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Background and Objectives: Currently, the control engineering community is 
increasingly focusing on research related to Unmanned Aerial Vehicles (UAVs) 
due to their versatile capabilities. Among the various applications, target 
detection and tracking stand out as crucial. Recent advancements in Artificial 
Intelligence (AI) and Deep Learning (DL) have the potential to enhance the 
synergy between vision and control in UAV operations. By integrating AI 
algorithms with control methods, the accuracy of target information can be 
significantly improved in UAVs. This research introduces an autopilot system for 
quadcopters to search for and track a predetermined target. 
Methods: The autopilot system utilizes the YOLO network, a robust convolutional 
neural network-based system, for real-time target detection. To enhance object 
tracking robustness, the Kalman filter is integrated into the system. Furthermore, 
Proportional-Derivative (PD) controllers are utilized to calculate suitable control 
commands, enabling the quadcopter to effectively track both stationary and 
moving targets. Additionally, an object retrieval strategy is proposed to locate 
and recover lost objects during the tracking phase.  
Results: The effectiveness of the proposed system was evaluated through real-
time experimental trials involving diverse scenarios encompassing both 
stationary and moving targets. The integration of the YOLOv5 network with the 
Kalman filter substantially improved detection accuracy and stability. 
Furthermore, the object retrieval mechanism demonstrated high reliability in 
recovering lost targets, thereby increasing overall system resilience. The PD-
based control scheme enabled responsive and precise trajectory adjustments, 
contributing to consistent target tracking performance across all test cases. 
Conclusion: Integration of a YOLOv5-based detection module, a Kalman filter for 
robust tracking, and PD controllers for flight control provides an autonomous 
quadcopter system capable of detecting and tracking both stationary and moving 
targets with unknown dynamics. The proposed approach shows promise for real-
time autonomous tracking applications and offers a foundation for future 
development in more complex, outdoor scenarios. 
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 Introduction 
In recent years, Unmanned Aerial Vehicles (UAVs), 

particularly quadcopters, have garnered significant 

attention from researchers due to their diverse 

capabilities and sizes. Remarkable advancements in 

Artificial Intelligence (AI) and Computer Vision (CV) have 

strengthened the link between vision and control for 

quadcopters. As a result, quadcopters find applications 

in various domains, including autonomous navigation [1, 

2], medical care [3], exploration and mapping [4], path 

planning [5], search and rescue[6]-[8], object tracking 

[9], [10], traffic monitoring [11], and obstacle detection 

[12]. In vision-based quadcopter applications, visual 

object tracking has become increasingly ubiquitous and 

represents a critical task [13].  

The wide range of applications underscores the 

critical need to address the fundamental challenges of 

object detection and tracking. A thorough understanding 

of the fundamental principles and challenges related to 

this field is essential for addressing real-world problems 

and developing practical solutions.   Object detection 

involves localizing and classifying objects within images 

or video sequences. On the other hand, object tracking 

focuses on monitoring the movement of a specific object 

over a time period. In recent years, researchers have 

increasingly emphasized the significance of object 

detection and tracking in the context of quadcopter 

drones [14]. 

Various methodologies have been developed in the 

domain of object detection and tracking. Before the arise 

of Deep Learning (DL) algorithms, traditional object 

detectors were used for object detection. They typically 

include three-stage process: 1) proposal generation; 2) 

feature vector extraction; and 3) region classification. 

They have limitations, including many redundant 

proposals during proposal generation, this leads to false 

positives during classification. Furthermore, each stage 

of the detection process is designed and optimized 

independently. So, this approach makes it challenging to 

achieve a globally optimal solution for the entire system 

[15]. 

DL is increasingly gaining attention as a promising 

area of research for enhancing several applications, such 

as autonomous vehicles [16] and especially UAVs [17] 

capabilities. In response to the rapid advancement of DL 

algorithms, the performance of object detection and 

tracking has been incredibly improved. DL algorithms 

have become popular because of two important causes: 

1) Availability and abundance of data for processing and 

2) Availability of high-end computational resources [18]. 

In general, object detection algorithms include two 

approaches: one-staged and two-stage [19]-[21]. For 

real-time object detection and tracking, the speed of the 

detection is very important. While two-stage algorithms 

can provide some assistance with real-time object 

detection, but it is still impractical for use in some 

embedded platforms (e.g., vehicle, UAV and etc.) [22]. 

One-stage algorithms such as Single Shot Multi-Box 

Detection (SSD) [23], You Only Look Once (YOLO) [24], as 

well as other versions of the YOLO network [25], [26], 

are faster than two-stage algorithms like Region 

Convolutional Neural Networks(R-CNN) [27], Fast 

Region-Based CNN(Fast R-CNN) [28] and Faster Region-

Based CNN (Faster R-CNN) [29]. Among the one-stage 

algorithms, the YOLO family are particularly famous for 

capability to detect and classify objects using forward 

propagation without the need to create proposal regions 

like two-stage algorithms [30]. Also, due to its fast and 

accurate detection, the YOLO algorithm has huge 

potential for being used in real-time applications. 

