sonar echoes can be
accurately detected. Improved by 10.5% compared to
single domain methods. In addition, the identification
performance of different fusion models such as the early
fusion model with resnet (R-EFMD) as the backbone of
multi-domain attention-based feature extractor (MAFE),
early fusion model with swin transformer (T-EFMD) as
the backbone of MAFE, late fusion model with resnet (R-
LFMD) as the backbone of single domain feature
extractor (SFE) no attention-based feature extractor
(AFE) module, and late fusion model with swin
transformer (T-LFMD) as the backbone of SFE no AFE
module has been compared [19]. Tian et al. designed a

collaborative learning model for underwater Sonar
recognition. In this study, a lightweight multiscale
residual deep neural network (MSRDN) is developed
utilizing efficient network design strategies. This
approach results in a reduction of 64.18% in parameters
and 79.45% in floating-point operations (FLOPs)
compared to the original MSRDN, while maintaining
accuracy. It decreases a little. Then, a combined model
of wave representation and time-frequency-based
models was presented. The results of deterministic
experiments prove that the performance improvement
of the proposed techniques from mutual ML has
advantages such as favorable recognition accuracy [20].

Yang et al. implemented a spatial attention deep
convolutional neural network (DCNN) for marine
mammal call detection. This method tends to use spatial
attention (SA) to help the DCNN achieve better detection
performance. Time-frequency image recognition-DCNN
(TFIR-DCNN) is designed at the beginning of this method.
Then, SA is added to the TFIR-DCNN to help the
TFIR_DCNN focus on the location of call features in the
time and frequency domains. Favorable marine mammal
contact detection test results have been reported [21].
Ahmed et al. investigated an underwater audio signal
classification model with a deep learning method. A
regular neural network is also implemented to classify
audio as input features. Comparing the performance of
this classifier and the general results of the presented
models is promising [22].

Algorithms

In this section, we use classifier fusion to increase the
accuracy of the classification of complex problems. In
fact, each of these classifiers builds its own model on the
data and stores this model. In the final classification
step, a vote occurs among the classifiers, and the class
receiving the highest number of votes is deemed to have
had the greatest impact on the classification [18].

K-Nearest Neighbor

KNN is a classification algorithm and there are mainly
two phases in classification. The first phase is learning, in
which a classification is made using the training data,
and in the second phase, the evaluation of the classifier
is done [23], [24]. As presented in Fig. 1, the new data
computes the distance of each of its neighbors according
to the K value. Then, it specifies the class that contains
the maximum number of nearest neighbors to it [25].

After collecting KNN, we simply select most of them
to predict the training sample class. The agents that
affect the operation of this algorithm are K value,
Euclidean distance, and parameter normalization. For a
precise understanding of the algorithm's performance
and according to the set of training data shown in (1),
the steps are as follows. First, the training set is stored,
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and then the Euclidean distance for each new unlabeled
data among two points x and y in all training data points
is calculated using (2).

{(x(D,y(D), (x(2),(2)), .., (x(m), y(m)) } (1)

(2)

KNNs are determined, and the maximum number of
nearest neighbors is assigned to a class. After saving the
training, all the parameters should be set to normal so
that the calculations become easier. The value of K
affects the algorithm because it can be used to create
the boundaries of each class. The best solution is
selected first by checking the data. Larger solutions of K
are more accurate because they decrease the net noise,
but this is not guaranteed.

Class A

Class B .

Fig. 1: KNN classifier method.

Naive Bayesian

Bayes' theorem is one of the most widely used
theorems for inferential calculations and many advanced
ML models. Naive Bayesian (NB) argument plays an
impressive role in science [26]. This analysis permits us
to respond problems for which frequent technical
approaches were not constructed. In other words, the
frequentist paradigm [27].

