
http://jecei.srttu.edu

Journal of Electrical and Computer Engineering Innovations

JECEI, Vol. 3, No. 2, 2015

Regular Paper

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 99

SRTTU

Objects Identification in Object-Oriented Software
Development - A Taxonomy and Survey on Techniques
Hassan Rashidi

Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba’i University

Corresponding Author’s Information: hrashi@atu.ac.ir

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY:
Received 8 July 2015
Revised 23 December 2015
Accepted 25 December 2015

 Analysis and design of object oriented is one modern paradigms for
developing a system. In this paradigm, there are several objects and each
object plays some specific roles. Identifying objects (and classes) is one of
the most important steps in the object-oriented paradigm. This paper
makes a literature review over techniques to identify objects and then
presents six taxonomies for them. The first taxonomy is based on the
documents exist for a domain. The second taxonomy is based on reusable
previous knowledge and the third one relies on commonalities in a
domain. The fourth taxonomy is concerned with decomposing a domain.
The fifth taxonomy is based on experience view and sixth one is related to
use the abstraction in a domain. In this paper, the constraints, strengths
and weaknesses of the techniques in each taxonomy are described. Then,
the techniques are evaluated in four systems inside an educational center
in a university. A couple of approach is recommended for finding objects,
based on some practical experiences obtained from the evaluation.

KEYWORDS:
Taxonomy
Class
Object
Object-Oriented
Software Engineering

1. INTRODUCTION

Object-Oriented (OO) is one modern paradigm for
developing software. In this paradigm, we describe
our world using the object categories (classes) or
object types (pure abstract class or Java interface)
(see [18], [19], [23], [24], [31], [42], [43], [46]). Each
class/object plays a specific role in the software.
These roles are programmed in Object-Oriented
languages such as C++ and Java.

Several attributes (data variables) and services
(operations/functions/methods) are assigned to these
classes. Then, we model the behavior of the world as a
sequence of messages that are sent between various
objects. In OO models, a number of relationships
(inheritance, association, and aggregation- see [11],
 [14], [38], [45] and [46]) are identified between the
classes/objects. Moreover, there are many popular
design modeling processes and guidelines such as
GRASP [49] and ICONIX [48] for assigning

responsibility to classes and objects in object-oriented
design.

The first step for building an OO model is to find
out the objects, on which we focus. In this step, we are
not really finding objects. In fact, we are actually
finding categories and types (analysis concepts) that
will be implemented using classes and pure abstract
classes. The results of problem analysis is a model
that: (a) organizes the data into objects and classes,
and gives a structure to the data via relationships of
inheritance, aggregation, and association; (b) specifies
local functional behaviors and defines their external
interfaces; (c) captures control or global behavior; and
(d) captures constraints (limits and rules).

The main motivation of this paper is to have a
survey on the techniques to find the potential objects
and makes six taxonomies for them. The remainder of
this paper is as follows. In Section 2, the literature
review and taxonomies of techniques to find objects
are presented. In Section 3, the experiences of

http://jecei.srttu.edu
mailto:hrashi@atu.ac.ir

Hassan Rashidi

100

applying the approaches to four systems are
presented. In Section 4, two approaches to find objects
in the object-oriented paradigm are recommended.
Finally, Section 5 is considered for summary and
conclusion.

2. LITERATURE REVIEW AND TAXONOMIES

One of the major challenges in the Object-Oriented
development and transforming the legacy systems
into Object-Oriented one is how to identify objects. To
do this, many methodologists have their own favorite
techniques. Almost, all techniques have shortcomings;
i.e., they sometimes fail to identify all objects and
sometimes identify false objects. Deursen and Kuipers
(1999) have used clustering and concept analysis to
identify objects in the legacy code [15]. Canfora et al.
(2001) have employed an eclectic approach to
decompose legacy systems into objects [10].

Few researches have focused on refactoring the
systems and extract class in this area. Fokaefs et al.
(2012) have described a method and a tool, designed
to fulfill exactly the extract class refactoring [17]. It
has three steps: (a) recognition of extract class
opportunities, (b) ranking the opportunities in terms
of improvement to anticipate which ones should be
considered in the system design, and (c) fully
automated application of the refactoring selected by
the developer. The first step relies on a hierarchical
agglomerative clustering algorithm based on Jaccard
distance between class members, which identifies
cohesive sets of class members within the system
classes. The second step, measures the design quality
by the entity placement metric. Through a set of
experiments, implemented as an Eclipse plug-in, the
research has shown that the tool is able to identify
and extract new classes that developers recognize as
“coherent concepts” and can improve the design
quality of the underlying system.

Bavota et al. (2014) have proposed an approach for
automating the extract class refactoring [1]. This
approach analyzes structural and semantic
relationships between the methods in each class to
identify chains of strongly related methods. The
identified method chains are used to define new
classes with higher cohesion than the original class, it
can also preserve the overall coupling between the
new classes and the classes interacting with the
original one. In the literature, there are several
reported works in which the objects, in the object-
oriented software, are classified. Jacobson et al. in [21]
and [22] categorized the objects into Entity,
Boundary, and Control. The Entity objects represent
the persistent information tracked by the system. The
Boundary Objects represent the interactions between
the actors and the system. The Control objects
represent the tasks that are performed by the user

and supported by the system. Coad and Yourdon (
 [12], [47]) categorized the objects into different
groups: (a) Structure (“kind-Of” and “part-Of”
relationships); (b) Other systems (External Systems);
(c) Devices; (d) Events (A historical event that must
be recorded); (e) Roles (the different roles that are
applied to the users); (f) Locations; (g) Organizational
units (groups to which the user belongs).

Schlaer and Mellor in [39] and [40] categorized
objects into five groups: (a) Tangibles (cars, telemetry,
sensors); (b) Roles (mother, teacher, and
programmer); (c) Incidents (landing, interrupt,
collision); (d) Interactions (Loan, meeting, marriage);
(e) Specification (product specification, standards).

Ross [36] categories objects into six groups: (a)
People (humans who carry out some function); (b)
Places (areas set aside for people or things); (c)
Things (physical object); (d) Organizations (collection
of people, resources, facilities, and capability having a
defined mission); (e) Concepts (principles or ideas not
tangible, per se); (f) Events (things that happen-
usually at a given date and time, or as steps in an
ordered sequence. One major gap and research need
is to have an overview and taxonomy on techniques to
identify objects in Object-Oriented software
development. According to Merriam-Webster [29],
taxonomy is the study of the general principles of
scientific classification, and is especially the ordered
classification of items according to their presumed
natural relationships. The major difference between
techniques to find out objects, in general, depends on
the circumstances around existing some documents in
a domain, how previous knowledge are reused, how
the commonalities are factored out, how the
composition of a domain is performed, how the
experience of developers aids, what level of
abstraction is used, and how we use individual
objects. There are, therefore, six taxonomies to
categorize techniques that find out objects in Object-
Oriented development. They are described in the
following with their advantages and disadvantages.

