http://jecei.srttu.edu

SRTTU

y Journal of Electrical and Computer Engineering Innovations

o

|

Electrical and Computer

JECEI, Vol. 2, No. 1, 2014

]

Regular Paper =

DALD: Distributed Asynchronous Local Decontamination
Algorithm in Arbitrary Graphs

Maryam Rahmaninial*, Elnaz BigdeliZ, and Manouchehr Zaker3

1Department of Computer Engineering, Islamic Azad University, Ghasr-E-Shirin Branch, Kermanshah, Iran.

2Electrical Engineering and Computer Science, University of Ottawa, Ontario, Canada.

3Mathematics and Computer Science Department, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.

*Corresponding Author’s Information: ma.rahmaninia@gmail.com

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY:
Received 15 February 2014
Revised 27April 2014
Accepted 8 May 2014

KEYWORDS:

Network decontamination
Mobile agents

Distributed algorithm

Network environments always can be invaded by intruder agents. In
networks where nodes are performing some computations, intruder
agents might contaminate some nodes. Therefore, problem of
decontaminating a network infected by intruder agents is one of the
major problems in these networks. In this paper, we present a distributed
asynchronous local algorithm for decontaminating a network. In most of
prior algorithms, there is a coordinator agent that starts from a node and
decontaminates the network. Since this procedure is handled by an agent
and in centralized mode decontamination algorithm is very slow. In our
algorithm, the network is decomposed to some clusters and a coordinator
is advocated to each cluster. Therefore, there is more than one
coordinator that each of them starts from different nodes in the network
and decontaminates network, independently. In this case, network is
decontaminated faster. In addition, in previous works the upper bound of
the number of moves and the number of cleaner agents required to
decontaminate network are given only for networks with special
structures such as ring or tori while our algorithm establishes these
upper bounds on networks with arbitrary structure.

1. INTRODUCTION

decontaminate a network. The network

A particularly important security concern in a
network is to protect it from unwanted and possibly
dangerous intrusions. At an abstract level, an intruder
is an alien process that moves on the network to sites
unoccupied by the systems agents and contaminating
the nodes while it passes by. In such cases, a primary
task is to decontaminate the infected network. There
are two main types of decontamination: internal
decontamination and external decontamination. In
internal decontamination, local faulty behavior can be
repaired by local majority mechanism with possibly
different rules which are applied only to contaminated
nodes [1]. In the external decontamination of
network, a team of mobile agents is deployed to

J. Elec. Comput. Eng. Innov. 2014, Vol. 2, No. 1, pp. 21-27

decontamination problem has been studied
extensively under various terms like intruder capture,
decontamination, and graph search [2]-[4]. Beside
network security, the decontamination problem has
many other applications. Consider the leader of a
team of agents who searches a person, moving object,
or contaminant in a building. Such a scenario may
occur in urban search and rescue [5] and military
operations [6].

The remainder of this paper is organized as follows.
We first discuss related works in Section 2.
Backgrounds and problem statement are presented in
Section 3. We then define the overview of the
proposed algorithm in Section 4. Section 5 contains a
method for decomposing the network and the analysis

21

M.Rahmaninia et al

of the proposed algorithm and the proof of its
correctness are presented in Section 6. The
computational complexity and the upper bound for
the number of moves and the number of cleaner
agents required to decontaminate a network are given
in Section 7. Finally, we conclude and discuss avenues
for future work in Section 8.

2. RELATED WORKS

The network decontamination problem was first
proposed by Breisch in which the goal is to
decontaminate network using few number of agents
[7]- In decontamination problem, the goal is typically
to devise a strategy for agents to collaboratively
decontaminate the whole network using the smallest
possible team of agents or in graph search the aim is
to find a strategy that minimizes the number of
searchers [8]. Finding the minimum number of agents
or searches is NP-hard for an arbitrary graph [9].
Finding the optimal number of agents and searches
are investigated on special structures such as mesh,
tori and ring [2]-[10]. So far, there is not any
algorithm which optimizes time complexity and
number of agents simultaneously in any arbitrary
graphs [11]. Nevertheless, decontamination is
successful in various domains since many issues in
this problem are related to graph concepts such as
cut-width and graph minors. For example, minimum
number of search in a graph is equal to cut-width of a
graph with maximum degree 3 [12]. Other example is
a pebbling problem in graphs [13].