We assume that the dataset contains n samples x;, i =
1...n, which include p features, i.e., X = (Xiy, Xizy .., Xip).
Every sample is assumed to belong to only one class y €
Vi, Y2 ..Ym}. Most predictive models in ML produce
numeric predictions for each sample x;. This distinction
indicates the class membership of that item in class y;. If
the dataset includes only negative and positive samples,
y € {0, 1}, then the predictive model can be handled as a
ranker or a classifier. By mounting a threshold t on the
ranking score, s(x), like that {s(x) > t} = 1, the ranker
becomes a crisp classifier [28].

This learning method involves creating a NB

probabilistic model that assigns a posterior class
eventuality to each sample: P(Y = y; | X = x)). The
straightforward classifier utilizes these eventualities to
assign a sample to a class. By applying the theorem
introduced in (3) and simplifying the notation, we derive

(4).

pajp) = FEIAPEA I'Jg “) G
P(yylx;) = 200 (x"lljy(’gg(y" ) (@)

Ward that the numerator in (4) is the joint probability
of x; and y;. Consequently, the numerator can be
expressed in this way. Let us consider that the
individuals x; are independent of each other. This
hypothesis implies that P(x; [ X3 X3,...X, ¥;) = P(x1 | y)),
which we can plug into (4), and we obtain (5).

[Tz PO 1) PO
P(x)

P(yjlx) = ()

By applying the explicit classification principle, we can
compute the counter value for each class and select the
one with the highest value. This approach is known as
the maximum posterior rule [29]. The computed class
posterior probabilities serve as natural rating scores.
Reapplying the probability theorem allows us to rewrite
(5) and derive the general (6).

[Te—s P(xiey,)P )
k1 POk |y )POr) + =y P(xiclyf ) POY)

P(y;|x) = (6)

Decision Tree

Data mining is used to extract useful information from
large datasets and to display it in easy-to-interpret
visualizations. DTs are one of the most effective methods
for data mining; they have been widely used in several
disciplines [30]. They are user-friendly, unambiguous,
and resilient even when faced with missing data. Both
discrete and continuous variables can serve as either
target variables or independent variables [31].

Inductive inference is the process of moving from
concrete examples to common models. In one way, the
object is to learn how to classify targets or situations by
analyzing a set of instances whose classes are known.
Samples are typically represented as feature-value
vectors that give the numerical or nominal values of a
fixed collection of properties. Learning input contains a
set of such vectors, each belonging to a known class, and
the output contains a mapping from feature values to
classes. This mapping should accurately classify both the
given samples and other unseen samples [32].

A DT is a tree-based technique where any path
starting from the root is defined by a data-separating
sequence until a Boolean outcome is reached at the leaf
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node [33]-[36]. It serves as a hierarchical representation
of knowledge relationships that includes nodes and
connections. When relationships are used for
classification, nodes represent objectives [37]-[39].
Classification algorithms are capable of handling a vast
volume of information. It can be used to make
assumptions regarding categorical class names, to
classify knowledge on the basis of training sets and class
labels, and to classify newly obtainable data. Fig. 2
illustrates the general structure of DT.

........... | — ]

Decision Node ~ Sub-
Tree

Decision Node

4

Leaf Node

Leaf Node Decision Node Leaf Node
Leaf Node Leaf Node

Fig. 2: General structure of Decision Tree [40].

Multi-Layer Perceptron

ANNs are structures inspired by brain performance.
These networks can compute model performance
estimation and manage non-linear and linear functions
by learning from data generalizing and their
relationships to unsighted situations. One of the most
main ANNs is MLP. It is a potent modeling tool that
exerts a supervised learning method using data samples
with certain outputs. This method creates a non-linear
function model that makes it possible to predict the
output data from the given input data [41]. To
comprehend MLP, a short description of single-layer
perceptron (SLP) and single neuron perceptron has been
prepared. The first type is the simplest ANN and has only
one output to which all inputs are linked, and the values
of x;, w; and y are inputs, weighting of the neuron and
predictive binary class respectively, which are described
in Fig. 3 of the steps of weighting, summation and

transfer function.
Wi
Xi I;f Z f

Fig. 3: Perceptron steps: weighting, sum, and transfer steps.