A. The first taxonomy: Document view
 for identifying objects is concerned with existing

document such as the requirement analysis report or
the data flow diagram in a domain. Therefore, there
are a couple of paradigms for this taxonomy such as,
using nouns and using data flow-diagram:

Use Nouns (UN):
This technique is traditional and starts with the

document written for a problem. It was invented by
Russell J. Abbott and popularized by Grady Booch ([4],
 [5], [6]) and cited in many publications (e.g. [26], [32],
 [33] , [41], [44]). To use this technique, the nouns,
pronouns and noun predicated in the written
documents are used to identify objects. This technique

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 101

has many advantages: (i) Narrative language (English,
Chinese, French, German, Japanese, etc.) are well
understood by everyone in a project staff; (ii) there is
usually one-to-one mapping from nouns to objects or
classes; (iii) Using nouns requires no learning curve;
the technique is straightforward and well defined, and
does not require a complete paradigm shift to the OO
paradigm for the beginner; (iv) This technique does
not require a prior Object-Oriented Domain Analysis
(OODA); the analyst can apply it to an existing
requirement specification [37], written for structural
analysis and / or any other methodology. On the
contrary of the advantages, this technique has some
shortcomings, in general. For one thing, this is an
indirect approach to find objects and classes. Nouns
are not always classes or objects in problem domain.
In many cases, the nouns, especially subjects of
sentences, refer to: (a) an entire assembly or a
computer software configuration; (b) a subassembly
or a software component; (c) an attribute; (d) a
service.

Use Data Flow Diagrams (UDFD):
This technique was first published by Seidewitz

and Stark of NASA's Goddard Space Flight Center [26].
It assumes that a Data Flow Diagram (DFD) in the
domain exists. The major benefit of this technique is
that it requires no paradigm shift by the analysts and
developers. If the original DFDs are well constructed,
false-positive identification of objects and classes are
rare. Additionally, there are a lot of projects that
already have the context diagrams and DFDs.
Unfortunately, the shortcoming of UDFD is also
directly related to not making the paradigm shift.
Nearly all of the DFDs were originally written for
functional decomposition, and they have a tendency to
create a top-heavy architecture of classes. With
functional decomposition, there is a tendency to
assume that the stem is an assembly of subassemblies
at the appropriate level. Developers tend to assign
services at the corresponding level where the
subassembly was found. This may cause objects to be
identified in the wrong subassembly. Although false-
positive identification of objects and classes is rare,
not all of the objects or classes are identified. The
rareness of false-positive identification is totally
dependent on the quality of the original DFDs. This is
still an indirect method of finding objects and classes;
it is based on data abstraction and not on object
abstraction. In many instances, an object or class
contains more than one data store. Thus, their
attributes may be mapped to objects and classes while
their associated objects and classes remain
unidentified. Because the DFDs represent functional
decomposition, pieces of an object may be scattered
across several DFDs assigned to different persons.
Thus, different variants of the same object may be

redundantly and independently identified.
Transforms are not required to be a service of an
object. Therefore, transforms are often compound
operations that need to be assigned to multiple
objects. If the objects are not properly identified, this
leads to fragmented objects and classes.

B. The Second Taxonomy: Knowledge View
The second taxonomy is based on reusing previous

knowledge from which objects are explicitly
extracted. The previous knowledge can be collected
already in the Object-Oriented domain analysis,
framework, repository and individual objects(classes).
There are four techniques in this taxonomy:

Use OO Domain Analysis (UOODA):
This technique is specified in [26] , [33] , [34] and

 [35]. This technique assumes that an OO Domain
Analysis has already been performed in the same
problem domain. This technique supports the reuse
and tends to maximize the cohesion in classes and
minimize the message and inheritance coupling. If one
assumes that the previous OODA is solid, indeed this
technique offers a "reality check" on present work
because the objects and classes should be the similar
to the ones in the OODA. Thus, considerable time and
effort can be saved if the original OODA is relevant
and complete. On the contrary, finding adequate and
relevant OODA is not easy today. Most systems have
either incomplete OODA or no OODA model at all. To
make the reuse more effective, the problem domain
must be well documented and understood by the
developers. Tailoring for performance and other
business constraints in a specific project may decrease
the reuse. Although it is easier to reuse than to
reinvent, the Not-Invented-Here (NIH) syndrome of
many developers must be successfully overcome.

Reuse an Application Framework (RAF):
 This technique is specified in [20], [26] and [35].

Gurp et al. (2001) defined it as a partial design and
implementation for an application in a given
domain [20]. This approach assumes that at least one
OODA has been already performed to create an
application framework of reusable classes. RAF has
some limitations. Developers must be able to identify
one or more relevant application frameworks that
have been previously developed and stored in a
repository. Most likely, not all of the needed classes
will be in the application framework(s) examined. One
concern with application frameworks is the NIH
syndrome. This syndrome is translated into a general
belief that if the application framework was not
developed locally, then it cannot take into account all
of the concerns of the local team. This concern is not
totally unfounded. In particular, application
frameworks often contain both analysis and design

Hassan Rashidi

102

classes. Unfortunately, it is not easy to distinguish
between these two types.

Reuse Class Hierarchies (RCH):
 This technique is specified in [26] , [33] and [35].

This technique assumes that a reuse repository with
relevant reusable class hierarchies has been
developed. This technique has the same advantages as
using OODA. The major advantage of this technique is
that it maximizes the use of inheritance and is a
natural fit for some OO languages. In contrast, it has
additional limitations beyond those for OODA as with
all techniques. Additionally, the existing classification
hierarchies may not be relevant to the current
application. Existing classes may need to be
parameterized, or new subclasses may need to be
derived.

Reuse Individual Objects and Classes (RUIOC):
This technique is specified in [26] , [33] and [35].

We can reuse specific objects and classes from the
repository with relevant reusable objects and classes.
The major advantage of this technique is that it is
inexpensive and easy to use so that little efforts is
invested in making the classes, and they can be easily
discarded. Also, this method stimulates
communication and is not intimidating to beginners.
On the contrary, this technique has some very serious
shortcomings. One major concern with the repository
is NIH syndrome. This syndrome is translated into a
general belief that if the repository is not developed
locally, then it cannot take into account all of the
concerns of the local team.

