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Background and Objectives: Currently, the control engineering community is
increasingly focusing on research related to Unmanned Aerial Vehicles (UAVs)
due to their versatile capabilities. Among the various applications, target
detection and tracking stand out as crucial. Recent advancements in Artificial
Intelligence (Al) and Deep Learning (DL) have the potential to enhance the
synergy between vision and control in UAV operations. By integrating Al
algorithms with control methods, the accuracy of target information can be
significantly improved in UAVs. This research introduces an autopilot system for
qguadcopters to search for and track a predetermined target.

Methods: The autopilot system utilizes the YOLO network, a robust convolutional
neural network-based system, for real-time target detection. To enhance object
tracking robustness, the Kalman filter is integrated into the system. Furthermore,
Proportional-Derivative (PD) controllers are utilized to calculate suitable control
commands, enabling the quadcopter to effectively track both stationary and
moving targets. Additionally, an object retrieval strategy is proposed to locate
and recover lost objects during the tracking phase.

Results: The effectiveness of the proposed system was evaluated through real-
time experimental trials involving diverse scenarios encompassing both
stationary and moving targets. The integration of the YOLOvV5 network with the
Kalman filter substantially improved detection accuracy and stability.
Furthermore, the object retrieval mechanism demonstrated high reliability in
recovering lost targets, thereby increasing overall system resilience. The PD-
based control scheme enabled responsive and precise trajectory adjustments,
contributing to consistent target tracking performance across all test cases.
Conclusion: Integration of a YOLOv5-based detection module, a Kalman filter for
robust tracking, and PD controllers for flight control provides an autonomous
quadcopter system capable of detecting and tracking both stationary and moving
targets with unknown dynamics. The proposed approach shows promise for real-
time autonomous tracking applications and offers a foundation for future
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development in more complex, outdoor scenarios.
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Introduction

In recent years, Unmanned Aerial Vehicles (UAVs),
particularly quadcopters, have garnered significant
attention from researchers due to their diverse
capabilities and sizes. Remarkable advancements in
Artificial Intelligence (Al) and Computer Vision (CV) have
strengthened the link between vision and control for
quadcopters. As a result, quadcopters find applications
in various domains, including autonomous navigation [1,
2], medical care [3], exploration and mapping [4], path
planning [5], search and rescue[6]-[8], object tracking
[9], [10], traffic monitoring [11], and obstacle detection
[12]. In vision-based quadcopter applications, visual
object tracking has become increasingly ubiquitous and
represents a critical task [13].

The wide range of applications underscores the
critical need to address the fundamental challenges of
object detection and tracking. A thorough understanding
of the fundamental principles and challenges related to
this field is essential for addressing real-world problems
and developing practical solutions. Object detection
involves localizing and classifying objects within images
or video sequences. On the other hand, object tracking
focuses on monitoring the movement of a specific object
over a time period. In recent years, researchers have
increasingly emphasized the significance of object
detection and tracking in the context of quadcopter
drones [14].

Various methodologies have been developed in the
domain of object detection and tracking. Before the arise
of Deep Learning (DL) algorithms, traditional object
detectors were used for object detection. They typically
include three-stage process: 1) proposal generation; 2)
feature vector extraction; and 3) region classification.
They have limitations, including many redundant
proposals during proposal generation, this leads to false
positives during classification. Furthermore, each stage
of the detection process is designed and optimized
independently. So, this approach makes it challenging to
achieve a globally optimal solution for the entire system
[15].

DL is increasingly gaining attention as a promising
area of research for enhancing several applications, such
as autonomous vehicles [16] and especially UAVs [17]
capabilities. In response to the rapid advancement of DL
algorithms, the performance of object detection and
tracking has been incredibly improved. DL algorithms
have become popular because of two important causes:
1) Availability and abundance of data for processing and
2) Availability of high-end computational resources [18].
In general, object detection algorithms include two
approaches: one-staged and two-stage [19]-[21]. For
real-time object detection and tracking, the speed of the
detection is very important. While two-stage algorithms

can provide some assistance with real-time object
detection, but it is still impractical for use in some
embedded platforms (e.g., vehicle, UAV and etc.) [22].
One-stage algorithms such as Single Shot Multi-Box
Detection (SSD) [23], You Only Look Once (YOLO) [24], as
well as other versions of the YOLO network [25], [26],
are faster than two-stage algorithms like Region
Convolutional Neural Networks(R-CNN) [27], Fast
Region-Based CNN(Fast R-CNN) [28] and Faster Region-
Based CNN (Faster R-CNN) [29]. Among the one-stage
algorithms, the YOLO family are particularly famous for
capability to detect and classify objects using forward
propagation without the need to create proposal regions
like two-stage algorithms [30]. Also, due to its fast and
accurate detection, the YOLO algorithm has huge
potential for being used in real-time applications.