Also, Fig. 4 shows its simplified model and the
transfer function is calculated in (7).

y=f(z)and z= WiX; (7)
2

(ay Wi (b)
X1 N

XI_.@K Wi
oIy [ (O
Xn —
Wﬂ'

Fig. 4: Perceptron models: a) steps. b) Simplified.

Xo=1, y is the output and wy is the bias or threshold
value. The transfer function has different forms such as
unit step, linear, and sigmoid. Fig. 5 shows an example of
the linear and nonlinear functions, which detaches the
data into two classes. A Function can be represented by
the dot product among the input and the weight vectors
in (8).

(a) (b)
X2 wxs>o0 2 .
L - = .) L] "

" .\\\\\\\ | ° S P -
WX<0e ‘ T X'

+ X1

Fig. 5: Input patterns: a) linear. b) nonlinear.

n
Z WiX; = 0 (8)
i=0

Learning Automata Algorithm

Automatic learning is an easy model for adaptive
decision-making in an anonymous stochastic ambiance.
It is purported that its performance can be considered
analogous to the learning processes exhibited by living
organisms in similar environments. General instances of
such positions are cases where an inexperienced person
learns to perform the right motions or an individual who
finds the best track from home to the office. The
structure efforts various operations and chooses new
operations based on the response of the environment to
the past acts. The structure of such adaptive selection of
operations and decisions is indicated by LA. The learning
problem the appropriate operation is complicated by the
verity that ambiance responses are not entirely reliable
because they are stochastic and the corresponding
probability distribution is anonymous [18], [42].

The learning method in the field of LA is as follows.
Every time it cooperates with the environment, it
automatically and stochastically selects an action based
on a probability distribution. After the ambiance
responds to a chosen action, it automatically updates its
operation probability distribution. Then, a new operation
is chosen according to the renovated eventuality
distribution, and the solution of the environment is
extracted for this act, and this method is rerun. The
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updated algorithm for the operation probability
distribution is called the RLA [42]. LA is more practical
and effective in discovering the exact best solutions for
complicated optimization issues. The dimensions (DIMs)
of the points are equal to the number of automata used
in the LAA. In other words, for the N-DIM problem, this
algorithm contains N automata [43].

Every automata is accountable for exploring one DIM
and operates separately in the ambiance. The i-th LA can
be defined as the model (x; A, r, P, U) where x; = {x;}
represents the set of possible positions in the i-th DIM.
As well as, x; is the next state in the DIM i (X; € [Xmin,
Xmax,il), the maximum and minimum amounts in DIM j are
Xmax,i and Xmin;, respectively. In automatic learning, A; =
{a,,} is the set of feasible operations that the LA can
perform in the DIM j, a,,, demonstrates that an operation
is right (/=2) or left (I=1) moves and n is the length of
step. Note that r is a scalar value and represents a RL
signal that is generated through the ambiance to
demonstrate the quality of the movement x; during the
step in the selected route. As well as, Pi includes two
possibilities p; and p,. p; and p, respectively
demonstrate the probability of choosing the right route
and the left route in the i-th DIM. Suppose the right
route is chosen, and the probability of selecting one cell
among k cells located on the route determines the
probability p,. As well as, U is a procedure for calculating
the eventualities of operations, P.

In the proposed method, each DIM is divided into D
cells. This means that x; is segmented into D subsets,
with each subset containing all the dimensional states
that are found within the respective cell. Thus, DxN cells
are generated for the N-dimensional space of
exploration where w,; is a cell width in the DIM i and is
computed using (9).

W = Xmax,i — Xmin,i
W=

At the beginning of the operation exploration, it must
be able to select one of two possible directions to
appraise the selection of the best solution in the route.
Therefore, the value of L,(x;) is determined by the
amounts of the k adjacent cells in the right route, where
k is a predefined integer amount and c;; is cell j in DIM i.
As well as, j is computed by (10) and the amount of a
route can be evaluated by (11).