C. The Third Taxonomy: Commonalities View
The third taxonomy for identifying objects is based

on finding communalities and factoring out on them.
In this view, we have a couple of techniques, which
are specified in the following:

Use Generalization (UG):
This technique is specified in [26] and [33]. It

assumes that objects are identified prior to their
classes (every object is an instance of some class), and
that communalities among objects can be used to
generalize classes. The first advantage of this
approach is that it promotes reuse and supports the
development of one or more classification hierarchies.
In contrast, UG requires significant training, practice,
intuition, and experience.

Use SubClasses (USC):
This technique is specified in [26] and [35]. The

steps are: (a) Identifying classes that share common
resources (i.e., attributes, service name, methods,
etc.); (b) Factoring out the common resources to form
a super-class (parent), and then use inheritance for all
classes that share these resources to form simpler

subclasses. When using subclasses, we skip finding
objects and directly start identifying classes. The key
benefit of this technique is reuse. In contrast, when
misused, it leads to difficult maintainability and
opaque classes that reuse randomly unrelated
resources that do not logically belong to subclasses of
the same superclass. Additionally, USC also may
produce inappropriate or excessive inheritance
coupling.

D. The Fourth Taxonomy: Decomposition View
The fourth taxonomy for identifying objects is

based on decomposition view; i.e., how we decompose
a domain and its objects. In this view, we have a
couple of techniques, which are specified in the
following:

Use Subassemblies Method (USM):
This technique is specified in [26] , [33] and [35]. It

assumes that the developers are incrementally
developing subassemblies using a recursive
development process. The major advantage of this
technique is that it supports incremental
identification of objects/ classes. It also identifies all
the subassemblies in an application domain. It is very
similar to functional decomposition ([32], [33]), so
there is less culture shock for developers trained in
the structured methodology. On the contrary, there
are some limitations for implementation of this
technique. It identifies only assembled objects. Thus,
one must have some other techniques to identify
fundamental components of the subassemblies.

Use Object Decomposition (UOD):
 This technique is specified in [26] and [35]. This

technique assumes that most objects are composed of
the other objects. The key benefit of this technique is
reuse, but it has some serious drawbacks. When
misused, it leads to un-maintainable and opaque
classes that reuse randomly unrelated resources that
do not logically belong to subclasses of the same
superclass. It also may produce inappropriate or
excessive inheritance coupling.

E. The Fifth Taxonomy: Experience View
The fifth taxonomy for identifying objects is based

on how we use personal experience in different
human activity. In this view, we have a couple of
techniques, which are specified in the following:

Use Personal Experience (UPE):
UPE technique is presented in [26] and [35]. This

technique assumes that the developer has already
performed an analysis and can use its experience.
Based on one's experience, this technique provides a
reasonable "reality check" on projects. Thus, the
quality of the classes and objects may be substantially
improved, as they are based on classes and objects

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 103

that are already built and tested. It is also very
common to want to leverage off the application
experience of the developer. This technique considers
the relevant previous experience, which is not always
available. AS a disadvantage of UPE, that the past
experience may be of limited value and may possibly
even be misleading. Moreover, this technique is very
informal, and different developers may identify
substantially different objects and classes given the
same starting information

Use Class-Responsibility-Collaboration cards (UCRC):
This technique was developed by Beck and

Cunningham. It is based on this fact that identifying
the objects and classes is a human activity that can be
stimulated by use of small pieces of paper to
represent objects/classes [33]. This technique is
inexpensive and easy to use. Little attempt is invested
in making the classes, and they can be easily
discarded. Also, this method stimulates
communication and is not intimidating to beginners.
Historically, this method is more suitable for thinking
about and designing the objects and classes rather
than identifying them. The major disadvantage of
UCRC is that software engineers must already have
objects and classes in order to use this technique to
identify additional objects and classes. The developers
must have significant experience, creativity and
intuition for this technique to be consistently
successful. However, the revised version based on the
use cases described previously is very effective [13].

F. The Sixth Taxonomy: Abstraction View
The sixth taxonomy for identifying objects is based

on how we use abstraction in a domain. In this view,
we have a couple of techniques, which are specified in
the following:

Definitions of Objects and Classes (UDOC):
 This technique is specified in [26] and [35]. The

technique is very simple; the developer uses object
abstraction and the definition of classes to intuitively
identify them. This is the same way that the
experienced developers would recognize functional
and process abstractions. It provides the best
partitioning of the requirements into classes. When
this method is used properly, it can produce the
fewest false-positive identifications. UDOC has no
limitations, but it requires a significant paradigm shift
for the developer. This paradigm shift requires
significant training, practice, intuition, and experience,
which usually takes at least 6 months of on-the-job
training [26]. There are no tricks or tools to help in
this technique; the tools are designed only to
document the results.

Use the Things to Be Modeled (UTBM):

This technique is specified in [25], [26] and
 [35]which explicitly determines the objects/classes.
The basic steps in this technique are: (a) Identifying
individual or group things, such as persons, roles,
organizations, logs, reports, forms, etc. in the
application domain; and (b) Identifying the
corresponding objects and classes. The major
advantage of UTBM is that this technique is highly
effective because it is natural, direct, and reliable. On
the contrary, it requires significant experience with
Object-Oriented to apply successfully. Unfortunately,
UTBM tends to help only in finding the terminators
and other tangible objects that are the easiest entities
to identify. Abstract classes are not readily identified
using this technique. Furthermore, this technique
requires that the user makes the paradigm shift to the
object-oriented mindset. Although this paradigm shift
should be the ultimate goal, on-the-job training may
be very expensive.

Table-1 makes a summary of the techniques in the
taxonomies discussed above. The major assumptions,
strengths and weaknesses of the techniques are
presented in the columns 3, 4, 5 of the table,
respectively.

