
http://jecei.srttu.edu

Journal of Electrical and Computer Engineering Innovations

JECEI, Vol. 4, No. 1, 2016

Regular Paper

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 57

SRTTU

Declarative Semantics in Object-Oriented Software
Development - A Taxonomy and Survey
Hassan Rashidi1,*
1 Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba’i University, Tehran, Iran.
*Corresponding Author’s Information: hrashi@atu.ac.ir

ARTICLE INFO

ABSTRACT

ARTICLE HISTORY:
Received 19 September 2016
Revised 29 October 2016
Accepted 30 October 2016

 One of the modern paradigms to develop an application is object oriented
analysis and design. In this paradigm, there are several objects and each
object plays some specific roles in applications. In an application, we must
distinguish between procedural semantics and declarative semantics for
their implementation in a specific programming language. For the
procedural semantics, we can write a set of instructions that must be
executed sequentially. The declarative semantics declare a set of facts and
rules. They do not specify the sequence of steps for doing the processing.
In this paper, we present four taxonomies for the rules in object-oriented
paradigm and discuss how the paradigm can be extended to support
declarative semantic of applications. Then, the rules in the taxonomies
are evaluated in four case studies. After that, an approach is
recommended for finding and implementation of declarative semantics,
based on some practical experience obtained from the evaluation.

KEYWORDS:
Taxonomy
Object
Semantics
Object-Oriented
Software Engineering

1. INTRODUCTION

There are two kinds of semantics in developing an
object-oriented application [1]. The first one, known
as procedural semantic, is related to the statements
that must be executed sequentially. The second one,
known as declarative/nonprocedural semantic, refers
to the statements that must be executed in several
parts of the application, possibly in parallel.

Some applications have many natural requirements
that are given in a declarative manner (see [2], [3], [4],
[5] and [6]). For example, suppose: (a) applications
that monitor a physical systems in a factory or
refinery, (b) applications that apply business policies
or engineering guidelines in a enterprise resource
planning, and (c) software development tools to
handle many exceptional conditions. When these
requirements occur, handling of the declarative
semantics (rules and facts) is left to the
analysts/developers. One of the most difficult tasks
for developers is transforming declarative semantic
into the procedural one. It is very natural for
developers to incorporate these declarative semantics

across the methods of various classes. However, when
a declarative statement affects multiple classes, it
must be programmed in several places of the methods
across the classes. This is not a good practice because
there is a transformation of declarative semantics into
procedural semantic and it creates hidden coupling
between the methods in the classes. The first reason
makes the model less readily understandable and
violates the goal of modeling reality the way the
domain experts see it. The second reason makes
maintaining and changing the model very difficult.

During their maintenance period, applications tend
to grow and take more budgets ([5] and [7]). As they
grow, developers encounter more situations in which
declarative statements have been distributed across
several methods. These situations make the
maintainability of the model too difficult. For example,
maintaining an invariant involving two objects may
require that similar but not identical tests be inserted
into a variety of places within the code. This leads to
errors of omission and logic by analysts, designers,
and programmers as the application is extended.

Hassan Rashidi

58

Because the invariant is not in one place, it is never
explicitly stated. Unstated assumptions make
modifications of code difficult and error-prone. We
need both a method and a mechanism to handle
declarative statements.

One of the main sources of complexity in software
programs is the constant need to check whether data
passed to a processing element (method in a class)
satisfy the requirements for correct processing or not.
Sometimes, it is necessary to perform these checks in
the method itself and sometimes in its clients. Unless
class designers formally agree on a precise
distribution of responsibilities, the checks end up not
being done at all, a very unsafe situation or, out of
concern for safety, being done several times.
Redundant checking may seem harmless, but it is not.
It hampers efficiency, of course; but even more
important is the conceptual pollution that it brings to
software systems. Complexity is probably the single
most important hostile of software quality. The
distribution of redundant checks all over a software
system destroys the conceptual simplicity of the
system, increases the risk of error, and hampers such
qualities as extensibility, understandability, and
maintainability.

The main motivation of this paper is to survey on
declarative semantics and their taxonomies. The
structure of remaining sections is as follows. In
Section 2, the literature review and taxonomies on
rules are presented. In Section 3, the experiences of
applying the approaches to four case studies are
presented. In Section 4, several approaches related to
rules/facts in the object-oriented paradigm are
recommended. Finally, Section 5 is considered to the
summary and conclusion.

2. LITERATURE REVIEW AND TAXONOMIES

One of the major challenges in the object-oriented
development and transforming the legacy systems
into object-oriented one is how identify declarative
semantics (rules and facts) (to identify objects see [2],
[8], [9], [10], [11] and [12]). To do this, many
developers use their experiences. The rule-based
model in an artificial intelligence system is based on a
control view of reality. In this model, the software has
an inference engine that executes a set of rules (if-
then statements). In theory, the sequence in which the
rules were executed was not material. However, in
practice, most of developers were not able to find
rules that were truly decoupled. Because there was no
structure to organize the rules, the software has also
very poor cohesion. Furthermore, rule-based systems
did not help developers to manage the data and did
not support procedural concepts.