Recent studies have explored the integration of YOLO
with the Kalman filter to enhance real-time object
detection and tracking performance. Barisic et al [31]
developed a system utilizing a YOLO-based convolutional
neural network for detecting multirotor UAVs in various
environments, enhanced detection by incorporating a
Kalman filter, which improves the reliability of position
and velocity data. A nonlinear controller based on visual
servoing maintains the UAV within the Field of View
(FOV) and at the desired distance. Alshaer et al [32]
proposed a two-stage system using deep learning and
Kalman filter techniques for detecting and tracking
consumer-grade UAVs, the study evaluates YOLO models
for detection and employs both the Kalman filter and
Extended Kalman filter for tracking, resulting in
improved real-time tracking accuracy. Likewise, the
concentration of many research papers is on object
tracking. Zhao et al. [33] proposed a framework for
moving vehicle detection, tracking, and geolocation.
They utilized the YOLOv3 model for vehicle detection.
Additionally, a correlation filter was applied to the task
of target tracking. Furthermore, they introduced a flight
controller based on the results of visual tracking and
geolocation to maintain targets within the FOV. The
proposed framework was evaluated experimentally.
Mercado et al. [34] suggested a system for tracking
objects with unknown dynamics. A Haar cascade
classifier was applied to detect objects. A Kalman filter
was employed to estimate the relative position of
objects while the drone and target were maintained at a
constant distance by using a linear controller. Mokhtari
et al. [35] developed a system for target tracking with a
quadcopter that consisted of four Proportional-Integral-
Derivative (PID) controllers and the YOLOv3 model for
object detection. Two control goals were achieved:
keeping the target in FOV and maintaining the distance
between the quadcopter and the target. Dursun et al.
[36] suggested a distributed system for recognizing and
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tracking individuals. They employed the YOLOv2 model
to handle object detection. Users set the target; the
object information vector was transformed into error
signals.  Proportional-Derivative ~ (PD)  controllers
generated control signals to track objects that were
embedded within the drone. Kuoh et al. [37] proposed a
closed-loop end-to-end target tracking system using
visual control steering. To address real-time object
tracking, they introduced a combination of an adopted
CNN and a single-shot multi-box detection. The error
was calculated based on the object location and the
central coordinate within the image. The closed-loop
system was designed by PID controllers.

Previous studies have predominantly relied on
simulation studies, lacking validation through actual
flight tests and overlooking solutions for target loss
during tracking and subsequent recovery. This paper
presents an intelligent system designed for real-time
search, detection, and tracking of moving objects using a
qguadcopter, along with a method for target retrieval in
case of loss during the tracking phase. The closed-loop
system integrates YOLOV5, a renowned model for target
detection recognized for its speed and accuracy balance,
with two PD controllers serving as the autopilot for the
quadcopter. Initially, the system explores the
environment following a predefined flight path and
captures images through a camera mounted on the
quadcopter. These images are then transmitted to the
ground station for processing by the YOLOv5 model.
Upon target detection, the search phase is terminated,
and the tracking phase begins. Throughout the tracking
phase, the autopilot system computes Flight Commands
(FCs) based on tracking errors using the two PD
controllers and wirelessly transmits FC to the
quadcopter. Autopilot endeavors to keep the target
within the FOV of the quadcopter. In cases of target loss,
the system directs the quadcopter to recover the lost
target. Two scenarios are considered. In the first
scenario, either the target is lost within a few frames, or
multiple targets are identified in a single frame. In such
instances, a Kalman filter is proposed for estimating the
target’s position. However, if the count of frames where
the target is not detected surpasses a set threshold, the
quadcopter reverts to the search phase to locate the
target. The Kalman filter design operates under the
assumption that the target moves with constant
acceleration. The key contributions of this work are as
follows:

1) Improving the robustness of the object detection
algorithm by integrating YOLOV5 with the Kalman filter.

2) Implementing real-time position control for a
quadcopter to track a moving object with unknown
dynamics, with no need for target prior information and
the quadcopter’s attitude and position.

Quadcopter Dynamics

Understanding the concept of a quadcopter’s
dynamics is crucial for studying its applications. The
dynamics of a quadcopter in the body frame involves the
interaction of forces, torques, and motion states, which
play a pivotal role in the quadcopter’s stability, control,
and overall flight performance. The axes of this frame
are defined as Xz, Yg, and Zs which are shown in Fig. 1.
By comprehending these dynamics relative to the body
frame, engineers and researchers can effectively develop
control strategies, motion planning algorithms, and state
estimation techniques necessary for reliable quadcopter
operation in diverse environments and applications.

AT <

> L8 ¢, ¢

Fig. 1: Configuration of a typical quadcopter.

The quadcopter has four rotors (i = 1 to 4), and each
rotor generates a thrust vector F; exerted on the
quadcopter’s body frame. Every thrust vector generates
a torque vector T; around the mass center of the
quadcopter [38]. By adjusting the speed of the rotors,
the quadcopter can move along all three axes. The
rotation of the quadcopter around the X, Y, and Z, axes
are defined by the roll angle ¢, pitch angle 6 , and yaw
angle 1, respectively [38]. Also, Ty, To, and Ty denote
the torques generated by the four motors around Xz, Yg,
and Zg, respectively. The thrust vector F; generated by
the ith rotor is given by (1).