(9)

Xi — xmin,i) (10)
wc,i

k-1
LG) = (1 =2 ) A7 0] + 27
m=1

j= floor(
=12 (11)

where v}, represent the variable of the vector m that is
placed in the direction of /. Also, 1, is computed with the
conditions 0 <4, <1and (1 -4 T LAt + A1 =1,

provided that the relation (1—-2A)A2 =281 s
established. The two probabilities p; and p, are obtained
from (12) and (13).

Ly(xi)
e T
p(L(x)) =—— l=12 (12)
e T
W(x|xieci,jvs)
e 27
pa(cijss) = Goohe s L= L2 s =1k (13)
7=1 e 27

where V(x;) is the cell value. The t parameter makes a
balance among search and utilization. With selecting a
cell, the operation proceeds to the new cell with a step
length that can be expressed in the act of nin (14). Thus,
when L; is chosen, the current dimensional state of x;
changes to x; = x; — n and when L, is selected, x; moves to
X;=X;+ 1.

n=w.,+7; € 01] (14)

where the distance among the former cell and the
chosen cell ¢ and € is a stochastic number. Next, an
amplification signal is applied to investigate the next
state x;. Just after the dimensional state x; is transferred
to x;, the i-th variable of the current state X(x;) is
changed by X(x;). According to (15), the amplification
signal is allocated to cell ¢;;. The amplification signal is
used to update the cell value c;; and is obtained
according to (16).

Wy - (L i F(X(x{)) < F(Xpest)
r(X(xi)) - {O, otherwise ’ (15)

V(xi)|xieci,j < r(X(xl)) + alV(xi)lxiECivj +
+(1 - al)((l - AZ)Lmax(xi) + Aszin(xi))

The solution is desirable when r=1 and r=0 indicates
an unfavorable answer. Also, L. (x) = max {L; (x), L,
(x;)} and L, (x;)) = min {L; (x)), Ly(x;)} are two estimated
path values at x;. L. (X)) has a greater impression on the
cell value than L, (x;)). Thus, the parameter A, must be
given in such a way that this relation (1- A;) > A, is true.
The weights a; and (1-a;) show the impression of past
evaluations and route values on the new evaluation,
respectively. In equation (17), the relationship among
Xpes: and X and is shown [44].

(16)

XED, X () = P
Xpest < (i, ) Xim1, X, Xig 1, s Xn] iy . (17)
Xpest otherwise

Fuzzy Evaluation

The model proposed in this research employs a fuzzy
inference system (FIS), which is an optimization method
that receives distinct inputs and relates those inputs to
output with some rules. The final output is obtained
from the aggregated optimized result of the exclusive
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rule [45]. FIS is the process of formulating the mapping
from a given input to an output using fuzzy logic. The
mapping then prepares a basis from which decisions can
be made, or patterns discerned. The FIS process in the
Fuzzy Logic Toolbox includes the sections of fuzzing input
variables, using a fuzzy operator (AND or OR) in the
antecedent, the concept from antecedent to result,
aggregating the consequences into rules, and
fuzzification, which is also shown in Fig. 6. These
sometimes cryptic and odd names have very specific
meaning that is defined in the following steps.

application of fuzzy
operator

fuzzification of inputs

implication
method

aggregation of

defuzzification
all outputs

Fig. 6: Fuzzy evaluation steps.

Methodology

To increase the classification accuracy of complex
problems, it is possible to use a combination of
classifications that use the same learning algorithm but
with different complexities and parameters. Hybrid
classifiers use the fusion of several classifiers. In fact,
these classifiers each build their own pattern on the data
and save this model. Eventually, for the final
classification, a vote is held between these
classifications, and the class that gets the most votes will
be the class that has had the greatest impact on the
classification. In this work, we defined coefficients to
weight the classifiers, and in order to achieve the best
accuracy, we implemented voting and found the optimal
coefficients by FLAA. We proceeded with this process in
five steps. Fig. 7 shows the overall process.

In the first step, we created and stored Sonar data in
six classes with specific DIMs and samples.

In the second step, we loaded those data into the
introduced classification training algorithm and after
running the algorithm, we saved the precision, recall,
F1_score, AUC, and accuracy results of each of the
classification models related to the Sonar data. Four
classifiers (KNN, NB, DT, and MLP) were used in this
research.