There is a collection of mechanisms integrated into
a consistent model that helps manage the complexity

of the procedural aspects in applications. The
concepts of abstraction, encapsulation, inheritance,
relationship, and polymorphism in object-oriented
methods that support the design and implementation
of sophisticated procedural applications are identified
between the classes/objects (see [2], [13], [14], [15],
[16] and [17]). Moreover, there are many popular
design modeling processes and guidelines such as
GRASP [18] and ICONIX [19] for assigning
responsibility to classes and objects in object-oriented
design.

Most object-oriented developments are presently
based on the assumption that all aspects of the
application/system will be modeled within the
procedural paradigm (see [14], [20], [21], [22], [23],
[24] and [25]). However, there are aspects of an
application/system that are nonprocedural
(declarative) and are better modeled using other
mechanisms. Declarative semantics are employed for
a variety of purposes, such as enforcing invariants, in
a domain model, auditing complex data structures,
monitoring the state of a state machine, or checking
constraints while a user inputs data [26]. Some
declarative semantics are best that captured directly
in the classical object-oriented paradigm, while others
are better captured via other mechanisms [27].

One kind of rule that is better captured via another
mechanism is the data-driven rule [5]. This is due to
the property that it requires a mechanism to act as a
"monitor" of the model while it observes changes to
an object's attributes and reacts when a condition is
satisfied. The data-driven mechanism is well-suited to
handling rules that monitor things. It supports the
situation-action' directive without complicating an
application's procedural logic. It also satisfies two
very important goals of the object-oriented paradigm:
(a) the model should be built to reflect the way the
domain experts see reality, and (b) whenever
possible, the code for the application should be
generated from a model that is easy for the domain
experts and the end users to understand. To satisfy
these two goals, declarative statements (including
rules) need to be rigorous. They must be
understandable to the end user so that they can verify
that the rules correctly represent business policies
and desired application/ system behavior. Thus,
declarative statements, including rules, should be
written in structured English.

In 1990, the language R++ was developed. It is a
rule-based programming language based on C++. The
R++ extension permits rules to be defined as members
of C++ classes. The programming system of the
invention takes the classes with rules defined using
R++ and generates C++ code from them in which the
code required for the rules is implemented completely

Declarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 59

as C++ data members and functions of the classes
involved in the rules.

A limited number of works have focused on the
taxonomy of rules. James Martin and James Odel
(1992) have constructed the following classification
scheme for rules [28]. Their scheme describes three
types of rules. The first one is Integrity rules that state
something must always be true (e.g., a value for an
attribute must he in the integer range from 1 to 5).
The second one is Derivation rules that state how a
value or set of values is calculated (e.g., Tax
Withheld=Federal Income Tax + State Income Tax).
The third one is Behavior rules that describe the
dynamic aspects of behavior, such as what conditions
must be true for performing an action (e.g., when the
door is open, the light in the oven is turned on).

Lee and Tepfenhart (2005) identified seven
categories for the rules [29]: (a) Data integrity rules;
(b) Relationship integrity rules; (c) Derivation rules;
(d) Service precondition rules ; (e) Service post
condition rules; (f) Action trigger rules; (g) Data
trigger rules; (h) Control condition rules.

Rashidi (2015) reviewed the relationships among
objects in object-oriented software development and
made five taxonomies for their properties [30].
Mainly, the relationships are three basic types. This
paper presents five taxonomies for properties of the
generalization/specialization, association and
aggregation relationships. The first taxonomy is based
on temporal view and the second one is based on
structure. The third taxonomy relies on behavioral
view and the fourth one is specified on mathematical
view. Finally, the fifth taxonomy is related to the
interfaces between objects. Moreover, in this paper
the relationships are evaluated in a case study and
then several recommendations are proposed. The
main conclusion is that the relationships must capture
some concepts that applies to the problem domain or
some sub-domains.

One the major gaps and research needs is to have
an overview and taxonomy on rules in object-oriented
software development. According to Merriam-
Webster [31], taxonomy is the study of the general
principles of scientific classification, and is especially
the orderly classification of items according to their
presumed natural relationships. The major
differences between rules in the software, in general,
depend on the integrity, service and triggers views,
and in particular derivation view. There are,
therefore, four taxonomies to categorize the rules in
object-oriented development. These taxonomies are
described in the following sub-sections.