Recent studies have explored the integration of YOLO 

with the Kalman filter to enhance real-time object 

detection and tracking performance. Barisic et al [31] 

developed a system utilizing a YOLO-based convolutional 

neural network for detecting multirotor UAVs in various 

environments, enhanced detection by incorporating a 

Kalman filter, which improves the reliability of position 

and velocity data. A nonlinear controller based on visual 

servoing maintains the UAV within the Field of View 

(FOV) and at the desired distance.  Alshaer et al [32] 

proposed a two-stage system using deep learning and 

Kalman filter techniques for detecting and tracking 

consumer-grade UAVs, the study evaluates YOLO models 

for detection and employs both the Kalman filter and 

Extended Kalman filter for tracking, resulting in 

improved real-time tracking accuracy. Likewise, the 

concentration of many research papers is on object 

tracking. Zhao et al. [33] proposed a framework for 

moving vehicle detection, tracking, and geolocation. 

They utilized the YOLOv3 model for vehicle detection. 

Additionally, a correlation filter was applied to the task 

of target tracking. Furthermore, they introduced a flight 

controller based on the results of visual tracking and 

geolocation to maintain targets within the FOV. The 

proposed framework was evaluated experimentally. 

Mercado et al. [34] suggested a system for tracking 

objects with unknown dynamics. A Haar cascade 

classifier was applied to detect objects. A Kalman filter 

was employed to estimate the relative position of 

objects while the drone and target were maintained at a 

constant distance by using a linear controller. Mokhtari 

et al. [35] developed a system for target tracking with a 

quadcopter that consisted of four Proportional-Integral-

Derivative (PID) controllers and the YOLOv3 model for 

object detection. Two control goals were achieved: 

keeping the target in FOV and maintaining the distance 

between the quadcopter and the target. Dursun et al. 

[36] suggested a distributed system for recognizing and 



Real-time Object Tracking Control of a Quadcopter Using YOLOv5 and Kalman Filter 

J. Electr. Comput. Eng. Innovations, 14(1): 217-230, 2026                                                                         219 

tracking individuals. They employed the YOLOv2 model 

to handle object detection. Users set the target; the 

object information vector was transformed into error 

signals. Proportional-Derivative (PD) controllers 

generated control signals to track objects that were 

embedded within the drone. Kuoh et al. [37] proposed a 

closed-loop end-to-end target tracking system using 

visual control steering. To address real-time object 

tracking, they introduced a combination of an adopted 

CNN and a single-shot multi-box detection. The error 

was calculated based on the object location and the 

central coordinate within the image. The closed-loop 

system was designed by PID controllers. 

Previous studies have predominantly relied on 

simulation studies, lacking validation through actual 

flight tests and overlooking solutions for target loss 

during tracking and subsequent recovery. This paper 

presents an intelligent system designed for real-time 

search, detection, and tracking of moving objects using a 

quadcopter, along with a method for target retrieval in 

case of loss during the tracking phase. The closed-loop 

system integrates YOLOv5, a renowned model for target 

detection recognized for its speed and accuracy balance, 

with two PD controllers serving as the autopilot for the 

quadcopter. Initially, the system explores the 

environment following a predefined flight path and 

captures images through a camera mounted on the 

quadcopter. These images are then transmitted to the 

ground station for processing by the YOLOv5 model. 

Upon target detection, the search phase is terminated, 

and the tracking phase begins. Throughout the tracking 

phase, the autopilot system computes Flight Commands 

(FCs) based on tracking errors using the two PD 

controllers and wirelessly transmits FC to the 

quadcopter. Autopilot endeavors to keep the target 

within the FOV of the quadcopter. In cases of target loss, 

the system directs the quadcopter to recover the lost 

target. Two scenarios are considered. In the first 

scenario, either the target is lost within a few frames, or 

multiple targets are identified in a single frame. In such 

instances, a Kalman filter is proposed for estimating the 

target’s position. However, if the count of frames where 

the target is not detected surpasses a set threshold, the 

quadcopter reverts to the search phase to locate the 

target. The Kalman filter design operates under the 

assumption that the target moves with constant 

acceleration. The key contributions of this work are as 

follows: 

1) Improving the robustness of the object detection 

algorithm by integrating YOLOv5 with the Kalman filter. 

2) Implementing real-time position control for a 

quadcopter to track a moving object with unknown 

dynamics, with no need for target prior information and 

the quadcopter’s attitude and position. 

Quadcopter Dynamics 

Understanding the concept of a quadcopter’s 

dynamics is crucial for studying its applications. The 

dynamics of a quadcopter in the body frame involves the 

interaction of forces, torques, and motion states, which 

play a pivotal role in the quadcopter’s stability, control, 

and overall flight performance. The axes of this frame 

are defined as XB, YB, and ZB, which are shown in Fig. 1. 