Fi= hw? i=1,2,3,4 (1)

where b; is an unknown positive constant that can be
determined by static thrust tests [39] and w; is the
angular speed of the ith rotor. The total thrust vector T
and the resultant torque vectors in the body frame can
be written as (2)-(5).

T=F+F+F+F, (2)
Ty = 1(F, — Fy) (3)
Ty =1(F; — F) (4)
Ty =cp(F, + F,— F, — F3) (5)

The variable [ represents the distance from the center
of mass to the center of the rotors, and ¢, denotes an
unknown parameter. By employing the Newton-Euler
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method, the dynamic equations of the quadcopter’s
body can be expressed. (6) and (7) show the dynamic
equations of the quadcopter.

ma=F,+F,+F, +F, (6)
JO=T,+T,+T, +T, — Q x]Q (7)

that m is the quadcopter’s mass, a denotes the linear
acceleration of the mass center in the inertial frame, and
J represents the moment of inertia matrix. Also,
Fy = [Fax Fays ]' denotes unknown aerodynamic, and
E. = [Fy, Fy, E.,]" refers to residual forces. F, and F,
are the gravitational and motor produced forces,
respectively. T, = [Tyq, Tae;Taw]T shows unknown
aerodynamic acting on the canter of mass, and
T, = [Trq),Tre,Tw]T defines residual torques acting on
the canter of mass. T, and T, are the gravitational and
motor produced torques, respectively.

The angular velocity of the quadcopter in the body
frame (2) and the inertia matrix (/) are determined by
(8) and (9).

1 singtanf cos¢ptanf] ‘[

n=10 cos ¢ —sin¢ 0 (8)
0 sin¢gsech cos¢sech P
Ix Ixy Ixz

J=|ky Iy Iy (9)
Ixz Iyz Iz

and

E,=1[0 0 —mg]" (10)
cos ¢ cossin @ + sin ¢ sinp]”

Fp = |cos¢siny sinf — sin ¢ cosy (12)

cos ¢ cos O
T, =[-qLQ plQ, O (12)
(13)

T,=[Te To Ty]"

that g is the gravitational constant, I, is the inertial
moment of rotors and Q, = Y}, w;. Using (2), (6), (10)
and (11), the linear motion equation of the quadcopter
can be obtained by

i

1
- [(cosd cos Psin® + sin P sin Y)T + Fyy + Fry (14)

7
_ 1 [(cos sinysin® — sin ¢ cos Y)T + F,y + Fy ] (15)
m
1
i=— [(cosdcosO)T —mg + Fp, + F,] (16)

The equation governing angular motion can be
derived in a manner like (14)-(16), but it tends to be
quite intricate. To simplify matters, the angular motion
equation is demonstrated as (17).

b

0

) (17)
= £(.0.4.6.,0.9)
+9r(0,0,,¢,6,9 )Ty + Ty + T + T,

where f,. and g, are two nonlinear matrix functions of
Euler angles and their first derivatives. If it is assumed
that rotor’s speed controllers exhibit gain-like behavior
and the square of the rotors’ angular velocity are taken
as the control input (u; = w?), then (17) can be
reformulated in a compact form as (18).

¥ = fr Q0 %) + gr (0, %) U (18)

where x, = [¢,0,9]" is state vector,
u = [uy, up, uz, uy]" is the control input, and f, and g,
are unknown matrix functions.

The flight controller of the quadcopter adjusts the
rotors’ speed based on commands received from either
the pilot or the autopilot system. In fact, the flight
controller determines the duty cycle of the Pulse-Width
Modulation (PWM) signals that control the rotors’
speed. The pilot sends four different commands:
Throttle, which controls the rotation speed of the
motors; Yaw, which manages rotation around the
vertical axis (Zg); Pitch, which handles tilting or moving
forward and backward; and Roll, which is responsible for
tilting or moving left and right. Consequently, the
autopilot system must be capable of generating these
four types of commands.

Methodology

This section presents the proposed autopilot system,
and the methodologies employed. The quadcopter's
flight operation is divided into two distinct phases:
search and track, with object detection serving as a
critical component in both. To facilitate real-time object
detection, the system first establishes a reliable
communication link between the quadcopter and the
processing unit. In the proposed system, images
captured by the quadcopter’s onboard camera are
wirelessly transmitted to a personal computer (PC) via a
Wi-Fi connection. Subsequently, the target is detected,
search or tracking commands are generated, and control
signals are computed and transmitted wirelessly back to
the quadcopter. These control signals are essential for
the accurate execution of the quadcopter's autonomous
operations. The communication architecture between
the quadcopter and PC, which functions as the ground
station, is illustrated in Fig. 2. This wireless link enables
real-time image processing and the transmission of
control commands necessary for object tracking.

Following the communication architecture, the
operational flow of the proposed autopilot system is
illustrated in Fig. 3.
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Processing Unit
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Fig. 2: Communication structure between the quadcopter and
PC.
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Fig. 3: Flowchart of the proposed autopilot system.