Decontamination problem is investigated by
considering various assumptions. There are a bunch
of studies in graph search in which agents are able to
jump across the network. This kind of search is called
non-contiguous search, but this search is not valid in
many domains [14]. On the other side, there are lots of
studies in which agents cannot jump in a network and
cannot be removed from network. This kind of search
is called contiguous search [6]. It has been proved that
the contiguous searching number is always greater or
equal to then on contiguous searching number [15]. In
some recent works, there are some new and
interesting assumptions in decontamination context.
For example, the propagation patterns of faults can
follow different dynamics, depending on the behavior
of the affected nodes, and topology of the network. At
one extreme, we have a full spread behavior: when a
site is affected by a virus or any other malfunction,
such a malfunction can propagate to all its neighbors;
in other cases, faults propagate only to sites that are
susceptible to be affected; the definition of
susceptibility depends on the application but
oftentimes it is based on local conditions, for example,
a node could be vulnerable to contamination if a
majority of its neighbors are faulty, and immune

22

otherwise [16]-[17] or it could be immune to
contamination for a certain amount of time after being
repaired [18].

Some further works in the same model was done in
[19], where a two dimensional lattice is considered.

In this paper, we introduce a distributed algorithm
which decomposes graph to sub-graphs and
decontaminates nodes in each sub-graph. In all
previous papers, cleaner agents start from a home-
base to decontaminate the graph but in our algorithm
there is more than one home-base [20]-[21]. This
algorithm decontaminates the network in an
acceptable time complexity and number of agents. The
proposed algorithm for decontamination in this paper
can be a proper step toward finding algorithms which
solve decontamination problems in optimal time with
optimal number of agents.

3. BACKGROUND AND PROBLEM STATEMENT

Network is modeled as a simple undirected
connected graph G = (V, E). The network structure is
considered arbitrary in this paper. Here, nodes are
colored black or white. A node is black if it is
contaminated and otherwise it is white. A
contamination rule is a local majority-based rule
applied to white nodes only. Color of a node is
changed at discrete time steps on the basis of the
majority of colors held by its neighbors. Updating is
performed simultaneously at discrete time steps by all
nodes subject to majority voting.

In this paper, there are two types of agents which
have different capabilities. The first type of agents is
cleaner agent which we call it from then a cleaner.
Cleaner agents can clean the infected node and have
visibility ability. It means that the cleaner agent can be
aware of the state of its direct neighbors. The other
type of agents is coordinator agent which we call it
from then coordinator. A coordinator agent moves in
the network and decides about allocating a cleaner to
a node. Each agent in the network has unique
identifier and is distinguished from others using this
identifier. Moreover, agents can move in network
from a node to another node which has direct link to it
and they cannot jump to the other nodes. At any point
in time each node of the network can be in one of
three possible states: clean, contaminated, or guarded.
A node is guarded when it contains at least one agent,
clean when a cleaner agent has been on the node and
the majority of its neighbors are clean or guarded, and
is contaminated otherwise.

A cleaning strategy used by agents should
guarantee that after a finite amount of time all nodes
are clean and it should be monotone. A strategy is
called monotone if it guarantees that after
decontaminating a node, it will not be re-
contaminated. Initially all nodes are contaminated

DALD: Distributed Asynchronous Local Decontamination Algorithm in Arbitrary Graphs

except for the home-bases, which are obviously
guarded. We consider there are enough cleaners in
network and they cannot be removed from the
network. As a matter of fact, contamination and
decontamination processes occurring simultaneously
in a network. Their interaction creates a dynamic of
faults propagation and nodes mending.