3. PRACTICAL EXPERIENCE AND GUIDELINES

In order to evaluate the techniques to find objects
in practice, two groups of Bachelor and Master
students in software engineering were dedicated to
perform the techniques under supervision of a couple
of experts in Qazvin Islamic Azad University, in the
educational center [16]. The students were assigned
to do the techniques based on their experiences. In the
group one in which there were 20 students, there was
little experience in object-oriented development and
the students had to do the jobs as the final projects.
The group two, 16 Master students, had more
experiences and they had to do the jobs as a project in
the advanced software engineering course. The
students in each group were divided into teams with
having 2 students in each. Both groups used the MFC
(Microsoft Foundation Classes) as application
framework for MS Windows and the reuse repository.
Moreover, the groups utilize a Control Command
Police System (CCPS) role, here, is to act as the given
OODA with several reusable classes (see the
assumptions of the techniques). A mini-requirement
for CCPS is briefly described in [41] and then the
system is expanded in [35]. This police service system
must respond as quickly as possible to reported
incidents. The main objective of this system is to
ensure that incidents are logged and routed to the
most appropriate police vehicle.

The full specification of the system and its
implementation are given in [35]. Due to its fertility
for reusability in both application and system

Hassan Rashidi

104

software, we selected CCPS in our study where its
class diagram is depicted in Figure 1. In this class
diagram, there are many classes. The main classes,
here, are “Incident“, “Police Staff“, “Police Vehicle”,
“Police Officer“ ,“Director“ ,“Route Manager“ ,“Incident
Waiting List“, “Response“, “GPS Receiver“ and so on.
The following applications were considered as the
problem domains on which the groups did their jobs:

 ATM System: This system was a simple ATM
in which we expected to see use cases covering the
principal functions such as withdraw cash, display
balance, print statement, deposit cash and change
PIN. Description of this case had to be described
the actors involved, the inputs and outputs, normal
operation and exceptions. More details on this
application are given in [41] and [46]. The general
class diagram for ATM system is depicted in Figure
2. The experts use this diagram in evaluations of
the techniques for identifying the objects.
 High School System: In this system, the
students wanted to design a software that is a part
of the common processes in a non-public school.
These processes include registration, classification
of students, evaluation of students and teachers
discipline, grades, transcripts delivery and
financial management of receipts and payments.
The overall scenario is as following: The director,
teacher, principal and school counselor, as the
main responsible, have common roles for student
registration processes and training to help parents.
In the meantime, all student data are recorded in
their files. In the registration for each student, the
courses are grouped in the curriculum and can be
selected. Then, the student fees are calculated on
the basis of their choices. The exams are designed
using a question bank that is available to teachers
and after grading the results are stored in the file
and also offered to the parents. Moreover, this
system calculates payroll for the teachers and
store them. The general class diagram for this high
school system is depicted in Figure 3. The experts
use this diagram for evaluating the techniques and
the comparisons have done.
 Voicemail System: This system was a voice
mail system consists of a speaker, a keypad, and a
microphone. The students model the operation of
an embedded software system for a voicemail
system included in a landline phone. This had to
display the number of recorded messages on an
LED display and should allow the user to dial-in
and listen to the recorded messages. To define
different levels of access, the individual user
information is recorded in the system and each
person has their own mailbox to receive and send
messages from/to others. More details on this

application are given in [41]. The general class
diagram for this system is depicted in Figure 4. The
experts use this diagram in evaluations of the
techniques and comparisons done.
 Firm Planning System: In this system, a time
series data including balance sheet, profit and loss
account, financial ratios, production lines
information and other variables relating to
personnel, etc. of a firm (company) are available
and must be stored in a database. An economic
expert helps to estimate several equations to make
a model among the time series data. The system
must be able to accept several exogenous variables
that are imposed from outside the system. The
system uses the model to predict the endogenous
variables in the coming years according to the
equations subject to the exogenous variables. More
details on this system are given in [50]. The
general class diagram for this system is depicted in
Figure 5. The experts use this diagram in
evaluations of the techniques and comparisons
done.
In order to have a good design, the experts applied

several rules to design the class diagrams in Figures 3
to 6. In fact, Classes/Objects must be considered as
any real-world entity and they are important to the
discussion of the requirements. In summary, the
following rules are used to determine the identified
objects in the systems:

 Rule-1(Coherency): A class should be
coherent and simple. A class describes a group of
objects with identical attributes, common
behaviors, common relationships, and common
semantics.
 Rule-2 (Serviceability): A class/object must
provide some services to other objects (clients). In
fact, each object does some functions and each
class has at least one public method.
 Rule-3 (Modularity): A design is modular
when each activity of the system is performed by
exactly one class and when the inputs and outputs
of each class/object are well-defined. A
class/object is well-defined if its interface
accurately and precisely specifies its externally
visible behavior.
 Rule-4(Abstraction): An object is an
abstraction of something in a problem domain and
has a crisply defined boundary, reflecting the
capabilities a system to keep its information, or
interact with it, or both of them.
Obviously, just using a single technique is not

enough to identify all the objects since each technique
has its own assumptions and constraints. Moreover,
the true objects were not identified once. Hence, we
decided that the groups do their jobs for a couple of
rounds in order to show the techniques are trainable

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 105

and roles of the experts are important. In the first
round, we explained the steps for performing each
technique (described in Sections 2.1 to 2.6). In this
round, the students had to their own understandings
of the techniques without any consultations to find the
potential objects. In the second round, the students
did their jobs by interactive dialog with the experts
and more potential objects in the problem domain
were identified. At the end of each round, the list of
objects identified was recorded. The following
definitions and calculations are performed during this
study:
 T: Set of Techniques = {UN, UDFD, UOODA, RAF,

RCH, RUIOC, UG, USC, USM, UOD, UPE, UCRC,
UDOC, UTBM}

 S : Set of Systems = {High school system, ATM
system, Voice mail system, Firm planning system}

 NT1: Number of teams in group 1;
 NT2: Number of teams in group 2;
 ܱܰܫ௦,ଵ

ீଵ,௧,௡ : Number of objects identified by team n
in system s at the first round of running technique
t;

 ܱܰܫ௦,ଶ
ீଵ,௧,௡ : Number of objects identified by team n

in system s at the second round of running
technique t;

 ܱܰܫ௦,ଵ
ீଶ,௧,௡ : Number of objects identified by team n

in system s at the first round of running technique
t;

 ܱܰܫ௦,ଶ
ீଶ,௧,௡ : Number of objects identified by team n

in system s at the second round of running
technique t;

 ܫܱܰܣ௦,ଵ
ீଵ,௧: Average number of objects identified in

system s by group 1 at the first round of running
technique t;

 ܫܱܰܣ௦,ଶ
ீଵ,௧: Average number of objects identified in

system s by group 1 at the second round of
running technique t;

 ܫܱܰܣ௦,ଵ
ீଶ,௧: Average number of objects identified in

system s by group 2 at the first round of running
technique t;
௦,ଶܫܱܰܣ

ீଶ,௧: Average number of objects
identified in system s by group 2 at the second
round of running technique t;