A. The First Taxonomy: Integrity-view
The first taxonomy for rules is based on Integrity of

software model. The Integrity, by definition in the
context of computer systems, refers to methods of

ensuring that data and their relationships are real,
accurate and safeguarded from unacceptable
modification. Hence, we have two types of rules in this
taxonomy: Data Integrity Rule and Relationship
Integrity Rule. These are described as follows:
 Data Integrity Rules (DIR): They state that

something must be true about an attribute(s).
 Relationship Integrity Rules (RIR): They state

that something must be true about a relationship.

B. The Second Taxonomy: Computation view
The second taxonomy for rules is based on

computation view. In this taxonomy, we have two
types of rule: Calculation rules and Heuristic rules.
These rules are described as follows:
 Calculation Rules (CR): They state how a value or

a set of values is computed. For example, in the
education systems of each university,
semester/session grade-point average and
cumulative grade-point average are calculated
repeatedly to represent numerically a student's
quality based on his/her courses marks.

 Heuristic Rules (HR): They are usually related to
search capabilities or they are common-sense rules
that help to find a good enough solution for an
optimization problem. For example, the throughput
of system must be maximized.

C. The Third Taxonomy: Service-view
There are two different rules in this view: Service

Precondition rules and Service Post Condition rules.
These rules are described as follows:
 Service Precondition Rules (SPRER): They state

that something must be true before a service be
performed.

 Service Post Condition Rules (SPOSR): They
state that something must be true after a service is
performed.

D. The Forth Taxonomy: Trigger-view
The modern approach for implementation of

software is to use the Data Driven software. In this
approach, the software constantly monitors attributes
and reacts automatically in response to changes in
monitored objects when appropriate. The action
portion of the code sits apart from the routine
procedural code and is automatically triggered by
relevant changes in the objects that the rule monitors.
This relieves the analyst/developer from designing
and programming explicit control for the data-driven
rule. The trigger rules in the modern software can be
classified as follows:
 Action Trigger Rules (ATR): They define the

causal relationship between events and actions.
 Data Trigger Rules (DTR): They define the causal

relationship between an attribute's condition and
an action.

Hassan Rashidi

60

 Control Condition Rules (CCR): They handle
situations in which multiple triggers are involved in
the rule.
Several examples for each rule in this taxonomy are

given in the next section.

3. PRACTICAL EXPERIENCE AND GUIDELINES

In order to evaluate the declarative semantic (rules
and facts) mentioned in Section 2, we did four case
studies, including a couple of general systems and a
couple of particular systems. These case studies are
described in the following:
 ATM System: This system was a simple ATM in

which we expected to see use cases covering the
principal functions such as withdraw cash, display
balance, print statement, change PIN and deposit
cash. The use case description had to be described
the actors involved, the inputs and outputs, normal
operation and exceptions. More details on this
application are given in [5] and [17]. The class
diagram for ATM system is depicted in Figure 1.

 Control Command Police System (CCPS): A mini-
requirement for CCPS is briefly described in [32]
and then the system is expanded in [15]. This
police service system must respond as quickly as
possible to many reported incidents. Its main
objectives are to ensure that incidents are logged
and routed to the most appropriate police vehicle.
The full specification of the system and its
implementation are given in [15]. Due to its fertility
for reusability in both application and system
software, we selected CCPS in our study whose its
class diagram is depicted in Figure 2. In this class
diagram, there are many classes. The main classes,
here, are ‘Incident’, ‘Police Staff’, ‘Police Vehicle’,
‘Police Officer’, ‘Director’, ‘Route Manager’,
‘Incident Waiting List’, ‘Response’ and ‘GPS
Receiver’. We show the attributes and methods for
only a couple of classes, namely, the ‘incident’ and
‘response’ class. These limitations made a more
clear and informative picture. If we had shown the
attributes and methods for all classes in this
diagram, we would have a messy picture.

 Voicemail System: This system was a voice mail
system consists of a speaker, a keypad, and a
microphone. We model the operation of an
embedded software system for a voicemail system
included in a landline phone. This had to display
the number of recorded messages on an LED
display and should allow the user to dial-in and
listen to the recorded messages. More details on
this application are given in [5]. The class diagram
for this system is depicted in Figure 3.

 Firm Planning System: In this system, a time
series data including balance sheet, profit and loss
account, financial ratios, production lines

information and others variables relating to
personnel, etc. of a firm (company) are available
and must be stored in a database. An economic
expert helps to estimate several equations to make
a model among the time series data. The system
must be able to accept several exogenous variables
that are imposed from outside the system. The
system uses the model to predict the endogenous
variables in the coming years according to the
equations subject to the exogenous variables. More
detail on this system are given in [33]. The class
diagram for this system is depicted in Figure 4.
Note that the mechanism on which artificial

intelligence systems were built was primarily an
inference engine. An inference engine processes a
collection of facts and rules to make deductions using
logical inference. The rules of an inference engine
processes are called production rules. Most of
developers understand declarative semantics from
this perspective. However, the rules identified here
were not production rules. They were rules linked
with the object-oriented model to provide a
meaningful and useful model for implementation.