L

The system consists of three interconnected
subsystems: target detection, target search, and target
tracking. After take-off, the quadcopter enters the
search phase and transitions to the tracking phase once
the target is successfully detected. During tracking, a
Kalman filter and a target-retrieving algorithm are
employed to maintain accuracy, particularly in cases of

temporary target loss. The pseudocode of the proposed

method is shown in pseudocode 1. A detailed
description of each subsystem is provided below.

Initialize system parameters
Initialize PD controller gains
Initialize Kalman filter states
While system is running:
Acquire image frame from onboard camera
Detect target using YOLO network
If target is detected:
Extract target position (bounding box center)
Update Kalman filter with measurement
Compute control error
Generate control commands using PD controller
Send commands to quadcopter
Reset loss counter
Else: Target not detected
Increment loss counter
If L <= Nppay:
Predict target position using Kalman filter
Compute control error
Generate control commands using PD controller
Send commands to quadcopter
Else if time_since_loss <= T4yt
Predict target position using Kalman filter
Compute control error
Generate control commands using PD controller
Send commands to quadcopter
Else:
initiate search behavior
End While

Pseudocode 1: The pseudocode of the proposed method.

Target Detection

Target detection plays a pivotal role in the proposed
system, as it is integral in both the search and tracking
phases. In the context of object tracking, the process
begins with localizing the target by identifying a two-
dimensional Bounding box (B-box) within the image. This
process is achieved using a detection model, which
generates the B-box and enables estimating the target
state [10]. The increasing deployment of UAVs has
underscored the demand for detection models that
provide both high speed and accuracy in real-time
applications [40]. However, limitations in image
resolution and computational resources pose challenges,
particularly in detecting small objects. To address these
constraints, this paper employs the YOLO network, a
state-of-the-art object detection model. Among its
variations, YOLOVS5 is recognized for its optimal trade-off
between speed and accuracy in real-time scenarios [41].

YOLOV5 and its successors offer a compelling balance
between speed and computational efficiency compared
to earlier YOLO versions and other object detection
models. While older models like YOLOv3 and YOLOv4
provide strong accuracy, they are heavier and slower,
making them less suitable for real-time or edge
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applications. YOLOvVS5, particularly the smaller variants,
significantly reduces model size and increases inference
speed, enabling high-performance real-time detection.
Newer versions such as YOLOv6—v8 further optimize this
trade-off, delivering ultra-fast processing without
substantial loss of accuracy. In contrast, two-stage
detectors like Faster R-CNN and transformer-based
models like DETR achieve higher precision but at the cost
of much greater computational complexity and slower
inference, highlighting YOLO’s strength for applications
where speed and efficiency are critical.

YOLOVS is offered in multiple configurations, such as
small, medium, large, and extra-large models, allowing
customization based on performance requirements.
Additionally, it supports various input image scales,
enhancing detection performance a range of object sizes
and aspect ratios [42]. The architecture of YOLOVS5,
illustrated in Fig. 4, comprises three main components:
1) Backbone-CSPDarknet; 2) Neck-PANet; and 3) Head-
YOLO Layer.

The backbone architecture typically incorporates
well-established CNN models such as VGG, ResNet,
DenseNet, MobileNet, EfficientNet, and CSPDarknet53.
In the neck component, PANet performs feature
aggregation through both bottom-up and top-down
pathways, facilitating multi-scale feature fusion via up-
sampling and down-sampling operations [41]. The head
of the model comprises three convolution layers
responsible for predicting the B-box coordinates, object
confidence scores, and class probabilities. The input
image undergoes a two-stage process: initial feature
extraction by CSPDarknet53, followed by further feature
fusion through PANet. Ultimately, the YOLO layer utilizes
the fuzzed features to generate object detection outputs
[43].

Backbone: CSPDarknet Neck: PANet Head: Yolo Layer
r————7— "7 777 | | |
: (“BottieNeckcSP J-:ILo( Concat | ( csP_ : {{convix1 | |
| 11 [(Upsample ) ((convaxasz | : | :
: “ ( 00n31x1 }———{"Concat ] : : :
! I | l
: (_BottieNeckcsP. ]-H—o{ Concat | (_BottleNeckcsP | I Convix1 | :
: ” [UpSample ] [ Conv3x3 S2 ] | : |
| [l [convixt Concat : | :
: m :lr{ t SP. [ l SP. } : : {Conv1x1 ] :
L ] a1

Cross Stage Partial Network Convolutional Layer
@ Spatial Pyramid Pooling Concatenate Function

Fig. 4: Network architecture of the Yolov5 [44].

YOLOv5 demonstrates improved performance over its
predecessor, YOLOv3. In YOLOv3, feature extraction was

performed using Darknet19, which exhibited limitations
in detecting small objects [43]. YOLOvV5 addresses this
issue by employing CSPDarknet for enhance feature
extraction. it divides the input image into an s * s grid,
with each grid cell responsible for detecting objects
whose center lies within that cell. The model then
generates a B-box containing key information about the
object’s location in the captured image. the output of
YOLOv5 and example of the B-box information are
illustrated in Fig. 5.