By comprehending these dynamics relative to the body 

frame, engineers and researchers can effectively develop 

control strategies, motion planning algorithms, and state 

estimation techniques necessary for reliable quadcopter 

operation in diverse environments and applications.  

 

 
 

Fig. 1: Configuration of a typical quadcopter. 

The quadcopter has four rotors (𝑖 = 1 to 4), and each 

rotor generates a thrust vector    exerted on the 

quadcopter’s body frame. Every thrust vector generates 

a torque vector    around the mass center of the 

quadcopter [38]. By adjusting the speed of the rotors, 

the quadcopter can move along all three axes. The 

rotation of the quadcopter around the XI, YI and ZI axes 

are defined by the roll angle  , pitch angle   , and yaw 

angle  , respectively [38]. Also,   ,   , and    denote 

the torques generated by the four motors around XB, YB, 

and ZB, respectively. The thrust vector    generated by 

the ith rotor is given by (1). 

        
      𝑖          (1) 

where    is an unknown positive constant that can be 

determined by static thrust tests [39] and    is the 

angular speed of the 𝑖th rotor. The total thrust vector   

and the resultant torque vectors in the body frame can 

be written as (2)-(5). 

               (2) 

            (3) 

             (4) 

                     (5) 

The variable   represents the distance from the center 

of mass to the center of the rotors, and    denotes an 

unknown parameter. By employing the Newton-Euler 
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method, the dynamic equations of the quadcopter’s 

body can be expressed. (6) and (7) show the dynamic 

equations of the quadcopter. 

               (6) 

  ̇                    (7) 

that   is the quadcopter’s mass,   denotes the linear 

acceleration of the mass center in the inertial frame, and 

  represents the moment of inertia matrix. Also, 

                
T denotes unknown aerodynamic, and 

                
  refers to residual forces.    and    

are the gravitational and motor produced forces, 

respectively.                   shows unknown 

aerodynamic acting on the canter of mass, and 

                  defines residual torques acting on 

the canter of mass.    and    are the gravitational and 

motor produced torques, respectively.  

The angular velocity of the quadcopter in the body 

frame ( ) and the inertia matrix ( ) are determined by 

(8) and (9). 
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(10) 

   [

                      
                      

        
]

 

 (11) 

                   (12) 

             
(13) 

that   is the gravitational constant,     is the inertial 

moment of rotors and     ∑   
 
 = . Using (2), (6), (10) 

and (11), the linear motion equation of the quadcopter 

can be obtained by 

 ̈

  
 

 
                                    

(14) 

 ̈

  
 

 
                                    

(15) 

 ̈   
 

 
                          (16) 

The equation governing angular motion can be 

derived in a manner like (14)-(16), but it tends to be 

quite intricate. To simplify matters, the angular motion 

equation is demonstrated as (17). 

[

 ̈

 ̈
 ̈

]

    (         ̇   ̇  ̇ )

   (         ̇   ̇  ̇ )              

(17) 

where    and    are two nonlinear matrix functions of 

Euler angles and their first derivatives. If it is assumed 

that rotor’s speed controllers exhibit gain-like behavior 

and the square of the rotors’ angular velocity are taken 

as the control input (     
 ), then (17) can be 

reformulated in a compact form as (18). 

 ̈         ̇          ̇     (18) 

where              is state vector, 

               
   is the control input, and    and    

are unknown matrix functions. 

The flight controller of the quadcopter adjusts the 

rotors’ speed based on commands received from either 

the pilot or the autopilot system. In fact, the flight 

controller determines the duty cycle of the Pulse-Width 

Modulation (PWM) signals that control the rotors’ 

speed. The pilot sends four different commands: 

Throttle, which controls the rotation speed of the 

motors; Yaw, which manages rotation around the 

vertical axis (ZB); Pitch, which handles tilting or moving 

forward and backward; and Roll, which is responsible for 

tilting or moving left and right. Consequently, the 

autopilot system must be capable of generating these 

four types of commands. 

Methodology 

This section presents the proposed autopilot system, 

and the methodologies employed. The quadcopter's 

flight operation is divided into two distinct phases: 

search and track, with object detection serving as a 

critical component in both. To facilitate real-time object 

detection, the system first establishes a reliable 

communication link between the quadcopter and the 

processing unit. In the proposed system, images 

captured by the quadcopter’s onboard camera are 

wirelessly transmitted to a personal computer (PC) via a 

Wi-Fi connection. Subsequently, the target is detected, 

search or tracking commands are generated, and control 

signals are computed and transmitted wirelessly back to 

the quadcopter. These control signals are essential for 

the accurate execution of the quadcopter's autonomous 

operations. The communication architecture between 

the quadcopter and PC, which functions as the ground 

station, is illustrated in Fig. 2. This wireless link enables 

real-time image processing and the transmission of 

control commands necessary for object tracking. 

Following the communication architecture, the 

operational flow of the proposed autopilot system is 

illustrated in Fig. 3. 
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Fig. 2: Communication structure between the quadcopter and 

PC. 