Although declarative semantic are different from
procedural semantic, identifying them in a
requirements document is relatively simple. Its
simplicity refer to while procedural semantic are
always part of a specified sequence (e.g., a procedure,
an activity, or a task), a declarative semantic are
stands alone. A declarative semantic is independent of
any sequence of other statements. It declares a factor
for a rule. Several samples for each rule in the
taxonomies of Section 2 are given in Table 1.

The numbers of rules identified in the four systems
are put in Table 2. The number shown in the
parentheses in front of the name of each system is
according to the number of classes in the class
diagrams (see Figures 1 to 4).

At the first glance from Table 3, we can get the
following observations:
 Observation-1: The numbers of rules identified for

the control command police and voicemail systems
have the largest and smallest values, respective,
among systems. It shows that these systems are the
biggest and smallest ones, respectively, in our case
studies (See Figure 3 and Figure 2).

 Observation-2: The numbers of rules in kind of
Heuristic Rules (HR) are the smallest one in the
systems. This observation shows there are few
rules related to optimization problems during the
object-oriented software development. In the
Control Command Police system, the method
‘Shortest Distance’ of the class ’Route Planner’ must
choose the closest vehicle to address of the incident
for its handling (see Figure 2). In the Firm Planning

Declarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 61

system, we have a class for optimization problems
(see the class ‘Optimization’ in Figure 4).

 Observation-3: The number of rules in kind of
Relationship Integrity Rules (RIR) in two systems,
the control command police and firm planning
systems, is almost the same. It shows we have
considered the multiple associations among objects
during the object-oriented software development.

The number of rules identified in the systems is not
very convenient to make any judgment because they
are absolute values. Hence, we decided to calculate
the percentage of the number of rules identified. The
result of the calculations in the four systems is
depicted in Figure 5.

TABLE 1
SOME SAMPLES OF THE RULES IN THE SYSTEMS

Taxonomy Type of Rules Sample for the systems

1st
Taxonomy

Data Integrity Rules
(DIR)

In the Voice Mail System, the capacity of mailbox must be in the
integral range from 100 to 500MB.

Relationship Integrity
Rules (RIR)

In the Control Command Police System, the dispatcher may not
supervise more than ten police officers.

2nd
Taxonomy

Calculation Rules (CR)
In the Firm Planning System, we have the equation TA = CA + FA
where TA, CA and FA are Total Assets, Current Assets and Fixed

Assets, respectively.

Heuristic Rules (HR) In the Control Command Police System, the best strategy is to send
the closest vehicle to address of an incident for its handling.

3rd
Taxonomy

Service Precondition
Rules (SPRER)

In the ATM System, amount of withdraw must be less than or equal
the balance for the account.

Service Post Condition
Rules (SPOSR)

In the ATM System, the balance for the account will be decreased by
the amount of withdraw

4th
Taxonomy

Action Trigger Rules
(ATR)

In the Control Command Police System, when an event is reported,
then prepare the requirements immediately

Data Trigger Rules (DTR) In the Firm Planning System, when the CASH is below the minimum
required then make a loan from a bank

Control Condition Rules
(CCR)

In the Control Command Police System, If an event has been handled
and the report prepared then the event is closed

TABLE 2
THE NUMBER OF RULES IDENTIFIED IN THE SYSTEMS

Taxonomy Rules ATM (16) Voicemail
(11) Control Command Police (15) Firm Planning (14)

1st
Taxonomy

DIR 5 7 11 3
RIR 5 6 10 10

2nd
Taxonomy

CR 4 8 5 15

HR 1 1 2 5

3rd
Taxonomy

SPRER 5 8 12 6
SPOSR 7 4 7 5

4th
Taxonomy

ATR 6 4 6 3

DTR 6 6 6 4

CCR 6 4 6 3
SUM 45 48 65 54

Hassan Rashidi

62

Figure 1: The Class Diagram of the ATM System.

Figure 2: The Class Diagram of the Control Command Police System [34].
….System

Declarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 63

Figure 3: The Class Diagram of the Voice Mail System.

Figure 4: The Class Diagram of the Firm Planning system.

Hassan Rashidi

64

From Figure 5, we can get the following observations:
 Observation-4: The number of Calculation Rules

(CR) identified in the firm planning system is the
maximum. Because we have many mathematical
equations in the firm planning system. These
equations are around the item in the balance sheet,
profit and loss accounts, the production lines and
the relations around the personnel information.

 Observation-5: The number of Heuristic Rules
(HR) identified in the systems is the minimum
value. There exist five heuristic rules in the firm
planning system that are derived for the
optimization problems in this system.