In the third step, the stored models and data were
loaded into the FLAA.

In the fourth step, we created and integrated
functions for weighting the categories.

In the fifth step, a fuzzy system was included in the
algorithm to find optimal control parameters.

In the last step, to find the best accuracy answer with
the majority vote, we ran the FLAA to find the optimal

coefficients of the classifiers and saved the results.

—{ Sonar Data }7

K-Nearest Naive Decision LMa:::rl
Neighbor Bayesian Tree Perceptron
Model #1 Model #2 Model #3 Model #4

—

Fuzzy Learning
Automata Algorithm

l

Best Solution

Fig. 7: The general process of the proposed method.

Data and Device

In this work, a dataset of Sonar targets with six
different classes and DIM of 123x129 was used. The
sonar datasets employed in this study are derived from
micro-Doppler signatures and data collected through
practical experimentation within a cavitation tunnel.
These datasets are systematically organized utilizing a
mathematical model that characterizes the return signal
of the target propellers.

Also, these targets in different subclasses include
different viewing angles and signal-to-noise ratios. The
Specifications of the targets are demonstrated in Table
1.

Table 1: Specification of objects

NE::;Ser Name A::Iri):a:itm
1 logistic Military
2 aircraft carrier Military
3 Destroyer Military
4 Landing ship Military
5 Submarine Military
6 Chinese oceanic Tug boat

This program is implemented on a system with Intel®
Core™ i7-6500U CPU (2.50-2.59) GHz processor
specifications, 8 GB RAM, and MATLAB R2020b software.

Results and Discussion

In this study, we intend to investigate how selecting
appropriate control parameters through a fuzzy system
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can improve the performance of classification
combinations using LA. Also, to better examine the
models' efficiency, the Accuracy, Precision, Recall,
F1_Score, and AUC methods are reported in Tables 3 to
5.

The graphs of each model are also shown in Fig. 8 to
15.

These metrics are derived from the Confusion Matrix
is given in Table 2.

Table 2: Confusion matrix for calculating evaluation criteria

Predicted Class

Positive Negative
o . False
S True Positives .
B Negatives
a 2 (TP)
k| e (FN)
O
©
S o True
5 > False .
< & " Negatives
) Positives (FP)
g (TN)

True Positive gives the count of predictions that
belong to positive classes and are correctly identified.
True negative gives the count of predictions that belong
to the negative class and correctly classified as negative.
False Positive gives the counts which are predicted are
true but actually not true and vice versa for False
Negative.

In (18), Precision represents the probability that the
predicted category is consistent with the actual category.
Recall represents the probability that the actual category
is consistent with the predicted category in (19). Also,
(20) represents the probability that Accuracy can predict
the actual category. And the criterion F1-Score
represents the harmonic results between Precision and
Recallin (21).

p .. _ TP (18)
recision = 55—
Recall = e (19)
= TP Y FN
TP +TN
Accuracy = (20)

TP+TN+FP+FN

2 * Precision * Recall
F1 — Score = — (21)
Precision + Recall

Initial Classification

In the first model, the data was trained by a KNN
classifier with a nearest neighbor rate of 5. The results
obtained from this run are listed in Table 3. Fig. 8 and

Fig. 9 show the performance of Model 1 on Sonar data
with confusion matrix and ROC plots for 6 different
classes.

CM for KNN: 1st Model
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a
&
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5
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Fig. 8: Confusion matrix chart for KNN - 1st Model.

ROC for KNN: 1st Model
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Fig. 9: ROC chart for KNN - 1st Model.