 
 

 
 

Fig. 3: Flowchart of the proposed autopilot system. 

 
The system consists of three interconnected 

subsystems: target detection, target search, and target 

tracking. After take-off, the quadcopter enters the 

search phase and transitions to the tracking phase once 

the target is successfully detected. During tracking, a 

Kalman filter and a target-retrieving algorithm are 

employed to maintain accuracy, particularly in cases of 

temporary target loss. The pseudocode of the proposed 

method is shown in pseudocode 1. A detailed 

description of each subsystem is provided below. 

 
Initialize system parameters 
Initialize PD controller gains 
Initialize Kalman filter states 
While system is running: 
    Acquire image frame from onboard camera 
    Detect target using YOLO network 
    If target is detected: 
        Extract target position (bounding box center) 
        Update Kalman filter with measurement 
        Compute control error 
        Generate control commands using PD controller 
        Send commands to quadcopter 
        Reset loss counter 
    Else: Target not detected 
        Increment loss counter 
    If   <=     : 
        Predict target position using Kalman filter 
        Compute control error 
        Generate control commands using PD controller 
        Send commands to quadcopter 
    Else if time_since_loss <=     : 
        Predict target position using Kalman filter 
        Compute control error 
        Generate control commands using PD controller 
        Send commands to quadcopter 
    Else: 
        initiate search behavior 
End While 

Pseudocode 1: The pseudocode of the proposed method. 

 
Target Detection  

Target detection plays a pivotal role in the proposed 

system, as it is integral in both the search and tracking 

phases. In the context of object tracking, the process 

begins with localizing the target by identifying a two-

dimensional Bounding box (B-box) within the image. This 

process is achieved using a detection model, which 

generates the B-box and enables estimating the target 

state [10]. The increasing deployment of UAVs has 

underscored the demand for detection models that 

provide both high speed and accuracy in real-time 

applications [40]. However, limitations in image 

resolution and computational resources pose challenges, 

particularly in detecting small objects. To address these 

constraints, this paper employs the YOLO network, a 

state-of-the-art object detection model. Among its 

variations, YOLOv5 is recognized for its optimal trade-off 

between speed and accuracy in real-time scenarios [41]. 

YOLOv5 and its successors offer a compelling balance 

between speed and computational efficiency compared 

to earlier YOLO versions and other object detection 

models. While older models like YOLOv3 and YOLOv4 

provide strong accuracy, they are heavier and slower, 

making them less suitable for real-time or edge 
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applications. YOLOv5, particularly the smaller variants, 

significantly reduces model size and increases inference 

speed, enabling high-performance real-time detection. 

Newer versions such as YOLOv6–v8 further optimize this 

trade-off, delivering ultra-fast processing without 

substantial loss of accuracy. In contrast, two-stage 

detectors like Faster R-CNN and transformer-based 

models like DETR achieve higher precision but at the cost 

of much greater computational complexity and slower 

inference, highlighting YOLO’s strength for applications 

where speed and efficiency are critical. 

YOLOv5 is offered in multiple configurations, such as 

small, medium, large, and extra-large models, allowing 

customization based on performance requirements. 

Additionally, it supports various input image scales, 

enhancing detection performance a range of object sizes 

and aspect ratios [42]. The architecture of YOLOv5, 

illustrated in Fig. 4, comprises three main components: 

1) Backbone-CSPDarknet; 2) Neck-PANet; and 3) Head- 

YOLO Layer. 

The backbone architecture typically incorporates 

well-established CNN models such as VGG, ResNet, 

DenseNet, MobileNet, EfficientNet, and CSPDarknet53. 

In the neck component, PANet performs feature 

aggregation through both bottom-up and top-down 

pathways, facilitating multi-scale feature fusion via up-

sampling and down-sampling operations [41]. The head 

of the model comprises three convolution layers 

responsible for predicting the B-box coordinates, object 

confidence scores, and class probabilities. The input 

image undergoes a two-stage process: initial feature 

extraction by CSPDarknet53, followed by further feature 

fusion through PANet. Ultimately, the YOLO layer utilizes 

the fuzzed features to generate object detection outputs 

[43].  

  

 

Fig. 4: Network architecture of the Yolov5 [44]. 

 
YOLOv5 demonstrates improved performance over its 

predecessor, YOLOv3. In YOLOv3, feature extraction was 

performed using Darknet19, which exhibited limitations 

in detecting small objects [43]. YOLOv5 addresses this 

issue by employing CSPDarknet for enhance feature 

extraction. it divides the input image into an     grid, 

with each grid cell responsible for detecting objects 

whose center lies within that cell. The model then 

generates a B-box containing key information about the 

object’s location in the captured image. the output of 

YOLOv5 and example of the B-box information are 

illustrated in Fig. 5. 

 

 

Fig. 5: Information about the YOLOv5 B-box. 

 
Following target detection, the central coordinates of 

the B-box (critical for enabling precise tracking) are 

calculated using the positional data provided by the 

detection algorithm, as formulated in (19) and (20).  