Fig. 5: Information about the YOLOvV5 B-box.

Following target detection, the central coordinates of
the B-box (critical for enabling precise tracking) are
calculated using the positional data provided by the
detection algorithm, as formulated in (19) and (20).

Xmin + X

Xbbox_cent = e 2 e (19)
Ymin T Y,

YVbbox_cent = =t 2 e (20)

The parameters X,in, Ymin» Xmax, and Ymayx denote
the top-left and bottom-right corner coordinates of the
B-box, respectively as illustrated in Fig. 3.

In the initial phase, a custom YOLOv5 model was
trained using a dataset sourced from Kaggle,
supplemented with extensive data augmentation
techniques to increase the dataset's diversity and
improve model generalization. However, despite these
efforts, the performance of the custom-trained model
was inconsistent and failed to match the robustness and
accuracy of the pre-trained YOLOv5 model. The pre-
trained model, developed on the COCO dataset (a large-
scale, diverse benchmark widely regarded in the
computer vision community) demonstrated superior
generalization across varied object categories and
environmental conditions. Moreover, training from
scratch on a limited or domain-specific dataset reduced
adaptability in real-world scenarios. To ensure high
detection accuracy and computational efficiency the pre-
trained YOLOV5 model was adopted as the final
configuration for object detection in this paper.
Furthermore, the integration of the YOLOV5 detection
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model with a Kalman filter significantly enhances the
object tracking capability. This fusion approach improves
tracking accuracy and stability, particularly in scenarios
involving occlusions or temporary target loss.

Kalman Filter

The main limitations of the object detection algorithm
are false positive detections and missed detections. A
false positive detection happens when the system
mistakenly identifies a condition or attribute as present
when it isn’t. On the other hand, missed detections, also
referred to as false negatives, occur when the system
fails to recognize a condition or attribute that is indeed
present. In this paper, to deal with these limitations, the
Kalman filter are employed.

The kinematic of the target can be written as (21).

Xbbox_cent 0 1 0 Opf *bpox_cent
d |vx bboxcent| _ 10 0O O O] |Y*bbox_cent
E ybbox,cent - 0 0 0 1 ybbox,cent
vJ/bbox_cent 0 0 0 O vybbox_cent

(21)

axxbbox_cent

0
ay bbox_cent

+

that vxbbox_cent' bebox_cent' axbbox_cent and aybbox_cent
are the speed and acceleration of the B-box’s center

point, respectively. The acceleration is considered as
process white noise.

At each step of target tracking, one of four states may
occur:
1) Single Target Detected: The position of the B-box’s
center is calculated using (19) and (20).
2) Multiple Target Detected: The position of the B-box’s
center is estimated using the Kalman filter, and the
target whose center is closest to the estimated position
is selected.
3) No Target Detected (Short Duration): If no target is
detected and the target has been missing for fewer than
Nnax CONsecutive frames, the estimated position of the
B-box’s center is used.
4) No Target Detected (Long Duration): If no target is
detected and the target has been missing for n,,,,
consecutive frames, target tracking is stopped, and the
quadcopter begins searching for the target using the
method described in section IV.

Target Search

In the proposed system, target search is performed
while the quadcopter follows a predefined yet arbitrary
flight path, which introduces no constraints on trajectory
designed. Prior to initiating the search phase, the desired
target such as human, ball, or vehicle must be specified
at the ground station. The quadcopter begins in a
stationary position on the ground, and the autopilot
system issues throttle commands to initiate takeoff.

Upon reaching an altitude of one meter, the
quadcopter stabilizes and commences the search
operation. During this phase, the quadcopter executes a
continuous yaw rotation at a rate of n revolutions per
minute, controlled by yaw commands generated by the
autopilot system. At each sampling time, the onboard
camera captures an image frame and transmits it
wirelessly to the ground station.

The detection algorithm as described in section Ill.A is
applied to each frame to determine the presence of the
target. Once the target is successfully identified, the
quadcopter halts its rotation, marking the end of the
search phase. Conversely, If the quadcopter fails to
detect the target after T,,,, rotations, the system
terminates the search and initiates a controlled landing
procedure at the original take-off location. Alternatively,
this feature can be leveraged during the search phase in
scenarios where the target is not predetermined,
enabling the user to manually select the target from the
images transmitted by the quadcopter to the ground
station.

Target Tracking

This section presents the proposed autopilot
framework for object tracking. As illustrated in Fig. 6, the
closed-loop system integrates YOLOv5 for target
detection, a Kalman filter for estimation of the target’s
position and PD controllers for tracking the target. Once
the desired target is identified in an image, the search
phase is terminated, and the target tracking phase
commences. The principal aim of the tracking operation
is to accurately position and continuously maintain the
target within the FOV of the quadcopter.