In the second model, the data was trained by an NB
classifier. The results obtained from this run are listed in
Table 4. Fig. 10 and Fig. 11 show the performance of
Model 2 on Sonar data with a confusion matrix and ROC
plots for 6 different classes.
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Table 3: KNN model performance results

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 94.73 100 97.29 0.99
2 48.14 59.09 53.06 0.84
3 50 59.09 54.16 0.87
62.60
4 54.28 90.47 67.85 0.93
5 75 27.27 40 0.88
6 100 44.44 61.53 0.97
Table 4: NB model performance results
Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 78.26 100 87.80 0.98
2 54.54 27.27 36.36 0.83
3 45.71 72.72 56.14 0.88
66.66
4 64.28 85.71 73.46 0.95
5 91.66 50 64.70 0.89
6 92.85 72.22 81.25 0.98
Table 5: DT model performance results
Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 100 100 100 1
2 76.92 90.90 83.33 0.98
3 82.60 86.36 84.44 0.98
88.61
4 94.73 85.70 90 0.99
5 86.95 90.90 88.88 0.98
6 100 77.77 87.5 0.99
CM for NB: 2nd Model
18 1 1 o 1 2 78.3% ROC for NB: 2nd Model
| 1ae% | os% | os% | 00% | osw | 1e% | 217% !
0.9
0 6 4 1 0 ] 54.5%
| oo0% | 49% | 33% | 08% | 00% | 00% | 455% s
3 0 15 16 0 1 3 45.7% 07
o | 00% | 22% | mo% | oow% | os% | 24% | 54.3%
w
] i)
§ A 0 1 18 9 0 64.3% 3"
2% oow | oo% | 0B% | 146% | 7a% | 00% | 35.7% $
g % 0.5
0 0 0 1 11 ' 91.7% =
°| oo% | o0o0% | o0o0% | 08% | 89% | 00% | 83% Fos
0.3
] 0 0 1 0 13 92.9%
5 oo% | oow | oo% | 08% | 00% | 106% | 7.4%
02 — C|ass 1
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100% 27.3% T2.7% 85.7% 50.0% 72.2% 66.7% Class 3
0.0% 72.7% 27.3% 14.3% 50.0% 27.8% 33.3% 01 —gissg
Class &
N o N N - - 0 . ‘ ‘ ‘ . . . ‘ : )
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Fig. 10: Confusion matrix chart for NB - 2nd Model.

False Positive Rate

Fig. 11: ROC chart for NB - 2nd Model.
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In the third model, the data was trained by a DT
classifier. The results obtained from this run are listed in
Table 5. Fig. 12 and Fig. 13 show the performance of
Model 3 on Sonar data with confusion matrix and ROC
plots for 6 different classes.

CM for DT: 3rd Model
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Fig. 12: Confusion matrix chart for DT - 3rd Model.
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Fig. 13: ROC chart for DT - 3rd Model.

In the fourth model, the data was trained by an MLP
classifier.

The results obtained from this run are listed in Table
6. Fig. 14 and Fig. 15 show the performance of Model 4
on Sonar data with confusion matrix and ROC plots for 6
different classes.

CM for MLP: 4th Model
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Fig. 14: Confusion matrix chart for MLP - 4th Model.
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Fig. 15: ROC chart for MLP - 4th Model.

Fuzzy System Specifications

According to the explanations provided in the
previous section, Fig. 16 presents a general diagram of
the fuzzy system used in the LA algorithm, where the
parameters (Nfe(max) and BestNfe) constitute the inputs
and the parameters K and D constitute the outputs of
this system.

Also, Table 7 shows the rules used in this system and
the specifications of the parameters.
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Table 6: MLP model performance results

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 94.73 100 97.29 0.99
2 75 68.18 71.42 0.81
3 62.96 77.27 69.38 0.83
72.35
4 61.76 100 76.36 0.93
5 75 27.27 40 0.62
6 80 66.66 72.72 0.81
Table 7: FLAA rules specifications
Number BestNfe Nfe(max) K D
1 Good Primary Low Low
2 Good Middle Low Low
3 If Good And Final Then Low And Low
4 Bad Primary Low High
5 Bad Middle High Low
6 Bad Final High High

Fuzzy
Learning
Automata
Algorithm

[ Bestnte

[[fe(aay) D)

Fig. 16: general diagram of the fuzzy system.