           
         

 
 (19) 

           
         

 
 (20) 

The parameters     ,     ,     , and      denote 

the top-left and bottom-right corner coordinates of the 

B-box, respectively as illustrated in Fig. 3.  

In the initial phase, a custom YOLOv5 model was 

trained using a dataset sourced from Kaggle, 

supplemented with extensive data augmentation 

techniques to increase the dataset's diversity and 

improve model generalization. However, despite these 

efforts, the performance of the custom-trained model 

was inconsistent and failed to match the robustness and 

accuracy of the pre-trained YOLOv5 model. The pre-

trained model, developed on the COCO dataset (a large-

scale, diverse benchmark widely regarded in the 

computer vision community) demonstrated superior 

generalization across varied object categories and 

environmental conditions. Moreover, training from 

scratch on a limited or domain-specific dataset reduced 

adaptability in real-world scenarios. To ensure high 

detection accuracy and computational efficiency the pre-

trained YOLOv5 model was adopted as the final 

configuration for object detection in this paper. 

Furthermore, the integration of the YOLOv5 detection 
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model with a Kalman filter significantly enhances the 

object tracking capability. This fusion approach improves 

tracking accuracy and stability, particularly in scenarios 

involving occlusions or temporary target loss. 

Kalman Filter 

The main limitations of the object detection algorithm 

are false positive detections and missed detections. A 

false positive detection happens when the system 

mistakenly identifies a condition or attribute as present 

when it isn’t. On the other hand, missed detections, also 

referred to as false negatives, occur when the system 

fails to recognize a condition or attribute that is indeed 

present. In this paper, to deal with these limitations, the 

Kalman filter are employed. 

The kinematic of the target can be written as (21). 

 

  
[

          

           
          

           

]  |

  
  

  
  

  
  

  
  

| [

          

           
          

           

]

 [

 
            

 
           

] 

(21) 

that            ,            ,             and             

are the speed and acceleration of the B-box’s center 

point, respectively. The acceleration is considered as 

process white noise. 

At each step of target tracking, one of four states may 

occur: 

1) Single Target Detected: The position of the B-box’s 

center is calculated using (19) and (20). 

2) Multiple Target Detected: The position of the B-box’s 

center is estimated using the Kalman filter, and the 

target whose center is closest to the estimated position 

is selected. 

3) No Target Detected (Short Duration): If no target is 

detected and the target has been missing for fewer than 

     consecutive frames, the estimated position of the 

B-box’s center is used. 

4) No Target Detected (Long Duration): If no target is 

detected and the target has been missing for      

consecutive frames, target tracking is stopped, and the 

quadcopter begins searching for the target using the 

method described in section IV. 

Target Search 

In the proposed system, target search is performed 

while the quadcopter follows a predefined yet arbitrary 

flight path, which introduces no constraints on trajectory 

designed. Prior to initiating the search phase, the desired 

target such as human, ball, or vehicle must be specified 

at the ground station. The quadcopter begins in a 

stationary position on the ground, and the autopilot 

system issues throttle commands to initiate takeoff. 

Upon reaching an altitude of one meter, the 

quadcopter stabilizes and commences the search 

operation. During this phase, the quadcopter executes a 

continuous yaw rotation at a rate of   revolutions per 

minute, controlled by yaw commands generated by the 

autopilot system. At each sampling time, the onboard 

camera captures an image frame and transmits it 

wirelessly to the ground station. 

The detection algorithm as described in section III.A is 

applied to each frame to determine the presence of the 

target. Once the target is successfully identified, the 

quadcopter halts its rotation, marking the end of the 

search phase. Conversely, If the quadcopter fails to 

detect the target after      rotations, the system 

terminates the search and initiates a controlled landing 

procedure at the original take-off location. Alternatively, 

this feature can be leveraged during the search phase in 

scenarios where the target is not predetermined, 

enabling the user to manually select the target from the 

images transmitted by the quadcopter to the ground 

station.  

Target Tracking  

This section presents the proposed autopilot 

framework for object tracking. As illustrated in Fig. 6, the 

closed-loop system integrates YOLOv5 for target 

detection, a Kalman filter for estimation of the target’s 

position and PD controllers for tracking the target. Once 

the desired target is identified in an image, the search 

phase is terminated, and the target tracking phase 

commences. The principal aim of the tracking operation 

is to accurately position and continuously maintain the 

target within the FOV of the quadcopter. 
 

 

Fig. 6: Proposed closed-loop system of target tracking. 

To facilitate the tracking process, it is essential to 

quantify the positional error between the target and the 

center of the image frame. Fig. 7 illustrates the image 

coordinates with the detected target. The tracking error 

is defined as the Euclidean distance between the center 

of the FOV and the centroid of the bounding box (B-box) 

encompassing the target, as shown in Fig. 7. This error 

metric serves as the input to the PD controllers, which 

generate corrective control signals to adjust the 

quadcopter’s position and maintain the target centrally 

aligned within the FOV. 
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Fig. 7: System coordinates. 