Ground Station

|
! Flight Commands

Controllers 0 Q
|

Object Coordinates

Object Detection
and
Kalman Filter

Image

Fig. 6: Proposed closed-loop system of target tracking.

To facilitate the tracking process, it is essential to
quantify the positional error between the target and the
center of the image frame. Fig. 7 illustrates the image
coordinates with the detected target. The tracking error
is defined as the Euclidean distance between the center
of the FOV and the centroid of the bounding box (B-box)
encompassing the target, as shown in Fig. 7. This error
metric serves as the input to the PD controllers, which
generate corrective control signals to adjust the
quadcopter’s position and maintain the target centrally
aligned within the FOV.
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Fig. 7: System coordinates.

If (Imgycent, Imgycent) = (0,0) denote the
coordinates of the FOV’s center, then the tracking error
signals are computed using (22), (23)

ex(t) = biox_cent - Imgxcent = biox_cent (22)

ey(t) = YBbox_cent — Imgycent = YBbox_cent (23)

where (Xgpox centr YBbox cent) Fepresent the coordinates
of the B-box center. These error signals are utilized as
inputs to the autopilot system, which modulates the FCs
through two PD controllers in order to maintain the
target within the FOV. The PD controllers are responsible
for generating control actions that guide the
guadcopter’s motion along the vertical and horizontal
axes, corresponding to upward, downward, leftward,
and rightward movements. At each sampling time, upon
computation of the tracking error, the quadcopter
updates its control actions based on the error magnitude
and direction. Consequently, the FCs are derived
according to (24) and (25).

FCup-down(t) = Kpey(t) + Kpéy(t) (24)

FCleft—right(t) = erx(t) + KDéx(t) (25)

here, FCyp_gown and FCiepi_rign: correspond to the the
throttle and roll FCs, respectively.

Target Retrieving

During object tracking operations, there may be
instances where the target becomes undetected or is
lost in some frames. While most existing studies
overlook this issue, the absence of a retrieval mechanism
can significantly hinder the continuity and reliability of
the tracking process. This limitation becomes especially
critical in mission-critical scenarios such as search and
rescue operations or high-value industrial and
commercial applications. Failure to retrieve a lost target
in such cases could pose severe safety risks or result in
substantial financial losses [45]. Therefore,
implementing a robust target retrieval mechanism is
imperative for enhancing tracking reliability. Target
retrieval methods typically fall into two categories:
utilizing new positional data or leveraging historical

information. In this paper, a retrieval strategy based on
previously recorded error signals is proposed. When the
target is lost for a duration exceeding a specified
threshold, the last known error signal values are used to
guide the quadcopter's motion in an attempt to
reacquire the target.

Specifically, if the target remains undetected for n,,,,
consecutive frames, the ground station computes the
retrieval command based on the latest error values (e,,
ey). If e, or e, is positive, it implies the target has exited
the FOV through the right or upper boundaries,
respectively. In this case, the quadcopter is instructed to
rotate to the right or ascend. Conversely, negative error
values indicate that the target has exited through the
left or bottom boundaries, prompting the quadcopter to
rotate to the left or descend. Altitude adjustments are
made cautiously, ensuring that the quadcopter does not
descend below the minimum safe altitude or ascend
beyond permitted altitude.

If the target is still not detected after one full rotation
following the initial retrieval attempt, the quadcopter
terminates the operation and lands at its current
location. Alternatively, it can be instructed to return to
its hangar based on mission requirements.

Table 1 summarizes the logic used to determine the
retrieval commands based on the latest error signal
values.

Table 1: Logic of the retrieval commands

. Error Signal .
Condition Quadcopter Action
(ex, €y)
Target exits FOV .
to the right (ex>0) Rotate right
Target exits FOV
to the left (ex<0) Rotate left
Target exits FOV (ey> 0) Ascend
upwards
Target exits FOV (ey <0) Descend
downwards
Target
undetected after N/A Land or return to the
. hangar
full rotation

Experimental Results

To assess the performance of the proposed autopilot
system, real-time experiments were carried out using
the DJI Tello programmable quadcopter in a controlled
indoor environment. The objective was to evaluate the
system's ability to autonomously search for and track a
designated target, specifically a yellow toy car.

The experimental setup consisted of a ground station
implemented on a personal computer equipped with an
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Intel Core i7 processor, an NVIDIA RTX 2060 graphics
card, and 32 GB of RAM. This system was responsible for
executing the target detection algorithm based on the
YOLOV5 network and computing the necessary flight
control signals. Communication between the quadcopter
and the ground station was established via a Wi-Fi
connection, enabling real-time transmission of image
frames and control signals.

The DJI Tello quadcopter, chosen for its affordability
and ease of programmability, weighs approximately 80
grams and is equipped with a 5-megapixel camera
capable of recording 720p high-definition video. It also
features electronic image stabilization to reduce motion
blur and ensure clearer image capture during flight. The
drone has a control range of up to 100 meters, making it
well-suited for small-scale indoor experiments in
academic environments.