The three-dimensional phase diagram of K, Nfe(max)
and BestNfe is shown in Fig. 17 and the three-
dimensional phase diagram of D, Nfe(max) and BestNfe
is shown in Fig. 18.

0.5

Nfemax g0 BESTNFE

Fig. 17: The 3D phase diagram of K, Nfe(max) and BestNfe.
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Fig. 18: The 3D phase diagram of D, Nfe(max) and BestNfe.

Fusion Operation

As described in the work process in the previous
sections. The stored models of each class are weighted
using the FLAA and weighted summation functions in the
defined range. To achieve the best accuracy and decision
by obtaining the best solutions for the classifications and
fusion it by the FLAA. Due to the fact that in this process
the effective parameters in the FLAA are very effective.
The results of Accuracy, Precision, Recall, F1_Score, and
AUC are reported for the K, D, and Nfe(max) fuzzy
parameters.

Also, for better comparison, the fusion operation has
been performed with a conventional LA algorithm, the
performance results of which are reported in Table 8.
The complexity matrix and ROC plots of this
performance for the values of K = 200, D = 200, and
Nfe(max) = 15 are shown in Fig. 19 and Fig. 20.
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Table 8: LA performance results for selected weights [w1:2, w2:2, w3:4, w4:3]

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 100 94.73 97.29 0.97
2 90.90 83.33 86.95 0.90
3 95.45 80.76 87.50 0.89
85.36
4 95.23 71.42 81.63 0.85
5 59.09 100 74.28 0.95
6 72.22 100 83.87 0.97

In Table 9, the results are reported by changing the

CM for Learning Automata Model values of weighted of classifiers parameters. Also, the
N 0 0 0 0 0 100% performance of Sonar DF by the FLAA is shown in Fig. 21
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and Fig. 22.
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Table 9: FLAA performance results for selected weights [w1:1, w2:3, w3:5, w4:5]

Classes Precision (%) Recall (%) F1_Score (%) AUC Accuracy (%)
1 100 100 100 1
2 90.90 76.92 83.33 0.87
3 86.36 82.60 84.44 0.89
88.61
4 85.71 94.73 90 0.95
5 90.90 86.95 88.88 0.92
6 77.77 100 87.50 0.98
Table 10: Performance comparison of conventional and fused classification models
No Model Precision (%) Recall (%) F1_Score (%) Accuracy (%)
1 SVM 71.4 70 70 83.9
2 RF 70 77.78 73.68 76.19
3 DT 90 75 81.81 80.95
4 XGboost 80 80 80 80.95
5 Ensemble Method 60 75 66.67 71.45
6 R-EFMD 79.27 76.5 77.86 78.25
7 T-EFMD 79.51 81.5 80.49 80.25
8 R-LFMD 78.82 80 79.4 79.25
9 T-LFMD 83.17 86.5 84.8 84.5
10 ANN 63.71 64.58 64.14 65.57
11 CNN 78.47 79.39 78.92 65.57
12 TFIR-DCNN+SA 73.55 66.14 69.65 66.14
13 Joint 79.5 80.12 79.49 79.8
14 FLAA (proposed) 88.6 90.2 89.02 88.6
Table 11: Comparison of the performance of the combined models with LAA and FLAA.
No. Model Precision (%) Recall (%) F1_Score (%) Accuracy (%)
LAA 85.48 88.37 85.25 85.36
2 FLAA (proposed) 88.6 90.2 89.02 88.6
100
HSVM
920
m RF
80
mDT
70
XGboost
60 W Ensemble
50 = R-EFMD
40 u T-EFMD
30 ® R-LFMD
20 B T-LFMD
10 H ANN
0 B CNN

PRECISION

RECAL

L

F1_SCORE ACCURACY

Fig. 23: Functional comparison of Precision, Recall, F1_Score, and Accuracy parameters.
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Table 10 shows the important parameters and
computational requirements of introduced models such
as SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-
EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and
joint. The results of these models have been compared
with the proposed model. Considering that the
objectives and databases are different, we benchmarked
the average detection rate. In this comparison, Precision,
Recall, F1_Score, and Accuracy parameters have been
considered and investigated to show the superior
performance of the proposed method compared to
other procedures. Table 11 highlights that the most
significant finding is the superior performance of the
FLAA method relative to the prior approach that did not
incorporate fuzzy control. This enhancement in
performance provides strong evidence for the efficacy of
employing an intelligent system. Notably, even though
the complexity of the problem was increased by
expanding the number of classes, the proposed method
consistently outperformed all alternative methods. Also,
in Fig. 23, the graph of this comparison is illustrated to
show the results of each of the models side by side, and
the optimal performance of the DF method with the
other algorithms is quite evident.