 Observation-6: The number of rules in Service
Post Condition Rule (SPOSR) in the control
command police and ATM systems is greater than
other rules.
The average percentages of the number of rules

identified in the four systems are depicted in Figure 6.
From this figure, we can get the following
observations:
 Observation-7: The average percentage of the

number of different kinds of rules identified in ATM
system has the minimum variance. It varies
between 2 and 16 and shows that ATM is a general
system.

 Observation-8: The average percentage of the
number of different kinds of rules identified in firm

 planning system has the maximum variance

because this is a particular system. It varies
between 5 and 27. It seems some other types of
rules such as control condition and post service
condition rules are considered in the computation
rules.

 Observation-9: The average percentage of the
number of Service Precondition (SPERR) and
Service Post Condition (SPOSR) rules identified in
the four systems are almost the same. It shows the
Service Precondition (SPERR) rules are as
important as Service Post Condition (SPOSR) rules
in our case studies.

A. Guidelines to Identify and Specify declarative
semantic

In our experience, when a requirement is written
as a declarative statement, the best practice is to
specify it as a rule. A technique that captures rules
explicitly and makes them easy to read is structured
English. For example, in the control command police
system, the rules can be used to: (a) enforce
something that should always be true (invariants) like
“there is only one dispatcher”, (b) detect things that
should never be true (constraint violations) like “each
event must not be handled more than once”, (c)
maintain the integrity of the domain model like “each
police vehicle has a number”, (d) monitor for and
react to important events like “traffic incident for

0

5

10

15

20

25

30

35

40

DIR RIR CR HR SPRER SPOSR ATR DTR CCR

P
e
r
c
e
n
t

Control Command Police System

0

5

10

15

20

25

30

35

40

DIR RIR CR HR SPRER SPOSR ATR DTR CCR

P
e
r
c
e
n
t

Voicemail System

0

5

10

15

20

25

30

35

40

DIR RIR CR HR SPRER SPOSR ATR DTR CCR

P
e
r
c
e
n
t

ATM System

0

5

10

15

20

25

30

DIR RIR CR HR SPRER SPOSR ATR DTR CCR

P
e
r
c
e
n
t

Firm Planning System

Figure 5: Percentages of the rules identified in the systems.

Declarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 65

which it is necessary to send ambulance and vehicles
with specific equipment”, (e) express domain
knowledge such as business policies, engineering
rules, and situation-action heuristics like “the best
strategy is to send the closest vehicle to address of an
incident for its handling”, (f) specify an operation
(function) that would have to be used in many
methods like “we must ensure that each incident is
logged once it is reported”, and (g) exploit the data-
driven or event-driven nature of rules like “the system
must respond as quickly as possible to reported
incidents”.

To sum up our guidelines, it is noted that rules
usually capture information about how the business
should operate. Rules encapsulate business
knowledge. The most common statements in
declarative semantics that indicate a rule are in Table
3. In these constructs, a condition is a Boolean
expression, an event is a condition that can be
detected by an object, constraints are a set of
restrictions, and an action is an invocation of a
procedural statement.

Figure 6: Average Percentages of the Rules identified in the four systems.

TABLE 3
VARIOUS KINDS OF RULES IN ANALYSIS DOCUMENTS

Kind of Rule Common statements

Data Integrity Rule (DIR) IT MUST ALWAYS BE THAT statement of fact
 IT MUST ALWAYS BE THAT IF condition THEN
action Relationship Integrity Rule (RIR)

Calculation Rule (CR)
 Fact usually presented by an equation
 WHEN condition or event THEN action
 IF condition or not, THEN action

Heuristic Rule (HR)
 IT MUST BE THAT statement of policy
 THE BEST Solution is to MAXIMIZE/MINIMIZE the
function subject to constraints

Service Precondition Rule
(SPRER) BEFORE service that is to be performed IT MUST BE THAT fact

Service Post Condition Rule
(SPOSR) AFTER service that has been performed IT MUST BE THAT fact

Action Trigger Rule (ATR)
 IF condition THEN action
 WHEN event IF condition THEN action Data Trigger Rule (DTR)

Control Condition Rule (CCR)

Hassan Rashidi

66

B. Guidelines for documenting declarative semantics
Using UML

During the design phase, developers identify and
adapt design patterns and frameworks to realize
specific subsystems. They must refine and specify
precisely the interfaces of classes using constraint
languages such as UML’s Object Constraint Language.
Finally, they map the detailed object design model to
source code and database schema. The guidelines for
documenting and mapping the rules into the object-
oriented concepts are as follows:
a) Data integrity and data trigger rules: The rules

of data integrity and data triggers are mapped onto
an attribute. Normally, they are checked every time
the attribute changes value. This is best
documented by creating a new stereotype, called
"data trigger," which is used to capture the actions
associated with the rule(s). Then, artificial
associations are drawn between the classes that
need data triggers and the data trigger class.