Two experimental scenarios were defined to evaluate
the tracking capabilities of the system. The first scenario
involved tracking a stationary target, while the second
focused on tracking a moving target. In both cases, the
quadcopter followed a consistent initialization
procedure. At the start of each experiment, the drone
ascended vertically to a height of one meter and
initiated the search phase by rotating about its yaw axis
at a rate of approximately 36 degrees per second. Image
frames captured by the onboard camera were
continuously transmitted to the ground station for
processing. Upon successful detection of the target, the
system transitioned from the search phase to the
tracking phase, wherein the autopilot controller adjusted
the FCs to maintain the target within the FOV.

All experiments were conducted in an indoor setting
with a uniform white background to minimize visual
noise and ensure consistent detection performance. This
controlled environment allowed for a clear assessment
of the tracking behavior and robustness of the proposed
autopilot system.

The specific parameters used for the autopilot system
during these experiments are summarized in Table 2.

Table 2: Autopilot system’s parameters

Sampling Time

Parameter
(sec)

Tmax nmax

Ky Ky

Value 1 3 0.1 0.01 0.1

Scenario One

In the first scenario, the performance of the proposed
system was evaluated by tracking a stationary object at
three different distances between the quadcopter and
the target: one meter, two meters, and three meters.
The target, a yellow toy car, was placed on a table with a
height of 100 cm. The objective was to assess the
system's ability to maintain accurate tracking and
positioning of a fixed object within the quadcopter’s FOV
under varying spatial conditions.

Fig. 8 illustrates the quadcopter’s view during the
flight test of fixed target at distance of one, two and
three meters. In this figure the red dot represents the
center of the FOV. The results indicate that the system
consistently achieved its primary objective of precisely
detecting, locating and consistently keeping the object
within the quadcopter’s FOV across all tested distances.

The experimental observations confirmed that the
autopilot system could guide the quadcopter with
sufficient precision to compensate for minor deviations
and ensure continuous target visibility. Specifically, in
the two-meter trial, the quadcopter executed corrective
movements in the upward and leftward directions to
maintain the target’s alignment with the center of the
image frame. The sequential images in Fig. 8 further
validate the accuracy and reliability of the proposed
method, demonstrating its effectiveness in scenarios
involving static target tracking.

Fig. 8: A view of the quadcopter in the flight test of fixed target tracking at distance of two meters.
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To further evaluate the system’s performance, Fig. 9
presents the tracking error signals and corresponding
control commands for each fixed-distance tracking case.
The data illustrates that the proposed method effectively
minimizes the tracking errors while maintaining control
signal values within the expected operational range of
+100.

Across all trials, the quadcopter consistently
maneuvered to align the target with the center of the
FOV, demonstrating the robustness of the control
strategy. An important observation is the smoothness of
the quadcopter’s flight path. The autopilot system
generated gradual, stable control commands that
avoided sudden or erratic actions. This resulted in a
controlled and progressive movement toward the target,
which is particularly advantageous in scenarios requiring
precise and safe positioning. These results underscore
the reliability and stability of the proposed system in
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maintaining accurate tracking of stationary targets.
Scenario Two

To further evaluate the performance of the proposed
autopilot system in dynamic conditions, an experiment
was designed in which the target moved horizontally
from right to left at an approximate speed of 6 cm/s on a
table. The quadcopter was initially positioned three
meters from the target.

Fig. 10 illustrates the quadcopter’s FOV during this
scenario. demonstrating the system’s capability to
achieve control objectives and consistently keep the
target within the quadcopter’s FOV. Approximately three
seconds after initiating the tracking phase, the red dot is
observed to lie within the bounding box of the detected
object. This positioning confirms the system's ability to
adjust the quadcopter’s orientation effectively, ensuring
that the moving target remains centered within the FOV.
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Fig .9: Tracking errors and control signals for a fixed target tracking at distances of: (a) one meter, (b) two meters, and (c)
three meters.
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Fig. 10: A view of the quadcopter in the flight test of moving target tracking.

The quantitative results, including tracking error and
control signal data, are presented in Fig. 11. These
results further demonstrate the proposed system’s
capacity to generate appropriate control commands,
resulting in stable and responsive flight behavior.

While complete elimination of the tracking error over
prolonged periods is inherently challenging (due to both
the nature of the Tello drone’s limited flight dynamics
and the continuous motion of the target) the tracking
errors remain consistently bounded around zero.

Tracking Error [pixel]

—e
X

—€
y

Flight Command

T
—Up-Down
— Right-Left

4 5 6 7
Time [s]

Fig. 11: Tracking errors and control signals for a moving target tracking.

This behavior indicates that the target is maintained
near the center of the FOV, validating the accuracy and
responsiveness of the autopilot in handling moving
targets.

The normalized root mean square Error (NRMSE) of
the tracking is reported in Table 3 for both scenarios.
The NRMSE metric is calculated using (26) and (27) for X
and Y axes, where n denotes the number of
measurement data.