4, DECONTAMINATION ALGORITHM

In this section we introduce Distributed
Asynchronous Local Decontamination (DALD), an
algorithm which can decontaminate an arbitrary
graph. DALD has four phases that we describe below:

1. Selecting home-base nodes: At first, some
nodes are chosen randomly and are considered
as home-base nodes. Home-base nodes are those
nodes that coordinator agents with unlimited
number of cleaners are located there.

2. Clustering: The graph is divided into some
clusters. The home-base nodes are the center of
each cluster. Clusters are developed using a t-
distance method which guarantees to comprise
the whole graph.

3. Tree construction: In each cluster, a breadth-
first traversal is used to construct a tree which
uses a lexical order. The constructed trees
guarantee the monotonicity of the
decontamination algorithm.

4. Cleaning: All coordinators in all clusters
decontaminate at the equivalent trees of their
clusters in parallel.

The first three phases are executed only once in the
beginning of the algorithm. The cleaning phase is
executed until the network is decontaminated totally.
All phases are discussed in more detail in the
following sections.

5. CLUSTERING

Graph clustering is the task of grouping vertices of
the graph into clusters, taking into consideration the
edge structure of the graph in such a way that there
should be many edges within each cluster and
relatively few between the clusters [22].

There are various ways to cluster graphs with

different properties. We cluster graph using t-distance
property.
Definition 1: For a pair of nodes n; and n;, letT (n;, n;)
be the shortest distance between them in the graph.
Letp,(n;) = {n]-|T(ni, nj) <t,n,n; € V}denotes a set
of nodes that can be reached from n; within t hops.

According to this definition, above nodes in
distance of t hops from a home-base node is in the
cluster of that home-base. Nodes in distance of t +
Thops from home-base nodes are boundary nodes.
Boundary nodes are nodes which belong to other

J. Elec. Comput. Eng. Innov. 2014, Vol. 2, No. 1, pp. 21-27

clusters and the coordinator can obtain information
about their status. As a matter of fact, boundary nodes
guarantee the convergence of algorithm in each
cluster and consequently the convergence of the
algorithm in the whole graph.

Example 1: Consider the graph as shown in Figure 1.
Let’s consider nodes n; and n;; are home-base nodes.
Clusters for these two nodes with t=2 are

@2(ny) = {ny,ny ,n3,n4,M5,n43},
@, (ny,) = {ng,n; ,ng, Ny, Nyg, Ny1,, N2}

Boundary nodes for clusters n; and niz are {ne, n
ng, no}, {n4 ns niz} consecutively.

Determination of Parameter t: The key point in
clustering graphs is to determine t in a way that each
node belongs to one cluster at least. To this end, we
specify the value of t in a way that the whole graph is
covered by our clustering method

Definition 2: Consider a graph G = (V, E) with [V [=n
and with home-bases {Hj, . . . ,Hp}. Di = min{T(n,H;),
T(n,Hz), ..., T(n, Hp)} indicates distance of node n; of
the nearest home-base. Parameter ¢ is determined by
finding the maximum of all minimum distances of all
nodes in the graph, t =max {Ds, . ..,Dp}.

5.1 TREE CONSTRUCTOR

In graph theory, breadth-first search (BFS) is a
graph search algorithm that starts from arbitrary
node in a graph and makes it the root node and
explores all neighbor nodes [23]. Then, for each of
those nearest nodes, it explores their unexplored
neighbor nodes, and so on, until it visits all the nodes.
The order of visiting neighbors is considered the
lexical order in which the nodes with smaller ID are
visited first. For the graph in the Figure 1, equivalent
trees for clusters niand ny; are depicted in Figure 2.

Figure 1: An example for a graph with 13 nodes.

23

M.Rahmaninia et al

Figure 2: Equivalent tree for clusters with home-bases ni:
and niz.

5.2 CLEANING

In each sub-graph, the home-base node is the root
of BFS tree and the start node for our algorithm. In
each sub-graph, there is a coordinator which tries to
decontaminate the sub-graph. We assume that
coordinator has enough cleaners to clean the sub-
graph.

A coordinator starts from the root and traverses
the graph in BFS order. It means that coordinator
cleans all the nodes in level I and then it goes to the
level I + 1 and it guarantees that by moving to the next
level the cleaned nodes will not be contaminated
again.