Conclusion

This study addresses the challenge of integrating
classification results derived from FLAA and Sonar
datasets. The Sonar dataset, comprising six distinct
target categories characterized by varying capabilities
and specifications, was analyzed utilizing the FLAA
approach. The detection of targets in marine
environments is complicated by sound wave
interference and ambient noise, which pose significant
obstacles. Traditionally, classification of such data has
been performed manually, a process prone to a high
likelihood of target misidentification. The application
and combination of machine learning techniques offer
the potential to enhance target detection accuracy. In
this research, four classification models were initially
applied independently to the Sonar data. Subsequently,
these classifiers were integrated using the LAA to
optimize performance by determining the optimal
weighting coefficients for each classifier. This combined
approach yielded results that surpass those reported in
comparable studies. Performance metrics including
Precision, Recall, F1_Score, and Accuracy were evaluated
and compared against recent literature, with the
proposed method achieving values of 88.6%, 88.53%,
90.2%, and 88.6%, respectively. Furthermore, the study
demonstrates the superior efficacy of the proposed
method relative to the conventional LA-based Sonar DF
approach.

The main advantage of this work was to provide a soft
computing method for dealing with sonar data. In this

method, unlike LAA, the parameters are not controlled
manually but are controlled intelligently using a fuzzy
controller. This innovation prevents LAA from getting
stuck in local solutions in the search space. In this way,
we were able to improve the performance in terms of
both speed and accuracy. Furthermore, numerous
parameters within the LAA exhibit stochastic variability
and lack adaptive intelligence. To address this, we
enhanced these parameters by integrating fuzzy
systems, thereby facilitating more rapid and improved
convergence.

Some limitations can be mentioned. The proper
setting of FLAA rules is the proper selection of basic
classifiers and the existence of appropriate databases for
training basic classifiers. In the future, it is possible to
perform tasks such as optimizing LA control parameters
using meta-heuristic methods for better convergence,
using intelligent methods for optimal parameter
selection, and using the proposed method in dealing
with incomplete and missing databases. This also adds
some complexity to our system.

Previously, it was just an LAA, but now a fuzzy system
has been added to it, and we may have to pay more for
implementation.

We recommend that, despite the implementation of a
fuzzy system in this study, certain components of the
system—specifically the membership functions and the
rule base—may not have been optimized. Future work
should focus on refining these elements to enhance
system performance.
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Abbreviations

SONAR Sound and Range Navigation

DF Data Fusion

RLA Reinforcement Learning Algorithm

CNN Convolutional Neural Network

Al Artificial Intelligence

ML Machine Learning

SVM Support Vector Machine

KNN K-Nearest Neighbor

RF Random Forest

DT Decision Tree

XGboost Extreme Gradient Boosting

R-EFMD Early Fusion Model with Resnet

T-EFMD Early Fusion Model with Swin
Transformer

R-LFMD Late Fusion Model with Resnet

T-LFMD Late Fusion Model with Swin
Transformer

SA Spatial Attention

TFIR Time Frequency Image Recognition

DCNN Deep CNN

SLP Single-Layer Perceptron

MLP Multi-Layer Perceptron

NB Naive Bayesian

LA Learning Automata

DIM Dimension

LAA Learning Automata Algorithm

FLAA Fuzzy Learning Automata Algorithm

FIS Fuzzy Inference System

AUC Area Under the ROC Curve

M Confusion Matrix

ROC Receiver Operating Characteristic
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