(26)

N
1 |1
NRMSEy = \m N Z(yl)z

i=1

/ (27)

The results indicate that the tracking error for
stationary targets decreases as the target exists farther
from the quadcopter. Additionally, the tracking error for
moving targets is greater than for stationary targets,
which is an obvious outcome.

Table 3: The normalized root mean square of the tracking
errors for two experimental scenarios

scenarios Distance NRMSE, NRMSE,,
Im 0.0452 0.2629
One 2m 0.0398 0.2104
3m 0.0132 0.2070
Two - 0.0471 0.0356
Discussion

The proposed framework demonstrated robust target
tracking in controlled indoor environments through a
simple yet effective combination of a PD controller and
Kalman filter, supported by empirically tuned retrieval
parameters. While computationally efficient, the PD
controller is limited in managing nonlinearities, time-
varying  dynamics, and external disturbances.
Additionally, the retrieval strategy, which relies on the
last known error, assumes moderately smooth target
motion, reducing effectiveness against highly erratic
trajectories.
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Our integrated system, combining the YOLO network,
Kalman filter, and PD controllers, offers distinct
advantages over these approaches. Our system provides
holistic integration of perception, control, and retrieval
strategies for a complete target tracking mission,
including the crucial phase of object recovery. Unlike
Alshaer’s work [32], SMART-TRACK [46] and VTD3 [47],
which primarily focus on detection and tracking, our
framework extends to active control and a dedicated
object retrieval strategy. Furthermore, while other works
also address drone target tracking, our use of a simpler
PD controller offers advantages in terms of
computational efficiency and ease of implementation,
particularly for resource-constrained UAV platforms,
while still achieving robust tracking performance. The
unique inclusion of an object retrieval strategy in our
system provides a critical capability for re-acquiring lost
targets, a feature often absents in many conventional
tracking frameworks.

A critical practical consideration is the communication
latency between the ground station, where image
processing and control computations occur, and the
quadrotor. This latency introduces a delay between
target detection and control command execution,
potentially degrading tracking performance, especially
for targets moving faster than those tested in our
experiments. In such cases, the quadrotor may react to
outdated position information, increasing tracking errors
and destabilizing the control loop. While the current
setup manages latency adequately for moderately paced
targets, future work could address this limitation by
deploying larger quadcopters equipped with onboard
processing capabilities to enable fully autonomous
operation and facilitate reliable outdoor deployment,
thereby extending the applicability of the proposed
framework beyond controlled indoor environments.

Future improvements could also include advanced
control strategies such as adaptive control or model
predictive control for proactive disturbance rejection.
Retrieval enhancements may involve stochastic motion
models combined with dynamically adjusting detection
thresholds and feature scales to maintain accuracy
under variable lighting and target distances,
complemented by adaptive Kalman filtering to ensure
robust performance in challenging outdoor conditions.

Conclusion

This paper presented the development and
evaluation of an autonomous quadcopter-based system
for tracking both stationary and moving targets with
unknown dynamics. The proposed system integrates
three main components: target detection, search, and
tracking. Target detection was implemented using the
YOLOVS5 neural network combined with the Kalman filter
to implement robustness against detection failures,

including false positives and false negatives. Additionally,
an object retrieval mechanism was incorporated to
enable re-identification of targets that momentarily exit
the field of view. For flight control, two PD controllers
were employed to generate the flight control signal for
the quadcopter.

The system’s performance was validated through a
series of real-time experiments involving fixed and
moving target tracking scenarios. The results
demonstrated that the system successfully maintained
the target within the quadcopter’s field of view across
varying conditions. Notably, in fewer than 10% of frames
captured during tracking, the target was not detected;
however, the Kalman filter provided effective
estimations to compensate for these instances. Overall,
tracking performance remained stable, and the system
achieved its objectives with minimal degradation, even
in the absence of target identification.

The integrated target tracking with a quadcopter
framework, combining the YOLO network, Kalman filter,
and PD controllers, offers significant advantages over
conventional alternatives. Unlike two-stage detectors
such as Faster R-CNN, the YOLO-based design is
optimized for real-time operation in dynamic missions
while maintaining high detection accuracy. The Kalman
filter provides robust state estimation by fusing
detection outputs over time, and the PD controllers, in
synergy with advanced vision modules, ensure
responsive and precise target following. A dedicated
object retrieval mechanism further enables recovery of
lost targets; a feature often absent in similar systems.

As such, future work will aim to enhance the system’s
robustness in unstructured environments. Potential
improvements include integrating stereo vision to
estimate the depth (longitudinal distance) between the
quadcopter and the target, thereby enhancing control
accuracy. Additionally, the use of a larger quadcopter
equipped with onboard processing capabilities could
enable full autonomy and facilitate deployment in
outdoor environments, thereby extending the
applicability of the proposed method.
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Al Artificial Intelligence
cv Computer Vision
DL Deep Learning
FC Flight Control
Fov Field of View
R-CNN Region Convolutional Neural Networks
PD Proportional-Derivative
SSD Single Shot Multi-Box Detection
UAV Unmanned Aerial Vehicles
YOLO You Only Look Once
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