b) Relationship integrity rule: A relationship
integrity rule is mapped onto a relationship. It
normally affects the instantiation, deletion of, and
addition to a relationship. This is documented as a
constraint in UML.

c) Calculation rule: A calculation rule is documented
as part of the method. However, there are
situations in which it is implemented as a trigger.
Care must be taken when we have a calculation
rule.

d) Heuristic Rule: An optimization rule is mapped to
a class/object when it is related to an optimization
problem. Obviously, there are several methods
along data to perform the optimize operations. At
least, one of the methods must be public to make in
the class.

e) Service precondition rule: A service precondition
rule is mapped onto a service. As suggested by
developers, the precondition is a requirement that
should be guaranteed by the calling object. This
needs to be captured as part of the entrance
criteria. If there is an operation specification for the
service, use the precondition section-of the
operational specification to document this.

f) Service post-condition rule: A service post-
condition rule is also mapped onto a service. If an
operations specification is written for the service,
use the post-conditions section to document this.
The post-conditions must also be included in the
method description. It is a rule that must be
checked by the developer of this service. The
service must guarantee that the post-condition is
satisfied.

g) Action trigger rule: An action trigger rule is
mapped onto a finite state machine. It is usually an

event in a state transition diagram. This is
documented as an event in UML.

h) Control condition rule: A control condition rule is
mapped onto a finite state machine. It is usually a
condition needed for a change of state. This is
documented as a guard condition in UML.

C. Guidelines for implementing declarative semantic
Our experiences show that declarative statements

are usually written at a higher level of abstraction
than procedural statements. Implementing declarative
statements using this mechanism frees the analyst,
designer, and programmer from having to manage
flow of control for these statements. In our
experience, the best mechanism for implementation is
a data-driven mechanism. This mechanism simplifies
the task of maintaining model integrity in two
important ways. Firstly, it enables invariants and
constraints to be stated explicitly in a single place,
rather than having them scattered in multiple places
in methods. This makes the model and thus code
easier to understand and modify. Secondly, because it
is data-driven, invariants and constraints are
reevaluated automatically whenever relevant changes
are made to an object's attribute. This relieves the
analyst/programmer of the burden of explicitly
incorporating data integrity rules into their
procedural logic. The application's procedural logic is
no longer cluttered with code for maintaining model
integrity.

The mapping guidelines given in Section 3.2 show
that service precondition rules, service post-condition
rules, control condition rules, action triggers, and
calculation rules map very nicely into the classical
object-oriented model. However, relationship
integrity rules, data integrity rules, and data triggers
are not well supported in the model. To handle these
rules, a data-driven mechanism is necessary. There
are two ways to supply a data-driven mechanism:
 Use the triggers in the database system: Using

triggers in the database system is the classical way
of handling data integrity and data trigger rules.
Every time the database recognizes a change in
data value, it triggers a routine written by the User.
The appropriate rules are implemented in that
routine: This is reasonably straightforward for
simple data-driven rules, but it is a little more
tricky for complex rules (such as relationship
constraints).The data-driven mechanism is
important because many of our declarative
requirements are given to us in a manner. This
gives us a way to capture reality as domain experts
see it-without the need to transform a declarative
requirement (or solution) into a purely procedural
model.

 Use the language R++ that extends C++ to include
rules. This language bridges the gap between

Declarative Semantics in Object-Oriented Software Development - A Taxonomy and Survey

J. Elec. Comput. Eng. Innov. 2016, Vol. 4, No. 1, pp. 57-68, DOI: 10.22061/jecei.2016.557 67

object-oriented procedural semantics and data-
driven rules. C++ classes contain two kinds of
members: data members and member functions.
R++ extends the C++ class construct with a new
kind of member, a ‘rule’. This enables object-
oriented applications to employ data-driven
computation. As an extension to C++, R++ fits
comfortably with C++ concepts and practices. R++
rules are relatively easy to learn; the syntax is
similar and the behavior is much like a "reactive"
member function. An R++ rule is syntactically
defined as follows:

Rule class-name: rule-name {condition => action}.
The condition-action pair behaves like an if-then

statement; if condition then actions.
The action is automatically executed when the

condition evaluates to true. The system monitors the
data members appearing in the rule's condition, and
when a data member changes its data values, it
creates a trigger event. The trigger event causes the
rule to reevaluate the condition, taking into account
new /changed data. If the condition is satisfied, the
rule is fires. When a rule fires, the action is executed.
Within the condition, part of the rule existential
quantifiers (all and exists) and logical operators (and
and or) are supported. Existential qualifiers and
logical operators are used -to form compound
conditions. In addition, the language supports
accessing related objects (thus their associated
services) via a concept called binding. Service calls
(function calls) are also supported in the condition.