 
If (                         denote the 

coordinates of the FOV’s center, then the tracking error 

signals are computed using (22), (23) 

                                        (22) 

                                        (23) 

where (                       represent the coordinates 

of the B-box center. These error signals are utilized as 

inputs to the autopilot system, which modulates the FCs 

through two PD controllers in order to maintain the 

target within the FOV. The PD controllers are responsible 

for generating control actions that guide the 

quadcopter’s motion along the vertical and horizontal 

axes, corresponding to upward, downward, leftward, 

and rightward movements. At each sampling time, upon 

computation of the tracking error, the quadcopter 

updates its control actions based on the error magnitude 

and direction. Consequently, the FCs are derived 

according to (24) and (25).  

                          ̇     (24) 

                             ̇     (25) 

here,           and              correspond to the the 

throttle and roll FCs, respectively. 

Target Retrieving 

During object tracking operations, there may be 

instances where the target becomes undetected or is 

lost in some frames. While most existing studies 

overlook this issue, the absence of a retrieval mechanism 

can significantly hinder the continuity and reliability of 

the tracking process. This limitation becomes especially 

critical in mission-critical scenarios such as search and 

rescue operations or high-value industrial and 

commercial applications. Failure to retrieve a lost target 

in such cases could pose severe safety risks or result in 

substantial financial losses [45]. Therefore, 

implementing a robust target retrieval mechanism is 

imperative for enhancing tracking reliability. Target 

retrieval methods typically fall into two categories: 

utilizing new positional data or leveraging historical 

information. In this paper, a retrieval strategy based on 

previously recorded error signals is proposed. When the 

target is lost for a duration exceeding a specified 

threshold, the last known error signal values are used to 

guide the quadcopter's motion in an attempt to 

reacquire the target.  

Specifically, if the target remains undetected for      

consecutive frames, the ground station computes the 

retrieval command based on the latest error values (  , 

  ). If    or    is positive, it implies the target has exited 

the FOV through the right or upper boundaries, 

respectively. In this case, the quadcopter is instructed to 

rotate to the right or ascend. Conversely, negative error 

values indicate that the target has exited through the 

left or bottom boundaries, prompting the quadcopter to 

rotate to the left or descend. Altitude adjustments are 

made cautiously, ensuring that the quadcopter does not 

descend below the minimum safe altitude or ascend 

beyond permitted altitude. 

If the target is still not detected after one full rotation 

following the initial retrieval attempt, the quadcopter 

terminates the operation and lands at its current 

location. Alternatively, it can be instructed to return to 

its hangar based on mission requirements. 

Table 1 summarizes the logic used to determine the 

retrieval commands based on the latest error signal 

values. 

 
Table 1: Logic of the retrieval commands  

Condition 
Error Signal 

(  ,   ) 
Quadcopter Action 

Target exits FOV 
to the right 

(  > 0) Rotate right 

Target exits FOV 
to the left 

(  < 0) Rotate left 

Target exits FOV 
upwards 

(  > 0) Ascend 

Target exits FOV 
downwards 

(   < 0) Descend 

Target 
undetected after 

full rotation 
N/A 

Land or return to the 
hangar 

 
Experimental Results 

To assess the performance of the proposed autopilot 

system, real-time experiments were carried out using 

the DJI Tello programmable quadcopter in a controlled 

indoor environment. The objective was to evaluate the 

system's ability to autonomously search for and track a 

designated target, specifically a yellow toy car. 

The experimental setup consisted of a ground station 

implemented on a personal computer equipped with an 
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Intel Core i7 processor, an NVIDIA RTX 2060 graphics 

card, and 32 GB of RAM. This system was responsible for 

executing the target detection algorithm based on the 

YOLOv5 network and computing the necessary flight 

control signals. Communication between the quadcopter 

and the ground station was established via a Wi-Fi 

connection, enabling real-time transmission of image 

frames and control signals. 

The DJI Tello quadcopter, chosen for its affordability 

and ease of programmability, weighs approximately 80 

grams and is equipped with a 5-megapixel camera 

capable of recording 720p high-definition video. It also 

features electronic image stabilization to reduce motion 

blur and ensure clearer image capture during flight. The 

drone has a control range of up to 100 meters, making it 

well-suited for small-scale indoor experiments in 

academic environments. 

Two experimental scenarios were defined to evaluate 

the tracking capabilities of the system. The first scenario 

involved tracking a stationary target, while the second 

focused on tracking a moving target. In both cases, the 

quadcopter followed a consistent initialization 

procedure. At the start of each experiment, the drone 

ascended vertically to a height of one meter and 

initiated the search phase by rotating about its yaw axis 

at a rate of approximately 36 degrees per second. Image 

frames captured by the onboard camera were 

continuously transmitted to the ground station for 

processing. Upon successful detection of the target, the 

system transitioned from the search phase to the 

tracking phase, wherein the autopilot controller adjusted 

the FCs to maintain the target within the FOV. 