ݎ,ݏܫܱܰܣ
ݐ,1ܩ =

∑ ݎ,ݏܫܱܰ
 1ܶܰ݊,ݐ,1ܩ

݊=1
ܰܶ1

r=1,2 ; ∀ݐ ∈ ݏ∀;ܶ ∈ ܵ

(1)

ݎ,ݏܫܱܰܣ
ݐ,2ܩ =

∑ ݎ,ݏܫܱܰ
2ܶܰ݊,ݐ,2ܩ

݊=1
ܰܶ2

r=1,2 ; ∀ݐ ∈ ݏ∀;ܶ ∈ ܵ

(2)

The results of the calculations by (Eq.1) and (Eq.1) for
each group in the first and second rounds are shown
in Table-2. Note that the numbers in the table are
rounded up and the GiRr shows the results for group g
in round r; g=1,2 and r=1,2. The number shown in the
parentheses in front of the name of each system is
according to the number of classes in the general class
diagram.

At the first glance, we can get the following
observation:
 Observation-1: Since the number of objects

identified by each group of the students in running
the second round is more than that of the first one,
we can observe that the techniques are trainable
and roles of the experts in training are important.
The number of objects identified in each round for

the systems is not very convenient to make any
judgment because they are absolute value. Hence, we
decided to calculate the average percentage of the
number of objects identified for both groups of the
students. The following equation is used to make the
average.

௦ܩܣ
ீ௚,௧

=
௦,ଵܫܱܰܣ

ீ௚ ௦,ଶܫܱܰܣ +
ீ௚

2 ∗ ݏ ݉݁ݐݏݕݏ ݊݅ ݏ݁ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ
× 100;݃ = 1,2; ݐ = ݐ∀ ∈ ݏ∀;ܶ ∈ ܵ

(3)

The results of the calculations by (Eq.3) for each

group in four systems are depicted in Figure 6.

Following observations can be obtained From this

figure:
 Observation-2: The average number of objects

identified by the group 2 in running the techniques
for each system is more than those of the group 1.
It is due to this fact that the students in the group 2
were M.Sc. Students while the students in the
group 1 were B.Sc. students.

 Observation-3: The average number of objects
identified in Firm planning system is less than
those identified in the other systems. It is highly
due to the students in both groups had not
significant experience in the financial and
accounting systems.
In order to sum-up the results over each technique,

we calculate the average number of objects identified
by applying the techniques for both groups of
students. The following equations are used to sum-up
the averages. Figure 7 and Figure 8 depict the results
of the calculations obtained from (Eq.4) and (Eq.5),
respectively, As we can see in the figures, the
following observations are obtained in our study:

Hassan Rashidi

106

• Observation-4: Although the technique UPE is
traditional, it is highly effective in our study. This
technique is capable to identify about 90 percent
of the objects in the systems.

• Observation-5: The techniques UOODA and RAF
were able to identify between 70 to 80 percent of
the objects.

• Observation-6: The techniques UDFD, UCRC, and
UTBM have approximately the same results in
identifying the number of the objects.

• Observation-7: The technique UOD, UG, USC, RCH,
RUIOC and USM are not effective in identifying
objects in the systems. They could not able to
identify more than 50 percent of the objects. This
is due to this fact that these techniques need more
understanding the concept of the class and objects
as well as the hierarchical imagination. It seems
that the students minimized the message and
inheritance coupling during running these
techniques.

• Observation-8: Although Table-1 shows that the
USM and UOD are effective, they have the lowest
affectivity in our experiments. These techniques
identified only between 30 to 40 percent of the
objects.
Based on the observations obtained from the

evaluations, the techniques presented in Section 2 can
be classified in two types:
• Conventional: Since the techniques UOD, UG, USC,

RCH, RUIOC and USM discovered around 50% of
the True objects in the systems, we categorizes
those as the conventional type.

• Modern: Since the techniques UN, UDFD, UCRC,
UTBM, UDOC, UOODA, UPE and RAF discovered
more than 50% of the objects as the true ones in
the systems, we categories those as the modern
techniques. Although UN seems as the most
traditional techniques, this is widely used and
applied to many object-oriented developments.
Subhash et al. (2012) used this technique [44] and
made a natural language-based tool which aims at
supporting the analysis stage of software
development in an object-oriented framework.
 Regarding the observations and experience

obtained in our study, we made some guidelines as
follows:

Previons investigations showed that, this technique
suggest a foundation for some natural language
processing tool in a semantic network [44].

• Guideline-1: The personal experience is a highly
subjective technique, which is derived from
observation 1-4. The messages and inheritance
coupling may not be minimized in applications.
Uses of various knowledge such as application
knowledge, design knowledge and general world
knowledge have significant roles in finding objects.
In the application knowledge, interviews of
developers with end users and experts are
performed, to determine the abstractions of the
application domain. Design knowledge and general
world knowledge employ reusable abstractions in
the solution domain and use the generic
knowledge and intuition.

• Guideline-2: The application frameworks and
Reuse Repositories have important roles in finding
objects. They help to find out more potential
objects in the systems. This guideline is derived
from observation-5.

• Guideline-3: Formulations of use cases and
Scenarios (the instances of use cases) in natural
language and UML have significant roles in finding
objects. This guideline is derived from
observation-6.

• Guideline-4: Training and education of the
techniques and concepts of terms are very
important for applying the techniques correctly to
different domains. This Guideline is derived from
observation-7 and observation-8. Table-3 shows
the possible cases for using terms according to
concepts in application domain.
• Note-1: Usually several different nouns, or

noun phrases, are used to describe the same
thing as concepts or ideas. A single term must
be selected, and the alternative one must be
eliminated. For example, the words "location"
and as shown in Figure 1. As the second
example, "LCD" in ATM system or "LED" in
voice mail system (See Figure 2 and Figure 3)
have the same concept, other examples, here, in
firm planning system are the words "storage"
and "inventory". Moreover “year”, “date” and
“time” have the same meaning in nearly all
different domains.