Below, the DALD algorithm is described with more
details.

DALD Algorithm:

- Cleaning from level 0 to level 1:
eCoordinator sends cleaners to all k offsprings of
the root node.

- Cleaning offsprings of nodes in levels [> 0:
e Let's assume that the constructed tree is
cleaned up to level I. To clean nodes in level [+ 1
coordinator returns back to the first node in

24

lexical order in level I and determines the
number of the node offsprings. Consider
coordinator is in node n; in level L If the node n;
has k offsprings and the majority of its boundary
neighbors are contaminated, coordinator moves
to the root and advocates k cleaners to clean all
children. Otherwise, if the majority of boundary
neighbors are clean, the coordinator advocates k
- 1 cleaners to clean offsprings using the cleaner
in node n;.
e All cleaners in node n; are sent to k offsprings
of node n; to clean these nodes. According to the
previous description, if the majority boundary
neighbors of n; are contaminated, a cleaner is
retained in node n;.
That is why coordinator requests k nodes when
the majority of nodes are contaminated. On the
other side, if the majority of boundary neighbors
are not contaminated coordinator request k-1
nodes because it can use the cleaner in node n;.
e Whenever the coordinator settles in a leaf
node, if all boundary neighbors are cleaned,
cleaner in this node is sent back to the home-
base.

This algorithm is executed in parallel in all clusters.

Example 2: Let’s consider all nodes in the graph in
Figure 1 are contaminated. We choose n; and n;; as
home-base nodes, randomly.

Based on description in Section 5, parameter t is set to
2.

The equivalent trees for clusters n1 and n12 are
constructed.

Trees for these two clusters are depicted in Figure
2. Coordinators start from n1 and n12 with unlimited
number of cleaners in these two nodes. Hence, nodes
nl and nl12 are cleaned by cleaners at first as it is
clear in Figure 3a.

Then, coordinators send cleaners to the children of
n1l and n12 simultaneously as it is shown in Figure 3b.

Then, each coordinator finds the first node in
lexical order in the level 1 to move on. For cluster n1,
this node is n2 and for cluster n12 this node is n10.
Node n2 has three children and node n10 has two
children.

Coordinators in each cluster move back to home-
bases and bring 2 and 1 cleaners to clean offspring
nodes of nodes n2 and n10 and as a result all children
of n2 and n10 are clean as shown in Figure 3c.

Since nodes n2 and nl1l0 are not treated by any
nodes in the graph, coordinators use cleaners in nodes
n2 and n10 and send cleaners to offspring nodes.

Algorithm runs in the same manner and
coordinators move to n3 and n11 and send cleaner to
their children and now the network is clean as
depicted in Figure 3d.

DALD: Distributed Asynchronous Local Decontamination Algorithm in Arbitrary Graphs

Figure 3: An example of algorithm on a graph with 13 nodes
and 2 home-basesn; and niz.

6. ALGORITHM ANALYSIS

We now prove the correctness of DALD algorithm.
It is shown that all nodes in the network will be
cleaned and once a node has been cleaned it will never
be re-contaminated.

Let’s n; be a node in level [; Let I'(i) denotes the
neighbors of n; in the graph G = (V, E):

@) = {n|(nsn;) € E} (1

Let I''(i) denotes children of n; at level I + 1 in the
broadcasted tree. It is clear thatV i I'' (i) € I'(i)

The following lemmas and theorem prove the
correctness of our algorithm.
Lemma 1: All nodes in a cluster which stand on level
I< tin constructed tree, do not have boundary nodes.
Lemma 2: If n;is a node in level I and n;is a node in
level I + 1 and n; € I'({)\I'"'({)then there is a node ny, in
level I such thatn; € I'"(m).
Lemma 3: In DALD algorithm, when an agent leaves
unguarded node n; at level I, all the neighbors of n; are
either clean or guarded.
Proof: This is clearly true for the node at level 0.