4. RECOMMENDED APPROACH

In this section, the approach is recommended to
identify and specify the declarative semantics in
applications. Large systems and their development
processes are often constrained by external rules and
regulations limiting the way that they can be
developed, that require certain types of system
documentation to be produced. Facts can be
expressed as rules very easily. They will be derivation
rules. Ideally, we want a technique that captures rules
explicitly in a manner that is easy to read and will
generate correct codes. An inference engine may be
used to implement a method in a class; however, we
do not recommend this technique because the
significant parts of software are dedicated to objects
in which performance must be maximized.

The recommended approach is to systematically
use preconditions, and then allow the service author
to assume, when writing the method, that the
corresponding precondition is satisfied. The aim is to
permit a simple style of programming, favoring
readability, maintainability, and other associated
qualities. This notion applies to libraries and classes
within an application more so than servers in a

distributed computing system. A server that handles
multiple clients cannot afford to assume that all
clients are well behaved. It must be coded defensively
so that a rogue client cannot crash it or corrupt any
data stored within it. When declarative statements
appear in the requirements document, the following
steps are recommended:
 Step 1: Separate the declarative statements from

the procedural statements.
 Step 2: Restate the declarative statements using

structured English as rules, taking care that the
rules are rigorous and implementable.

 Step 3: Map the rules onto the appropriate object
oriented mechanism.

 Step 4: If data-driven rules are used, employ a
data-driven mechanism to model these rules. We
recommend R++ over using database triggers.

5. SUMMARY AND CONCLUSION

In this paper, we distinguished between procedural
and declarative statements in programming
languages. Most of developers have worked with
procedural programming languages. These languages
provide several constructs so that we can write a set
of instructions that must be executed sequentially.
The sequences vary depending on conditions test, and
a set of instructions is executed repetitively. However,
declarative languages declare a set of facts and rules.
They do not specify the sequence of steps for doing
the processing.

Declarative statements, or rules, are another
natural form in which domain experts and end users
state their requirements. Analysts and developers
should accept declarative statements as a natural part
of textual requirements. It follows that declarative
statements should be captured within a model. To do
this, developers must translate the textual declarative
requirements into structured English to assure that
they have rigorous and implementable requirements.
After stating all of the declarative requirements in
structured English, developers should map each
declarative statement into a kind of rule.

In this paper, we maked four taxonomies for the
rules. The first taxonomy is based on integrity view
and the second one is based on computation
operations. The third taxonomy relies on service view
and the fourth one is specified on trigger view. The
rule taxonomies allow it to be properly assigned to the
appropriate object-oriented mechanism in the model
Moreover, the rules in the taxonomies were evaluated
in four case studies

For implementation, we suggested the data-driven
mechanism. This mechanism supports rules triggered
by a change in the value of an attribute. Historically,
triggers in a database system were used to implement
this mechanism. However, documenting database

Hassan Rashidi

68

trigger functions and getting people to read the
documentation were not easily accomplished. An
alternative approach is to use R++ language, which
provides the data-driven mechanism as an integral
part of the language. This approach is highly desirable
because we can see all the code in one place. As with
any tool, data-driven rules are good for some tasks
and not as effective for other tasks. We recommend
them for: (a) Enforcing invariants; (b) Maintaining
data integrity; (c) Maintaining relationship integrity;
(d) Detecting constraint violations; (e) Stating
business policies and engineering guidelines.

REFERENCES
[1] M. Langer, "Analysis and Design of Information Systems," 3rd

ed., Springer-Verlag London Limited, 2008.
[2] P. Coad, E. Yourdon, Object-Oriented Analysis, Yourdon Press,

1991.

[3] S. H. Pfleeger, J. M. Atlee, "Software Engineering: Theory and
Practice," 4th ed., Pearson, 2010.

[4] R. S. Pressman, “Software Engineering: A Practitioner's
Approach,” 8th ed., McGraw-Hill, 2015.

[5] Y. Sommerville, “Software Engineering,” 10th ed., Pearson
Education, 2016.

[6] L. A. Stein, H. Lieberman, and D. Ungar, "A shared view of
sharing: The Treaty of Orlando, Object-Oriented Concepts,
Databases, and Applications”, W. Kim and F. H. Lechosky, Eds.
New York: ACM Press, 1989.

[7] M. Asadi, H. Rashidi, “A Model for Object-Oriented Software
Maintainability Measurement,” International Journal of
Intelligent Systems and Applications, pp. 60-66, 2016.

[8] G. Bavota, A. De. Lucia, A. Marcus, and R. Oliveto, “Automating
extract class refactoring: an improved method and its
evaluation,” Empirical Software Engineering, vol. 19, pp. 1616-
1664, 2014.