• Note-2: If different terms are used to describe
the same thing in a different semantic domain,

௧ܫܱܣ
௚ =

௦,ଵܫܱܰܣ
௚,௧ + ௦,ଶܫܱܰܣ

௚,௧݃
∑ 2 ∗ ௦∈ௌ௬௦௧௘௠௦∀ݏ ݉݁ݐݏݕݏ ݊݅ ݏ݁ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ

× 100;݃ = ;2ܩ,1ܩ ݐ = ݁ܽܿℎ ܿ݁ݐℎ݊݅(4) ܶ ݊݅ ݁ݑݍ

ܣ ௧ܱ =
∑ ௦,ଵܫܱܰܣ

ீଵ,௧ + ௦,ଶܫܱܰܣ
ீଵ,௧ + ௦,ଵܫܱܰܣ

ீଶ,௧ + ௦,ଶܫܱܰܣ
ீଶ,௧

∀௦∈ௌ௬௦௧௘௠௦

∑ 4 ∗ ௦∈ௌ௬௦௧௘௠௦∀ݏ ݉݁ݐݏݕݏ ݊݅ ݏ݁ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ
× 100; ݐ = ݁ܽܿℎ ܿ݁ݐℎ݊݅(5) ܶ ݊݅ ݁ݑݍ

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 107

(i.e., to capture a different concept), software
engineer needs to capture their concepts with
specific details. For instance, "dept" and "loan"
may be used by a software engineer as problem
domain terms that apply to firm planning
system (see Figure 5). However, each term
captures a different concept, so these terms
represent two different potential objects.
Specifically, "dept" related to short-term
monetary semantic domain, while "loan"
captures a concept in a long-term monetary
semantic domain.

• Note-3: Sometimes a specific noun is used to
capture two different concepts in a single
domain. A new term(s) must be created to
ensure that each concept/thing is captured. For
example, consider the term "cash" in firm
planning system. There are two concepts in this
domain using this word: (a) we can refer to
cash as the money inside the firm, (b) we can
refer to cash of the firm in the bank (a part of
balance sheet – see Figure 5).

• Note-4: Sometimes a specific term is used to
capture two different concepts in different
domains. The term must be created in a way
that each concept/thing is captured. For
example, consider the term "account" in ATM
system as a class, while it is an attribute of the
class USER in the high school system (see
Figure 2 and Figure 3).

4. RECOMMENDED APPROACHES

In this section, a couple of approaches are
recommended to find objects. In the experiments, we
had two groups with different experiences in the
object-oriented software development. These
approaches, therefore, were based on whether
software developers have little or more experience in
the object-oriented development.

When software developers have little experience,
the following steps are recommended:
1. Given a requirements document of the software

in narrative text (English or some languages
else) that uses the terms of the domain expert,
employ the "Using Nouns" technique. Note that
this technique is used to find several potential
objects, not all of the objects in the software. In
this step, guideline-4 should be considered.

2. Identify all "potential objects" in the problem
domain by interactive dialog with the domain
experts. Note that we want to capture the
objects that are in the mental model of the
domain experts. In this step, guideline-4 plays
some important roles.

3. Employ the "Using the things to be modeled"
technique to elicit more potential objects. In this

step, guideline-2 and guideline-4 play some
important roles to avoid any mistake.
When software developers have more experience,

the following steps are suggested:
4. Underline all of the nouns in the requirements

document or use cases. In this step, guideline-1
and guideline-4 should be considered.

5. Filter the list of nouns to identify things outside
the scope of the system. These are usually
"external objects" or “boundary objects” to
which the system interfaces. These external
objects will be useful for the context diagram,
but it is helpful to keep these objects in the
context diagram. Technically, they are not
objects in the final model of the systems, so they
are not the objects we want to refine. We can
then eliminate them from our list of potential
objects as part of the systems. In this step,
guideline-3 and guideline-4 should be
considered.

6. Use the category list given by Coad and
Yourdon, Shlaer and Mellor, and Ross to check if
there are other concepts or objects that should
be added to the list. In this step, guideline-2
plays important roles to avoid any mistakes.

5. SUMMARY AND CONCLUSION

This paper reviewed the techniques to find objects
in object-oriented software development and made
six taxonomies for them. The techniques covered,
here, were Using Nouns, Using Traditional Data Flow
Diagrams, Using object-oriented domain analysis,
Reusing an Application Framework, Reuse Class
Hierarchies, Reuse Individual Objects and Classes,
Using Generalization, Using Subclasses, Using
Subassemblies, Using Object Decomposition, Using
Personal Experience, Using Class-Responsibility-
Collaboration Cards, Using the definitions of objects
and classes and Using things to be modeled. To get
some experience in practice, the techniques were
applied to four systems including two system
software and two applications. Then, a couple of
approaches were recommended for finding objects in
the object-oriented development. The approaches
obtained would be helpful to develop new systems.
Our findings were to use a mixture of the techniques
and employed experts to implement and get the best
software products in practice. We also classified the
techniques as two types, conventional and modern.
The modern techniques focus more on discovering a
domain model rather than using existing domain
knowledge. We feel that it is a good practice for
individual learning object-modeling techniques to
understand and apply these techniques before using
Modern techniques.

Hassan Rashidi

108

TABLE 1
A SUMMARY OF THE TECHNIQUES TO FIND OBJECTS

Weaknesses Strengths Major Assumptions Technique Taxonomy
It has shortcomings; i.e., It
sometimes fails to identify
all objects and sometimes
identifies false objects

(a) An effective
communication medium
for both technical and
nontechnical project Staff;
(b) one-to-one mapping
from nouns to objects or
classes

Assumes that written
documents about the
domain exist.

UN
1st

Do

cu
m

en
t V

ie
w

Requires significant
training, practice,
intuition, and experience

(a) Requires no paradigm
shift by the analysts and
developers; (b) Direct and
effective

Assumes that a data flow
diagram in the domain
exist.

UDFD

Tailoring for performance
and other business
constraints in a specific
project may be lower
reuse

Supports reuse and tends
to maximize cohesion in
classes and minimizes
message and inheritance
coupling

Assumes that an OODA has
already been performed in
the same problem domain.

UOODA

2nd

Kn
ow

le
dg

e
Vi

ew

Developers must be able to
identify one or more
relevant application
frameworks

Assumes that at least one
OODA has been done to
create an application
framework of reusable
classes.

RAF

(a)The existing
classification hierarchies
may not be relevant to the
current application; (b)
Existing classes may need
to be parameterized, or
new subclasses may need
to be derived

Assumes that a reuse
repository with relevant
reusable class hierarchies
has been developed.

RCH

Shortcomings Inexpensive and easy to
use

Assumes a reuse
repository with relevant
reusable objects and
classes has been
developed.

RUIOC

Requires significant
training, practice,
intuition, and experience

Promotes reuse and
supports the development
of one or more
classification hierarchies

Assumes objects are
identified prior to their
classes.