J. Elec. Comput. Eng. Innov. 2014, Vol. 2, No. 1, pp. 21-27

Assume that it is true for all nodes at level 0<iI<L and
we prove it's true for nodes in level L. It is obvious
that a node is contaminated by its neighbors. All
neighbors of node n; in level L can be one of the
following nodes: nodes in level L - 1, nodes in level L,
nodes in level L + 1, nodes in the boundary of group.

According to the algorithm, the constructed tree is
cleaned level by level. Therefore, when coordinator is
in level L, it cleans all nodes in the previous levels. As
a result, a node in level L won’t be contaminated by
nodes in the previous level. According to the breadth-
first traverse of graph, all the neighbors of node n; in
level L are traversed before or after this node. In the
algorithm, all nodes in tree which are traversed before
n; are cleaned by coordinator before n;. Thus, there is
no treat by these nodes for n;. As it is mentioned,
cleaning algorithm cleans tree level by level and
cleaners in level L leave nodes in this level if all nodes
of this level has been cleaned. Therefore, node n; will
not be contaminated by its neighbors in level L.

Neighbor n; of node n; which is in level L + 1 can be
in two states. The n; can be a node in level L + 1
thatn; € T()\I''(i)orn; € I''(i). If n; is a node such that
n; € F(D)\I'"({) according to the lemma 2 there is a
node n,, which is in level L traversed before node n;
and n; is the child of n,,. Node n; is decontaminated by
node nm. On the other side, if n; is a node such
thatn; € I'"(i) according to phase 2 the coordinator
sends sufficient cleaners to this nodes.

The cleaner node can get the information from the
nodes which are in the boundary of graph. A node in a
cluster may be contaminated by boundary nodes.
Therefore, coordinator checks all the boundary
neighbors of the agent. If the majority of boundary
neighbors of the current node are contaminated the
coordinator decides to preserve cleaner in the node,
but if the majority boundary neighbors are clean or
guarded it removes cleaner from this node. Finally, it
can be concluded that using this algorithm a cleaned
node is not treated by its neighbors because they are
clean or guarded.

Theorem 1: The proposed algorithm decontaminates
all nodes.

Proof: According to the lemma 3, a node is not
contaminated after cleaning. In each cluster, the
algorithm decontaminates the sub-graph level by
level. As a result, if the coordinator reaches to the leaf
nodes in tree, it cleans all nodes in that sub graph.
Since, all nodes belong to at least one group, it should
be concluded that the whole graph will be cleaned in
finite time.

7. COMPLEXITY ANALYSIS

In all decontamination algorithms, the number of
moves and the number of agents to decontaminate the
network are important parameters. In this section, we

25

M.Rahmaninia et al

give the upper bound for these parameters.
Theorem 2: The number of cleaner agents to clean a
graph G = (V, E) with maximum degree, distance ¢ to

construct clusters and h home-bases is O (hA").

Proof: According to lemma 1, the middle nodes do not
have boundary neighbors and based on the previous
lemmas and theorems, these nodes are not treated by
other neighbors because they are decontaminated or
guarded. As a result, all cleaners move to leaf nodes
and the number of cleaners is equal to the number of
leaf nodes. In a tree with maximum degree 4, this

value is O(At). In the worst case, all cleaners stay on

leaf nodes to prevent from re-contamination by
boundary nodes. Thus, in each cluster at most

O (AY)cleaners are used. As a result, for all h home-

bases the total number of cleaners is O (hAY).
Theorem 3:In a graph G = (V, E) with arbitrary
structure let [V [= n and distance t is used to construct
clusters and h is the number of home-bases. The
number of coordinators moves to construct the graph
is O (ht2AY)

Proof: To count the number of moves in the graph, we
consider the number of moves by coordinators and
cleaners altogether. To simplify the problem, we first
consider the number of moves in each cluster. At first,
we describe the number of moves by cleaners then we
count the number of moves by coordinators.

Number of moves by cleaners: As mentioned before,
there are h clusters constructed by distance t. The
maximum distance from the root to the farthest node
in tree is t. So, the farthest distance that each cleaner
should traverse is t. As explained in the last phase of
algorithm, after cleaning a leaf node, the cleaner
returns back to the root. Consequently, the cleaner
can have 2t moves at most.