All experiments were conducted in an indoor setting 

with a uniform white background to minimize visual 

noise and ensure consistent detection performance. This 

controlled environment allowed for a clear assessment 

of the tracking behavior and robustness of the proposed 

autopilot system. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

The specific parameters used for the autopilot system 

during these experiments are summarized in Table 2.  

 
Table 2: Autopilot system’s parameters 

Parameter                 
Sampling Time 

(sec) 

Value 1 3 0.1 0.01 0.1 

 

Scenario One 

In the first scenario, the performance of the proposed 

system was evaluated by tracking a stationary object at 

three different distances between the quadcopter and 

the target: one meter, two meters, and three meters. 

The target, a yellow toy car, was placed on a table with a 

height of 100 cm. The objective was to assess the 

system's ability to maintain accurate tracking and 

positioning of a fixed object within the quadcopter’s FOV 

under varying spatial conditions. 

Fig. 8 illustrates the quadcopter’s view during the 

flight test of fixed target at distance of one, two and 

three meters. In this figure the red dot represents the 

center of the FOV. The results indicate that the system 

consistently achieved its primary objective of precisely 

detecting, locating and consistently keeping the object 

within the quadcopter’s FOV across all tested distances. 

The experimental observations confirmed that the 

autopilot system could guide the quadcopter with 

sufficient precision to compensate for minor deviations 

and ensure continuous target visibility. Specifically, in 

the two-meter trial, the quadcopter executed corrective 

movements in the upward and leftward directions to 

maintain the target’s alignment with the center of the 

image frame. The sequential images in Fig. 8 further 

validate the accuracy and reliability of the proposed 

method, demonstrating its effectiveness in scenarios 

involving static target tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: A view of the quadcopter in the flight test of fixed target tracking at distance of two meters. 
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To further evaluate the system’s performance, Fig. 9 

presents the tracking error signals and corresponding 

control commands for each fixed-distance tracking case. 

The data illustrates that the proposed method effectively 

minimizes the tracking errors while maintaining control 

signal values within the expected operational range of 

±100. 

Across all trials, the quadcopter consistently 

maneuvered to align the target with the center of the 

FOV, demonstrating the robustness of the control 

strategy. An important observation is the smoothness of 

the quadcopter’s flight path. The autopilot system 

generated gradual, stable control commands that 

avoided sudden or erratic actions. This resulted in a 

controlled and progressive movement toward the target, 

which is particularly advantageous in scenarios requiring 

precise and safe positioning. These results underscore 

the  reliability  and  stability  of  the  proposed  system  in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maintaining accurate tracking of stationary targets. 

Scenario Two 

To further evaluate the performance of the proposed 

autopilot system in dynamic conditions, an experiment 

was designed in which the target moved horizontally 

from right to left at an approximate speed of 6 cm/s on a 

table. The quadcopter was initially positioned three 

meters from the target. 

Fig. 10 illustrates the quadcopter’s FOV during this 

scenario. demonstrating the system’s capability to 

achieve control objectives and consistently keep the 

target within the quadcopter’s FOV. Approximately three 

seconds after initiating the tracking phase, the red dot is 

observed to lie within the bounding box of the detected 

object. This positioning confirms the system's ability to 

adjust the quadcopter’s orientation effectively, ensuring 

that the moving target remains centered within the FOV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

Fig .9: Tracking errors and control signals for a fixed target tracking at distances of: (a) one meter, (b) two meters, and (c) 
three meters. 
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The quantitative results, including tracking error and 

control signal data, are presented in Fig. 11. These 

results further demonstrate the proposed system’s 

capacity to generate appropriate control commands, 

resulting in stable and responsive flight behavior. 

 

 

 

 

 

 

 

 

This behavior indicates that the target is maintained 

near the center of the FOV, validating the accuracy and 

responsiveness of the autopilot in handling moving 

targets. 

The normalized root mean square Error (NRMSE) of 

the tracking is reported in Table 3 for both scenarios. 
The NRMSE metric is calculated using (26) and (27) for X 

and Y axes, where n denotes the number of 

measurement data. 
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The results indicate that the tracking error for 

stationary targets decreases as the target exists farther 

from the quadcopter. Additionally, the tracking error for 

moving targets is greater than for stationary targets, 

which is an obvious outcome. 

 

 

 

 

 

While complete elimination of the tracking error over 

prolonged periods is inherently challenging (due to both 

the nature of the Tello drone’s limited flight dynamics 

and the continuous motion of the target) the tracking 

errors remain consistently bounded around zero.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Table 3: The normalized root mean square of the tracking 
errors for two experimental scenarios 
 

scenarios Distance               

One 

1 m 0.0452 0.2629 

2 m 0.0398 0.2104 

3 m 0.0132 0.2070 

Two --- 0.0471 0.0356 

 
Discussion 

The proposed framework demonstrated robust target 

tracking in controlled indoor environments through a 

simple yet effective combination of a PD controller and 

Kalman filter, supported by empirically tuned retrieval 

parameters. While computationally efficient, the PD 

controller is limited in managing nonlinearities, time-

varying dynamics, and external disturbances. 