UG

3rd

Co
m

m
on

al
iti

es
 V

ie
w

When misused, it leads to
unmaintainable and
opaque classes

Promotes reusability Skips finding objects and
directly starts identifying
classes.

USC

Identifies only assembled
objects

(a)Supports incremental
identification of
objects/classes; (b)
Identifies all the
subassemblies in an
application domain

Assumes developers are
incrementally developing
subassemblies using a
recursive development
process.

USM

4th

De
co

m
po

si
tio

n
Vi

ew

Leads to both subtle
modeling and technical
issues

May be a better model of
the implementation
 components

Assumes most object are
composed of other objects.

UOD

Developers have a
tendency to identify
suboptimal classes

(a)Provides a reasonable
"reality check" on the
current project; (b)
Improve the quality of the
classes and objects

Assumes that the
developer has already
performed an analysis and
can use that experience for
this analysis.

UPE

5th

Ex
pe

ri
en

ce
 V

ie
w

Developers must have
significant experience,
creativity, and intuition

Inexpensive and easy to
use

It is a human activity that
can be stimulated by the
use of small pieces of
paper.

UCRC

Requires significant
training, practice,
intuition, and experience

Direct and effective

Assumes that the software
engineer has experience in
identifying objects and
classes.

UDOC

6th

Ab
st

ra
ct

io
n

Vi
ew

Requires significant
experience with OO to
apply successfully

Highly effective

Recognizes that the
application domain
entities need to be
identified before
identifying the
corresponding objects and
classes.

UTBM

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 109

Figure 1: The class diagram of the control command police system [35].

Hassan Rashidi

110

Figure 2: The class diagram of the ATM system.

Figure 3: The class diagram of the voice mail system.

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 111

figure 4: The class diagram of the high school system.

Figure 5: The class diagram of the firm planning system.

Hassan Rashidi

112

Technique

Systems/Applications
High School System

(15)
Voicemail

System(11)
Firm Planning System

(14) ATM System (16)
G 1

R 1

G 1
R 2

G 2
R 1

G 2
R 2

G 1
R 1

G 1
R 2

G 2
R 1

G 2
R 2

G 1
R 1

G 1
R 2

G 2
R 1

G 2
R 2

G 1
R 1

G 1
R 2

G 2
R 1

G 2
R 2

UN 9 11 12 15 7 10 10 11 9 12 11 14 12 14 14 16
UDFD 10 11 11 14 8 8 8 10 9 10 10 13 11 12 12 15

UOODA 10 11 11 12 7 8 8 9 9 10 10 11 11 12 12 13
RAF 11 12 12 13 8 9 9 10 10 11 11 12 12 13 13 14
RCH 6 7 7 9 4 5 5 7 6 7 7 8 6 7 7 10

RUIOC 5 6 6 8 4 4 4 6 5 6 6 7 5 6 6 9
UG 5 6 6 8 5 6 5 6 5 6 6 7 5 6 7 9
USC 5 6 6 7 4 5 4 5 5 6 6 7 5 6 6 7
USM 4 5 5 7 3 4 4 5 4 5 5 7 4 5 5 9
UOD 4 5 5 6 3 4 4 4 4 5 5 6 4 5 5 6
UPE 10 14 13 15 7 10 10 11 8 12 11 14 11 15 15 16

UCRC 10 11 11 14 7 8 8 10 9 10 10 13 11 12 12 15
UDOC 6 7 7 8 4 5 5 6 6 7 8 10 6 7 7 9
UTBM 11 12 12 13 8 9 9 10 10 11 11 12 12 13 13 14

TABLE 2
 THE AVERAGE NUMBER OF OBJECTS IDENTIFIED BY EACH GROUP

Figure 6: Average percentages of the objects identified by applying the techniques.

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

J. Elec. Comput. Eng. Innov. 2015, Vol. 3, No. 2, pp. 99-114 113

TABLE 3
 POSSIBLE CASES FOR USING TERMS

 Concepts Domains Note

Terms
(Nouns/
Words)

Same Different 1
Same Same 2

Different Same 3
Different Different 4

REFERENCES
[1] G. Bavota, A D. Lucia, A. Marcus, and R. Oliveto, “Automating

extract class refactoring: an improved method and its
evaluation,” Empirical Software Engineering, Vol. 19, pp. 1616-
1664, 2014.

[2] G. Nanda, N. C. Kar, “A Survey And Comparison Of
Characteristics Of Motor Drives Used In Electric Vehicles,”
IEEE Electrical and Computer Engineering Conf, pp. 811-814.

[3] G. Booch., “Object-Oriented Development,” IEEE Transaction
on Software Engineering, 12 (2), pp. 211-221, 1986

[4] G. Booch., “Software Engineering with Ada,”
Benjamin/Cummings Publishing Co., Menlo Park, California,
1983

[5] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling

Language User Guide,” Addison Wesley, 1998

[6] G. Booch, J. Rumbaugh, and I. Jacobson “The Unified Software

Development Process,”Addison-Wesley, 1998
[7] F. P. Brooks, “The Silver Bullet, Essence and Accidents of

Software Engineering,” Information Processing '86. Ed., Kugler
H. J., Elsevier Science Publishers B.B. (North-Holland), 1986

[8] F. P. Brooks, “The Mythical Man-month: Essay on Software
Engineering,” Addison-Wesley, 1982

[9] B. Bruegge, and A. H. Dutoit, “Object-Oriented Software
Engineering: Using UML, Patterns, and Java,” Pearson Prentice
Hall,2010

[10] G. Canforaa, A. Cimitilea, A. D Luciaa, and G. A. D Lucca,
“Decomposing Legacy Systems into Objects: An Eclectic
Approach,” Information and Software Technology, Vol. 43, pp.
401-412, 2001

[11] Ch. Peter, “The entity-relationship model-Toward a unified
view of data,” ACM Trans. on Database Systems, Vol. 1(1.), pp.
9-36, 1976

[12] P. Coad, and E. Yourdon, “Object-Oriented Analysis,” Yourdon
Press, 1991

[13] A. Cockburn., “Writing Effective Use Cases (Draft 3),” Addison
Wesley Longman, 2000

Figure 7: Average percentages of the objects identified in the four systems by applying the techniques.

Figure 8: Average percentages of the objects identified by applying the techniques in each group of participants.