Based on lemma 1, all the nodes in level [, [< t are
not connected to the boundary nodes. In this case,
cleaners in nodes in level I < t can leave the nodes to
upper level in tree. By this description, the number of
cleaners used to decontaminate a cluster is equal to
the number of cleaners in level t. We have at most

Atcleaners in level t. Therefore, the number of moves

by all cleaners in a cluster is at most O (2tA?).
Number of moves by coordinators: Based on the
algorithm, a coordinator visits all the nodes in the
cluster to clean the cluster. To visit the nodes in level /
+ 1 a coordinator should visit all nodes in level I that
i<+ 1. It means that to visit nodes in upper levels the
nodes in lower levels should be visited again. In this
way all the number of moves for a coordinator is:

238 L ixAl < t? Al (2)

Now, we have the number of moves by cleaners
and coordinators. The upper bound for the number of

26

moves in a graph with h cluster is O (ht? A%)

8. CONCLUSIONS

In this paper, we decontaminated a network with
arbitrary structure using a distributed algorithm. To
decontaminate a network distributive, it is
decomposed to clusters. A clustering method clusters
nodes in network by t-distance method. Since, there is
more than one home base in the network,
decontamination is very fast. This algorithm
converges in finite time and decontaminates all nodes
finally. In the previous works, the upper bound of the
number of moves and the number of cleaner agents
required to decontaminate network are given only for
networks with special structures such as ring or tori
while our algorithm establishes these upper bounds
on networks with arbitrary structure. The upper
bound for the number of moves and the number of
cleaners to clean the network in arbitrary structure

are O(ht? AY) and O(h A'), consecutively. In
future works we will use a clustering method by
which the overlaps among groups and the number of
moves and cleaners are decreased as well.

REFERENCES

[1] P. Flocchini, "Contamination and decontamination in majority-
based systems,” Journal of Cellular Automata, Vol. 4, No. 3, pp.
183-200, 2009.

[2] P. Flocchini, M.J. Huang, and F.L. Luccio, "Decontaminating
chordal rings and toriusing mobile agents,” International
Journal of Foundations of Computer Science,Vol. 18, No. 3, pp.
547-564, 2007.

[3] F.L. Luccio, "Intruder capture in Sierpinski graphs," Proc.of the
4th International Conference on Fun.with Algorithms (FUN),
Lecture Notes in Computer Science, 2007, 4475, pp. 249-261.

[4] T. Parson, "The search number of a connected graph," Proc.of
the 9th Southeastern Conference on Combinatory, Graph
Theory and Computing, 1978, pp. 549-554.

[5] V.Kumar, D. Rus, and S. Singh, "Robot and sensor networks for
first responders,” IEEE Pervasive Computing, Vol. 3, No. 4, pp.
24-33,2004.

[6] L.Barrire, P. Flocchini, ,P. Fraigniaud, and N. Santoro, "Capture
of an intruder by mobile agents," Proc. of the 14th ACM
Symposium on Parallel Algorithms and Architectures, 2002,
pp. 200-209.

[7] R. Breisch, "An intuitive approach to speleotopology,”
Southwestern Cavers VI, 1967, (5), pp. 72-78.

[8] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C.
Papadimitriou, "The complexity of searching a graph,” Journal
of the ACM (JACM),Vol. 35, No. 1, pp. 18-44, 1988.

[9] A. LaPaugh, "Recontamination does not help to search a
graph,” Journal of the ACM(JACM), Vol. 40, No. 2, pp. 224-245,
1993.

[10] P. Flocchini, F.L. Luccio, and L. Song, "Size optimal strategies
for capturing an intruder in mesh networks,"” Proc. of the
International Conference on Communications in Computing,
2005, pp. 200-206.

[11] P. Flocchini, M.J. Huang, and F.L. Luccio, "Decontamination of
hypercubes by mobile agents," Networks, Vol. 52, No. 3, pp.
167-178, 2008.