Additionally, the retrieval strategy, which relies on the 

last known error, assumes moderately smooth target 

motion, reducing effectiveness against highly erratic 

trajectories. 

Fig. 10: A view of the quadcopter in the flight test of moving target tracking. 

Fig. 11: Tracking errors and control signals for a moving target tracking. 
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Our integrated system, combining the YOLO network, 

Kalman filter, and PD controllers, offers distinct 

advantages over these approaches. Our system provides 

holistic integration of perception, control, and retrieval 

strategies for a complete target tracking mission, 

including the crucial phase of object recovery. Unlike 

Alshaer’s work [32], SMART-TRACK [46] and VTD3 [47], 

which primarily focus on detection and tracking, our 

framework extends to active control and a dedicated 

object retrieval strategy. Furthermore, while other works 

also address drone target tracking, our use of a simpler 

PD controller offers advantages in terms of 

computational efficiency and ease of implementation, 

particularly for resource-constrained UAV platforms, 

while still achieving robust tracking performance. The 

unique inclusion of an object retrieval strategy in our 

system provides a critical capability for re-acquiring lost 

targets, a feature often absents in many conventional 

tracking frameworks. 

A critical practical consideration is the communication 

latency between the ground station, where image 

processing and control computations occur, and the 

quadrotor. This latency introduces a delay between 

target detection and control command execution, 

potentially degrading tracking performance, especially 

for targets moving faster than those tested in our 

experiments. In such cases, the quadrotor may react to 

outdated position information, increasing tracking errors 

and destabilizing the control loop. While the current 

setup manages latency adequately for moderately paced 

targets, future work could address this limitation by 

deploying larger quadcopters equipped with onboard 

processing capabilities to enable fully autonomous 

operation and facilitate reliable outdoor deployment, 

thereby extending the applicability of the proposed 

framework beyond controlled indoor environments. 

Future improvements could also include advanced 

control strategies such as adaptive control or model 

predictive control for proactive disturbance rejection. 

Retrieval enhancements may involve stochastic motion 

models combined with dynamically adjusting detection 

thresholds and feature scales to maintain accuracy 

under variable lighting and target distances, 

complemented by adaptive Kalman filtering to ensure 

robust performance in challenging outdoor conditions. 

Conclusion 

This paper presented the development and 

evaluation of an autonomous quadcopter-based system 

for tracking both stationary and moving targets with 

unknown dynamics. The proposed system integrates 

three main components: target detection, search, and 

tracking. Target detection was implemented using the 

YOLOv5 neural network combined with the Kalman filter 

to implement robustness against detection failures, 

including false positives and false negatives. Additionally, 

an object retrieval mechanism was incorporated to 

enable re-identification of targets that momentarily exit 

the field of view. For flight control, two PD controllers 

were employed to generate the flight control signal for 

the quadcopter.  

The system’s performance was validated through a 

series of real-time experiments involving fixed and 

moving target tracking scenarios. The results 

demonstrated that the system successfully maintained 

the target within the quadcopter’s field of view across 

varying conditions. Notably, in fewer than 10% of frames 

captured during tracking, the target was not detected; 

however, the Kalman filter provided effective 

estimations to compensate for these instances. Overall, 

tracking performance remained stable, and the system 

achieved its objectives with minimal degradation, even 

in the absence of target identification.  

The integrated target tracking with a quadcopter 

framework, combining the YOLO network, Kalman filter, 

and PD controllers, offers significant advantages over 

conventional alternatives. Unlike two-stage detectors 

such as Faster R-CNN, the YOLO-based design is 

optimized for real-time operation in dynamic missions 

while maintaining high detection accuracy. The Kalman 

filter provides robust state estimation by fusing 

detection outputs over time, and the PD controllers, in 

synergy with advanced vision modules, ensure 

responsive and precise target following. A dedicated 

object retrieval mechanism further enables recovery of 

lost targets; a feature often absent in similar systems. 

As such, future work will aim to enhance the system’s 

robustness in unstructured environments. Potential 

improvements include integrating stereo vision to 

estimate the depth (longitudinal distance) between the 

quadcopter and the target, thereby enhancing control 

accuracy. Additionally, the use of a larger quadcopter 

equipped with onboard processing capabilities could 

enable full autonomy and facilitate deployment in 

outdoor environments, thereby extending the 

applicability of the proposed method. 
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Abbreviations 

AI    Artificial Intelligence 

CV    Computer Vision 

DL    Deep Learning 

FC    Flight Control 

FOV   Field of View 

R-CNN   Region Convolutional Neural Networks 

PD    Proportional-Derivative 

SSD   Single Shot Multi-Box Detection 

 UAV   Unmanned Aerial Vehicles  

YOLO   You Only Look Once 
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