Hassan Rashidi

114

[14] E. Codd, “Extending the database relational model to capture
more meaning,” ACM Trans. on Database Systems, Vol. 4(4), pp.
397-434, 1979

[15] A. V. Deursen, T. Kuipers, “Identifying Objects Using Cluster
and Concept Analysis,” Proc. of 21st International Conference
on Software Engineering, Los Angeles, CA, ACM Press, New
York, pp.246-255, 1999

[16] Faculty of Electrical, Computer and IT engineering, Islamic
Azad University, Qazvin Branch,
<http://qiau.ac.ir/en/faculties/counter/dep.aspx?d=0>

[17] M. Fokaefs, N. Tsantalis, E. Strouliaa, and A. Chatzigeorgioub,
“Identification And Application Of Extract Class Refactoring In
Object-Oriented Systems,” Journal of Systems and Software, Vol.
85 , pp. 2241–2260, 2012.

[18] M. Fowler, , and K. Scott, “UML Distilled A Brief Guide to The
Standard Object Modeling Guide,” 2ndEdition,Addison Wesley
Longman, Inc, 1999

[19] N. Goldsein, and J. Alger “Developing Object-Oriented Software
for the Macintosh Anaiysis, Design, and Programming,”
Addison-Wesley, 1992

[20] J.V. Gurp , and J. Bosch, “Design, Implementation and
Evolution of Object-Oriented Frameworks: Concepts and
Guidelines,” Software—Practice and Experience, Vol. 31, pp.
277-300, 2001

[21] I. Jacobson. and G. Booch, “The Unified Software Development
Process,” Addison-Wesley, Reading, MA, 1999

[22] I. Jacobson, M.P. Christerson, and F. Overgaard, “Object-
Oriented Software Engineering- A Use Case Approach,”
Addison-Wesley, Wokingham, England, 1992

[23] Josuttis, M. Nicolai, “The C++ Standard Library: A Tutorial and
Reference,” Addison-Wesley, 1999

[24] R. King, “My Cat Is Object-Oriented”, Object-Oriented Concepts,
Databases and Applications”, Addison Wesley, 1989

[25] M. Langer, “Analysis and Design of Information Systems”,
3rdEdition, Springer-Verlag London Limited, 2008

[26] R.C. Lee and W.M. Tepfenhart, “UML and C++: A Practical Guide
to Object-Oriented Development,” 2ndEdition, Pearson
Prentice Hall, 2005

[27] J. Martin, and J. Odell, Object-Oriented Analysis and Design,
Prentice-Hall, 1992

[28] S. M. McMennin, and J. F. Palmer. Essential System Analysis,

Yourdon Press, 1984
[29] Merriam-Webster Online (2011), Dictionary and Thesaurus,

fromhttp:// www.merriam-webster.com
[30] B. Meyer, “Object-Oriented Software Construction,” Prentice-

Hall International (UK) Ltd., Cambridge, UK, 1988
[31] Musser, R. David, and A. Saini., “STL Tutorial and Reference

Guide C++ Programming with the Standard Template Library,”
Addison Wesley, 1996

[32] S.h. Pfleeger, and J.M. Atlee, “Software Engineering: Theory
and Practice,” 4th Edition, Pearson, 2010

[33] R. S. Pressman, “Software Engineering: A Practitioner's
Approach,” 8th Edition, McGraw-Hill, 2015

[34] M. R. Quillian, “Semantic Memory In Marvin Minsky,” Semantic
Information Processing. Cambridge, MIT Press, 1968

[35] H. Rashidi, “Software Engineering-A programming approach,”
2ndEdition, AllamehTabataba’i University Press (in Persian),
Iran, 2014

[36] D. Ross, “Applications and Extensions of SADT,” IEEE
Computer, 1985, Vol. 18 (4), pp. 25-34.

[37] J. Rumbaugh, “Getting Started: Using Use Cases To Capture

Requirements,” Object-Oriented Programming, Vol. 7(5), pp. 8-
12, 1994

[38] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, “Object-Oriented Modeling and Design,” Prentice-
Hall, 1992

[39] S. Schlaer, and S. Melior, “Object-Oriented Systems Analysis:
Modeling the World in Data,” Yourdon Press, 1988

[40] S. Schlaer, , and S. Melior. Object Lifecycles: Modeling the
World in States,Yourdon Press, 1992

[41] Y. Sommerville, “Software Engineering,” 9th Edition, Pearson
Education, 2010.

[42] L. A. Stein, , H. Lieberman, and D.Ungar, “A shared view of
sharing: The Treaty of Orlando,” Object-Oriented Concepts,
Databases, and Applications”,Eds. by W. Kim , and F. H.
Lechosky, ACM Press, New York, 1989.

[43] B. Stroustroup, “The C++ Programming Language,” Addison-
Wesley, 1991

[44] K.S. Subhash et al., “NLP based Object-Oriented Analysis and
Design from Requirement Specification,” International Journal
of Computer Applications, , Vol. 47 (21), 2012

[45] M. E. Winston, R. Chaffer, and D. Herrmann, “A Taxonomy of
Part-Whole Relations,” Cognitive Science, Vol. 11, pp. 417-444,
1987.

[46] R. Wirfs-Brock, “Designing Object-Oriented Software,”
Prentice-Hall, 1990

[47] E. N. Yourdon, and L. L. Constatine,“Structured Design:
Fundamentals of a Discipline of Computer Program and
Systems Design,”Prentice-Hall, Englewood Cliffs, New Jersey,
1979.

[48] D. Rosenberg, and M. Stephens, “Use Case Driven Object
Modeling with UML: Theory and Practice,” Apress, 2007.

[49] C. Larman, “:Applying UML and Patterns – An Introduction to
Object-Oriented Analysis and Design and Iterative
Development”, 3rd edition, Prentice Hall, 2005.

[50] H. Rashidi, “A Systematic Approach to Financial Planning in
Firms and Its Implementation in an Enterprise,” Quarterly
Journal of Fiscal and Economic Policies, Vol. 2 (8), PP. 73-92,
2014.

BIOGRAPHIES

Hassan Rashidi is an Associate
Professor in Department of
Mathematics and Computer Science of
Allameh Tabataba'i University. He
received the B.Sc. degree in Computer
Engineering and M.Sc. degree in
Systems Engineering and Planning, both
from the Isfahan University of
Technology, Iran. He obtained Ph.D.
from Computer Science and Electronic
System Engineering department of
University of Essex, UK. His research

interests include software engineering, software testing, and
scheduling algorithms. He has published many research papers in
International conferences and Journals.

http://qiau.ac.ir/en/faculties/counter/dep.aspx?d=0
http://
http://www.merriam-webster.com