[12] F. Makedon, 1. H. Sudborough, "On minimizing width in linear
layouts," Journal of Discrete Applied Mathematics, Vol. 23, No.
3, pp. 243- 265, 1989.

[13] L. Kirousis, C. Papadimitriou, "Searching and pebbling"
Theoretical Computer Science, Vol. 47, pp. 205-218, 1986.

DALD: Distributed Asynchronous Local Decontamination Algorithm in Arbitrary Graphs

[14] T. Parson, "Pursuit-evasion in a graph,"Theory and Manouchehr Zaker is currently associate
Applications of Graphs, Lecture Notes in Mathematics, professor of Mathematics in Institute for
Springer-Verlag, 1976, pp. 426-44.

Advanced Studies in Basic Sciences, Zanjan,
[15] L. Barri‘ere, P. Fraigniaud, N. Santoro, and D.M. Thilikos, i .‘

"Searching is not jumping," 29th Workshop on Graph
Theoretic Concepts in Computer Science (WG), LNCS2880,
2003, pp. 34-45.

[16] F. Luccio, L. Pagli, and N. Santoro, "Network decontamination
with local immunization,” International Journal of Foundation
of Computer Science, Vol. 18, No. 3, pp. 457- 474, 2007.

[17] S. Kutten, D. Peleg, "Tight fault locality," SIAM Journal on
Computing, Vol. 30, No. 1, pp. 247-268, 2000.

[18] P. Flocchini, M.]. Huang, and F. L. Luccio, "Decontamination of
chordal rings and tori" Proc. of the 8th Workshop on
Advances in Parallel and Distributed Computational Models
(APDCM), Rodi, Greece, 2006.

[19] Y. Daadaa, P. Flocchini, and N. Zaguia, "Decontamination with
temporal immunity by mobile cellular automata,” Proc. of the
International Conference on Scientific Computing (CSC), 2011,
pp. 172-178.

[20] P. Flocchini, B. Mans, and N. Santoro, "Tree decontamination
with temporary immunity," Proc. of the 19th International
Symposium on Algorithms and Computation (ISAAC), 2008,
pp. 330-341.

[21] P. Flocchini, N. Santoro, "Network decontamination from a
black virus,"Proc. of the 27t IEEE International Parallel and
Distributed Processing Symposium Workshops & Ph.D. Forum
(IPDPSW), 2013, pp. 696 - 705.

[22] S.E. Schaeffer, "Graph clustering," Computer Science Review,
2007, pp. 27- 64.

[23] D.G. Corneil, "Lexicographic breadth first search - a survey,”
Proc. of the 30t International Workshop on Graph-Theoretic
Methods in Computer Science, 2004, pp. 21-23.

i Iran. He got B.Sc. degree from Tabriz
University in 1994. Then, he got M.Sc. and
Ph.D. degrees in Mathematical Sciences from
Sharif University of Technology, Tehran,
Iran, in 1997 and 2001, respectively. His
research areas are Graph Theory and
Combinatory, Algorithmic Graph Theory and Social and Complex
Networks studies using Graph Theory.

BIOGRAPHIES

Maryam Rahmaninia was born in Ghasr-e-
shirin, Kermanshah, Iran, in Aug. 1985. She
received her B.Sc. degree in Computer Science
from Shahid Beheshti University, Tehran,
Iran, in 2008 and M.Sc. degree in Computer
Science from Institute for Advanced Studies
in Basic Sciences, Zanjan, Iran in 2010. Her
interests are in neural network, theoretical
computer science and multi agent systems.

Elnaz Bigdeli is PhD. student at
Department of Computer Science &
Engineering at the University of Ottawa. She
received M.Sc. degree in Computer Science
in Institute for Advanced Studies in Basic
Science (IASBS) in 2011. She completed her
B.Sc. degree in Information Technology
Engineering in (IASBS) in 2008. Her
research interests lie in the area of machine
learning and data mining. In recent years, she has focused on
stream data clustering. She has collaborated actively with

researchers in other disciplines of computer science, particularly
social networks and distributed systems.

27
J. Elec. Comput. Eng. Innov. 2014, Vol. 2, No. 1, pp. 21-27