[9] K. Beck, W. Cunningham, "A laboratory for teaching object
oriented thinking," OOPSLA '89 Conference proceedings on
Object-oriented programming systems, languages and
applications, ACM SIGPLAN Notices, 1989.

[10] A. Cockburn, Writing Effective Use Cases (Draft 3), Addison
Wesley Longman, 2000.

[11] M. Fokaefs, N. Tsantalis, E. Strouliaa, and A. Chatzigeorgioub,
“Identification and Application Of Extract Class Refactoring In
Object-Oriented Systems,” Journal of Systems and Software, vol.
85, pp. 2241–2260, 2012.

[12] H. Rashidi, “Objects Identification in Object-Oriented Software
Development - A Taxonomy and Survey on Techniques”,
Journal of Electrical and Computer Engineering Innovations,
vol. 3(2), pp. 27-43, 2015.

[13] B. Bruegge, A. H. Dutoit, Object-Oriented Software
Engineering: Using UML, Patterns, and Java, Pearson Prentice
Hall, 2010.

[14] I. Jacobson, M. P. Christerson, and F. Overgaard, Object-
Oriented Software Engineering- A Use Case Approach,
Addison-Wesley, Wokingham, England, 1992.

[15] J. Rumbaugh, M. Blaha, W. Premerlani, E. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design, Prentice-Hall,
1992.

[16] R. King, My Cat Is Object-Oriented, Object-Oriented Concepts,
Databases and Applications, Addison Wesley, 1989.

[17] R. Wirfs-Brock, Designing Object-Oriented Software, Prentice-
Hall, 1990.

[18] C. Larman, "Applying UML and Patterns – An Introduction to
Object-Oriented Analysis and Design and Iterative
Development," 3rd ed., Prentice Hall, 2005.

[19] D. Rosenberg, M. Stephens, Use Case Driven Object Modeling
with UML: Theory and Practice, Apress, 2007.

[20] G. Canforaa, A. Cimitilea, A. D. Luciaa, and G. A. D. Lucca,
“Decomposing Legacy Systems into Objects: An Eclectic
Approach,” Information and Software Technology, vol. 43, pp.
401-412, 2001.

[21] M. Fowler, K. Scott, “UML Distilled A Brief Guide to The
Standard Object Modeling Guide,” 2nd ed., Addison Wesley
Longman, Inc, 1999.

[22] N. Goldsein, J. Alger, Developing Object-Oriented Software for
the Macintosh Analysis, Design, and Programming, Addison-
Wesley, 1992.

[23] J. V. Gurp, J. Bosch, “Design, Implementation and Evolution of
Object-Oriented Frameworks: Concepts and Guidelines,”
Software—Practice and Experience, vol. 31, pp. 277-300, 2001.

[24] I. Jacobson, G. Booch, The Unified Software Development
Process, Addison-Wesley, Reading, MA, 1999.

[25] J. Rumbaugh, “Getting Started: Using Use Cases To Capture
Requirements,” Object-Oriented Programming, vol. 7(5), pp. 8-
12, 1994.

[26] S. Schlaer, S. Melior, Object Lifecycles: Modeling the World in
States, Yourdon Press, 1992.

[27] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley, 1998.

[28] J. Martin, J. Odell, Object-Oriented Analysis and Design,
Prentice-Hall, 1992.

[29] R. C. Lee, W. M. Tepfenhart, "UML and C++: A Practical Guide to
Object-Oriented Development," 2nd ed., Pearson Prentice Hall ,
2005.

[30] Z. Rashidi, “Properties of Relationships among objects in
Object-Oriented Software Design,” International Journal of
Programming Languages and Applications, vol. 5(4), pp. 1-13,
2015.

[31] Merriam-Webster Online (2011), Dictionary and Thesaurus,
from http:// www.merriam-webster.com

[32] K. S. Subhash, M. Navi, and B. Bhojane, “NLP based Object-
Oriented Analysis and Design from Requirement
Specification,” International Journal of Computer Applications,
vol. 47(21), 2012.

[33] H. Rashidi, Firm Planning, Using Computing Models, Eghtesad
Farda Press (in Persian), 2014.

[34] H. Rashidi, “Software Engineering-A programming approach,”
2nd ed., Allameh Tabataba’i University Press (in Persian), Iran,
2014.

BIOGRAPHIES

Hassan Rashidi is an Associate Professor
in Department of Mathematics and
Computer Science of Allameh Tabataba'i
University. He received the B.Sc. degree in
Computer Engineering and M.Sc. degree in
Systems Engineering and Planning, both
from the Isfahan University of Technology,
Iran. He obtained Ph.D. from Computer
Science and Electronic System Engineering
department of University of Essex, UK. His
research interests include software

engineering, software testing, and scheduling algorithms. He has
published many research papers in International conferences and
Journals.

